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Security against individual attacks for realistic quantum key distribution

Norbert Lütkenhaus
Helsinki Institute of Physics, PL 9, FIN-00014 Helsingin yliopisto, Finland

~Received 28 October 1999; published 6 April 2000!

I prove the security of quantum key distribution against individual attacks for realistic signals sources,
including weak coherent pulses and down-conversion sources. The proof applies to the Bennett-Brassard 1984
protocol with the standard detection scheme~no strong reference pulse!. I obtain a formula for the secure bit
rate per time slot of an experimental setup, which can be used to optimize the performance of existing schemes
for the considered scenario.

PACS number~s!: 03.67.Dd, 03.65.Bz, 42.79.Sz
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I. INTRODUCTION

The first complete protocol for quantum key distributio
~QKD! has been introduced by Bennett and Brassard in 1
@1# following earlier ideas by Wiesner@2#. Since then, this
protocol ~BB84 for short! has been implemented by sever
groups @3–13#. For an overview containing more detai
about the background, the experimental implementation
the classical evaluation procedure see for example@7,14–
16#.

The basic idea of the BB84 protocol is to use a rand
string of signal states which, for example, can be realized
single photons in horizontal, vertical, right circular, or le
circular polarization states. These are two sets of st
which are orthogonal within each set, and have overlap pr
ability 1/2 between the sets. If the receiver chooses at
dom between a polarization analyzer for linear polarizat
and one for circular polarization, then they obtain in this w
a raw key@17#. From this they distill thesifted keyby pub-
licly exchanging information about the polarization basis
the signals and the measurement apparatus. They keep
those bits where the basis is the same for the signal and
measurement, since those signals give a deterministic
tion between signal and measurement outcome.

The practical implementations deviate from the theor
cal abstraction used in the original proposal in two import
points. The first is that the signal states do not have
correct overlap probabilities. Especially in the photonic re
ization, the signals contain contributions from higher pho
numbers and from the vacuum state which cause this de
tion. The second point is that the quantum channel in th
implementations~optical fibers! shows a considerable loss.
has been shown earlier@18,19# that the combination of the
two effects open up a security gap. The extent of this secu
gap has been extensively illuminated for different sig
sources in Ref.@20# giving necessary conditions on the fe
sibility of QKD without restriction to any particular class o
eavesdropping attacks. From these results one can conc
that most current experiments are performed in a param
regime where the necessary conditions for security are
lated.

In the present work, I will complement these results by
positive proof of security for a scenario where the power
the eavesdropper is restricted to attacking signals separ
~individual attack!. This restriction allows us to prove th
1050-2947/2000/61~5!/052304~10!/$15.00 61 0523
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security for a realistic protocol, i.e., one where all comp
nents are known and work efficiently.

It is necessary to distinguish this work from earlier wo
by other groups. Lo and Chau@21# gave a proof of principle
for the security of quantum key distribution. At present, it
not possible to use their proof to implement secure QK
since the procedure involves devices to manipulate qu
coherently in order to allow fault-tolerant computing. Th
approach of Mayers@22# is certainly the most advanced re
sult towards practical QKD, which is provably secure agai
all eavesdropping attacks on the signals. However, the p
assumes ideal single photon signals, and, at present, w
not have an extension of that proof which can cope w
realistic signal sources and effective error correction cod
although work in these directions is in progress.

The restriction to eavesdropping on individual signals
lows a much simpler analysis of a realistic scenario, and
therefore advisable to use this scenario as a study for
generalization in the sense of Mayer’s proof. Furthermo
the results are interesting in their own right: it seems to
impossible to perform collective measurements on the
nals with today’s technology. Therefore, QKD secure aga
individual attack will today create keys which are secu
against future developments in coherent eavesdropping s
egies, since tomorrow’s technology cannot be used for
day’s eavesdropping strategy. This is in contrast to the
plication of an increase of future computation power
improvements in algorithms which threatens today’s use
classical encryption schemes.

In this paper, I will derive a formula for the gain of secu
bits per signal sent, that is per time slot of the experime
These formulas are presented only in the limit of long ke
so that the influence of the necessary authentication of
key and all statistical influences regarding the number
errors etc. can be neglected. It is necessary to embed t
results into a full protocol, derived, for example, in Re
@10#, @23#, and @24# to which I refer the reader for furthe
details.

This paper is organized as follows. In Sec. II, I will intro
duce the essential elements of practical quantum crypto
phy and report the relevant findings for single-photon s
nals. These results are then extended in Sec. III to sig
sources which generate the signal states by rotating a sta
one polarization to that of the ideal BB84 polarizations.
Sec. IV, the resulting gain formula is explored for tw
©2000 The American Physical Society04-1
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NORBERT LÜTKENHAUS PHYSICAL REVIEW A 61 052304
choices for the signal source, namely weak coherent pu
~WCP! and parametric down-conversion~PDC!. The results
are discussed in Sec. V.

II. SECURITY AGAINST INDIVIDUAL ATTACKS
FOR SINGLE-PHOTON SOURCES

To investigate the security of QKD one needs to inve
gate the trade-off between the information gathered by
eavesdropper and the amount of disturbance caused the
The trade-off between the Shannon mutual information
the bit error rate in the sifted key has been investigated
several authors for restricted attacks@17,25# and for the gen-
eral individual attack@26#. The results show that the gathere
Shannon information for the typically observed error rate
about 1–5 % is too high to allow the sifted key to be us
directly for cryptographic purposes. However, we can fi
correct the errors and then apply the technique ofgeneralized
privacy amplification@27# to distill from the sifted key a new
shorter key, which fulfills the security requirements. The
techniques are purely classical. Both steps, the error cor
tion and the privacy amplification, will reduce the number
gained secure bits.

A. Error correction

Error correction is performed by the exchange of red
dant information about the key, e.g., in form of parity bi
via the public channel. Since Eve has access to the pu
channel, we have to take care of this flow of side inform
tion. This can be done by using a short initial shared se
key to encrypt the parity bits in a one-time pad method. N
that in practice we cannot realize any public channel whic
safe against tampering by Eve by technology alone. Th
fore, sender and receiver need to share a secret key an
to overcome this problem by the classical method of auth
tication @28,29#. As a consequence of this method of cont
of the side-information, we need to know how many b
need to be encrypted, which is equivalent to the numbe
exchanged parity bits.

It is clear, that one has to be careful to implement
efficient error correction protocol, since we have to regain
least the number of secret bits used for the encryption of
parity bits. The ratio between minimum number of redund
bits Ncorr

Shannonneeded to correct a key of lengthn is given
according to Shannon@30# by

Ncorr
Shannon

n
52e log2 e2~12e!log2~12e!, ~1!

wheree is the observed error rate in the sifted key. In th
limit the probability that the errors can be corrected c
come arbitrarily close to unity. However, Shannon’s proof
the existence of error correction codes reaching this limi
not constructive, and the limit is obtained only by lar
codes. These are not easily implemented because of th
quired computational resources. We have therefore to se
for error correction tools which come close to this limit. A
discussed in Ref.@23#, it is hard even to approach the Sha
non limit with error correction codes which use unidire
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tional classical communication only. Fortunately, a more
ficient bidirectional code exists@31#, which usesf @e#Ncorr

Shannon

bits for error correction with a correction factorf @e# listed in
Table I.

B. Generalized privacy amplification

In this section I report on the fractiont1 of bits by which
we need to shorten the sifted key so that we obtain a se
key. The aim of QKD is to obtain a secure key in the sen
that Eve has no information on that key. This can be ma
precise by two properties:~1! a keyx of lengthnfinal should
have equala priori probability p(x)522nfinal and ~2! the
difference between thea priori anda posterioriprobability,
as measured by the Shannon information, should van
These two properties can be summarized in the demand
the expected Shannon entropyH@^p(xuM )&M# of the a pos-
teriori probability distribution̂ p(xuM )&M , after Eve’s gath-
ering of measurement results and classical communica
M, should approachnfinal . ~Here^ . . . &M denotes the expec
tation value with respect to the measurement outcomeM.!
Generalized privacy amplification@27# achieves that by
hashing the corrected sifted key into a shorter key byhash
functions @28,29# such that we obtain the bound@27# ~see
Ref. @23# for the extension to the expectation values w
respect toM )

H@^p~xuM !&M#>nfinal2 log2~2nfinal̂ pc@p~xuM !#&M11!.
~2!

Here,pc@p(xuM )# is a measure of thea posterioriprobabil-
ity on the corrected sifted keyx of lengthnsif . This measure
is the collision probability, defined as

pc@p~xuM !#5(
x

p2~xuM !. ~3!

If we choose the length of the final key to be

nfinal5nsif~12t1!2nS, ~4!

the estimate becomes, after a further simplifying estimat
@27#,

H@^p~xuM !&M#>nfinal2
22nS

ln 2
~5!

TABLE I. Example of the performance of the bidirectional err
reconciliation protocol by Brassard and Salvail~Ref. @31#!. The
values are taken from that paper. Heree is the observed error rate
while f @e# is the ratio of actually needed redundant bits to t
corresponding number of the Shannon limit.~I used the upper
bounds forI (4) provided in the reference.!

e f@e#

0.01 1.16
0.05 1.16
0.1 1.22
0.15 1.35
4-2
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SECURITY AGAINST INDIVIDUAL ATTACKS FOR . . . PHYSICAL REVIEW A 61 052304
with

t1511
1

nsif
log2^pc@p~xuM !#&M . ~6!

Clearly, we can approximate an ideal secret key arbitra
close by the choice of the security parameternS. For long
keys, only the shortening fractiont1 needs to be taken ac
count of.

The above formulas show that an upper bound on
expected collision probability leads to a lower bound on
Shannon information. Such bounds have been provided
the BB84 protocol in Refs.@23#, @24#, and @32# for various
scenarios. We concentrate here on the case that the erro
the sifted key are corrected~as opposed to discarding th
corresponding bits! using the bidirectional error correctio
procedures. We define the collision probabilitypc

(1)(e), as a
function of the error ratee in the sifted key, for a single bit o
the corrected sifted key implicitly bŷ pc@p(xuM )#&M

5(pc
(1)@e#)nsif and find the bound@23#

pc
(1)~e!<H 1

2 12e22e2 for e<1/2

1 for 1/2<e .
~7!

which gives, finally,

t1~e!<H log2~114e24e2! for e<1/2

1 for 1/2<e .
~8!

The estimate is valid for unidirectional protocols as w
since the additional information flow to Eve during bidire
tional error correction takes, apparently, the form of aspoil-
ing information in the sense of Ref.@27#. As pointed out in
Ref. @23#, we have to be careful in dealing with ambiguo
detections, for example, clicks in both detectors monitor
orthogonal polarizations. A way to deal with that is to ra
domly assign a bit value to those events. Discarding th
events would open a loophole for the eavesdropper.

C. Gain formula for single photon signals

We can summarize the effects of error correction and
vacy amplification by a gain formula for the limit of lon
keys. It is given by

Gsingle5
1

2
pexp$12t11 f @e#@e log2e1~12e!log2~12e!#%.

~9!

Bob’s detector is triggered with probabilitypexp, taking into
account channel losses and imperfect detection efficienc
and in half of the cases the signal is entered into the si
key. From the length of the sifted key we have to deduct
cost of error correction and of privacy amplification. Th
resulting rate for a lossless transmission,pexp51, and ideal
error correction,f @e#51, is shown in Fig. 1. From there i
becomes clear that the maximal tolerated error rate for
approach is around 11%.
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III. EXTENSION TO MULTIPHOTON SOURCES
WITH IDEAL POLARIZATIONS

To generalize the results of the previous section to rea
tic signal sources we first need to consider which sign
states we can generate. We find that the typical sources s
a simple structure which allows us to describe the optim
eavesdropping strategy. As a consequence, we can b
Eve’s collision probability using the results derived f
single-photon signals.

A. Realistic signal sources

The signal sources described here generate the si
from some state in one polarization mode by changing
polarization to one of the four BB84 polarization modes.

Typically, there will be no fixed relation between the o
tical phase of subsequent signals. As a result, Eve ‘‘sees’’
phase-averaged form of the signals@20#, which take the form
of a mixture of Fock states in the chosen polarization mo
~The off-diagonal terms average out to zero.! This observa-
tion, in fact, simplifies the analysis of security.

It should be noted that even if the source should b
some phase relation between subsequent pulses, this rel
can be destroyed by including a phase randomizer wh
selects at random an optical phase for each signal. Th
needed, for example, for the ‘‘plug and play scheme’’ by t
Geneva group@6#. Note that the so-called phase encoding@3#
is basically equivalent to the the polarization encoding. T
is so because the four BB84 polarizations can be expres
mathematically, as a relative phase between two mo
Phase encoding uses the relative phase between two spa
separated modes~in the same fiber and the same polarizati
mode!. They are therefore equivalent. However, in som
implementations one of the spatial mode pulses has a bi
amplitude to implement some kind of strong reference pu
for an interference in Bob’s detector, as proposed in the tw
state protocol@33# and the ‘‘412’’ protocol @18#. The secu-
rity analysis presented here does not apply to these setu

B. Estimation of the collision probability

We have seen above that for the signal sources inve
gated here, the signals are mixtures of Fock states in

FIG. 1. Gain of secure bits per time slot as a function of t
observed error ratee for an ideal channel for single-photon signa
and ideal error correction.
4-3
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NORBERT LÜTKENHAUS PHYSICAL REVIEW A 61 052304
chosen polarization mode. It turns out that Eve can split
photon number of each signal containing two or more p
tons by extracting one or more photons out of the signal s
that both parts retain their original polarization.~See Appen-
dix A.! This can be achieved by interactions of the Jayn
Cummings type, which are preceded by a quantum n
demolition measurement of the total photon number of
signal. This stands not in contrast to the statement of Y
@19# that it is not possible to extract a photon from an ar
trary state, since here we are talking only about states w
known total photon number, and where all photons are i
single, though unknown, mode. On the other hand, it is
clear what it would mean for other states to extract a pho
such that the extracted photon and the remaining states
an unaltered polarization. Eve can perform a measurem
on her photons after receiving the information about the
larization basis of the signals, and she therefore will kn
the bit value of these signals. On the other hand, she doe
cause any errors on Bob’s side, since the photons arrive t
with the original polarization.

We can summarize this in the statement that the collis
probability on each bit in the sifted key which stems from
multiphoton signal is equal to 1, and all errors in the sift
key are due to eavesdropping on single photon signals
tribution to the sifted key.

The collision probability for the sifted key factorizes in
the product of collision probabilities for each bit. If we kno
an upper bound on the numberm of multiphoton signals
contributing to the sifted key, then we can estimate the c
lision probability on the sifted key of lengthnsif by the single
bit collision probabilities for single photon signalspc

(1) and
that for multiphoton signalspc

(m)51 as

pc<~pc
(m)!m~pc

(1)!nsif2m5~pc
(1)!nsif2m. ~10!

The value of the error rate at whichpc
(1) from Eq. ~7! is

evaluated, has to be rescaled since all errors are assum
stem from eavesdropping on the single-photon signals.
therefore find

pc<S pc
(1)Fe

nsif

nsif2mG D nsif2m

, ~11!

which gives the fraction of the key which has to be discard
during privacy amplification as

t1
(m)~e(1)!511

nsif2m

nsif
log2pc

(1)Fe
nsif

nsif2mG . ~12!

The number of multiphoton bits contributing to the sifted k
can be bounded once we know the source characterist
the form of probabilitiesS0 , S1, and Sm for the signal to
contain zero, one, or more than one photon. Eve will use
multi-photon signals while she suppresses partly sing
photon signal to obtain the desired fractionpexp of signals
Bob expects to detect successfully. Therefore, the expe
tion value for the numberm of signals stemming from multi-
photon signals is given bŷm&5Smntot , wherentot is the
total number of signals sent by Alice. We can use a theo
05230
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by Hoeffding @34# to relate the expected number of mult
photon signalŝ m& to the actually created number of suc
signalsm for a key of lengthnsif with some probability. The
statement is that the inequality

u^m&2mu<d ntot ~13!

for some chosen value ofd holds with a probabilityP.1
2exp(22ntotd

2). This means, that we can choosem5^m&
since we deal in this article only with the limit of large key
For experimental realizations, however, one has to keep
eye on the choice ofd which might be rather small. Thenntot
has to be quite large to obtain a reasonable value forP. More
discussion concerning the statistical issue can be foun
Ref. @23#.

C. Gain formula for realistic signal sources

The gain formula for the considered signal sources is n
given by

G(multi)5
1

2
ppost pexpH nsif2^m&

nsif
S 12 log2F114e

nsif

nsif2^m&

24S e
nsif

nsif2^m& D
2G D1 f @e#@e log2e

1~12e!log2~12e!#J . ~14!

Here, I included a factorppost as the post-selection probabi
ity of the signal. We need this for a consistent presentation
the results using parametric downconversion, since there
ice performs a post-selection for each time slot. The qua
ties pexp, ntot , andS0 , S1, andSm refer always to the post
selected signals to emphasize the view that post-selectio
the state preparation. All parameters needed to evaluate
expression are actually observables of the experiment.
value ofnsif is agreed between Alice and Bob, the value
ntot becomes known to them during the key generation a
leads topexp5nsif /ntot . The value ofe is directly observable.
The value ofSm is indirectly measurable in Alice’s labora
tory and leads tôm&5Smntot . We can reformulate the ex
pression for the gain as

G(multi)5
1

2
ppostpexpH pexp2Sm

pexp
S 12 log2F114e

pexp

pexp2Sm

24S e
pexp

pexp2Sm
D 2G D1 f @e#@e log2e

1~12e!log2~12e!#J ~15!

so that it is expressed entirely in measurable quantities
this form we can use it to estimate the gain for a runn
experiment without having to implement the classical pro
dures of error correction and privacy amplification.
4-4
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TABLE II. Parameters for quantum key distribution experiments taken from the literature. The data
to results of the British Telecom group at 800 nm~BT 8! and 1300 nm~BT 13!, the results of the Geneva
group ~G 13! and of the group at KTH Stockholm~KTH 15!.

BT 8 BT 13 G 13 KTH 15
@4# @3# @8# @11#

Wavelength@nm# 830 1300 1300 1550
Channel loss@dB/km# a 2.5 0.38 0.32 0.2
Receiver loss@dB# Lc 8 5 3.2 1
Signal error rate e 0.01 0.008 0.0014 0.01
Dark counts@per slot# dB 531028 1025 8.231025 231024

Detection efficiency hB 0.5 0.11 0.17 0.18
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IV. SIMULATION FOR EXPERIMENTS

To simulate the gain we can obtain from an experimen
setup, we need to model the photon number distribution
the source in more detail. Here, we need more than the t
probabilitiesS0 , S1, and Sm since the probabilitypexp de-
pends on the photon number distribution within the mu
photon signals as well. Furthermore, we need to model
expected error rate of the experiment.

In my calculation, I take account of the photon numb
distribution of the signal source and the losses in the qu
tum channel. Bob’s detection unit varies in different set-u
by the number of detectors etc. The parameters entering
calculation here are the single-photon detection efficiencyhB
and the dark count ratedB , both given for the whole detec
tion unit. The dark count rate is measured as dark co
detections per time slot, i.e., gating window.

A. General formulas

The probability pexp that Bob detects a signal has tw
sources, one coming from the detection of signal phot
pexp

signal, the other from the dark counts of the detectorspexp
dark.

The combination gives

pexp5pexp
signal1pexp

dark2pexp
signalpexp

dark, ~16!

where I assume that the dark counts are independent o
signal photon detection. LetSi be the probability that the
source sendsi photons, then the probability that Bob’s d
tector is triggered by a signal photon is given as a function
the detection efficiencyhB and a transmission efficiency o
the channelhT by

pexp
signal5(

i 51

`

Si(
l 51

i S i

l D ~hBhT! l~12hBhT! i 2 l . ~17!

The dark count distribution is simply given by

pexp
dark5dB . ~18!

The error rate stems, again, from two sources. The firs
an error rate for the detected signal photons, which is du
alignment errors or fringe visibility. The probability of a
error per time slot due to this mechanism is modeled
palign

error5c pexp
signalwith a constantc. The dark count contribution
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to the same error probability is given bypalign
error5 1

2 dB since a
dark count will result at random in one of the two measu
ment results for Bob, so that in half of the cases an erro
created. Then the error rate in the sifted key is modeled

e'
c pexp

signal1 1
2 dB

pexp
~19!

in a regime where coincidences between dark counts and
counts can be neglected. For optical fibers, the losses in
quantum channel can be derived from the loss coefficiena
measured in dB/km, the length of the fiberl in km and the
loss in Bob’s detection unitLc in dB as

hT5102~a l 1Lc!/10. ~20!

Typical values for the fibre lossa in the three telecommuni
cation windows at 0.8mm, 1.3mm, and 1.5mm are 2.5 dB/
km, 0.35 dB/km, and 0.2 dB/km, respectively.

B. Weak coherent pulses

In most experiments for QKD the signal source is
strongly attenuated laser pulse. The source’s uses in typ
experiments, e.g., laser diodes, emit pulses which opt
phases are set at random by the initiating spontaneous e
sion. Therefore these sources fall into the category for wh
our arguments apply.

The photon number is Poisson distributed withSi
5exp(2m)mi/i! and mean photon numberm. Therefore, we
obtain

Sm512~11m!exp~2m! ~21!

pexp
signal512exp~2hBhTm!, ~22!

which allow us together with Eqs.~15!–~20! and a post-
selection probabilityppost51 to calculate the expected ga
per time slot of an experiment with weak coherent pulse

We evaluate the resulting gain rate using parameter
taken from the literature.~See Table II.! When we keep all
parameters fixed and vary the expected photon number o
signal, we obtain a gain curve with a clear maximum. F
thermore, if the photon number is too low, we cannot obt
a positive gain because of the dark count rate of Bob’s
4-5
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NORBERT LÜTKENHAUS PHYSICAL REVIEW A 61 052304
tector. On the other hand, for large photon numbers we c
not obtain a positive gain because of the high multipho
probability for the signals. We concentrate on the optim
choice of the expected photon number which yields
maximal gain rate. Now we can vary the length of the tra
mission line. The resulting graphs are shown in Fig. 2. W
see that the gain rate drops roughly exponentially with
length of the transmission before it starts to drop faster
to the increasing influence of the dark counts. The ini
behavior is mainly due to the multiphoton component of
signals while the influence of the error-correction part
small. In this regime we can bound the gain by the appro
mation

G<
1

2
~pexp2Sm! ~23!

5
1

2
$~11m!exp~2m!2exp~2hBhTm!%. ~24!

This expression is optimized if we choosem5moptm, which
fulfills

hB hTexp~2hBhTmoptm!2moptmexp~2moptm!50.
~25!

Since for a realistic setup we expect thathBhT!1, we find
moptm'hBhT . In this approximation we find the approx
mate upper bound

G'
1

4
hB

2 hT
2 . ~26!

As the distance increases and the influence of the dark co
and the error correction grows, this approximation is
longer valid. Instead, we find in the numerical simulatio
that the optimal photon number is even lower. Note tha
the real experiments much higher photon numbers have b

FIG. 2. Weak coherent pulses: The rate of secure key bits
time slot for realistic parameters described in the literature.~See
Table II.! The rate needs to be multiplied with the repetition rate
the apparatus to obtain the true rate per second. Note that the
effect for the shown experiments is the different absorption rate
that fiber at the respective wavelength. Furthermore, these ex
ments were not optimized with respect to the gain presented h
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used. Typically, these higher photon numbers do not al
secure key distribution over the reported distances.

The approximate situation described above illumina
another interesting feature. As noted in Ref.@20#, technical
limitations on detectors limit the distance over which we c
perform secure QKD with weak coherent pulses, and
presented security proof is in accordance with it. This lim
can be stretched as the technology improves. However,
obtained distance is only one characteristic of a setup.
other is the obtained rate. We find that the gain rate per t
slot is limited already by the use of the Poissonian pho
number distribution and the loss in the optical fiber.

We can evaluate Eq.~26! for perfect detection device
and get a bound 1 shown in Fig. 3 in the case of the K
set-up. The gap between bound 1 and the exact result sh
how much room is left for improvements of Bob’s detectio
apparatus. The bounds 2 and 3 take into account in add
to the fiber loss the loss in Bob’s detection device and
detection efficiency. We find that bound 3 is already a go
approximation to the exact results, at least for short and
dium distances. This shows that the multiphoton aspect is
these distances the dominating effect compared to the e
of error correction and the influence of eavesdropping
single-photon signals, which are responsible for the gap
tween bound 3 and the exact curve. In order to compare
performance of different setups, one would need to multi
the gain rate with the signal repetition rate of the set-up
obtain the rate of secret bits per second. This repetition
may be vastly different for some applications, so that
gain rate shown in Fig. 2 is only a starting point in optimi
ing the secure bit rate for a specific application. However
shows clearly the variation of the performance as the d
tance varies, including the maximal possible distance.

C. Parametric downconversion for triggering

The results of the previous section illustrates that the c
erable distance for QKD is limited. As shown explicitly i

er

f
ain
f
ri-
e.

FIG. 3. The optimal rate for the the scenario of Ref.@11# ~KTH
15!. Bound 1 describes the optimal possible rate given the us
Poissonian photon number distribution and the loss of the quan
channel. Bound 2 takes into account additionally the given los
Bob’s receiver, while bound 3 even includes the detection ine
ciency of Bob’s detector. Therefore, bound 3 represents the
proximation~23!.
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Ref. @20#, this distance can be increased by the usage of o
signal sources, especially by the use of parametric downc
version. Note, however, that it has been shown there
even perfect single photon sources will lead to a limited c
erable distance due to Bob’s dark count rate.

I will discuss here only the use of parametric downco
version ~PDC! as a triggering mechanism, although mo
sophisticated techniques using EPR states are possible
that we consider the non-degenerate parametric amplifier
scribed by the parameterx as the product of the couplin
constant and the interaction time of the process. This cre
the two-mode state@35#

uC&5~coshx!21(
n50

`

~ tanhx!nun,n&. ~27!

Alice monitors the first mode with a detector described
detection efficiencyhA and dark count ratedA . Only coin-
cidences between Alice’s and Bob’s detector will be tak
into account when forming the sifted key. For a low da
count rate and a small parameterx ~note that sinh2x is the
expected photon number in one mode! we can neglect coin-
cidences between dark counts and detection events and
ciate Alice’s detection event with the POM element

Eclick5dAu0&^0u1 (
n51

`

„12~12hA!n
…un&^nu. ~28!

The signal state conditioned on Alice’s detection even
then given by

rclick5
1

ppost
TrA~EclickuC&^Cu!5

1

ppost

dA

cosh2 x
u0&^0u

1
1

ppost
(
n51

`

@12~12hA!n#
tanh2n x

cosh2 x
un&^nu ~29!

with the post-selection probability as normalization factor

ppost5
dA

cosh2 x
1 (

n51

`

@12~12hA!n#
tanh2n x

cosh2 x
5

dA

cosh2 x

1
1

cosh2 x
F 1

12tanh2 x
2

1

12~12hA!tanh2 x
G .

~30!

This gives us the photon number distribution of the signa
which are obtained from thisseed stateby polarization rota-
tion. From the photon number distribution we can calcul
Sm by summation andpexp

signal, via the photodetection formula
@35# as,

Sm512
1

ppostcosh2 x
~dA1hA tanh2 x! ~31!
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pexp
signal5

1

ppostcosh2 x
(
n51

`

@12~12hA!n#@12~12hThB!n#

3tanh2nx5
1

ppostcosh2 x
F 1

12tanh2 x

2
1

12~12hThB!tanh2 x
2

1

12~12hA!tanh2 x

1
1

12~12hA!~12hThB!tanh2 x
G . ~32!

As in the case of the WCP scenario, we are now in
position to calculate the gain rate of a setup from experim
tal parameters. The simulations use experimental values
the transmission line and detectors, which are the same a
the WCP case. There are two different scenarios: Either
nondegenerate down-conversion produces photons at
same frequency, or one can use down-conversion with
ferent frequencies such that the frequency of Alice’s pho
has a wavelength convenient for detection, while the ot
photon’s wavelength falls into one of the three telecomm
nication windows for optimal propagation along the fiber
open air. To illustrate the calculation we assumed the sit
tion where one mode is adapted to the 800 nm detector
the British Telecom experiment, while the signal mode
emitted in one of the four modes used already for the W
case. The results of this hypothetical experiment is show
Fig. 4. We find an increase of the covered distance aga
the use of the WCP source, but this happens at the exp
of a lower rate per signal.

To understand the decrease of the rate, we can now bo
the maximal gain per time slot in correspondence to the
culation for weak coherent states. It is now convenient
introduce the expected photon numberm5sinh2x. In the op-
timal case, Alice’s triggering detector is perfect (hA51 and

FIG. 4. Parametric downconversion as triggering device: T
rate of secure key bits per time slot for realistic parameters
scribed in the literature. The triggering mode is adapted to the
nm detector of the BT experiment. The signal mode is adapte
one of the four studied cases.~See Table II.! The rate needs to be
multiplied with the repetition rate of the apparatus to obtain the t
rate per second.
4-7



cy
in

d

hi
io
DC
lt
it
io
a
ti
re
im

os
fi-
on
a
ow
rre

um
is

an
nc
ai
rc
n
th

ist-
on
or

ple
of

can
y a

uld,
in a
, it

es,
C
to

ate
hat
t-up

s is
rong

le-
ve
the

sig-
an
e

ven
pe
l.

s-
o
d
the
, I
ISI

his
ad-
tion

al-
o
um
r in
de-
ed

NORBERT LÜTKENHAUS PHYSICAL REVIEW A 61 052304
dA50), and we neglect the negative contribution of priva
amplification and error correction. Then we find, again us
hªhBhT ,

ppost5
m

11m
, ~33!

Sm5
m

11m2
~34!

pexp5
h~11m!

11hm
~35!

so that we find for the gain

G< 1
2 ppost~pexp2Sm!5

1

2
mF h

11hm
2

m

~11m!2G . ~36!

Now the optimal mean photon numbermopt satisfies

22mopt22h2mopt
3 1h~113mopt2mopt

2 1mopt
3 !50, ~37!

which leads for small values ofh to m' 1
2 h. In the same

limit the gain rate is approximated by

G'
1

8
h2. ~38!

This bounds the obtainable rate for the case that Bob’s
tectors are perfect, so thath→hT . We find that here weak
coherent states have a potential gain rate per time slot, w
is twice as big as the one of parametric down convers
The reason is that the photon number distribution for P
sources is basically thermal, which shows a higher mu
photon contribution compared to a Poisson distribution w
the same mean photon number. For practical realizat
however, a factor of two is not that significant, and the g
between gain rate of secure bits with imperfect tools is s
by orders of magnitude separated from this limit. Therefo
the question remains open, which technology allows a s
pler approach to higher rates.

Note that one would need to take into account the l
occurring when Alice couples the photon for Bob into a
ber. This loss can be easily incorporated in this calculati
since the resulting photon number distribution of the sign
can be obtained using the photon count formulas. Here, h
ever, we do not study this additional parameter. The co
sponding formulas are given in Appendix B.

V. CONCLUSIONS

In this paper, I presented a security proof of quant
cryptography that is restricted to individual attacks. Th
proof takes into account the non-ideal signal sources
detectors. Moreover, it allows to compare the performa
for different arrangements with respect to the overall g
rate. In this sense it can help to decide which type of sou
to use, for example, weak coherent pulses or dow
conversion, depending on the available technology and
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task fixing, for example, wavelength and distance. For ex
ing experiments, it allows to find the optimal mean phot
number of the source and the optimal working point f
Bob’s detectors.

We found that the use of PDC sources with a sim
triggering mechanism does not increase the overall rate
secure bits, but it allows to increase the distance which
be covered by experiments. The rate could be improved b
more sophisticated detection mechanism, where Alice co
at least partly, determine the number of pairs produced
time slot. Even if this mechanism does not work perfectly
would improve the rate and distance.

Our examples show that the use of WCP sources giv
typically, higher rates per time slot than the use of PD
sources, as long as the distance is not too big. I would like
point out again, that in the end the total rate, that is the r
per time slot times the repetition rate of the setup, is w
counts. It depends therefore on the bottle-neck of the se
which design can be made the fastest.

The problem of nonideal sources in the presence of los
known since 1995. There have been proposals to use st
reference pulses in the two-state protocol@14# and the BB84
protocol @18#, but so far these ideas have not been imp
mented. The reference pulses make it more difficult for E
to block signals, since in those schemes Bob measures
interference of the strong reference pulse with the weak
nal, so that the absence of the weak signal will lead to
error in half of the cases. I would like to point out, that th
security of this scheme has not been fully analyzed yet e
for individual attacks, but this scheme is certainly the ho
for the future to improve the here analyzed BB84 protoco
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APPENDIX A: PHOTON NUMBER SPLITTING

The photon number splitting idea has been presented
ready in Ref.@20#. Here I want to provide more details. T
perform photon number splitting, Eve performs a quant
non-demolition measurement on the total photon numbe
both polarization modes. As a result the signal is now
scribed by an-photon state in the unknown and undisturb
signal polarization, and the photon numbern is known to
Eve.

The task is now to find a unitary transformationUPNS
(n) ,

which depends on the value ofn, such that precisely one
photon from the two signal polarization modesai is trans-
4-8
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ferred to two additional polarization modesbi which are in
Eve’s hand. The polarization of either part should be equa
the original one. This means we require that the two sign
of the first polarization basis (1) transform as

UPNS
(n) un,0,0,0&15un21,0,1,0&1

~A1!
UPNS

(n) u0,n,0,0&15u0,n21,0,1&1 .

Here, the components of the state vectoru . . . &1 correspond
to the photon number occupation of the modesa1 ,a2 ,b1 ,b2,
respectively. The requirement for the two signal states of
second polarization basis (3) is easily formulated if we
choose the mode representation defined by the opera
a651/A2(a16a2) andb651/A2(b16b2). The state vector
u . . . &3 now denotes the occupation number in the mo
a1 ,a2 ,b1 ,b2 . We require, that

UPNS
(n) un,0,0,0&35un21,0,1,0&3

~A2!
UPNS

(n) u0,n,0,0&35u0,n21,0,1&3 .

Indeed, a transformationUPNS
(n) with these properties ca

be found@36#. Eve uses an interaction described by a Jayn
Cummings Hamiltonian

HJC
(1)5l~a1

†s11a1s1
†1a2

†s21a2s2
†!

to connect the signal modes to a three level system with
ground stateug& and two upper statesuei& with atomic exci-
tation operatorss i

† ( i 51,2) @36#. ~For a review of the
Jaynes-Cummings model see Ref.@37#.! The system is ini-
tially prepared in the ground state. After an interaction tim
t5p/2Anl, which depends onn, the first two signal states
transform into un,0&1ug&→un21,0&1ue1& and u0,n&1ug&
→u0,n21&1ue2&. The same dynamics involving two add
tional photonic modes,b1 andb2, and the Hamiltonian

HJC
(2)5l~b1

†s11b1s1
†1b2

†s21b2s2
†!

transfers~after interaction timet̃ 5p/2l) the excitation to a
photon in the original polarization into the modesbi . In total
we have then achieved the transformations~A1! while the
three-level system factors out. As shown, this mechan
works fine for the first two signal states. To see that it wo
for the other states as well note that we can introduce a
description of the three level system with the superpositi
of the upper levels as new excited states so thats6

51/A2(s16s2) are the new atomic operators. Then we fi
that the Hamiltonians, written with these new atomic ope
tors and with the photonic operators in the base (3), have
the form HJC

(1)5l(a1
† s11a1s1

† 1a2
† s21a2s2

† ) and
Pr
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HJC
(2)5l(b1

† s11b1s1
† 1b2

† s21b2s2
† ). We see, the

Hamiltonians are form invariant under the the above tra
formations, and it follows that this scheme performs t
mapping of~A2! as well. In general, this scheme is able
split one photon off anyn-photon state with definite polar
ization, regardless what this polarization may be.

APPENDIX B: PDC WITH FINITE COUPLING
EFFICIENCY

In this appendix I provide the straightforward derived fo
mulas for the case where we use a parametric downcon
sion source for the triggering of the signal, and the sig
travelling to Bob couples only with a finite efficiencyhC into
the fiber. All losses on Alice’s side which cannot be acces
by Eve can be incorporated into this efficiency. Condition
on a click in Alice’s triggering detector we find the followin
results:

ppost5
dA

cosh2 x
1

1

cosh2 x
F 1

12tanh2 x

2
1

12~12hA!tanh2 x
G ~B1!

S05
1

ppostcosh2 x
FdA1

1

12~12hC!tanh2 x

2
1

12~12hC!~12hA!tanh2 x
G ~B2!

S15
hC tanh2 x

ppostcosh2 x
F 1

12~12hC!tanh2 x

2
12hA

12~12hC!~12hA!tanh2 x
G ~B3!

SM512S02S1 ~B4!

pexp5
1

ppostcosh2 x
F 1

12tanh2 x
2

1

12~12hThChB!tanh2 x

2
1

12~12hA!tanh2 x

1
1

12~12hA!~12hThChB!tanh2 x
G . ~B5!

With these quantities we can, as before, determine the o
mal gain for a given setup.
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