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Mapping Wigner distribution functions into semiclassical distribution functions
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A mapping that relates the Wigner phase-space distribution function of a given stationary quantum mechani-
cal wave function, a solution of the Scllinger equation, to a specific solution of the Liouville equation, both
subject to the same potential, is studied. By making this mapping, bound states are described by semiclassical
distribution functions still depending on Planck’s constant, whereas for elastic scattering of a particle by a
potential they do not depend on it, the classical limit being reached in this case. Following this method, the
mapped distributions of a particle bound in thesEl-Teller potential and also in a modified oscillator
potential are obtained.

PACS numbsds): 03.65.Sq

[. INTRODUCTION SDF may still depend ork. We consider only the first of
those two step$Ref.[12]; the abbreviation SDF here corre-

The phase-space formulation of quantum mechanics besponds to CDF in that reference
gan with a paper of Wignefl]. Because the phase-space The WDFp(q,p,t) satisfies the equatioib]
formulation offers a framework in which quantum problems 5 5
can be treated using the classical language as much as itis 7P P p o ) r_
allowed, it has been applied to many areas of physics. at * m aq+f K(@.p=p")p(q,p’,)dp’=0, (1)
Among these areas we mention statistical phygdsquan- ) o o
tum optics[3], collision theory[4,5], nuclear physicE6], and ~ Where @,p) is a point in phase space. The kerkeis given
nonlinear physic$7,8]. by

The phase-space distribution functions are the main tool .

: i i dv o v
of the phase-space formulation of quantum mechanics and K(q,p—p’)=+| =—eli/mp-p )v[\/(q_ _>
among them the Wigner distribution functiqhVDF) has h) 2wh 2
been used with success, for instance, in the description of
atom-molecule collision processg% 10|, in nuclear physics -V
[6,11], and also for studying the classical limit of quantum
mechanicg§12,13. It is with this last topic that this work is
concerned. In Sec. Il we summarize REE2], where it is
shown how to perform the mapping that relates the WDF o
a given stationary quantum mechanical wave function, a so- i
lution of the Schrdinger equation, to a solution of the Liou- Ke(q,p—p')=-— Ef
ville equation, both subject to the same potential. Two ex-
amples have already been considered in Ré&g]: the N o
infinite square well and the potential step. In Sec. Il of this =—— —3&(p-p), 3
work we apply this same mapping to a particle bound in the aq Jdp
Paschl-Teller potentia]14] and in Sec. IV to a particle in the
ground state of a modified oscillator potential. The potential
used in Sec. lll and Sec. IV are smooth and more appropriate

; @

N v
a2
V(q) being the potential. Equatiof2) becomes in the clas-
tsical limit [5]

I imyp-pro, Y
27h aq

and Eq.(1) goes over into the Liouville equation

for classical or semiclassical approximations than those of —+—————=0. (4)
Ref.[12]. gt madq Jq Jp
We are looking for a particular solutiop. of Eq. (4)
Il. MAPPING THE WDF TO A SEMICLASSICAL which may be considered the correct semiclassical approxi-
DISTRIBUTION FUNCTION mation of a giverp, a solution of Eq(1). In order to obtain

. . . it we write the integral equation
The classical limit of quantum mechanics may be accom- g q

plished in two steps. First the mapping of the WDF to a o
semiclassical phase-space distribution functi8BP is ob- P(q,p,t)ch(q,p,t)—j dt'f dq'dp’
tained, and in a second step the lirhit 0 is taken since the o

XGc(q,p:q’,p’,t—t’)f dp’[K(q",p"=p")
*Electronic address: bund@axp.ift.unesp.br
"Electronic address: maria@axp.ift.unesp.br —Ke(a',p"—p") ]p(q’,p",t"), (5
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retarded Green’'s function, which satisfies the inhomoge-
neous Liouville equation

relating Egs.(1) and (4), whereG.(q,p;q’,p’,t—t") is the [( g p 4 N g

o’ Mg’ aq’ ap’

Xp(q',p’,t")
q'=Q(q,p,t’ —t),p’ =P(q,p,t’ —t)

T moaq a9 ap

=6(q—q")é(p—p")s(t—t").

(6) 9 ' ' '
=5p(Q(q,p.t —1),P(q,p,t'—1),t") (10
A WDF that satisfies Eq(1l) when inserted into Eq5)  and Eq.(7) becomeg12]
gives a functiorp, that satisfies Eq4) as can be verified by .
inserting Eq.(5) directly into Eq.(4). So Eq.(5) generates a pc(q,p,t)=p(q,p,t)—f dt'e—et-t)
SDF from a known WDF. This is the starting point for ob- —o
tainingp. . Using Eq.(1) and Eq.(3), Eq.(5) may be written

d
X;P(Q(Q-p,t/ —t),P(q,p,t" —t,t")).

pc(q,p,t)=p(q,p,t)+ﬁ dt’f dq'dp’ (11
Whene may be set equal to zero from the beginning, we
, a p'd get from Eq.(12)
XGe(q,p;q" P’ t=t)| ———— _ , o
t/ - —
AVARN'] . . .
+— —’) p(q’,p'.t"). (7)  Thus, if the limit in Eq.(12) does exist the value gf,. at the
Jq° dp phase-space pointj(p) is the value ofp at the initial ¢=

— ) phase-space point of the classical trajectory that at time
] ] ) o t=0 reaches the poinfy(p). Assuming thajp does not de-
We stress that Eq7) is equivalent to Eq(5) if p satisfies  pend on the time, Eqi11) gives, after integrating by parts,
Eq. (1). . the mapping equation
The WDFp generated by a given wave functidn(q,t),

a solution of the Schidinger equation corresponding to the . 0 or
potentialV(q), is given b?/[l] a P g pc(d,p)=lim Sf_dee p(Q(q,p,7),P(q,p,7)).

e—04
(13

For systems with one degree of freedom at phase-space
. (8 points where the classical ener@(q,p) is negative, Eq.
(12) cannot be applied and then E@.3) has to be used.
Making the Fourier decomposition

(q,p t)=fd—ve‘p””‘\lf q—= t \If*(q+z t
PR 2mh 2’ 2’

In Eqg. (8), whenV is stationary,p does not depend on the *
time. In the particular case in whid¥(q) is quadratic inq, p(Q(q,p,7),P(q,p,7))= >, R,(q,p)ene@nr
Eqg. (7) reduces top=p., as in this case Eql1) becomes n=-=
identical to the Liouville equation. (14)
The retarded Green’s function satisfying &6) is where the period associated with the trajectoryT{g,p)
=2nlw(q,p), and inserting Eq(14) into Eq. (13), we get
,P)=Ro(p,q), which is equal to
Gu(a.Piq’ P’ 7e) =€ 7 5(Q(G,P, ~ 7~ ) Pl P = Rolp) o

1
X &(P(a,p,—7) =P )7+(7), (9 pc(d,P)= Wfo d7p(Q(q,p,7),P(a,p, 7)),
(19

where the convergence factor exp(r) (¢—0), was intro- so the only nonvanishing term in the=0_ limit corre-
duced. Here(Q(q,p,t),P(q,p.t)) represents the classical sponds tn=0 in Eq. (14).
trajectory in phase space of a particle subject to the potential For points ¢,p) on the same closed classical path, Eq.
V(qg), which at timet=0 occupies the phase-space point(15) gives the same value g@f,, because this expression is
(gq,p), and 7, is the step function. invariant under time translations of the integrand, and the
Using the classical equations of motiorP/m  trajectories (Q(q,p,t),P(q,p,t)) associated with these
=0Q(q,p,t' —t)/at" and —dV/dQ=0P(q,p,t' —t)/dt" we  points are related to each other by making time translations.
get This invariance shows that, depends only on the energy
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E(q,p) associated with the trajectory and it can be extended B. The potential step
to open classical paths by making use of Exp). The wave function for the potential step
When the WDF corresponds to a bound state in a poten-
tial that vanishes at infinity, Eq12) may be applied directly 0, g<o0
for points with positive energyE(q,p), giving the result V(Q)Z[V ~0. a=0 (21)
pc(q,p)=0. It can be shown also that the phase-space aver- o= 4=
aged classical energy for the SDF coincides with the quang,

. . . — 2 < . .
tum energy of the bound state. The mapped SDF in this caser incident energie =k*/2m<Vo s given by

may be viewed as a stationary distribution function of clas- 2A cogkglfi— al2), <0
sical particles trapped by the potential. W(q)= { Wq/h' (22
In order to see how this theory works two examples were 2Acog al2)e » 9>0,
considered. . ) . ]
where k=(2mV,—k?)¥? and e'*= (ik+ «)/(ik— k) gives
L the phasex. The WDF is given by4]
A. The infinite square well
The ground state of the infinite square well p(Q,P)=4&[C()(P,k)cos(Z(P—k) 9)
T h
V(@) 0, [g<d 18
q =
*, |a/>d +c<+>(P,k)cos( 2(P+ k)%)
is given by 0
+S(‘)(P,k)sin(2(P—k) %)
1 |
V(q)=—=cos,~, |q|=<d. (17)
2d
Vd +s<+>(P,k)sin(2(P+ k) %” (23
The WDF corresponding to this bound statd¢4$
for Q<0, where
b 1 h| (2P q T _ s oig L
= Z (d- = T _ — 1 _
p(QP)= 51 55| siN 7-(d=Q)+ 4 Q C™(P,k)=kk[(F2P+k)2+ k%] Y(x2P) 1,
2P T ST(P,k)=k(=2Pk—k?+ «2)/[ (¥ 2P+k)?+ «?]
+sin T(d_Q)_ =-Q
d X 4P(kF P). (24)
2P m (2P d For Q>0 the WDF is
+ T-f-a Sin 74‘6( -Q)
2
2P &\ 71 2P = _ |A| —2KQ|: 2PQ
o0 sinl - Ig- p(Q,P)=4——e Co(P,k)cog ——
A% -3 (-G Q)H ™ f
2P
(18) +Sy(P, k)sin( TQ) } , (25)
for 0<Q<d and
where
p(Q,P)=p(=Q,P) (19
Co(P.K)=4kk[(2P+Kk)?+ k2] [ (2P—k)?+ k%] 71,
for —d<Q<0.
Making a change of variables in E(L5), we obtain for Pk k?(k?+ k%2 —4P?) 26
the SDF (P, (2P +K) 2+ k2][(2P—K)2+ k2]
( ):if“ (q'.p)d ,_ T cos(pd/#i) The SDF that corresponds to the WDF given in HGS)
pcld,p 2d —dp g.p)dq 4% [(w/2)2—(dp/ﬁ)2]2. and(25) is [12]
20 _[1AFLap-k+ap k] a<0
We see that as the SDp. depends only on the classical Pe(a:P)= 0, q>0. @
energy, which in this case j52/2m, it cannot depend on the
coordinateq. In the limit #—0 Eq. (20) gives p(q,p) Equation(27) describes the reflection of a classical par-
—(1/2d) ~15(p), which describes a uniform distribution of ticle subject to the potential given by E(1) for energies
particles at rest inside a box. below the height of the barrier. Equati¢27) can be written
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Vig)/Us

FIG. 1. The Pechl-Teller potential as a function of the dimen-
sionless variable' =ag.

k|A|2 (p2 kZ)
. g<o0
pc(Q,p) = m

(29 ,
0, q>0, , ¢ = 2aq/n

which explicitly shows the energy dependence of the SDF.  FIG. 2. Curves of constant densi#fq,p) (in units of.~*), the
We remark that, in order to treat the potential step with a/VDF corresponding to the ground state for the potential in(29).

normalized wave function, the time dependent wave packethe variablesy” andp’ are dimensionlessj andp being the co-

approach for scattering can be ugad]. The corresponding ©rdinate and momentum, respectively.

time dependent WDF and SDF are calculated afterwards. In

the limit when the incident packet reduces to a single plané'_’;.qr'] P——Pp _s_houltlal be apphg(:]. We_ obserr\]/e thg’g regions
wave one expects the result of £7). in which p is positive alternate with regions where it is nega-

tive. The points wherep(q,p) vanishes are given by the
parabolas pg=n=fi,n==*1,=2,.... Themagnitude ofp
in the region of negative values is small and occurs on points
Here we present a third example, in which the mapping oPf phase space in which a classical particle would have posi-
the WDF corresponding to the ground state of the potentialive energy, thus not being trapped by the potential.
The classical trajectorie@(q,p,t),P(q,p,t)), the solu-

ll. THE PO SCHL-TELLER POTENTIAL

U tions of Newton’s equations, are obtained by performing the
V(g)=———=——, Ug>0, (29 integral
costt(aq)
1/2
into the SDF is performed. The parametéig and a are J' dt:fd__Q:f dQ(EJr 2U, ) .
chosen such that the binding energy of the ground state be- Q M mcost(aQ)
comes equal toUgy/2. This choice fixes the valudJ, (32

=#2%a%/m. H . . . ) in0 th
The normalized wave function, the solution of the Sehro 1N€ constants of integration are determined by imposing the
condition Q,P)=(q,p) att=0.

dinger equation corresponding to the potential given by Eq.

(29, is For E<O the result is
. iwt)
1//(q)=(2> 1Q[cosf(aq)]*l, (30) sinh(aQ)= apcosk(jli)sm(w + sinh(aqg)cog wt),

(33
The WDF, which we obtained following E@8), is om
P cosi{aQ) = p coshaq)cog wt) — —sinhaq)sin( wt).
sin(2pgh 1) a

- 34
PP agsintmp(ia) ] 39

The frequencyw is related to the energ(q,p) of the tra-
which satisfies the conditiofip(q,p)dq dp=1. jectory byw=a(2|E|/m)Y2. Equationg33) and(34) may be
Making q=mq’/(2a) andp=hap’ the expressiori31l)  written
becomes symmetric in the dimensionless variaffeandp’
(see Fig. 2 In Fig. 2 we draw the curves of constant density
p in the first quadrant; for the other quadrants the symmetry

1/2
sinr(aQ)=(|UE(|)—l) sind®(q,p,t), (35
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P cosi{aQ)=[2m(U,—|E|)]*?cos®(q,p,t), (36) Q=a Un[(1+F)Y2+F], P=2mB)YG(1+F?) 12,
(37)

where

where
@(q,p,t) = wt+e(q,p).
F=(Uo/|E|—1)Y%sin®

Here and

¢(q,p)=arctafiomsinh(aqg)/ap coshaq)]. G—(Uy/[E|— 1)"cosd.
The SDF p. is obtained by replacing g,p) by
(Q(q,p,t),P(q,p,t)) in Eq. (31) for the WDF and integrat- We mention here thag(q,p) fixes the origin of the time and
ing it in t over one period. For this purpose, expressi@®  p. should not depend on it.
and (36) are solved explicitly inQ andP, the results being The final expression fop. for E(q,p)<0 is

2t pe )_fzwdesin{Z(aﬁ)1(2m|E|)1lzg(1+f2)1/2|n[(1+f2)1/2+f]}
mhp(d,P)= 0 2f(1+fz)llzsinl'l{w(2m|E|)1’Zg[ah(1+f2)l/2]71}

: (39)

where f=(U,/|E|—1)¥%sin# and g=(U,/|E|—1)Y%cosh.  trajectories for whictE(q,p)>0 are situated at the right of
Equation(38) shows thap. depends op andq only through  this trajectory in this figure. As in the previous examples, we
E(q,p). find also that only non-negative values for the density sur-
For positive energie&(q,p) a similar calculation gives, vive. Fig. 4 is a superposition of Fig. 2 and Fig. 3. In Fig. 4,
as expectedp.(q,p) =0, showing that the SDF corresponds when comparing the quantal curve for a giverwith the
indeed to a distribution of particles trapped inside the poteneorresponding classical curysame value of the densjty
tial. one notices that the classical curve tends to move toward the
In Fig. 3 we plot the curves along whigh, is constant left, away from the region corresponding to negative values
(which coincide with the classical trajectorjieShe trajec- of p. Thus, the region in which the WDF assumes negative
tory markedp.=0 in Fig. 3 corresponds t&(q,p)=0. All values is located in the domain whesg vanishes.

1.60 —

1.20 —
g \
~
SN £
I ~
\Q,, Q‘
0.80 — \ \”
™. Q-c
0.40 —
02
"\o.a
0.00 T T i T T T T T T 1
0.00 0.50 1.00 1.50 2.00 2.50
!
g =2aq/7 0.00 0.50 1.00 1.50 2.00 2.50
FIG. 3. Same as Fig. 2 fg5.(q,p). In this case the curves are q’ = 2aq/7r
also the classical trajectories. The curve for whighqg,p) =0 cor-
responds to the enerdy(q,p)=0. For points on the right of this FIG. 4. Figures 2 and 3 are superposed. Dashed lines correspond
curveE(q,p)>0 andp.=0. to p. and full lines top. Negative density curves are omitted.
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8.00 —
0.6
e -9
0.4 0 .
-0.2x107
0.2 4.00 —

2.00 —

V{q)
p =p/hB
g

-0.4
~0.6
-3 -2 ~1 0 1 2 3 0.00 !
ﬂq 3.00
FIG. 5. The modified harmonic oscillator potenti®’(q) d = Bq

=2m(%8) " 2V(q), Bq andV’'(q) being dimensionless quantities.
FIG. 6. Curves of constant densitfq,p) (in units of# 1) for
IV. THE MODIFIED HARMONIC OSCILLATOR the WDF corresponding to the ground state of the modified har-
POTENTIAL monic oscillator potential. The variableg andp’ are dimension-

. ... |ess.
Now we present results corresponding to the m0d|f|eo|
harmonic oscillatofMHO) potential

2 T § mdQ (44
ﬁ = 7’
V(a)=5-[a’q’ - 2apqrant(Ba)]. (39 PQE(a.p)
The wave function that corresponds to the ground state ovhereP(Q,E(q,p)) is the momentum given as function of
this potential is the coordinate,
— Ne(~2a?/2)
ymNe T oSt 40 P(Q.E)={2m(E-V(Q)T}*> @5

with normalization factorN?=2(a/ 7)Y exp(B¥a)+1]*

and energy eigenvalue 200 7

— ﬁ2 2 41
e(a,B)=5—(a=p°). (41)
The corresponding WDF may be calculated in closed form,
2pp =
— M a(—aq?—p?ah?)| o pa cPr <
p(q,p)=Me!" >4 P e cosr(Z,Bq)Jrcos( o ” ?
42

where M={7#h[1+exp(-B%a)]} ! is the normalization
factor. We shall consider= 2, in which case we get
€(0,0)=0 and the potential, given by Fig. 5, has a hump in
the middle of the oscillator.

Equation(15) corresponding to the SDp,, was evaluated
numerically making use of the expression

@P=T" § p(QPQEEP g B
pC qlp p ] ] qip P(Q,E(q,p)), q,=’3q
(43
FIG. 7. Same as Fig. 6 fgs.. In this case the curves are also
where the integration is performed over a closed path withhe classical trajectories. The dashed lines correspond to negative

energyE(q,p). The periodT was simply calculated through energies.
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0.40 — 1.80 —
TR
0.30 —
7] Q
[
=
)
< 0.20 — i
\j h
0.10 —
r |
0.00 T T T T T i
3.00
-1.00 0.00 1.00 2.00 ,
qd = Bq

el

FIG. 9. Figures 6 and 7 are superposed. Dashed lines correspond

FIG. 8. The density, (in units of4 1) of the SDF as function to p and full lines top,. .

of the dimensionless classical energyd,p)=E(q,p)2m(#8) 2.
motion. Thus the period associated with the trajectory that
Equation(43) is obtained from Eq(15) by replacing the time  passes through the poir,() = (0,0) becomes infinite since
7 by the coordinateQ as variable of integration. A second the particle has to arrive at the poiqt 0 with zero velocity.
convenient change of variabl€g=Q(¢) is made such that  For this trajectory, which corresponds Eo=0, the mo-
the singularities associated with the zerosPg,E) at the  mentumP(Q,0) given by Eq(45) is proportional toQ in the
classical turning points are canceled by corresponding zeraseighborhood of the origin so that there is a pol€at0 in
in the numerator in Eqg43) and(44). Alternatively, we use  the integrand of Eq(43) leading to a logarithmic singularity
the subtraction method for the elimination of these singulariin the integral. This singularity is cancelled by the analogous
ties in order to evaluate these integrals. singularity of T given by Eq.(44). In fact, for phase-space
In Figs. 6 and 7 we plot, respectively, lines of constant points (g, p) in the neighborhood of the trajectof(q,p)
andp. and in Fig. 8 we plofp. versusk, corresponding to =0 the SDF is given by
the MHO potential for the choica= 82. From Fig. 6 we see
that the domain of phase space wherés negative has its 1 A+In|E(q,p)|
coordinates restricted to the region of the hump of the poten- hpe=— BT In[E(q,p)|’
tial and it is periodic in the momentum variable. The value of
p decreases rapidly in magnitude as the momentum inwhereA andB are slowly varying functions dg(q,p). Thus
creases. As can be seen from Figs. 7 and 8, there may exigne gets the valug.=1/7 for points on the trajectory
more than one trajectory for a given valuemf. In Fig. 9  E(q,p)=0. This value coincides with the maximum value of
we superpose parts of Figs. 6 and 7, plotting curves withp, which occurs precisely at the point,p)=(0,0). The
fixed densityp=p.. The SDF we obtain by applying Eq. functionsA and B have to be evaluated numerically after
(43) has similarities with the original WDF but again, as in subtraction of the pole term in the integrals in EG3) and
the cases of Secs. Il A, 11 B, and Ill, negative values are(44). As can be seen in Fig. 8, Eq6) leads to a very sharp
absent. One finds that for larger valuesgothe two curves maximum ofp for the trajectory passing through the origin
with p= p.= const tend to get closer, a result that is expectedf phase space and for whidi(q,p)=0 andfp.=1/m7.
because of the dominance of the harmonic oscillator part oThis path is compressed between the two curveshfof
the potential. =0.2 in Figs. 7 and 9, the upper curve corresponding to
We remark here that the poing(p) =(0,0), at the top of &' (q,p)=2m(#%8)  2E(q,p)=0.0010 and the lower one to
the hump, is a point of unstable equilibrium for classicale’(q,p)=—0.0010.

(46)
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