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Mapping Wigner distribution functions into semiclassical distribution functions
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A mapping that relates the Wigner phase-space distribution function of a given stationary quantum mechani-
cal wave function, a solution of the Schro¨dinger equation, to a specific solution of the Liouville equation, both
subject to the same potential, is studied. By making this mapping, bound states are described by semiclassical
distribution functions still depending on Planck’s constant, whereas for elastic scattering of a particle by a
potential they do not depend on it, the classical limit being reached in this case. Following this method, the
mapped distributions of a particle bound in the Po¨schl-Teller potential and also in a modified oscillator
potential are obtained.

PACS number~s!: 03.65.Sq
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I. INTRODUCTION

The phase-space formulation of quantum mechanics
gan with a paper of Wigner@1#. Because the phase-spa
formulation offers a framework in which quantum problem
can be treated using the classical language as much as
allowed, it has been applied to many areas of phys
Among these areas we mention statistical physics@2#, quan-
tum optics@3#, collision theory@4,5#, nuclear physics@6#, and
nonlinear physics@7,8#.

The phase-space distribution functions are the main
of the phase-space formulation of quantum mechanics
among them the Wigner distribution function~WDF! has
been used with success, for instance, in the descriptio
atom-molecule collision processes@9,10#, in nuclear physics
@6,11#, and also for studying the classical limit of quantu
mechanics@12,13#. It is with this last topic that this work is
concerned. In Sec. II we summarize Ref.@12#, where it is
shown how to perform the mapping that relates the WDF
a given stationary quantum mechanical wave function, a
lution of the Schro¨dinger equation, to a solution of the Liou
ville equation, both subject to the same potential. Two
amples have already been considered in Ref.@12#: the
infinite square well and the potential step. In Sec. III of th
work we apply this same mapping to a particle bound in
Pöschl-Teller potential@14# and in Sec. IV to a particle in the
ground state of a modified oscillator potential. The potent
used in Sec. III and Sec. IV are smooth and more appropr
for classical or semiclassical approximations than those
Ref. @12#.

II. MAPPING THE WDF TO A SEMICLASSICAL
DISTRIBUTION FUNCTION

The classical limit of quantum mechanics may be acco
plished in two steps. First the mapping of the WDF to
semiclassical phase-space distribution function~SDF! is ob-
tained, and in a second step the limit\50 is taken since the
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SDF may still depend on\. We consider only the first of
those two steps~Ref. @12#; the abbreviation SDF here corre
sponds to CDF in that reference!.

The WDFr(q,p,t) satisfies the equation@5#

]r

]t
1

p

m

]r

]q
1E K~q,p2p8!r~q,p8,t !dp850, ~1!

where (q,p) is a point in phase space. The kernelK is given
by

K~q,p2p8!5
i

\E dv
2p\

e( i /\)(p2p8)vFVS q2
v
2D

2VS q1
v
2D G , ~2!

V(q) being the potential. Equation~2! becomes in the clas
sical limit @5#

Kc~q,p2p8!52
i

\E dv
2p\

e( i /\)(p2p8)vv
]V

]q

52
]V

]q

]

]p
d~p2p8!, ~3!

and Eq.~1! goes over into the Liouville equation

]rc

]t
1

p

m

]rc

]q
2

]V

]q

]rc

]p
50. ~4!

We are looking for a particular solutionrc of Eq. ~4!
which may be considered the correct semiclassical appr
mation of a givenr, a solution of Eq.~1!. In order to obtain
it we write the integral equation

r~q,p,t !5rc~q,p,t !2E
2`

`

dt8E dq8dp8

3Gc~q,p;q8,p8,t2t8!E dp9@K~q8,p82p9!

2Kc~q8,p82p9!#r~q8,p9,t8!, ~5!
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relating Eqs.~1! and ~4!, whereGc(q,p;q8,p8,t2t8) is the
retarded Green’s function, which satisfies the inhomo
neous Liouville equation

]Gc

]t
1

p

m

]Gc

]q
2

]V

]q

]Gc

]p
5d~q2q8!d~p2p8!d~ t2t8!.

~6!

A WDF that satisfies Eq.~1! when inserted into Eq.~5!
gives a functionrc that satisfies Eq.~4! as can be verified by
inserting Eq.~5! directly into Eq.~4!. So Eq.~5! generates a
SDF from a known WDF. This is the starting point for o
tainingrc . Using Eq.~1! and Eq.~3!, Eq. ~5! may be written

rc~q,p,t !5r~q,p,t !1E
2`

`

dt8E dq8dp8

3Gc~q,p;q8,p8,t2t8!S 2
]

]t8
2

p8

m

]

]q8

1
]V

]q8

]

]p8
D r~q8,p8,t8!. ~7!

We stress that Eq.~7! is equivalent to Eq.~5! if r satisfies
Eq. ~1!.

The WDFr generated by a given wave functionC(q,t),
a solution of the Schro¨dinger equation corresponding to th
potentialV(q), is given by@1#

r~q,p,t !5E dv
2p\

eipv/\CS q2
v
2

,t DC* S q1
v
2

,t D . ~8!

In Eq. ~8!, whenC is stationary,r does not depend on th
time. In the particular case in whichV(q) is quadratic inq,
Eq. ~7! reduces tor5rc , as in this case Eq.~1! becomes
identical to the Liouville equation.

The retarded Green’s function satisfying Eq.~6! is

Gc~q,p;q8,p8,t,«!5e2«td„Q~q,p,2t!2q8…

3d„P~q,p,2t!2p8…h1~t!, ~9!

where the convergence factor exp(2«t) («→0), was intro-
duced. Here„Q(q,p,t),P(q,p,t)… represents the classica
trajectory in phase space of a particle subject to the pote
V(q), which at time t50 occupies the phase-space po
(q,p), andh1 is the step function.

Using the classical equations of motionP/m
5]Q(q,p,t82t)/]t8 and2]V/]Q5]P(q,p,t82t)/]t8 we
get
05211
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F S ]

]t8
1

p8

m

]

]q8
2

]V

]q8

]

]p8
D

3r~q8,p8,t8!G
q85Q(q,p,t82t),p85P(q,p,t82t)

5
]

]t8
r„Q~q,p,t82t !,P~q,p,t82t !,t8… ~10!

and Eq.~7! becomes@12#

rc~q,p,t !5r~q,p,t !2E
2`

t

dt8e2«(t2t8)

3
]

]t8
r„Q~q,p,t82t !,P~q,p,t82t,t8!….

~11!

When« may be set equal to zero from the beginning, w
get from Eq.~11!

rc~q,p,t !5 lim
t8→2`

r„Q~q,p,t8!,P~q,p,t8!,t8…. ~12!

Thus, if the limit in Eq.~12! does exist the value ofrc at the
phase-space point (q,p) is the value ofr at the initial (t5
2`) phase-space point of the classical trajectory that at t
t50 reaches the point (q,p). Assuming thatr does not de-
pend on the time, Eq.~11! gives, after integrating by parts
the mapping equation

rc~q,p!5 lim
«→01

«E
2`

0

dte«tr„Q~q,p,t!,P~q,p,t!….

~13!

For systems with one degree of freedom at phase-sp
points where the classical energyE(q,p) is negative, Eq.
~12! cannot be applied and then Eq.~13! has to be used
Making the Fourier decomposition

r„Q~q,p,t!,P~q,p,t!…5 (
n52`

`

Rn~q,p!einv(q,p)t,

~14!

where the period associated with the trajectory isT(q,p)
52p/v(q,p), and inserting Eq.~14! into Eq. ~13!, we get
rc(q,p)5R0(p,q), which is equal to

rc~q,p!5
1

T~p,q!
E

0

T(q,p)

dtr„Q~q,p,t!,P~q,p,t!…,

~15!

so the only nonvanishing term in the«501 limit corre-
sponds ton50 in Eq. ~14!.

For points (q,p) on the same closed classical path, E
~15! gives the same value ofrc , because this expression
invariant under time translations of the integrand, and
trajectories „Q(q,p,t),P(q,p,t)… associated with these
points are related to each other by making time translatio
This invariance shows thatrc depends only on the energ
4-2
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MAPPING WIGNER DISTRIBUTION FUNCTIONS INTO . . . PHYSICAL REVIEW A61 052114
E(q,p) associated with the trajectory and it can be exten
to open classical paths by making use of Eq.~13!.

When the WDF corresponds to a bound state in a po
tial that vanishes at infinity, Eq.~12! may be applied directly
for points with positive energyE(q,p), giving the result
rc(q,p)50. It can be shown also that the phase-space a
aged classical energy for the SDF coincides with the qu
tum energy of the bound state. The mapped SDF in this c
may be viewed as a stationary distribution function of cl
sical particles trapped by the potential.

In order to see how this theory works two examples w
considered.

A. The infinite square well

The ground state of the infinite square well

V~q!5H 0, uqu<d

`, uqu.d
~16!

is given by

C~q!5
1

Ad
cos

pq

2d
, uqu<d. ~17!

The WDF corresponding to this bound state is@4#

r~Q,P!5
1

2p\d H \

2P FsinS 2P

\
~d2Q!1

p

d
QD

1sinS 2P

\
~d2Q!2

p

d
QD G

1S 2P

\
1

p

d D 21

sinF S 2P

\
1

p

d D ~d2Q!G
1S 2P

\
2

p

d D 21

sinF S 2P

\
2

p

d D ~d2Q!G J
~18!

for 0,Q,d and

r~Q,P!5r~2Q,P! ~19!

for 2d,Q,0.
Making a change of variables in Eq.~15!, we obtain for

the SDF

rc~q,p!5
1

2dE2d

d

r~q8,p!dq85
p

4\

cos2~pd/\!

@~p/2!22~dp/\!2#2
.

~20!

We see that as the SDFrc depends only on the classic
energy, which in this case isp2/2m, it cannot depend on the
coordinateq. In the limit \→0 Eq. ~20! gives rc(q,p)
→(1/2d)21d(p), which describes a uniform distribution o
particles at rest inside a box.
05211
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B. The potential step

The wave function for the potential step

V~q!5H 0, q,0

V0.0, q>0
~21!

for incident energiesE5k2/2m,V0 is given by

c~q!5H 2A cos~kq/\2a/2!, q,0

2A cos~a/2!e2kq/\, q.0,
~22!

where k5(2mV02k2)1/2 and eia5( ik1k)/( ik2k) gives
the phasea. The WDF is given by@4#

r~Q,P!54
uAu2

p FC(2)~P,k!cosS 2~P2k!
Q

\ D
1C(1)~P,k!cosS 2~P1k!

Q

\ D
1S(2)~P,k!sinS 2~P2k!

Q

\ D
1S(1)~P,k!sinS 2~P1k!

Q

\ D G , ~23!

for Q,0, where

C7~P,k!5kk@~72P1k!21k2#21~62P!21,

S7~P,k!5k~62Pk2k21k2!/@~72P1k!21k2#

34P~k7P!. ~24!

For Q.0 the WDF is

r~Q,P!54
uAu2

p
e22kQFC0~P,k!cosS 2PQ

\ D
1S0~P,k!sinS 2PQ

\ D G , ~25!

where

C0~P,k!54kk2@~2P1k!21k2#21@~2P2k!21k2#21,

S0~P,k!5
k2~k21k224P2!

@~2P1k!21k2#@~2P2k!21k2#P
. ~26!

The SDF that corresponds to the WDF given in Eqs.~23!
and ~25! is @12#

rc~q,p!5H uAu2@d~p2k!1d~p1k!#, q,0

0, q.0.
~27!

Equation~27! describes the reflection of a classical pa
ticle subject to the potential given by Eq.~21! for energies
below the height of the barrier. Equation~27! can be written
4-3
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G. W. BUND AND M. C. TIJERO PHYSICAL REVIEW A61 052114
rc~q,p!5H kuAu2

m
dS p2

2m
2

k2

2mD , q,0

0, q.0,

~28!

which explicitly shows the energy dependence of the SD
We remark that, in order to treat the potential step wit

normalized wave function, the time dependent wave pac
approach for scattering can be used@15#. The corresponding
time dependent WDF and SDF are calculated afterwards
the limit when the incident packet reduces to a single pl
wave one expects the result of Eq.~27!.

III. THE PÖ SCHL-TELLER POTENTIAL

Here we present a third example, in which the mapping
the WDF corresponding to the ground state of the poten

V~q!52
U0

cosh2~aq!
, U0.0, ~29!

into the SDF is performed. The parametersU0 and a are
chosen such that the binding energy of the ground state
comes equal toU0/2. This choice fixes the valueU0
5\2a2/m.

The normalized wave function, the solution of the Sch¨-
dinger equation corresponding to the potential given by
~29!, is

c~q!5S a

2D 1/2

@cosh~aq!#21. ~30!

The WDF, which we obtained following Eq.~8!, is

r~q,p!5
sin~2pq\21!

\sinh~2aq!sinh@pp~\a!21#
, ~31!

which satisfies the condition*r(q,p)dq dp51.
Making q5pq8/(2a) and p5\ap8 the expression~31!

becomes symmetric in the dimensionless variablesq8 andp8
~see Fig. 2!. In Fig. 2 we draw the curves of constant dens
r in the first quadrant; for the other quadrants the symme

FIG. 1. The Po¨schl-Teller potential as a function of the dime
sionless variableq85aq.
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q→2q, p→2p should be applied. We observe that regio
in which r is positive alternate with regions where it is neg
tive. The points wherer(q,p) vanishes are given by th
parabolas 2pq5np\,n561,62, . . . . Themagnitude ofr
in the region of negative values is small and occurs on po
of phase space in which a classical particle would have p
tive energy, thus not being trapped by the potential.

The classical trajectories„Q(q,p,t),P(q,p,t)…, the solu-
tions of Newton’s equations, are obtained by performing
integral

E dt5E dQ

Q̇
5E dQS 2E

m
1

2U0

mcosh2~aQ!
D 21/2

.

~32!

The constants of integration are determined by imposing
condition (Q,P)5(q,p) at t50.

For E,0 the result is

sinh~aQ!5
ap cosh~aq!sin~vt !

vm
1sinh~aq!cos~vt !,

~33!

P cosh~aQ!5p cosh~aq!cos~vt !2
vm

a
sinh~aq!sin~vt !.

~34!

The frequencyv is related to the energyE(q,p) of the tra-
jectory byv5a(2uEu/m)1/2. Equations~33! and~34! may be
written

sinh~aQ!5S U0

uEu
21D 1/2

sinF~q,p,t !, ~35!

FIG. 2. Curves of constant densityr(q,p) ~in units of\21), the
WDF corresponding to the ground state for the potential in Eq.~29!.
The variablesq8 and p8 are dimensionless,q and p being the co-
ordinate and momentum, respectively.
4-4
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P cosh~aQ!5@2m~U02uEu!#1/2cosF~q,p,t !, ~36!

where

F~q,p,t !5vt1w~q,p!.
.

Here

w~q,p!5arctan@vm sinh~aq!/ap cosh~aq!#.

The SDF rc is obtained by replacing (q,p) by
„Q(q,p,t),P(q,p,t)… in Eq. ~31! for the WDF and integrat-
ing it in t over one period. For this purpose, expressions~35!
and ~36! are solved explicitly inQ andP, the results being
,
s

en

e

05211
Q5a21ln@~11F2!1/21F#, P5~2mE!1/2G~11F2!21/2,
~37!

where

F5~U0 /uEu21!1/2sinF

and

G5~U0 /uEu21!1/2cosF.

We mention here thatw(q,p) fixes the origin of the time and
rc should not depend on it.

The final expression forrc for E(q,p),0 is
2p\rc~q,p!5E
0

2p

du
sin$2~a\!21~2muEu!1/2g~11 f 2!21/2ln@~11 f 2!1/21 f #%

2 f ~11 f 2!1/2sinh$p~2muEu!1/2g@a\~11 f 2!1/2#21%
, ~38!
f
we
ur-
4,

the
es
ive

pond
where f 5(U0 /uEu21)1/2sinu and g5(U0 /uEu21)1/2cosu.
Equation~38! shows thatrc depends onp andq only through
E(q,p).

For positive energiesE(q,p) a similar calculation gives
as expected,rc(q,p)50, showing that the SDF correspond
indeed to a distribution of particles trapped inside the pot
tial.

In Fig. 3 we plot the curves along whichrc is constant
~which coincide with the classical trajectories!. The trajec-
tory markedrc50 in Fig. 3 corresponds toE(q,p)50. All

FIG. 3. Same as Fig. 2 forrc(q,p). In this case the curves ar
also the classical trajectories. The curve for whichrc(q,p)50 cor-
responds to the energyE(q,p)50. For points on the right of this
curveE(q,p).0 andrc50.
-

trajectories for whichE(q,p).0 are situated at the right o
this trajectory in this figure. As in the previous examples,
find also that only non-negative values for the density s
vive. Fig. 4 is a superposition of Fig. 2 and Fig. 3. In Fig.
when comparing the quantal curve for a givenr with the
corresponding classical curve~same value of the density!,
one notices that the classical curve tends to move toward
left, away from the region corresponding to negative valu
of r. Thus, the region in which the WDF assumes negat
values is located in the domain whererc vanishes.

FIG. 4. Figures 2 and 3 are superposed. Dashed lines corres
to rc and full lines tor. Negative density curves are omitted.
4-5
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IV. THE MODIFIED HARMONIC OSCILLATOR
POTENTIAL

Now we present results corresponding to the modifi
harmonic oscillator~MHO! potential

V~q!5
\2

2m
@a2q222abqtanh~bq!#. ~39!

The wave function that corresponds to the ground state
this potential is

c5Ne(2aq2/2)cosh~bq!, ~40!

with normalization factorN252(a/p)1/2@exp(b2/a)11#21

and energy eigenvalue

e~a,b!5
\2

2m
~a2b2!. ~41!

The corresponding WDF may be calculated in closed for

r~q,p!5Me(2aq22p2/a\2)Fe2b2/acosh~2bq!1cosS 2bp

a\ D G ,
~42!

where M5$p\@11exp(2b2/a)#%21 is the normalization
factor. We shall considera5b2, in which case we ge
e(0,0)50 and the potential, given by Fig. 5, has a hump
the middle of the oscillator.

Equation~15! corresponding to the SDFrc was evaluated
numerically making use of the expression

rc~q,p!5T21 R r~Q,P„Q,E~q,p!…!
mdQ

P„Q,E~q,p!…
,

~43!

where the integration is performed over a closed path w
energyE(q,p). The periodT was simply calculated throug

FIG. 5. The modified harmonic oscillator potentialV8(q)
52m(\b)22V(q), bq andV8(q) being dimensionless quantities
05211
d

of

,

h

T5 R mdQ

P„Q,E~q,p!…
, ~44!

whereP„Q,E(q,p)… is the momentum given as function o
the coordinateQ,

P~Q,E!5$2m@E2V~Q!#%1/2. ~45!

FIG. 6. Curves of constant densityr(q,p) ~in units of\21) for
the WDF corresponding to the ground state of the modified h
monic oscillator potential. The variablesq8 andp8 are dimension-
less.

FIG. 7. Same as Fig. 6 forrc . In this case the curves are als
the classical trajectories. The dashed lines correspond to neg
energies.
4-6
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Equation~43! is obtained from Eq.~15! by replacing the time
t by the coordinateQ as variable of integration. A secon
convenient change of variablesQ5Q(u) is made such tha
the singularities associated with the zeros ofP(Q,E) at the
classical turning points are canceled by corresponding z
in the numerator in Eqs.~43! and~44!. Alternatively, we use
the subtraction method for the elimination of these singul
ties in order to evaluate these integrals.

In Figs. 6 and 7 we plot, respectively, lines of constanr
andrc and in Fig. 8 we plotrc versusE, corresponding to
the MHO potential for the choicea5b2. From Fig. 6 we see
that the domain of phase space wherer is negative has its
coordinates restricted to the region of the hump of the po
tial and it is periodic in the momentum variable. The value
r decreases rapidly in magnitude as the momentum
creases. As can be seen from Figs. 7 and 8, there may
more than one trajectory for a given value ofrc . In Fig. 9
we superpose parts of Figs. 6 and 7, plotting curves w
fixed densityr5rc . The SDF we obtain by applying Eq
~43! has similarities with the original WDF but again, as
the cases of Secs. II A, II B, and III, negative values a
absent. One finds that for larger values ofq the two curves
with r5rc5const tend to get closer, a result that is expec
because of the dominance of the harmonic oscillator par
the potential.

We remark here that the point (q,p)5(0,0), at the top of
the hump, is a point of unstable equilibrium for classic

FIG. 8. The densityrc ~in units of\21) of the SDF as function
of the dimensionless classical energye8(q,p)5E(q,p)2m(\b)22.
05211
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motion. Thus the period associated with the trajectory t
passes through the point (q,p)5(0,0) becomes infinite since
the particle has to arrive at the pointq50 with zero velocity.

For this trajectory, which corresponds toE50, the mo-
mentumP(Q,0) given by Eq.~45! is proportional toQ in the
neighborhood of the origin so that there is a pole atQ50 in
the integrand of Eq.~43! leading to a logarithmic singularity
in the integral. This singularity is cancelled by the analogo
singularity of T given by Eq.~44!. In fact, for phase-space
points (q,p) in the neighborhood of the trajectoryE(q,p)
50 the SDF is given by

\rc5
1

p

A1 lnuE~q,p!u
B1 lnuE~q,p!u

, ~46!

whereA andB are slowly varying functions ofE(q,p). Thus
one gets the valuerc51/p for points on the trajectory
E(q,p)50. This value coincides with the maximum value
r, which occurs precisely at the point (q,p)5(0,0). The
functions A and B have to be evaluated numerically aft
subtraction of the pole term in the integrals in Eqs.~43! and
~44!. As can be seen in Fig. 8, Eq.~46! leads to a very sharp
maximum ofrc for the trajectory passing through the orig
of phase space and for whichE(q,p)50 and \rc51/p.
This path is compressed between the two curves for\rc
50.2 in Figs. 7 and 9, the upper curve corresponding
«8(q,p)52m(\b)22E(q,p)50.0010 and the lower one to
«8(q,p)520.0010.

FIG. 9. Figures 6 and 7 are superposed. Dashed lines corres
to r and full lines torc .
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