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Distributed entanglement
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Consider three qubitsA, B, andC which may be entangled with each other. We show that there is a trade-off
betweenA’s entanglement withB and its entanglement withC. This relation is expressed in terms of a measure
of entanglement called the concurrence, which is related to the entanglement of formation. Specifically, we
show that the squared concurrence betweenA andB, plus the squared concurrence betweenA andC, cannot be
greater than the squared concurrence betweenA and the pairBC. This inequality is as strong as it could be, in
the sense that for any values of the concurrences satisfying the corresponding equality, one can find a quantum
state consistent with those values. Further exploration of this result leads to a definition of an essential
three-way entanglement of the system, which is invariant under permutations of the qubits.

PACS number~s!: 03.67.2a, 03.65.Bz, 89.70.1c
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Quantum entanglement has rightly been the subjec
much study in recent years as a potential resource for c
munication and information processing. As with other
sources such as free energy and information, one would
to have a quantitative theory of entanglement giving spec
rules about how it can and cannot be manipulated; inde
such a theory has begun to be developed. The first ste
building the theory has been to quantify entanglement its
In the last few years a number of entanglement measure
bipartite states have been introduced and analyzed@1–7#, the
one most relevant to the present work being the ‘‘entang
ment of formation’’ @2#, which is intended to quantify the
amount of quantum communication required to create
given state. In the present paper we draw on previous w
on entanglement of formation@6,7# in order to explore an-
other basic quantitative question: To what extent can an
ject be simultaneously entangled with two other objects?

Unlike classical correlations, quantum entanglement c
not be freely shared among many objects. For exam
given a triple of spin-1/2 particlesA, B, andC, if particleA is
fully entangled with particleB, e.g., if they are in the single
state (1/&)(u↑↓&2u↓↑&), then particleA cannot be simulta-
neously entangled with particleC. ~If A were entangled with
C, then the pairAB would also be entangled withC and
would therefore have a mixed-state density matrix, wher
the singlet state is pure.! One expects that a less extrem
form of this restriction should also hold: ifA is partly en-
tangled withB, thenA can have only a limited entangleme
with C. The first goal of this paper is to verify this intuitio
and express it quantitatively. We will see that the restrict
on the sharing of entanglement takes a particularly eleg
form in terms of a measure of entanglement called the ‘‘c
currence,’’ which is closely related to the entanglement
formation. Further analysis of this result will lead us na
rally to a quantity that measures an essential three-way
tanglement of the system and is invariant under all perm
tions of the particles@8#.

The present work is related to recent work on the char
terization of multiparticle states in terms of invariants und
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local transformations@9–12#; indeed, both the concurrenc
and our measure of three-way entanglement are invarian
this sense. Our work is also related to research exploring
connection between entanglement and cloning@13–17#. An
example along these lines was studied by Bruß, who as
in the case of a singlet pairAB, to what extent particleB’s
entanglement with particleA can be shared symmetricall
and isotropically with a third particle, for a purpose such
teleportation where isotropy is desired@18#. Our investiga-
tion is similar in spirit to that of Bruß but has a differen
focus in that we are looking for a general law that is ind
pendent of assumptions about symmetry or isotropy. So
of the results presented here have been mentioned in a re
paper by one of us@19#, but the proofs and most of th
details and observations have not been previously publis
In this paper we confine our attention to binary quantu
objects~qubits! such as spin-1/2 particles—we will use th
generic basis labelsu0& and u1& rather thanu↑& and u↓&—but
the same questions could be raised for larger objects.

We begin by defining concurrence. LetA andB be a pair
of qubits, and let the density matrix of the pair berAB ,
which may be pure or mixed. We define the ‘‘spin-flipped
density matrix to be

r̃AB5~sy^ sy!rAB* ~sy^ sy!, ~1!

where the asterisk denotes complex conjugation in the s
dard basis$u00&, u01&, u10&, u11&% and sy expressed in the
same basis is the matrix

S 0 2 i

i 0 D .

As both rAB and r̃AB are positive operators, it follows tha
the productrABr̃AB , though non-Hermitian, also has on
real and non-negative eigenvalues. Let the square root
these eigenvalues, in decreasing order, bel1 , l2 , l3 , and
l4 . Then the concurrence of the density matrixrAB is de-
fined as
©2000 The American Physical Society06-1
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CAB5max$l12l22l32l4,0%. ~2!

For the special case in which the state ofAB is pure, one can
show thatCAB52AdetrA, whererA is the density matrix of
qubit A, that is, the trace ofrAB over qubitB.

It is by no means obvious from the definition that t
concurrence is a measure of entanglement for mixed sta
This interpretation comes from earlier work, in which a sp
cific connection is established between the concurrence
the entanglement of formation of a pair of qubits@7#. For the
purpose of this paper it is sufficient to note thatC50 corre-
sponds to an unentangled state,C51 corresponds to a com
pletely entangled state, and the entanglement of formatio
a monotonically increasing function ofC.1 At present, the
concurrence is defined only for a pair of qubits, not f
higher-dimensional systems.

We now turn to the first problem of this paper: given
pure state of three qubitsA, B, andC, how is the concurrence
betweenA andB related to the concurrence betweenA and
C? For this special case—a pure state of three qubits—
formula for the concurrence simplifies: each pair of qub
being entangled with only one other qubit in a joint pu
state, is described by a density matrix having at most
nonzero eigenvalues. It follows that the productrABr̃AB also
has only two nonzero eigenvalues. We can use this fact
Eq. ~2! to write the following inequality for the concurrenc
CAB betweenA andB.2

CAB
2 5~l12l2!25l1

21l2
222l1l2

5Tr~rABr̃AB!22l1l2<Tr~rABr̃AB!. ~3!

HererAB is the density matrix of the pairAB, obtained from
the original pure state by tracing over qubitC. Equation~3!
and the analogous equation forCAC allow us to bound the
sumCAB

2 1CAC
2 :

CAB
2 1CAC

2 <Tr~rABr̃AB!1Tr~rACr̃AC!. ~4!

The next paragraph is devoted to evaluating the right-h
side of this inequality.

Let us express the pure stateuj& of the three-qubit system
in the standard basis$uijk&%, where each index takes the va
ues 0 and 1:

uj&5(
i jk

ai jk u i jk &. ~5!

In terms of the coefficientsai jk , we can write Tr(rABr̃AB) as

1The entanglement of formation is given byE5h( 1
2

1
1
2A12C2), where h is the binary entropy functionh(x)

52x log2 x2(12x)log2(12x).
2An alternative derivation of this inequality@20# demonstrates tha

it does not depend on the rank of the density matrix:CAB
2 <l1

2

<l1
21l2

21l3
21l4

25Tr(rABr̃AB). We use the more specialize
derivation because the intermediate steps will be useful later.
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Tr~rABr̃AB!5( ai jkamnk* emm8enn8am8n8p
* ai 8 j 8pe i 8 ie j 8 j ,

~6!

wheree0152e1051 ande005e1150 and the sum is over al
the indices. We now replace the productenn8e j 8 j with the
equivalent expressiondn j8dn8 j2dn jdn8 j 8 , and in the first of
the two resulting terms~that is, the one associated wit
dn j8dn8 j ! we perform a similar substitution foremm8e i 8 i .
These substitutions directly give us

Tr~rABr̃AB!52 detrA2Tr~rB
2 !1Tr~rC

2 !, ~7!

whererA , rB , andrC are the 232 density matrices of the
individual qubits. Because each of these matrices has
trace, we can rewrite Eq.~7! as

Tr~rABr̃AB!52~detrA1detrB2detrC!. ~8!

By symmetry we must also have

Tr~rACr̃AC!52~detrA1detrC2detrB!. ~9!

Summing these last two equations, we finally get a sim
expression for the right-hand side of Eq.~4!, namely,

Tr~rABr̃AB!1Tr~rACr̃AC!54 detrA . ~10!

Equations~4! and ~10! give us our first main result:

CAB
2 1CAC

2 <4 detrA . ~11!

We can interpret the right-hand side of Eq.~11! as fol-
lows. If we regard the pairBC as a single object, it make
sense to speak of the concurrenceCA(BC) between qubitA
and the pairBC, because, even though the state space ofBC
is four dimensional, only two of those dimensions are n
essary to express the stateuj& of ABC. ~The two necessary
dimensions are those spanned by the two eigenstates ofrBC
that have nonzero eigenvalues. That there are only two s
eigenvalues follows from the fact thatA is only a qubit and
that the state of the whole system is pure.! We may thus treat
A and BC, at least for this purpose, as a pair of qubits in
pure state. As we have mentioned before, the concurrenc
this case is simply 2AdetrA. We can therefore rewrite ou
result as

CAB
2 1CAC

2 <CA~BC!
2 . ~12!

Informally, Eq. ~12! can be expressed as follows. QubitA
has a certain amount of entanglement with the pairBC. This
amount boundsA’s entanglement with qubitsB andC taken
individually, and the part of the entanglement that is devo
to qubit B ~as measured by the squared concurrence! is not
available to qubitC.

We will say more shortly about the case of three qubits
a pure state, but at this point it is worth mentioning a gen
alization to mixed states. IfABC is in a mixed stater, then
CA(BC) is not defined, because all four dimensions ofBC
might be involved, but we can define a related quan
6-2
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(C2)A(BC)
min via the following prescription.3 Consider all pos-

sible pure-state decompositions of the stater, that is, all sets
$(c i ,pi)% such thatr5( i pi uc i&^c i u. For each of these de
compositions, one can compute the average value ofCA(BC)

2 :

^CA~BC!
2 &5(

i
piCA~BC!

2 ~c i !. ~13!

The minimum of this average over all decompositions ofr is
what we define to be (C2)A(BC)

min (r). The following analog of
Eq. ~12! then holds for mixed states:

CAB
2 1CAC

2 <~C2!A~BC!
min . ~14!

To prove this, consider the pure statesuc i& belonging to an
optimal decomposition ofr, that is, a decomposition tha
minimizes^CA(BC)

2 &. We can write our basic inequality, Eq
~12!, for each such pure state and then average both side
the inequality over the whole decomposition. The right-ha
side of the resulting inequality is (C2)A(BC)

min (r), which is what
we want on the right-hand side. On the left-hand side
have two terms:~i! the average of the squared concurren
betweenA andB over a set of mixed states whose average
rAB @i.e., TrC(r)#, and ~ii ! the average of the squared co
currence betweenA andC over a set of mixed states whos
average isrAC . It is a fact that the squared concurrence i
convex function on the set of density matrices.4 That is, the
average ofC2 over the ensemble is greater than or equa
the value ofC2 for the average density matrix. In this ca
the values ofC2 for the average density matrices areCAB

2

5C2(rAB) andCAC
2 5C2(rAC). The sum of these two quan

tities must thus be less than or equal to (C2)A(BC)
min (r), which is

what we wanted to prove.
Returning to the case of pure states, one may wonder

tight the inequality~12! is. Could one find, for example,
more stringent bound of the same form, based on a diffe
measure of entanglement? To address this question, con
the following pure state ofABC:

uf&5au100&1bu010&1gu001&, ~15!

where the three positions in the kets refer to qubitsA, B, and
C in that order. For this state, one finds thatCAB52uabu,
CAC52uagu, and CA(BC)52uauAubu21ugu2. Thus the in-
equality ~12! becomes in this case an equality:CAB

2 1CAC
2

5CA(BC)
2 . This example shows that for any values of t

concurrences satisfying this equality, there is a quantum s
that is consistent with those values.

3According to Eq.~12!, the quantity that is traded off between th
pair AB and the pairAC is not the concurrence itself but rather th
square of the concurrence. For this reason, it is convenient in
discussion of mixed states to takeC2 rather thanC as the quantity to
be averaged and minimized.

4It follows from Ref. @7# that the concurrence is a convex no
negative function on the set of density matrices for two qubits. T
square of the concurrence is therefore also convex.
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Now let G(C) be a monotonically increasing function ofC
that we might propose as an alternative measure of entan
ment. For simplicity let us assume thatG(0)50 andG(1)
51. Because of the above example,G could satisfy the in-
equality GAB

2 1GAC
2 <GA(BC)

2 only if G2(x)1G2(y)
<G2(Ax21y2) for all non-negativex and y such thatx2

1y2<1. SupposeG has this property. Then could there exi
some quantum state for whichGAB

2 1GAC
2 5GA(BC)

2 but CAB
2

1CAC
2 ,CA(BC)

2 ? That is, couldG yield an equality for some
state for whichC gives only an inequality? The answer is n
because if CAB

2 1CAC
2 ,CA(BC)

2 , then GAB
2 1GAC

2 5G2(CAB)
1G2(CAC)<G2(ACAB

2 1CAC
2 ),G2(CA(BC))5GA(BC)

2 . More-
over, the only wayG can matchC in those cases whereC
gives an equality is forG to be equal toC. In this sense,C is
an optimal measure of entanglement with respect to the
equality given in Eq.~12!. Note, however, that the abov
argument applies only to functions ofC. There could in prin-
ciple be other measures of entanglement that are not fu
tions of C that could make an equal claim to optimality.

The entanglement of formation is a function ofC, but it is
a concave function ofC2 and therefore does not satisfy th
inequality EAB1EAC<EA(BC) . Consider, for example, the
state (1/&)u100&1(1/2)u010&1(1/2)u001&. One finds that
the relevant entanglements of formation areEAB50.601,
EAC50.601, andEA(BC)51. Thus, contrary to what one
might expect, the sum of the entanglements of format
betweenA and the separate qubitsB andC is greater than the
entanglement capacity of a single qubit. This is not a pa
dox; it simply shows us that entanglement of formation do
not exhibit this particular kind of additivity.~This sense of
‘‘additivity’’ should not be confused with the additivity o
entanglement when one combines pairs to make larger
tems@7#. It is not known whether entanglement of formatio
satisfies the latter notion of additivity.!

We have just seen that there are some states for which
inequality ~12! becomes an equality. Of course there a
other states for which the inequality is strict. As we will se
it turns out to be very interesting to consider thedifference
between the two sides of Eq.~12!. This difference can be
thought of as the amount of entanglement betweenA andBC
that cannot be accounted for by the entanglements ofA with
B andC separately. In the following paragraphs we refer
this quantity as the ‘‘residual entanglement.’’

Let the systemABC be in a pure stateuj&, and, as before,
let the components ofuj& in the standard basis beai jk :

uj&5(
i jk

ai jk u i jk &. ~16!

According to Eqs.~3! and~10! and the discussion following
Eq. ~11!, the residual entanglement is equal to

CA~BC!
2 2CAB

2 2CAC
2 52~l1

ABl2
AB1l1

ACl2
AC!, ~17!

wherel1
AB andl2

AB are the square roots of the two eigenva
ues ofrABr̃AB , andl1

AC andl2
AC are defined similarly. We

now derive an explicit expression for the residual entang
ment in terms of the coefficientsai jk .
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e
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We focus first on the productl1
ABl2

AB . This product can
almost be interpreted as the square root of the determina
rABr̃AB . But rABr̃AB is an operator acting on a four
dimensional space, and two of its eigenvalues are zero; s
determinant is also zero. However, if we consider the ac
of rABr̃AB only on its range, thenl1

ABl2
AB will be the square

root of the determinant of this restricted transformation.
The range ofrABr̃AB is spanned by the two vectorsuv0&

5S i j ai j 0u i j 0& and uv1&5S i j ai j 1u i j 1&. ~These vectors also
span the range ofrAB .! To examine the action ofrABr̃AB on
this subspace, we consider its effect on vectors of the fo

xuv1&1yuv2&[S x
yD .

This effect is given by

S x8
y8 D5RS x

yD , ~18!

whereR is a 232 matrix. The productl1
ABl2

AB is the square
root of the determinant ofR. One finds that

Ri j 5( akl jamni* empenqapqr* astreske t l , ~19!

where the sum is over all repeated indices.~We have ordered
the factors so as to suggest the expressionrABr̃AB from
which R is derived.! Taking the determinant ofR involves
somewhat tedious but straightforward algebra, with the
lowing result:

l1
ABl2

AB5AdetR5ud122d214d3u, ~20!

where

d15a000
2 a111

2 1a001
2 a110

2 1a010
2 a101

2 1a100
2 a011

2 ;

d25a000a111a011a1001a000a111a101a010

1a000a111a110a0011a011a100a101a010

1a011a100a110a0011a101a010a110a001;

d35a000a110a101a0111a111a001a010a100. ~21!

We can get a mental picture of this expression by imagin
the eight coefficientsai jk attached to the corners of a cub
Then each term appearing ind1 , d2 , or d3 is a product of
four of the coefficientsai jk such that the ‘‘center of mass’’ o
the four is at the center of the cube. Such configurations
into three classes: those in which the four coefficients lie
a body diagonal and each one is used twice (d1), those in
which they lie on a diagonal plane (d2), and those in which
they lie on the vertices of a tetrahedron (d3). Within each
category, all the possible configurations are given the sa
weight.

This picture immediately yields an interesting fact: t
quantity l1

ABl2
AB is invariant under permutations of the q

bits. ~A permutation of qubits corresponds to a reflection
rotation of the cube, but eachdi is invariant under such ac
05230
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tions.! This means in particular that we need not carry ou
separate calculation to findl1

ACl2
AC , since we know we will

get the same result. We can now therefore write down
expression for the residual entanglement:

CA~BC!
2 2CAB

2 2CAC
2 54ud122d214d3u. ~22!

Note that the residual entanglement does not depend
which qubit one takes as the ‘‘focus’’ of the construction.
our calculations we have focused on entanglements with
bit A, but if we had chosen qubitB instead, we would have
found that

CB~CA!
2 2CBC

2 2CBA
2 54ud122d214d3u. ~23!

The residual entanglement thus represents a collective p
erty of the three qubits that is unchanged by permutation
measures an essential three-qubit entanglement. If we
this quantitytABC , we can summarize the main results
this paper in the following equation:

CA~BC!
2 5CAB

2 1CAC
2 1tABC . ~24!

In words, the entanglement ofA with BC can be manifested
in three forms—entanglement withB, entanglement withC,
and an essential three-way entanglement of the triple—
these three forms must share the total entanglement. A
example, consider the Greenberger-Horne-Zeilinger s
(1/&)(u000&1u111&) @21#. For this state the concurrence o
each qubit with the rest of the system is 1, the quantitytABC
is also 1, and all the pairwise concurrences are zero~the
qubits in each pair are classically correlated but not
tangled!. Thus Eq.~24! in this case becomes 1501011.

Finally, we note that the expression fortABC in terms of
d1 , d2 , andd3 @Eq. ~22!# can be rewritten, after a little more
algebra, in a more standard form:

tABC52U( ai jkai 8 j 8manpk8an8p8m8

3e i i 8e j j 8ekk8emm8enn8epp8U, ~25!

where the sum is over all the indices. This form does
immediately reveal the invariance oftABC under permuta-
tions of the qubits, but the invariance is there nonetheles

It would be very interesting to know which of the resul
of this paper generalize to larger objects or to larger coll
tions of objects. At this point it is not clear how one mig
begin to generalize this approach to qutrits or higher dim
sional objects, because the spin-flip operation seems pec
to qubits@22#. On the other hand, it appears very likely th
at least some of these results can be extended to larger
lections of qubits. The one solid piece of evidence we c
offer is the existence of a generalization of the stateuf& of
Eq. ~15! to n qubits:
6-4
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uf&5a1u100 . . . 0&1a2u010 . . . 0&1a3u001 . . . 0&1¯

1anu000 . . . 1&. ~26!

One can show that for this state, the following equal
holds:

C12
2 1C13

2 1¯1C1n
2 5C1~23 . . .n!

2 , ~27!

where the qubits are now labeled by numbers rather t
letters. We are willing to conjecture that the correspond
m

t-

.

v

as
S
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inequality, analogous to Eq.~12!, is valid for all pure states
of n qubits.
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