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Consider three qubita, B, andC which may be entangled with each other. We show that there is a trade-off
betweerA's entanglement witl8 and its entanglement wit@. This relation is expressed in terms of a measure
of entanglement called the concurrence, which is related to the entanglement of formation. Specifically, we
show that the squared concurrence betw&amdB, plus the squared concurrence betw@eandC, cannot be
greater than the squared concurrence betweand the paiBC. This inequality is as strong as it could be, in
the sense that for any values of the concurrences satisfying the corresponding equality, one can find a quantum
state consistent with those values. Further exploration of this result leads to a definition of an essential
three-way entanglement of the system, which is invariant under permutations of the qubits.

PACS numbd(s): 03.67—a, 03.65.Bz, 89.76.c

Quantum entanglement has rightly been the subject olocal transformation$9—12]; indeed, both the concurrence
much study in recent years as a potential resource for conand our measure of three-way entanglement are invariants in
munication and information processing. As with other re-this sense. Our work is also related to research exploring the
sources such as free energy and information, one would likeonnection between entanglement and clorjitg-17. An
to have a quantitative theory of entanglement giving specifi€xample along these lines was studied by Bruf3, who asked,
rules about how it can and cannot be manipulated; indeed) the case of a singlet pakB, to what extent particl®'s
such a theory has begun to be developed. The first step @ntanglement with particlé can be shared symmetrically
building the theory has been to quantify entanglement itselfand isotropically with a third particle, for a purpose such as
In the last few years a number of entanglement measures fégleportation where isotropy is desirgti8]. Our investiga-
bipartite states have been introduced and analjzed], the  tion is similar in spirit to that of Bru® but has a different
one most relevant to the present work being the “entanglefocus in that we are looking for a general law that is inde-
ment of formation”[2], which is intended to quantify the Pendent of assumptions about symmetry or isotropy. Some
amount of quantum communication required to create #®f the results presented here have been mentioned in a recent
given state. In the present paper we draw on previous worRaper by one of u$19], but the proofs and most of the
on entanglement of formatiof6,7] in order to explore an- details and observations have not been previously published.
other basic quantitative question: To what extent can an obln this paper we confine our attention to binary quantum
ject be simultaneously entangled with two other objects? ~©objects(qubits such as spin-1/2 particles—we will use the

Unlike classical correlations, quantum entanglement candeneric basis label®) and |1) rather than[T) and||)—but
not be freely shared among many objects. For exampldhe same questions could be raised for larger objects.
given a triple of spin-1/2 particles, B, andC, if particle A is We begin by defining concurrence. L&tandB be a pair
fully entangled with particlés, e.g., if they are in the singlet Of qubits, and let the density matrix of the pair pgg,
state (1¥2)(|11)—|11)), then particleA cannot be simulta- Which may be pure or mixed. We define the “spin-flipped”
neously entangled with particle. (If A were entangled with ~density matrix to be
C, then the pairAB would also be entangled witl and
would therefore have a mixed-state density matrix, whereas Pas=(0y®@0y)pap(oy®ay), 1)
the singlet state is pureOne expects that a less extreme ) ) o
form of this restriction should also hold: & is partly en- where thg asterisk denotes complex conjugation m_the stan-
tangled withB, thenA can have only a limited entanglement dard basis{|00), [01), [10), [11)} and oy expressed in the
with C. The first goal of this paper is to verify this intuition S&@Me basis is the matrix
and express it quantitatively. We will see that the restriction .
on the sharing of entanglement takes a particularly elegant (0 _')
form in terms of a measure of entanglement called the “con- i 0/
currence,” which is closely related to the entanglement of
formation. Further analysis of this result will lead us natu-As both p,g andp,g are positive operators, it follows that
rally to a quantity that measures an essential three-way erthe productpagpag, though non-Hermitian, also has only
tanglement of the system and is invariant under all permutareal and non-negative eigenvalues. Let the square roots of
tions of the particle$8]. these eigenvalues, in decreasing orderpAbe\,, A3, and

The present work is related to recent work on the charach,. Then the concurrence of the density maipixg is de-
terization of multiparticle states in terms of invariants underfined as
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Cap=MaxAa=Ae=hs=hel) @ TH(pasPaB) = 2 ijk@mnkEmny Enn'a:;rnrpai'j'pfi'ifj'j :
For the special case in which the stateAdf is pure, one can (6)
show thatC,g=2+/detp,, Wherep, is the density matrix of
qubit A, that is, the trace op,g over qubitB. whereep;= — €10=1 andegy= €1;=0 and the sum is over all

It is by no means obvious from the definition that the the indices. We now replace the produgt, €;/; with the
concurrence is a measure of entanglement for mixed state8guivalent expressiod,: 8n/j— d,j6yj+, and in the first of
This interpretation comes from earlier work, in which a spe-the two resulting termgthat is, the one associated with
cific connection is established between the concurrence anéhj’6r/j) we perform a similar substitution fo€qqy €/ .
the entanglement of formation of a pair of quifif§. For the ~ These substitutions directly give us
purpose of this paper it is sufficient to note tidat 0 corre- _ ) )
sponds to an unentangled stafes 1 corresponds to a com- Tr(pappas) =2 detpa—Tr(pg) +Tr(pc), 0
pletely entangled state, and the entanglement of formation is

a monotonically increasing function @i® At present, the Wherepa, pg, andpc are the 2<2 density matrices of the
concurrence is defined only for a pair of qubits, not forindividual qubits. Because each of these matrices has unit

higher-dimensional systems. trace, we can rewrite Eq7) as
We now turn to the first problem of this paper: given a -
pure state of three qubifs, B, andC, how is the concurrence Tr(paspas) =2(detp,+detpg—detpc). ®

betweenA andB related to the concurrence betwegrand Bv svmmetry we must also have
C? For this special case—a pure state of three qubits;—they y y
formula for the concurrence simplifies: each pair of qubits, Tr = V=2(detp.+ deto~— det 9
being entangled with only one other qubit in a joint pure (PacPac) =2(detpy+detpc Pe)- ©

state, is described by a density matrix having at most tWaymming these last two equations, we finally get a simple

nonzero eigenvalues. It follows that the prodpgkpag alSO  expression for the right-hand side of Hg), namely,
has only two nonzero eigenvalues. We can use this fact and

Eq. (2) to write the following inequality for the concurrence Tr(pagpap) + Tr(pacPac) =4 detp, . (10
Cap betweenA andB.?
Equations(4) and(10) give us our first main result:
Cas=(N1—N2)?=A{+N5—2\ ), .
CantCic=<4detp,. 11
=Tr(pasPas) — 2N 1A 2<Tr(pagpas)- ) A TAe oA ()
We can interpret the right-hand side of Ed1) as fol-
Herep,p is the density matrix of the pai&B, obtained from  |ows. If we regard the paiBC as a single object, it makes
the original pure state by tracing over quBit Equation(3)  sense to speak of the concurrer@ggcy between qubitA
and the analogous equation f6kc allow us to bound the and the paiBC, because, even though the state spade®f

sumCiB+CiC: is four dimensional, only two of those dimensions are nec-
essary to express the stde of ABC. (The two necessary
CiB+ CiCsTr(pABTJAB)+Tr(pAC7)AC). (4) dimensions are those spanned by the two eigenstategcof

that have nonzero eigenvalues. That there are only two such
The next paragraph is devoted to evaluating the right-haneigenvalues follows from the fact thatis only a qubit and
side of this inequality. that the state of the whole system is puk&e may thus treat
Let us express the pure stag of the three-qubit system A andBC, at least for this purpose, as a pair of qubits in a
in the standard basi§ijk)}, where each index takes the val- pure state. As we have mentioned before, the concurrence for

ues 0 and 1: this case is simply gdetp,. We can therefore rewrite our
result as
=20 aydijk). 5 CotCe=Ciso (12

Informally, Eq.(12) can be expressed as follows. Qubhit
has a certain amount of entanglement with the B&r This
amount bound#\'s entanglement with qubit8 andC taken
individually, and the part of the entanglement that is devoted
IThe entanglement of formation is given bE=h(3 10 qubitB (as measured by the squared concurrgieeot
+1J1=C?, where h is the binary entropy functionh(x)  available to qubitC.
= —x log, X— (1—xX)log,(1—X). We will say more shortly about the case of three qubits in
2An alternative derivation of this inequalif20] demonstrates that @ pure state, but at this point it is worth mentioning a gener-
it does not depend on the rank of the density matfxz=<\? alization to mixed states. ABC s in a mixed statg, then
<M N3+ N2+ N2=Tr(paspas). We use the more specialized Casc) iS not defined, because all four dimensions B
derivation because the intermediate steps will be useful later. ~ might be involved, but we can define a related quantity

In terms of the coefficienta;;., we can write Trpagpag) as

052306-2



DISTRIBUTED ENTANGLEMENT PHYSICAL REVIEW A61 052306

(C?)N(kc, Via the following prescriptiort. Consider all pos- Now letT'(C) be a monotonically increasing function 6f
sible pure-state decompositions of the siatéhat is, all sets ~ that we might propose as an alternative measure of entangle-
{(4i,p)} such thato=3;p;|:)(¢4i|. For each of these de- ment. For simplicity let us assume thﬁ(0)=0.andl“(1_)
compositions, one can compute the average valuggf,: ~ — 1+ Because of the above examplecould satisfy the in-
equality Tyg+Iac<Tamc only if I(x)+I*(y)
5 , <T'?(x?+y?) for all non-negativex andy such thatx?
<CA<BC>>: Z PiCaio)(¥1)- (13 +y?<1. Supposd has this property. Then could there exist
some quantum state for whidizg+I'2c=I"25c) but Cap
The minimum of this average over all decompositiong & +C§C<Ci(BC)? That is, could” yield an equality for some
what we define to beqz)ﬁ('gc)(p). The following analog of  state for whichC gives only an inequality? The answer is no,

Eq. (12) then holds for mixed states: because ifCig+Cac<Cacrc) then I'ig+TAc=T%(Cap)
5 o 5 min +T%(Cac) <T*(VChgt Cacd) <T*(Caec) =TA@c): More-
CaptCac=<(C)a(Be) - (14 over, the only wayl' can matchC in those cases wher@

gives an equality is fof’ to be equal tc. In this sense( is
To prove this, consider the pure stafe) belonging to an  an optimal measure of entanglement with respect to the in-
optimal decomposition op, that is, a decomposition that equality given in Eq.(12). Note, however, that the above
minimizes(Cxgc))- We can write our basic inequality, Eq. argument applies only to functions 6f There could in prin-
(12), for each such pure state and then average both sides oiple be other measures of entanglement that are not func-
the inequality over the whole decomposition. The right-handions of C that could make an equal claim to optimality.
side of the resulting inequality iﬁ),’}‘('gc)(p), which is what The entanglement of formation is a function@®fbut it is
we want on the right-hand side. On the left-hand side wea concave function of? and therefore does not satisfy the
have two terms(i) the average of the squared concurrencenequality Exg+Eac<Easc). Consider, for example, the
betweenA andB over a set of mixed states whose average isstate (1¥2)|100 +(1/2)|010)+ (1/2)|001). One finds that
pag Li-€., Tie(p)], and(ii) the average of the squared con- the relevant entanglements of formation dfggz=0.601,
currence betweeA andC over a set of mixed states whose Eoc=0.601, andE,cy=1. Thus, contrary to what one
average ipac- Itis a fact that the squared concurrence is amight expect, the sum of the entanglements of formation
convex function on the set of density matriéeBhat is, the  betweenA and the separate qubisandC is greater than the
average of’? over the ensemble is greater than or equal toentanglement capacity of a single qubit. This is not a para-
the value ofC? for the average density matrix. In this case dox; it simply shows us that entanglement of formation does
the values ofC? for the average density matrices afg; ~ not exhibit this particular kind of additivity(This sense of
=C?(pag) and C,ZAC:CZ(PAC)- The sum of these two quan- “additivity” should not be confused with the additivity of
tities must thus be less than or equal @)z, (p), which is ~ €ntanglement when one combines pairs to make larger sys-
what we wanted to prove. tems[7]. It is not known whether entanglement of formation

Returning to the case of pure states, one may wonder hogAlisfies the latter notion of additivily. _
tight the inequality(12) is. Could one find, for example, a = W€ have just seen that there are some states for which the

more stringent bound of the same form, based on a differerff€quality (12) becomes an equality. Of course there are
measure of entanglement? To address this question, consid@f'er states for which the inequality is strict. As we will see,

the following pure state 0ABC it turns out to be very interesting to consider iéference
between the two sides of E@l2). This difference can be
| )= a|100 + B|010)+ v|001), (15)  thought of as the amount of entanglement betw&amdBC

that cannot be accounted for by the entanglemensswith
where the three positions in the kets refer to qukit®, and B andC separately. In the following paragraphs we refer to

C in that order. For this state, one finds tlag=2[ap|,  this quantity as the “residual entanglement.”
Cac=2|ay|, and CA(BC):2|a|‘/|B|2+|')’|2- Thus the in- Let the systemABC be in a pure stat&), and, as before,

equality (12) becomes in this case an equali§ig+C2. et the components dé) in the standard basis kg :
=Ci(BC). This example shows that for any values of the

concurrences satisfying this equality, there is a quantum state |&)=> alijk). (16)
that is consistent with those values. ik

According to Eqs(3) and(10) and the discussion following

3According to Eq.(12), the quantity that is traded off between the Eq. (12), the residual entanglement is equal to

pair AB and the paitAC is not the concurrence itself but rather the
square of the concurrence. For this reason, it is convenient in this
discussion of mixed states to tak&rather tharC as the quantity to AB AB )
be averaged and minimized. whereN7~ and\5" are the square roots of the two eigenval-

41t follows from Ref.[7] that the concurrence is a convex non- U€S Ofpagpag, and)\fc and )\QC are defined similarly. We
negative function on the set of density matrices for two qubits. Thelow derive an explicit expression for the residual entangle-
square of the concurrence is therefore also convex. ment in terms of the coefficients;,, .

Chmo)~Chs—Cac= 20\ PNSP+AING),  (17)
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We focus first on the produat?®\5®. This product can tions) This means in particular that we need not carry out a
almost be interpreted as the square root of the determinant separate calculation to find'“\5<, since we know we will
papPAg- BUL pappag IS an operator acting on a four- get the same result. We can now therefore write down an
dimensional space, and two of its eigenvalues are zero; so iexpression for the residual entanglement:
determinant is also zero. However, if we consider the action
of pasPas ONly ON its range, t_heh’i‘B)_\’;B will be the square Ca a0y~ Cag— Cac=4dy— 2d,+4ds). (22)
root of the determinant of this restricted transformation.

The range ofpagpag is spanned by the two vectofs,) .
=3;a50]ij0) and|v;)=3;a;4]ij1). (These vectors also Nojte that_the residual entarlgleme”nt does not depend on
span the range gfag.) To examine the action gfagpag ON which qublt_one takes as the “focus” of the construction. In
this subspace, we consider its effect on vectors of the formUr calculc_atlons we have focused.on entanglements with qu-
bit A, but if we had chosen qubB instead, we would have
X found that
oo +ylo =

Cacay—Cac—Cha=4|d,—2d,+4dj). 23
This effect is given by Bica)~ Cac™ Cga=4|d1—2dp+ 4dy| (23

X
y

The residual entanglement thus represents a collective prop-
erty of the three qubits that is unchanged by permutations; it
measures an essential three-qubit entanglement. If we call

: (18)

X,)—R
y')

whereR is a 2x 2 matrix. The produck;®\5® is the square  this quantity 74gc, We can summarize the main results of
root of the determinant dR. One finds that this paper in the following equation:
2 2 2
Rij = E ak'ia%niempfnqa;qrastrfsketl 1 (19) CA(BC):CAB+ CAC+ TABC- (24)

where the sum is over all repeated indid@e have ordered |n words, the entanglement #f with BC can be manifested
the factors so as to suggest the expressiggp,g from  in three forms—entanglement witd, entanglement witiC,
which R is derived) Taking the determinant oR involves  and an essential three-way entanglement of the triple—and
somewhat tedious but straightforward algebra, with the folthese three forms must share the total entanglement. As an

lowing result: example, consider the Greenberger-Horne-Zeilinger state
(1~2)(|000) +|111)) [21]. For this state the concurrence of
N1PN5°= JdetR=|d; —2d,+4dj|, (200 each qubit with the rest of the system is 1, the quantityc

is also 1, and all the pairwise concurrences are Z#re

qubits in each pair are classically correlated but not en-

tangled. Thus Eq.(24) in this case becomes=10+0+1.
Finally, we note that the expression foggc in terms of

d;, d,, andd; [Eqg. (22)] can be rewritten, after a little more

algebra, in a more standard form:

where
.2 .2 2 .2 2 2 2 .2 .
d;=ago@111+ 3012110 201101+ A10cR01
d=a00A111201183100T @000R11121012010

+8gpeA11181108001T Bo1181002 1018010

+apa +ajpsa ; =
011810081108001 1 810180108110A001 Tac=2| > aijk &' manpk 8n’ p’ m’

d3=ago@112 10120111 8111800120102 100- (21)

. . . . . X €ii1 € 1 €k’ €Emmr €nn’ €pp’ |+ 25
We can get a mental picture of this expression by imagining PRI SkkEmm Enn” Epp @9

the eight coefficients;;, attached to the corners of a cube.

Then each term appearing @, d, or ds is a product of  \where the sum is over all the indices. This form does not
four of the coefficientsyj such that the “center of mass” of immediately reveal the invariance efigc under permuta-
the four is at the center of the cube. Such configurations fallions of the qubits, but the invariance is there nonetheless.
into three classes: those in which the four coefficients lie on |t would be very interesting to know which of the results
a body diagonal and each one is used twidg)( those in  of this paper generalize to larger objects or to larger collec-
which they lie on a diagonal planelf), and those in which  tions of objects. At this point it is not clear how one might
they lie on the vertices of a tetrahedrod;). Within each  begin to generalize this approach to qutrits or higher dimen-
category, all the possible configurations are given the samsional objects, because the spin-flip operation seems peculiar
weight. to qubits[22]. On the other hand, it appears very likely that
This picture immediately yields an interesting fact: theat least some of these results can be extended to larger col-
quantity \7®A5® is invariant under permutations of the qu- lections of qubits. The one solid piece of evidence we can
bits. (A permutation of qubits corresponds to a reflection oroffer is the existence of a generalization of the stateof
rotation of the cube, but eadh is invariant under such ac- Eq. (15) to n qubits:
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|¢)=ay|100...0+ a,/010...0+a3/001...0+: - inequality, analogous to Eq12), is valid for all pure states
of n qubits.
+a,[000. .. D). (26)

One can show that for this state, the following equality
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