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Security against individual attacks for realistic quantum key distribution
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| prove the security of quantum key distribution against individual attacks for realistic signals sources,
including weak coherent pulses and down-conversion sources. The proof applies to the Bennett-Brassard 1984
protocol with the standard detection schetne strong reference pulsd obtain a formula for the secure bit
rate per time slot of an experimental setup, which can be used to optimize the performance of existing schemes
for the considered scenario.

PACS numbgs): 03.67.Dd, 03.65.Bz, 42.79.Sz

[. INTRODUCTION security for a realistic protocol, i.e., one where all compo-
nents are known and work efficiently.

The first complete protocol for quantum key distribution It is necessary to distinguish this work from earlier work
(QKD) has been introduced by Bennett and Brassard in 1988y other groups. Lo and Chd@1] gave a proof of principle
[1] following earlier ideas by Wiesnd2]. Since then, this for the security of quantum key distribution. At present, it is
protocol (BB84 for shorj has been implemented by several not possible to use their proof to implement secure QKD
groups [3—13. For an overview containing more details since the procedure involves devices to manipulate qubits
about the background, the experimental implementation andoherently in order to allow fault-tolerant computing. The
the classical evaluation procedure see for exaniplé4—  approach of Mayer§22] is certainly the most advanced re-
16]. sult towards practical QKD, which is provably secure against

The basic idea of the BB84 protocol is to use a randomall eavesdropping attacks on the signals. However, the proof
string of signal states which, for example, can be realized aassumes ideal single photon signals, and, at present, we do
single photons in horizontal, vertical, right circular, or left not have an extension of that proof which can cope with
circular polarization states. These are two sets of stategalistic signal sources and effective error correction codes,
which are orthogonal within each set, and have overlap probalthough work in these directions is in progress.
ability 1/2 between the sets. If the receiver chooses at ran- The restriction to eavesdropping on individual signals al-
dom between a polarization analyzer for linear polarizatiolows a much simpler analysis of a realistic scenario, and it is
and one for circular polarization, then they obtain in this waytherefore advisable to use this scenario as a study for the
araw key[17]. From this they distill thesifted keyby pub-  generalization in the sense of Mayer’s proof. Furthermore,
licly exchanging information about the polarization basis ofthe results are interesting in their own right: it seems to be
the signals and the measurement apparatus. They keep oniypossible to perform collective measurements on the sig-
those bits where the basis is the same for the signal and theals with today’s technology. Therefore, QKD secure against
measurement, since those signals give a deterministic reldndividual attack will today create keys which are secure
tion between signal and measurement outcome. against future developments in coherent eavesdropping strat-

The practical implementations deviate from the theoreti-egies, since tomorrow’s technology cannot be used for to-
cal abstraction used in the original proposal in two importantday’s eavesdropping strategy. This is in contrast to the im-
points. The first is that the signal states do not have thelication of an increase of future computation power or
correct overlap probabilities. Especially in the photonic realimprovements in algorithms which threatens today’s use of
ization, the signals contain contributions from higher photonclassical encryption schemes.
numbers and from the vacuum state which cause this devia- In this paper, | will derive a formula for the gain of secure
tion. The second point is that the quantum channel in thesbits per signal sent, that is per time slot of the experiment.
implementationgoptical fiberg shows a considerable loss. It These formulas are presented only in the limit of long keys,
has been shown earli¢t8,19 that the combination of the so that the influence of the necessary authentication of the
two effects open up a security gap. The extent of this securitkey and all statistical influences regarding the number of
gap has been extensively illuminated for different signalerrors etc. can be neglected. It is necessary to embed these
sources in Ref[20] giving necessary conditions on the fea- results into a full protocol, derived, for example, in Refs.
sibility of QKD without restriction to any particular class of [10], [23], and[24] to which | refer the reader for further
eavesdropping attacks. From these results one can concludetails.
that most current experiments are performed in a parameter This paper is organized as follows. In Sec. Il, | will intro-
regime where the necessary conditions for security are vioduce the essential elements of practical quantum cryptogra-
lated. phy and report the relevant findings for single-photon sig-

In the present work, | will complement these results by anals. These results are then extended in Sec. Il to signal
positive proof of security for a scenario where the power ofsources which generate the signal states by rotating a state in
the eavesdropper is restricted to attacking signals separatetyie polarization to that of the ideal BB84 polarizations. In
(individual attack. This restriction allows us to prove the Sec. IV, the resulting gain formula is explored for two
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choices for the signal source, namely weak coherent pulses TABLE I. Example of the performance of the bidirectional error
(WCP) and parametric down-conversigRDC). The results  reconciliation protocol by Brassard and Salvéief. [31]). The

are discussed in Sec. V. values are taken from that paper. Heris the observed error rate,
while f[e] is the ratio of actually needed redundant bits to the
Il. SECURITY AGAINST INDIVIDUAL ATTACKS corresponding number of the Shannon linmit. used the upper

FOR SINGLE-PHOTON SOURCES bounds forl (4) provided in the reference.

To investigate the security of QKD one needs to investi- e fle]
gate the trade-off between the information gathered by the

eavesdropper and the amount of disturbance caused thereby. g'gé 1'12
The trade-off between the Shannon mutual information and 0'1 1'22
the bit error rate in the sifted key has been investigated by 0'15 1'35

several authors for restricted atta¢k§,25 and for the gen-
eral individual attack26]. The results show that the gathered
Shannon information for the typically observed error rate 0ftional classical communication only. Fortunately, a more ef-

Ceog ; ;
about 1-5% is too high to allow the sifted key to be usedficient bidirectional code exis{81], which useg[e]Nfgﬁnnon

directly for cryptographic purposes. However, we can first . ; . . . :
correct the errors and then apply the techniqugesferalized 'llj'gilfgrl error correction with a correction factgfre] listed in

privacy amplificatior{27] to distill from the sifted key a new
shorter key, which fulfills the security requirements. These ) _ o
techniques are purely classical. Both steps, the error correc- B. Generalized privacy amplification

tion and the privacy amplification, will reduce the number of |n this section | report on the fraction of bits by which
gained secure bits. we need to shorten the sifted key so that we obtain a secure
key. The aim of QKD is to obtain a secure key in the sense
A. Error correction that Eve has no information on that key. This can be made

Error correction is performed by the exchange of redunPrecise by two propertiegl) a keyx of lengthngig should

dant information about the key, e.g., in form of parity bits, "2V& eduala priori probability p(x)=2"" and (2) the

via the public channel. Since Eve has access to the pub"gifference between tha priori anda posterioriprobability,

channel, we have to take care of this flow of side informa-23 measured by the Shannon information, should vanish.

tion. This can be done by using a short initial shared secre hese two properties can be summarized in the demand that
key to encrypt the parity bits in a one-time pad method. Notdn€ €xpected Shannon entroby(p(x|M))u] of the7a pos-

that in practice we cannot realize any public channel which ideriori probability distributior( p(xIM))u , after Eve’s gath-
safe against tampering by Eve by technology alone. ThereE"n9 of measurement results and classical communication
fore, sender and receiver need to share a secret key anywly Should approachny. (Here(...)y denotes the expec-

to overcome this problem by the classical method of authentdtion value with respect to the measurement outcome
tication[28,29. As a consequence of this method of control Generalized privacy amplification27] achieves that by
of the side-information, we need to know how many bitsN@shing the corrected sifted key into a shorter keyhgh

need to be encrypted, which is equivalent to the number ofdnctions[28,29 such that we obtain the bouri@7] (see
exchanged parity bits. Ref. [23] for the extension to the expectation values with

It is clear, that one has to be careful to implement anf€SPeCt toV)
efficient error correction protocol, since we have to regain at Nfina
least the number of secrgt bits used for the encryptiorglg of the HI(P(XIM))m 1= Nfinai— 10g( 2" pe[ p(X|M) Ty + 1)-(2)
parity bits. The ratio between minimum number of redundant
bits Ngna""*"needed to correct a key of lengthis given  Here,p[p(x|M)] is a measure of tha posterioriprobabil-
according to Shannof80] by ity on the corrected sifted keyof lengthng;. This measure
is the collision probability, defined as

NShannon
corr
o =—elog,e—(1—e)log,(1—e), (1)
PLP(XIM)]=2 PP(XIM). 3

wheree is the observed error rate in the sifted key. In this *
limit the probability that the errors can be corrected canif we choose the length of the final key to be
come arbitrarily close to unity. However, Shannon’s proof of
the existence of error correction codes reaching this limit is Nfinai=Ngif(1 — 71) — Ng, (4)
not constructive, and the limit is obtained only by large
codes. These are not easily implemented because of the rie estimate becomes, after a further simplifying estimation
quired computational resources. We have therefore to sear¢g7],
for error correction tools which come close to this limit. As —
discussed in Ref23], it is hard even to approach the Shan-
non limit with error correction codes wﬁlioch use unidirec- H[<p(X|M)>M]2n““a'_W ®
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with 05
1 504

=1+ F|092<pc[p(X|M)]>M- (6) o

sif E
=0.3)

Clearly, we can approximate an ideal secret key arbitrarily %
close by the choice of the security parameter For long So.2

keys, only the shortening fraction, needs to be taken ac- %
count of. 30.1

The above formulas show that an upper bound on the

expected collision probability leads to a lower bound on the 0

0 002 004 006 008 01 012

Shannon information. Such bounds have been provided for oxpected error rate

the BB84 protocol in Refd.23], [24], and[32] for various

scenarios. We concentrate here on the case that the errors inFIG. 1. Gain of secure bits per time slot as a function of the
the sifted key are correcte@s opposed to discarding the observed error rate for an ideal channel for single-photon signals
corresponding bitsusing the bidirectional error correction and ideal error correction.

procedures. We define the collision probabitﬂ&‘)(e), as a
function of the error ratein the sifted key, for a single bit of
the corrected sifted key implicitly by(pc[p(x|M)])m

Ill. EXTENSION TO MULTIPHOTON SOURCES
WITH IDEAL POLARIZATIONS

=(p(cl)[e])”sif and find the bound23] To generalize the results of the previous section to realis-
tic signal sources we first need to consider which signals
L 420e—2e2 for e<1/? states we can generate. We find that the typical sources show
p(cl)(e)$[ 2 (7) a simple structure which allows us to describe the optimal
1 for l/i2<e. eavesdropping strategy. As a consequence, we can bound
. _ . Eve’s collision probability using the results derived for
which gives, finally, single-photon signals.
i (e)<[ log,(1+4e—4e?) for e<1/2 ® A. Realistic signal sources
! 1 for 1/2<e. The signal sources described here generate the signal

. ) . o from some state in one polarization mode by changing its
The estimate is valid for unidirectional protocols as well yolarization to one of the four BB84 polarization modes.
since the additional information flow to Eve during bidirec- Typ|ca||y' there will be no fixed relation between the op-
tional error correction takes, apparently, the form afp@il-  tjcal phase of subsequent signals. As a result, Eve “sees” the
ing informationin the sense of Ref27]. As pointed out in  phase-averaged form of the signf2§], which take the form
Ref. [23], we have to be careful in dealing with ambiguous of a mixture of Fock states in the chosen polarization mode.
detections, for example, clicks in both detectors monitoringThe off-diagonal terms average out to zgrbhis observa-
orthogonal polarizations. A way to deal with that is to ran-tjon, in fact, simplifies the analysis of security.

domly assign a bit value to those events. Discarding those |t should be noted that even if the source should bear

events would open a loophole for the eavesdropper. some phase relation between subsequent pulses, this relation
can be destroyed by including a phase randomizer which
C. Gain formula for single photon signals selects at random an optical phase for each signal. This is

We can summarize the effects of error correction and pri_needed, for example, for the "plug and play scheme” by the

e ; L Geneva group6]. Note that the so-called phase encodigly
K:;Z ?trr;glgli\clgtr:ogyby a gain formula for the limit of long is basically equivalent to the the polarization encoding. This

is so because the four BB84 polarizations can be expressed,
_ 1 mathematically, as a relative phase between two modes.
GS'"Q'ezzpexp{l— 1+ f[e][elog,e+ (1—e)log,(1—e)]}. Phase encoding uses the relative phase between two spatially
) separated moddm the same fiber and the same polarization
mode. They are therefore equivalent. However, in some

, ‘o e ; o - implementations one of the spatial mode pulses has a bigger
Bob’s detector is triggered with probabilif, taking into mplitude to implement some kind of strong reference pulse

account channel losses and imperfect detection efﬁciencie§jr an interference in Bob's detector. as pronosed in the two-
and in half of the cases the signal is entered into the sifte » as prop

key. From the length of the sifted key we have to deduct thes.tate protqco[33] and the "4+ 2" protocol [18]. The secu-
cost of error correction and of privacy amplification. The rity analysis presented here does not apply to these setups.

resulting rate for a lossless transmissipg,,=1, and ideal

error correctionf[e]=1, is shown in Fig. 1. From there it
becomes clear that the maximal tolerated error rate for this We have seen above that for the signal sources investi-
approach is around 11%. gated here, the signals are mixtures of Fock states in the

B. Estimation of the collision probability
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chosen polarization mode. It turns out that Eve can split thdy Hoeffding [34] to relate the expected number of multi-
photon number of each signal containing two or more phophoton signalgm) to the actually created number of such
tons by extracting one or more photons out of the signal suckignalsm for a key of lengthng;; with some probability. The
that both parts retain their original polarizatidSee Appen- statement is that the inequality

dix A.) This can be achieved by interactions of the Jaynes-

Cummings type, which are preceded by a quantum non- (M) —m| <8 Nt (13
demolition measurement of the total photon number of the

signal. This stands not in contrast to the statement of Yuen . -
[19] that it is not possible to extract a photon from an arbi-for some chozsen Vf""“e af holds with a probabilityP>1

trary state, since here we are talking only about states with. eXp(=2Mod ) Th|s means, that_ We can <_:hoose=(m)
known total photon number, and where all photons are in ince we qleal in this a_rt|cl_e only with the limit of large keys.
single, though unknown, mode. On the other hand, it is un- or experlmen.tal reahzgtlons:, however, one has to keep an
clear what it would mean for other states to extract a photor‘?ye on the ch0|ce of which mlght be rather small. Thamg
such that the extracted photon and the remaining states ha\l;'gs to b_e quite 'afge. to obtain a re_asor_1ab|e valu@iddore .
an unaltered polarization. Eve can perform a measuremerﬂscuss'on concerning the statistical issue can be found in
on her photons after receiving the information about the po- ef. [23].

larization basis of the signals, and she therefore will know

the bit value of these signals. On the other hand, she does not C. Gain formula for realistic signal sources

cause any errors on Bob’s side, since the photons arrive there
with the original polarization.

We can summarize this in the statement that the collisio
probability on each bit in the sifted key which stems from a
multiphoton signal is equal to 1, and all errors in the sifted G
key are due to eavesdropping on single photon signals con-
tribution to the sifted key. 4(

The gain formula for the considered signal sources is how
rglgiven by
Nsif

1+de——
Ngit— (M)

1 Ngir— (M)
Eppost pexp n—sﬁ 1_|092

(multi) —

Ngjt

m +f[e][elog,e

The collision probability for the sifted key factorizes into
the product of collision probabilities for each bit. If we know
an upper bound on the number of multiphoton signals
contributing to the sifted key, then we can estimate the col- +t(1-e)logy(1—e)]
lision probability on the sifted key of length; by the single
bit collision probabilities for single photon signabél) and

that for multiphoton signalp{™=1 as

. (14

Here, I included a factop,.s; as the post-selection probabil-
ity of the signal. We need this for a consistent presentation of
the results using parametric downconversion, since there Al-
ice performs a post-selection for each time slot. The quanti-
ties Pexp, Niot» ANASy, Sy, and S, refer always to the post-
%Iected signals to emphasize the view that post-selection is
e state preparation. All parameters needed to evaluate this
expression are actually observables of the experiment. The
value ofng; is agreed between Alice and Bob, the value of
)nsif—m n,: becomes known to them during the key generation and

pe=(pI™)m(p{H)nsim= (p{H)nsir—m, (10

The value of the error rate at Whiqhﬁl) from Eq. (7) is
evaluated, has to be rescaled since all errors are assumed
stem from eavesdropping on the single-photon signals. W
therefore find

Ngjt
Ngir—M

e (11 leads tope,,= Nsit/Nior- The value ok is directly observable.
The value ofS,, is indirectly measurable in Alice’s labora-
Jory and leads tdm)=S,n,. We can reformulate the ex-

pression for the gain as

pc<( M

which gives the fraction of the key which has to be discarde
during privacy amplification as

(M) A1)y _ Ngif—M ) Ngi (multi):E {pexp_S"n( _ Pexp

M (el ))—1+—n5if log,p¢ e m}' (12 G 5 PposPexp " Pow 1-log, 1+4e—pexp_sm
2

The number of multiphoton bits contributing to the sifted key _4( GM +f[e][elog,e

can be bounded once we know the source characteristic in Pexp— Sm

the form of probabilitiesS,, S;, and S,, for the signal to

contain zero, one, or more than one photon. Eve will use all +(1—e)logy(1—e)] (15)

multi-photon signals while she suppresses partly single-

photon signal to obtain the desired fractipg,, of signals

Bob expects to detect successfully. Therefore, the expectao that it is expressed entirely in measurable quantities. In
tion value for the numbem of signals stemming from multi- this form we can use it to estimate the gain for a running
photon signals is given bym)=S;n,:, wheren, is the  experiment without having to implement the classical proce-
total number of signals sent by Alice. We can use a theorendures of error correction and privacy amplification.
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TABLE II. Parameters for quantum key distribution experiments taken from the literature. The data refer
to results of the British Telecom group at 800 Bl 8) and 1300 nm(BT 13), the results of the Geneva
group (G 13 and of the group at KTH StockholifKTH 15).

BT 8 BT 13 G 13 KTH 15
(4] [3] (8] [11]
Wavelength nm] 830 1300 1300 1550
Channel los$dB/km] o 25 0.38 0.32 0.2
Receiver los$dB] L 8 5 3.2 1
Signal error rate e 0.01 0.008 0.0014 0.01
Dark countgper slof dg 5x10°8 1075 8.2x107° 2x1074
Detection efficiency 7B 0.5 0.11 0.17 0.18
IV. SIMULATION FOR EXPERIMENTS to the same error probability is given o= 3dg since a

To simulate the gain we can obtain from an experimentafjark count will result at rando_m in one of the two measure-
setup, we need to model the photon number distribution ofnent results for Bob, so that in half of the cases an error is
the source in more detail. Here, we need more than the threg€ated. Then the error rate in the sifted key is modeled by
probabilities Sy, S;, and S, sincg the |o_robak?iIit_ypexp de- _ signal, 1
pends on the photon number distribution within the multi- ~ CPexp +30dg
photon signals as well. Furthermore, we need to model the e~
expected error rate of the experiment.

In my calculation, | take account of the photon numberin a regime where coincidences between dark counts and real
distribution of the signal source and the losses in the quancounts can be neglected. For optical fibers, the losses in the
tum channel. Bob’s detection unit varies in different set-upsgguantum channel can be derived from the loss coefficient
by the number of detectors etc. The parameters entering thmeasured in dB/km, the length of the fidein km and the
calculation here are the single-photon detection efficiepgy loss in Bob’s detection unit. in dB as
and the dark count ratég, both given for the whole detec-
tion unit. The dark count rate is measured as dark count nr=10"(**L10 (20)
detections per time slot, i.e., gating window.

19
Pexp ( )

Typical values for the fibre loss in the three telecommuni-
A. General formulas cation windows at 0,8m, 1.3um, and 1.um are 2.5 dB/

- ) km, 0.35 dB/km, and 0.2 dB/km, respectively.
The probability pe, that Bob detects a signal has two

sources, one coming from the detection of signal photons

i B. Weak coherent pulses
P, the other from the dark counts of the detectpfd P

The combination gives In most experiments for QKD the signal source is a
' ' strongly attenuated laser pulse. The source’s uses in typical
Pexp= Pognaly plark— pianaydark, (16)  experiments, e.g., laser diodes, emit pulses which optical

phases are set at random by the initiating spontaneous emis-
where | assume that the dark counts are independent of thgon. Therefore these sources fall into the category for which
signal photon detection. Le$; be the probability that the our arguments apply.
source sends photons, then the probability that Bob’s de-  The photon number is Poisson distributed wif
tector is triggered by a signal photon is given as a function of= exp(— w).'/i! and mean photon number. Therefore, we
the detection efficiencyg and a transmission efficiency of optain
the channely; by

e i Sn=1-(1+p)exp—u) (21)
_ i _
nggalzzl S;l (I)(WBUT)I(]-_ nenr) . (A7) ng’;aI:l—eXF(— NBNTM), (22
The dark count distribution is simply given by which allow us together with Eq915)—(20) and a post-
selection probabilityp,.s—= 1 to calculate the expected gain
poat=dg. (18)  per time slot of an experiment with weak coherent pulses.

We evaluate the resulting gain rate using parameter sets
The error rate stems, again, from two sources. The first isaken from the literature(See Table I). When we keep all
an error rate for the detected signal photons, which is due tparameters fixed and vary the expected photon number of the
alignment errors or fringe visibility. The probability of an signal, we obtain a gain curve with a clear maximum. Fur-
error per time slot due to this mechanism is modeled bythermore, if the photon number is too low, we cannot obtain
PSion=C piar®with a constant. The dark count contribution a positive gain because of the dark count rate of Bob’s de-

052304-5



NORBERT LUTKENHAUS PHYSICAL REVIEW A 61 052304

WCP 1
-1 _'-".'_","_‘."-'.‘!I'.".‘;Z".'.'!.".",'_“,';',".‘ """"""""""
| . -‘-v-‘-,-‘.".'.".‘;'f'.'f!ﬁLi'.”.‘;',".
§ =2}
: O —Imeeeelll
: e
Q )
O (e
“_ 2.l KTH 15
| A | bound 1
. Sl - bound 2
; 8- --- bound 3
-6
-8 0 5 10 - « ®
0 5 10 15 20 25 e

distance [km]
FIG. 3. The optimal rate for the the scenario of Réfl] (KTH
FIG. 2. Weak coherent pulses: The rate of secure key bits pe{s) Bound 1 describes the optimal possible rate given the use of
time slot for realistic parameters described in the literati®e  pgjssonian photon number distribution and the loss of the quantum
Table 11) The rate needs to be multiplied with the repetition rate of shannel. Bound 2 takes into account additionally the given loss in
the apparatus to obtain the true rate per second. Note that the maiypys receiver, while bound 3 even includes the detection ineffi-

effect for the shown experiments is the different absorption rate Of:iency of Bob’s detector. Therefore, bound 3 represents the ap-

that fiber at the respective wavelength. Furthermore, these eXperﬂ)’roximation(ZS).

ments were not optimized with respect to the gain presented here.

tector. On the other hand, for large photon numbers we Canqsed. Typlca!ly,.the.se higher photon numbers do not allow
secure key distribution over the reported distances.

not obtain a positive gain because of the high multiphotor The approximate situation described above illuminates
probability for the signals. We concentrate on the opt|malanother interesting feature. As noted in R&i0], technical

choice of the expected photon number which yields thqimitations on detectors limit the distance over which we can
maximal gain rate. Now we can vary the length of the trans- .
erform secure QKD with weak coherent pulses, and the

mission line. The resulting graphs are shown in Fig. 2. Wé:)resented security proof is in accordance with it. This limit

see that the gain rate drops roughly exponentially with th .
length of the transmission before it starts to drop faster du&dn be stretched as the technology improves. However, the

to the increasing influence of the dark counts. The initialObtalned distance is only one characteristic of a setup. An-

behavior is mainly due to the multiphoton component of theother is the obtained rate. We find that the gain rate per time

signals while the influence of the error-correction part isSIOt IS I'm.'teq a'feady by the use of the P_0|ssqn|an photon
number distribution and the loss in the optical fiber.

i:gﬁg’nm this regime we can bound the gain by the approxi- We can evaluate Ec(26)_ for_ perfe_ct detection devices

and get a bound 1 shown in Fig. 3 in the case of the KTH

1 set-up. The gap between bound 1 and the exact result shows
G= E(pe“’_ Sn) (23 how much room is left for improvements of Bob'’s detection

apparatus. The bounds 2 and 3 take into account in addition

1 to the fiber loss the loss in Bob’s detection device and the

=—{(1+u)exp— u)—exp — ngpm)}. (24) detection efficiency. We find that bound 3 is already a good

2 approximation to the exact results, at least for short and me-

dium distances. This shows that the multiphoton aspect is for
these distances the dominating effect compared to the effect

of error correction and the influence of eavesdropping on
single-photon signals, which are responsible for the gap be-
(25) tween bound 3 and the exact curve. In order to compare the

performance of different setups, one would need to multiply

Since for a realistic setup we expect thainr<1, we find  the gain rate with the signal repetition rate of the set-up to
Koptn™ 777 IN this approximation we find the approxi- obtain the rate of secret bits per second. This repetition rate

This expression is optimized if we chooge= wqpim, Which
fulfills

78 NTEXP(— 7B 77T M optm) ~ Moptr€XP — Koptm) = 0.

mate upper bound may be vastly different for some applications, so that the
gain rate shown in Fig. 2 is only a starting point in optimiz-

1, ., ing the secure bit rate for a specific application. However, it

G~ 27877 (26) shows clearly the variation of the performance as the dis-

tance varies, including the maximal possible distance.
As the distance increases and the influence of the dark counts
and the error correction grows, this approximation is no
longer valid. Instead, we find in the numerical simulations
that the optimal photon number is even lower. Note that in  The results of the previous section illustrates that the cov-
the real experiments much higher photon numbers have beeamable distance for QKD is limited. As shown explicitly in

C. Parametric downconversion for triggering
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Ref.[20], this distance can be increased by the usage of other

signal sources, especially by the use of parametric downcon- iy é‘l}l—éw
version. Note, however, that it has been shown there that g PN N BT 13
even perfect single photon sources will lead to a limited cov- = N TN N N BT8
erable distance due to Bob’s dark count rate. %

I will discuss here only the use of parametric downcon- S 3
version (PDQ) as a triggering mechanism, although more °9
sophisticated techniques using EPR states are possible. For 8.0t ‘
that we consider the non-degenerate parametric amplifier de- '\
scribed by the parameter as the product of the coupling 2 i
constant and the interaction time of the process. This creates 0 20 40 60 80 100 120
the two-mode statg35] distance [km]

FIG. 4. Parametric downconversion as triggering device: The
|‘If)=(cosh)()_12 (tanhy)"|n,n). (27) rate of secure key bits per time slot for realistic parameters de-
n=0 scribed in the literature. The triggering mode is adapted to the 800
nm detector of the BT experiment. The signal mode is adapted to
Alice monitors the first mode with a detector described byone of the four studied case$See Table I). The rate needs to be
detection efficiencyy, and dark count rate,. Only coin-  Multiplied with the repetition rate of the apparatus to obtain the true
cidences between Alice’s and Bob’s detector will be takerfate per second.
into account when forming the sifted key. For a low dark
count rate and a small parameter(note that sinfy is the

expected photon number in one mpaee can neglect coin- pS'gﬂa' ; z [1-(1—70)"[1— (1 7778)"]
cidences between dark counts and detection events and asso-" ppostcosﬁ XN
ciate Alice’s detection event with the POM element 1 1

. X tank"y =

. PpostCOSIF x | 1—tanlt x
Ecick=dal0)(0[+ 2, (1= (1= 5a)M[n)(n|. (28

n=1 1 1
The signal state conditioned on Alice’s detection event is 1-(1-prpp)tantf x  1—(1—pa)tant? x
then given by 1

(32)

+ .
1—(1-na)(1— pryg)tantt x

1
Polick= = TrA(Eciicl ¥ )(V]) = [
ppost ppost COSH’
As in the case of the WCP scenario, we are now in the
E [1-(1— nA)n] |n><n| (29) position to calculate the gain rate of a setup from experimen-
ppostn 1 tal parameters. The simulations use experimental values for

the transmission line and detectors, which are the same as in
the WCP case. There are two different scenarios: Either the
nondegenerate down-conversion produces photons at the
same frequency, or one can use down-conversion with dif-

with the post-selection probability as normalization factor

Doosi= AL 2 [1—(1— 70" tankf" _ da ferent frequencies such that the frequency of Alice’s photon
post costt x A cosif y coslf y has a wavelength convenient for detection, while the other
photon’s wavelength falls into one of the three telecommu-

1 1 1 nication windows for optimal propagation along the fiber or

open air. To illustrate the calculation we assumed the situa-
tion where one mode is adapted to the 800 nm detectors of
(30 the British Telecom experiment, while the signal mode is
emitted in one of the four modes used already for the WCP
This gives us the photon number distribution of the signalscase. The results of this hypothetical experiment is shown in
which are obtained from thiseed statdy polarization rota- Fig. 4. We find an increase of the covered distance against
tion. From the photon number distribution we can calculatehe use of the WCP source, but this happens at the expense
Sy by summation ang$%?, via the photodetection formula of a lower rate per signal.
[35] as, To understand the decrease of the rate, we can now bound
the maximal gain per time slot in correspondence to the cal-
1 culation for weak coherent states. It is now convenient to
Sp=1— ——————(ds+ patantt y) (31  introduce the expected photon numbe- sint?y. In the op-
ppostcosﬁ’- X timal case, Alice’s triggering detector is perfeaj (=1 and

+ - .
costt y|1—tanff y 1—(1— gpa)tantty
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da=0), and we neglect the negative contribution of privacytask fixing, for example, wavelength and distance. For exist-
amplification and error correction. Then we find, again usingng experiments, it allows to find the optimal mean photon

N=n0g77, number of the source and the optimal working point for
Bob’s detectors.
M We found that the use of PDC sources with a simple
Ppost™ m (33 triggering mechanism does not increase the overall rate of

secure bits, but it allows to increase the distance which can
be covered by experiments. The rate could be improved by a

Sn= ’ 5 (34 more sophisticated detection mechanism, where Alice could,
1+u at least partly, determine the number of pairs produced in a
time slot. Even if this mechanism does not work perfectly, it
_ n(1+w) (35) would improve the rate and distance.
P 1+ Our examples show that the use of WCP sources gives,
. , typically, higher rates per time slot than the use of PDC
so that we find for the gain sources, as long as the distance is not too big. | would like to

point out again, that in the end the total rate, that is the rate
. (36) per time slot times the repetition rate of the setup, is what
counts. It depends therefore on the bottle-neck of the set-up
which design can be made the fastest.
Now the optimal mean photon numbgg,,; satisfies The problem of nonideal sources in the presence of loss is
) 3 5 3 known since 1995. There have been proposals to use strong
—2popt— 27 Moprt M(1+3popr— Moprt mopd =0, (37)  reference pulses in the two-state protoda!] and the BB84
protocol [18], but so far these ideas have not been imple-
mented. The reference pulses make it more difficult for Eve
to block signals, since in those schemes Bob measures the
1 interference of the strong reference pulse with the weak sig-
G~ -7 (39) nal, so that the absence of the weak signal will lead to an
8 error in half of the cases. | would like to point out, that the

This bounds the obtainable rate for the case that Bob's d security of this scheme has not been fully analyzed yet even

. or individual attacks, but this scheme is certainly the hope
tectors are perfect, so that— . We find that here weak ¢, 0 ¢ tire 1o improve the here analyzed BB84 protocol.
coherent states have a potential gain rate per time slot, which
is twice as big as the one of parametric down conversion.

The reason is that the photon number distribution for PDC ACKNOWLEDGMENTS
sources is basically thermal, which shows a higher multi-

I . I : I would like to thank Mohamed Bourennane, Gilles Bras-
photon contribution compared to a Poisson distribution Wlthsard, Mila Dugk, Nicolas Gisin, Richard Hughes, Bruno

the same mean photon number. For practical realizatiorhutmer Hitoshi Inamori, Anders Karlsson, Tal Mor, and

however, a factor of two is not that significant, and the 93851 Townsend for many discussions on the issue of the

between gain rate of secure bits with imperfect tools is still . L S
by orders of magnitude separated from this limit Thereforesecu”.ty of realistic quantum "?y d'Str'pUt'on' Furthermore, |
' benefited from the quantum information workshops at ISI

the question remains open, which technology allows a sim- ; .
pler approach to higher rates. (Italy) and the Benasque Center for Phydi8pain and wish

- thank their organizers and Elsag-Bailey for support. This
Note that one would need to take into account the Ios§0 :
occurring when Alice couples the photon for Bob into a fi- Wr(:]rk Q?TZI?] ?aer? dsiﬂgoge%?g E[fifcéza[\rl]o.Sdé?:r?feolf:g:;?;t?gr;
ber. This loss can be easily incorporated in this calculation Y y P

since the resulting photon number distribution of the signal QIT program).

can be obtained using the photon count formulas. Here, how-

ever, we do not study this additional parameter. The corre- APPENDIX A: PHOTON NUMBER SPLITTING
sponding formulas are given in Appendix B.

n_ M
I+nu (14 p)?

1
Gs= % ppost( Pexp™ Sn) = E:U'

which leads for small values of to u~3#. In the same
limit the gain rate is approximated by

The photon number splitting idea has been presented al-
ready in Ref[20]. Here | want to provide more details. To
perform photon number splitting, Eve performs a quantum

In this paper, | presented a security proof of quantumnon-demolition measurement on the total photon number in
cryptography that is restricted to individual attacks. Thisboth polarization modes. As a result the signal is now de-
proof takes into account the non-ideal signal sources angcribed by an-photon state in the unknown and undisturbed
detectors. Moreover, it allows to compare the performancéignal polarization, and the photon numbeis known to
for different arrangements with respect to the overall gainEve.
rate. In this sense it can help to decide which type of source The task is now to find a unitary transformati N,
to use, for example, weak coherent pulses or downwhich depends on the value of such that precisely one
conversion, depending on the available technology and thphoton from the two signal polarization modasis trans-

V. CONCLUSIONS

052304-8
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ferred to two additional polarization modes which are in -~ H{2=\(blo,+b ol +blo_+b_ol). We see, the
Eve’s hand. The polarization of either part should be equal ttHamiltonians are form invariant under the the above trans-
the original one. This means we require that the two signalformations, and it follows that this scheme performs the

of the first polarization basis«) transform as

udn,0,0,0.,=|n-1,0,1,0,
(A1)
u®d0,n,0,0,=]0,n—1,0,1), .

Here, the components of the state vedtor. ), correspond
to the photon number occupation of the modesa,,b4,b,,

mapping of(A2) as well. In general, this scheme is able to
split one photon off anyn-photon state with definite polar-
ization, regardless what this polarization may be.

APPENDIX B: PDC WITH FINITE COUPLING

EFFICIENCY

In this appendix | provide the straightforward derived for-

respectively. The requirement for the two signal states of thenulas for the case where we use a parametric downconver-
second polarization basisx() is easily formulated if we sion source for the triggering of the signal, and the signal
choose the mode representation defined by the operatofigvelling to Bob couples only with a finite efficienay into
a.=1/\2(a;*a,) andb. =1/\2(b; =b,). The state vector the fiber. All losses on Alice’s side which cannot be accessed
|...)x now denotes the occupation number in the modesky Eve can be incorporated into this efficiency. Conditioned

a,,a_,b,,b_. We require, that

udn,0,0,0,,=|n—1,0,1,0,

(A2)
u40o,n,0,0),=]0n—1,0,1) .

Indeed, a transformatiob {})s with these properties can
be found[36]. Eve uses an interaction described by a Jaynes-
Cummings Hamiltonian

H(l) )\(a101+a10'1+a20'2+a20'2)

to connect the signal modes to a three level system with one
ground statég) and two upper statdg;) with atomic exci-
tation operatorso; (i=1,2) [36]. (For a review of the
Jaynes-Cummings model see Rg7].) The system is ini-
tially prepared in the ground state. After an interaction time
t=m/2n\, which depends om, the first two signal states
transform into |n,0),|g)—|n—1,0),|e;) and |On).|g)
—|0,n—1)|e,). The same dynamics involving two addi-
tional photonic modesy; andb,, and the Hamiltonian

HZ=\(bloy+byol+blo,+byo))

transfers(after interaction time = 77/2\) the excitation to a
photon in the original polarization into the modgs In total

we have then achieved the transformatigAd) while the  Pexp™

three-level system factors out. As shown, this mechanism
works fine for the first two signal states. To see that it works
for the other states as well note that we can introduce a new
description of the three level system with the superpositions
of the upper levels as new excited states so that
=1/\/2(o,* o,) are the new atomic operators. Then we find
that the Hamiltonians, written with these new atomic opera-

on a click in Alice’s triggering detector we find the following
results:

by 1 1
Post costf y cosif y| 1—tanlf y
! (BY)
1—(1— pp)tant? x
- +
PpostCOSH x 1—(1— po)tant? y
. (B2)
1- (1= 7c)(1- ma)tankt x
~ pctantf 1
ppostcosr% x11-(1- 77C)tanhz X
1_
_ 7N (B3)
1— (1= 7o) (1— pa)tantt x
Su=1l-5%-5 (B4)
1 1 1
PpostCOSIT x | 1—tanif y  1—(1— nrycyp)tantt x

1

- 1—(1— pp)tantt y

1

+ .
1—(1—na) (1= prycyp)tanit x

(B5)

tors and with the photonic operators in the base) (have  With these quantities we can, as before, determine the opti-
the form H{Y=\(alo,+a,ol+alo_+a_os') and mal gain for a given setup.
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