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Geometrical approach to two-level Hamiltonians
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Two-level systems were shown to be fully described by a single function, known sometimes as the Stueck-
elberg parameter. Using concepts from differential geometry, we give geometrical meaning to the Stueckelberg
parameter and to other related quantities. As a result, a generalization of the Stueckelberg parameter is
introduced, and a relation obtained between two-level systems and spatial one-dimensional curves in three-
dimensional space. Previous authors used this Stueckelberg parameter to solve analytically several two-level
models. We further develop this idea, and solve analytically three fundamental models, from which many other
known models emerge as special cases. We present the detailed analysis of these models.

PACS number~s!: 03.65.Db, 34.10.1x, 31.15.2p, 42.50.2p
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I. INTRODUCTION

Two-level systems have been a subject of major rese
interest since the early days of quantum mechanics. The
neering work of Rabi@1# analyzing~analytically! a two-level
model is well known. Since then, many other models w
proposed, of which only a few have a known analytical s
lution. The interest in these systems is due to several reas
First, these are usually the simplest systems that really ca
seen in nature. Maybe the most obvious examples are
1/2 and light polarization@2#. Second, many systems can
approximated as two-level systems, when most of the in
action occurs within a two-dimensional subspace of
Hamiltonian. This is the case, for example, in two-level
oms @3# or in two-neutrino oscillations@4#. Third, it is used
to describe level crossing in otherwise adiabatic syste
The most famous example is probably the Bo
Oppenheimer approximation in molecular physics@5#.

In many cases two-level systems can be analyzed u
various numerical estimations. But this approach has
major drawbacks. First, it is not always accurate enough@6#,
and second, it is difficult to gain insight about the depe
dence of the system on its parameters.

For these reasons, efforts were invested in seeking too
facilitate two-level analytical evaluations. One of the mo
efficient tools was introduced by Delos and Thorson@7#, who
showed that only one real function, the Stueckelberg par
eter@8#, is needed to fully describe a Hamiltonian. Normal
a two-level Hamiltonian is characterized by four real para
eters~functions!, and therefore the immediate outcome of t
Delos-Thorson approach is that all the two-level Hamil
nians can be grouped into three-parameter families, each
sociated with a single differential equation. This techniq
was used by Delos, Thorson, and others~e.g., @9# and @10#!
to generalize several analytical models.

In the present paper we further develop the Del
Thorson approach. We show that the function that charac
izes the Hamiltonian is the Stueckelberg parameter only
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real Hamiltonians, while an additional term should be add
in the general case. The use of a single characteristic fu
tion to describe Hamiltonians is demonstrated to be v
efficient in categorizing models, and reveals equivalence
tween apparently different ones. As a matter of fact, we so
three fundamental models and show how all the analytic
solvable models known to us emerge as special case
these models. Furthermore, it is shown how by solving
single Hamiltonian, a variety of other models, mathema
cally equivalent but of different shapes, can be produced.
also give a geometrical interpretation to the modified Stue
elberg parameter and to other related quantities, and so a
ciate these three-parameter families with special spa
curves that we dubcanonical curves. However, it should be
kept in mind that although elegant and of potential usef
ness, the geometrical interpretation is not necessary for
efficient implementation of the method.

In Sec. II we introduce basic notations and give br
reviews on two subjects that are fundamental for the res
the paper. The first is the intrinsic representation of spa
curves, and the second is the analogy between the two-l
Schrödinger equation and the three-dimensional precess
equation, known as the Bloch equation. In Sec. III we d
velop the general Delos-Thorson approach and establis
geometrical interpretation. In Sec. IV we investigate tw
special spatial curves — the straight line and the pla
curve. In Secs. V–VII we analyze three basic models, t
will be shown to generalize all the known analytically sol
able models. Section VIII is a summary.

II. PRELIMINARIES

The two-level Schro¨dinger equation was shown to b
equivalent to a vectorial three-dimensional precession eq
tion, mostly known in physics as the Bloch equation or t
magnetization equation. This equivalence was demonstr
by Feynmanet al. @11#, and then further investigated by oth
ers ~e.g., @12#!. In this paper we present another equivale
equation to the two-level Schro¨dinger equation. This equa
tion is the one known from differential geometry as t
Frenet-Serret equation. It is a kind of ‘‘precession’’ equati
that describes the shape of one-dimensional spatial curve
a three-dimensional space. We devote this section to a b
review of certain elements in this equation.

of
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L. CARMEL AND A. MANN PHYSICAL REVIEW A 61 052113
Frenet-Serret equation@13#. Given a curverW(u), u being
some general parameter, it is customary to define at e
point a local orthonormal triad~sometimes referred to as th
Frenet triad! — the tangenttW(u), the principal normalnW (u),
and the binormalbW (u). The Frenet-Serret equation describ
the rotation of this triad when moving along the curve. Th
equation is usually expressed using the natural paramets,
which is the length of the curve and can be obtained from
general parameteru by

s5E
u0

uUdrW~u!

du
Udu. ~2.1!

The Frenet-Serret equation is a precession equation tha
be written in matrix form as

dA

ds
5DA, ~2.2!

with

A[S t1 t2 t3

n1 n2 n3

b1 b2 b3

D , D[S 0 k 0

2k 0 t

0 2t 0
D . ~2.3!

Herek(s) is the curvature~a non-negative variable by defi
nition!, and t(s) is the torsion. Knowing them determine
uniquely the curve up to translations and rotations, thus t
name — the intrinsic parameters of the curve. We callD the
Frenet-Serret matrixand A the curve matrix. Solving the
Frenet-Serret equation, i.e., knowingA(s), is equivalent to
knowing the curverW(s). We define the pair (D,A) as the
geometrical problem, whereD defines the problem~system!
andA its solution.

Two-level Schro¨dinger equationvs Bloch equation.The
general two-level Hamiltonian is characterized by four r
parameters. Throughout this paper we adopt two altern
representations for this Hamiltonian:

H5S H11 H12

H12
! H22

D 5S H11 uH12ue2 ih

uH12ueih H22
D ,

or H5S H01H3 H12 iH 2

H11 iH 2 H02H3
D , ~2.4!

which are related by

H05
1

2
~H111H22!,

HW 5
1

2
~H121H12

! ,i ~H122H12
! !,H112H22!. ~2.5!

Notice that the second representation emerges out of exp
ing H in terms of the Pauli matricesH5H01HW •sW . The
wave function will also be represented alternately by t
representations,
05211
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uc&5S a

bD

or uc&5eiaS cos
u

2

sin
u

2
eiw
D , ~2.6!

with aa!1bb!51. In analogy with the geometrical problem
we define the pair (H,c) as thephysical problem, whereH
defines the problem andc the solution.

The dynamics of the wave function is determined by t
Schrödinger equation, while that of the corresponding de
sity matrix r is determined by the Liouville-Von Neuman
equationdr/dt52 i @H,r#. Writing r in the form r5 1

2 (p0

1pW •sW ) gives the following equation of motion for the vecto
pW ~mostly referred to as the polarization vector!: dpW /dt

52HW 3pW @14#. This is the equation that is called the magn
tization equation or the Bloch equation@15#, and its matrix
form is

d

dt S p1

p2

p3

D 5S 0 22H3 2H2

2H3 0 22H1

22H2 2H1 0
D S p1

p2

p3

D .

~2.7!

The polarization vectorpW is of unit length and is equivalen
to the wave functionuc& up to a global phase. The relatio
between them is given bypW 5^cusW uc&, i.e.,

pW 5„ab!1a!b,i ~ab!2a!b!,aa!2bb!
…

or pW 5~sinu cosw,sinu sinw,cosu!. ~2.8!

III. SPATIAL CURVES AND TWO-LEVEL
HAMILTONIANS

In this section we establish the relation between the ph
cal problem and the geometrical problem. In the first tw
parts we define explicitly this relation, and in the last part
discuss the physical interpretation of the geometrical qua
ties.

A. The geometrical equivalent of the Hamiltonian

The equivalence is based upon identifying the Fren
Serret equation,

d

dsS t1 t2 t3

n1 n2 n3

b1 b2 b3

D 5S 0 k 0

2k 0 t

0 2t 0
D S t1 t2 t3

n1 n2 n3

b1 b2 b3

D ,

with the Bloch equation,
3-2
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d

dt S p1

p2

p3

D 5S 0 22H3 2H2

2H3 0 22H1

22H2 2H1 0
D S p1

p2

p3

D .

It is clear that three difficulties need to be overcome bef
these equations could be made mathematically identical

~1! H2 should be made zero.
~2! Suppose we succeed in makingH2 vanish. Then it is

tempting to definek522H3 andt522H1. However, such
a definition is not valid since the curvature must be no
negative, whileH3 is an arbitrary function of time.

~3! The Bloch equation should be written in a matrix for
instead of a vector form.

The first obstacle can be removed by transforming t
rotating coordinate system. Such a transformation is done
applying a time-dependent unitary transformationU(t) to
the wave function, which results in the Hamiltonian tran
forming according to

H85UHU†2 iUU̇ †.

A transformation such that the resultant HamiltonianH8 will
be real can always be chosen. Actually, there is an infi
number of such transformations, for example,

U~ t !5S ei (h/2) 0

0 e2 i (h/2)D ,

all of which give Hamiltonians that differ only by their trac
~which is proportional toH08), and have the sameHW 8 com-
ponent,

HW 85S uH12u,0,
1

2 S H112H222
dh

dt D D . ~3.1!

Even in the primed frame we cannot identifyk with
22H38 since the latter remains an arbitrary function of tim
However, it is obvious from~3.1! that H18 is non-negative.
We may associate the curvature withH18 by defining a new
unit vector,

QW 15RpW 8, ~3.2!

with

R5S 0 0 1

0 1 0

1 0 0
D ,

a transformation that interchanges the spatial axes 1 an
The equation of motion of the vectorQW 15(p38 ,p28 ,p18) is
given by

d

dt S Q1
1

Q2
1

Q3
1
D 5S 0 2H18 0

22H18 0 2H38

0 22H38 0
D S Q1

1

Q2
1

Q3
1
D .

~3.3!
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Now we can safely define

k[2H18 , ~3.4!

t[2H38 .

Combining this result with~3.1! and ~2.5!, we can write
these equations in terms of the original Hamiltonian,

k52uH12u52AH1
21H2

2, ~3.5!

t5H112H222
dh

dt
52H31

H2
2

H1
21H2

2

d

dt S H1

H2
D .

Now we obtain well-defined curvature and torsion. A
that is left is to transform Eq.~3.3! into a matrix form. This
can be carried out in two equivalent methods:

~1! The evolution operator forQW 1 is a 333 orthonormal
matrix, designatedUQ , obeying the Frenet-Serret equation

dUQ

dt
5DUQ ,

whereD is defined in~2.3! and the curvature and torsion a
given in ~3.4!.

~2! From the structure of the Frenet-Serret equation~2.2!,
each of the column vectors

S t i

ni

bi

D , i 51,2,3

obeys an equation similar to~3.3!. Therefore, assuming tha
we can define an orthonormal triad,

QW i5S t i

ni

bi

D , i 51,2,3

such that any of the vectorsQi obey ~3.3!, then the matrix

Q5S Q1
1 Q1

2 Q1
3

Q2
1 Q2

2 Q2
3

Q3
1 Q3

2 Q3
3
D ,

will also obey the Frenet-Serret equation~2.2!. We found
explicit expressions for thoseQi . The simplest way to write
them is in terms of the wave function in a frame in which t
Hamiltonian is not only real but also traceless. A transform
tion to such a frame is always possible using the unit
transformation
3-3
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U~ t !5S expS i F E H0~ t8!dt81h/2G D 0

0 expS i F E H0~ t8!dt82h/2G D D .
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We label quantities in this frame by the subscriptrt ~we
will return to this frame later in this paper!. One can verify
that in terms ofc rt the three vectors

QW 15~cosu rt ,sinu rt sinw rt ,sinu rt cosw rt !, ~3.6!

QW 25S 2sinu rt cos~2a rt1w rt !

2sin 2a rt cos2
u rt

2
2sin2

u rt

2
sin~2a rt12w rt !

cos 2a rt cos2
u rt

2
2sin2

u rt

2
cos~2a rt12w rt !

D ,

QW 35S 2sinu rt sin~2a rt1w rt !

cos 2a rt cos2
u rt

2
1sin2

u rt

2
cos~2a rt12w rt !

sin 2a rt cos2
u rt

2
2sin2

u rt

2
sin~2a rt12w rt !

D
obey all the above requirements~and of courseQW 1 is the
sameQW 1 we have defined before!.

Now the differential equations for the Schro¨dinger equa-
tion and the Frenet-Serret equation are mathematically id
tical, and their solutions will be the same as long as
initial conditions are the same. How can we findQ or UQ
given the solution of the related curve under arbitrary init
conditions? LetA be the curve matrix for certain initial con
ditionsA(t0), and letÃ be the matrix of the same curve, b
for different initial conditions, sayÃ(t0). We denote byR̃
the orthogonal rotation that at timet0 rotates the Frenet triad
of A to overlap the equivalent triad ofÃ. Such a rotation is
described by

ÃT~ t0!5R̃AT~ t0!,

so that

R̃5ÃT~ t0!A~ t0!. ~3.7!

Since the curves are identical, this rotation will make th
completely overlapping, so thatÃ(t)5A(t)R̃T for all times.
Substituting~3.7! gives

Ã~ t !5A~ t !AT~ t0!Ã~ t0!. ~3.8!

Taking Ã to beQ we get

Q~ t !5A~ t !AT~ t0!Q~ t0!,
05211
n-
e
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and takingÃ to beUQ we obtain

UQ~ t !5A~ t !AT~ t0!

~which is, of course, the evolution operator ofQ), or explic-
itly

UQ5S tW• tW~0! tW•nW ~0! tW•bW ~0!

nW • tW~0! nW •nW ~0! nW •bW ~0!

bW • tW~0! bW •nW ~0! bW •bW ~0!

D .

Thus far we related spatial curves to two-level Hamilt
nians. While a general Hamiltonian is characterized by fo
real parameters, a general curve is characterized by two
rameters only. Therefore, we conclude that a two-param
family of Hamiltonians is associated with every single curv
In other words, a solution of one geometrical problem yie
the solutions of a two-parameter family of Hamiltonians. W
can write explicitly the two-parameter family that is asso
ated with the curve characterized by curvaturek and torsion
t. We designate a general member in this family
Hk,t(j,z), wherej andz serve as the two free parameter
Knowing that the trace does not affect the associated cu
it is natural to chooseH0 as one of the free parameters, s
z5H0. We arbitrarily choose the other one to beH3 so that
j5H3. Comparison of the two representations in~2.4! gives

cosh5
H1

AH1
21H2

2
, sinh5

H2

AH1
21H2

2
.

This result, together with~3.5!, yields

H15
1

2
k cosh, H25

1

2
k sinh.

h can be expressed in terms ofj andt using ~3.5! together
with ~2.4!,

h5E ~2j2t!dt,

so that

H15
1

2
k cosE ~2j2t!dt, H25

1

2
k sinE ~2j2t!dt.

Substituting this in~2.4! gives
3-4
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Hk,t~j,z!5S z1j 1
2 kexpS 2 i E ~2j2t!dtD

1
2 kexpS i E ~2j2t!dtD z2j

D , ~3.9!

which is the general form of a member in the family associated with the curve whose curvature isk and whose torsion ist.
Within each family we can consider some interesting one-parameter subfamilies. The one-parameter subfamily of t

Hamiltonians is given by

Hk,t~j,z50!5S j 1
2 kexpS 2 i E ~2j2t!dtD

1
2 kexpS i E ~2j2t!dtD 2j

D .

The one-parameter subfamily of real Hamiltonians is

Hk,tS j5
1

2
t,z D5S z1 1

2 t 1
2 k

1
2 k z2 1

2 t
D .

The intersection of these two subfamilies is a unique member of the family, which is both traceless and real,

Hrt5Hk,tS j5
1

2
t,z50D5S 1

2 t 1
2 k

1
2 k 2 1

2 t
D .

~We have mentioned this kind of Hamiltonian earlier, and labeled it by the subscriptrt .! It is a very common representation
for Hamiltonians in physics, and many models are formulated in this frame. Yet another form that appears freque
two-level models is the so-called Rosen-Zener Hamiltonian@16#, which is also a unique member of the family, identified b
zero diagonal elements,

Hrz5Hk,t~j50,z50!5S 0 1
2 kexpS i E tdtD

1
2 kexpS 2 i E tdtD 0

D .
e
ci
o
ow
bl
s
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B. Definition of canonical curve

So far we did not distinguish between the physical tim
parameter and the natural parameter of the curve, and ta
regarded them identical. But, considering the possibility
representing a curve by other parametrizations yields a p
erful technique that enables the grouping of all possi
curves into one-parameter families, where the member
each family share a common curve solution.

Let s be the natural parameter of some curve, ands
5s(u) a monotonically increasing function. The Frene
Serret equation in terms of the variableu is

d

du
A„s~u!…5D„s~u!…

ds

du
A„s~u!…. ~3.10!

Let us define ‘‘effective’’ curvature and torsion

k8~u!5k„s~u!…
ds

du
, ~3.11!
05211
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t8~u!5t„s~u!…
ds

du
,

and thus define the matrix

D8~u!5D„s~u!…
ds

du
5S 0 k8~u! 0

2k8~u! 0 t8~u!

0 2t8~u! 0
D .

All that is left is to denoteA8(u)5A„s(u)…, so that~3.10!
can be rewritten as

dA8~u!

du
5D8~u!A8~u!. ~3.12!

However, this equation is nothing but the Frenet-Serret eq
tion of another curve, characterized byk8(u) and t8(u),
with natural parameteru. If we know A(s), the solution of
the original curve, we can immediately write the solution
the second curveA8(u) simply by substitutings→s(u) in
3-5
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L. CARMEL AND A. MANN PHYSICAL REVIEW A 61 052113
A(s). We can pick any functions(u), as long asds/du.0.
Any such function yields a different curveA8(u). Therefore,
one solution yields the solutions of an entire family
curves, characterized by the parameters(u). Combining this
conclusion with our previous results concerning Hamil
nians, we conclude that one solved geometrical problem
ables us to solve immediately for a one-parameter family
curves, or a three-parameter family of Hamiltonians. Th
out of the four parameters that normally characterize
Hamiltonian, only one is really needed.

The problem is, given two curves, how to decide whet
they belong to the same family. Our approach is to defin
transformation, which we dubthe canonical transformation,
that when applied to a curve transforms it into a form, cal
the canonical curve, which is common to all curves within
the same family. In other words, the canonical curve i
unique member in the family, and the canonical transform
tion maps any other curve in the family into the canoni
form. We define the canonical curve to be characterized b
constant unit curvature at all points. Its torsion is a funct
of s, the natural parameter of the canonical curve, and
notedtc(s). This function can be taken as the parameter t
characterizes each family of curves. Given a curve with na
ral parameteru, curvaturek8(u), and torsiont8(u), apply-
ing the canonical transformation yields the variabless and
tc . s(u) is obtained from the first of equations~3.11!, using
the fact that for the canonical curvek„s(u)…51,

s~u!5Eu

k8~u8!du8. ~3.13!

Being monotonic, this function must have an inverse fu
tion, u(s). Using this function, we can utilize the second
Eq. ~3.11! to produce the canonical torsion,

tc~s!5
t8„u~s!…

k8„u~s!…
. ~3.14!

We can think oftc(s) as a single function that suffices t
characterize any two-dimensional Hamiltonian. The spac
two-dimensional Hamiltonians is therefore constructed
three-parameter families, where the members of each fa
share a common solution, and each family is identified by
canonical torsion.

Physically, changing the parametrization of a curve
equivalent to applying a time gauge to the system. We
obtain the same results starting from

i
duc~ t !&

dt
5H~ t !uc~ t !&,

and then applying the gauget5t(u), with t(u) a monothoni-
cally increasing function. The Schro¨dinger equation for the
variableu is

i
duc„t~u!…&

du
5H„t~u!…

dt

du
uc„t~u!…&.

Defining
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uc8~u!&[uc„t~u!…& H8~u![H„t~u!…
dt

du
,

we get the following equation:

i
duc8~u!&

du
5H8~u!uc8~u!&, ~3.15!

which is nothing but the Schro¨dinger equation for the Hamil-
tonian H8(u). Equation ~3.15! is the physical problem
equivalent to~3.12!. Actually, it is easy to see that the cu
vatures and torsions associated with the HamiltoniansH(t)
andH8(u), obey the relations~3.11!.

C. Physical interpretation

The curvature, torsion, canonical torsion, and natural
rameter are all functions of the elements of the Hamiltoni
Under what circumstances do they have physical meaning
depends, of course, on the interpretation we give to
Hamiltonian itself. In the following we survey briefly som
of the systems for which interesting physical interpretatio
may be obtained.

~1! Two-level atom. The physics is usually described
the pseudo spinsW, which is an analog of the polarizatio
vector defined in~2.7!. The dynamics of the system, in th
rotating wave approximation~RWA!, is described by the

Bloch equation dsW/dt52VW 3sW, with VW 5„2dE,0,12 (v0

2v)… @3#. Here E is the field amplitude,d is the electric
dipole of the atom,v0 is the frequency gap between the tw
levels, andv is the field frequency. In this case it is easy
see that

k52dE,

t5v02v.

These two functions are very familiar in this field~see, e.g.,
@3,17,18#!. The curvature is known asthe field envelope, and
the torsion is known asthe detuning— the frequency differ-
ence between the radiation and the resonance.

~2! Spin 1/2. The Hamiltonian is usually written asH5

2 1
2 gBW •sW , with g the giromagnetic ratio,BW the magnetic

field, andsW the Pauli matrices. For this case,

k5uguAB1
21B2

2,

t52gB32
B1

2

B1
21B2

2

d

dt S B2

B1
D ,

so that the curvature is proportional to the projection of
magnetic field on the 1-2 plane. The torsion is harder
interpret, but ifB1 /B2 does not depend on time, the torsio
becomes proportional to the projection of the magnetic fi
on the 3 axis.

~3! Double Stern-Gerlach experiment. This is the syst
that was treated by Rosen and Zener@16#. They analyzed the
case in which one of the output beams of the Stern-Gerl
3-6



fie
e
ag
th

to
el

na
ls
th
es
iv
c

io

th

m

ge
a

th
ro

w
ic

he
th

re

im

er

del

ses,

ith
is

nts.
or

we
e

ss

ve

-
nar

o
for

s of

a-

GEOMETRICAL APPROACH TO TWO-LEVEL HAMILTONIANS PHYSICAL REVIEW A61 052113
experiment is passed through a rotating weak magnetic
and then is subject to a second Stern-Gerlach experim
For their model the curvature is the rotation rate of the m
netic field, and the torsion is the frequency gap between
two levels of the beam.

~4! Electronic transitions. Two-level transitions due
collisions and level crossings were investigated intensiv
One defines~e.g.,@7#! the inelastic action functions̃ and the
~dimensionless! classical action difference functionJ as

s̃5E H12dt,

J5E ~H112H22!dt,

and the Stueckelberg@8# parameter,t̃ , is defined as

t̃ 5
H112H22

2H12
.

This is the function used by Delos and Thorson@7# as the
single function that characterizes all the two-dimensio
Hamiltonians, analogous to our canonical torsion. They a
showed how basic solutions can be generalized using
function to describe three-parameter Hamiltonian famili
Notice that they assumed real Hamiltonians, with posit
off-diagonal elements. Under their assumptions, the Stue
elberg parameter is indeed identical to the canonical tors
since for real and positive off-diagonal elementsk52uH12u
52H12 andh50 so that

tc5 t̃ 5
H112H22

2H12
.

Therefore, the canonical torsion is a generalization of
Stueckelberg parameter. Also, under these assumptions
inelastic action function becomes simply the natural para
eter of the canonical curves̃5s, while the classical action
difference function is justJ5*tdt.

D. Application of the formalism

Whether the formalism is viewed through the eyes of
ometry, or simply as a mathematical tool, it has great adv
tages in the process of analyzing two-level models.

First we should note that two models that belong to
same family can be unrecognizably different. The above p
cedure is perfectly suited to reveal such cases. Any one
formulates new models, should first determine its canon
torsion and compare it to the known ones~see the following
sections!, thus instantly checking whether the solution for t
model was actually already obtained. In this perspective,
canonical formalism is an efficient classification procedu

Furthermore, giventc , Eqs.~3.13! and~3.14! can be uti-
lized to generate new models that belong to the family. S
ply pick k(u), andt(u) follows from the formalism.

Finally, although not designed for this purpose, we w
able to use the formalism to present two generalizations
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known models—a generalization of the Landau-Zener mo
~in Sec. VI! and a generalization of the Demkov model~in
Sec. VII!.

IV. ZERO CURVATURE VS ZERO TORSION

For completeness, we analyze here the two singular ca
i.e., k50 andt50.

A. Straight line

A straight line is the geometrical curve associated w
zero curvature everywhere. Physically, the Hamiltonian
diagonal at all times, with time-dependent diagonal eleme
This is, of course, a trivial case and we bring it only f
completeness. The torsion in this case is not defined, so
can simply associate it with any arbitrary function that w
pick. No canonical curve can be defined, since~3.13! is iden-
tically zero and~3.14! is not defined. The real and tracele
Hamiltonian has the form

Hrt5S 1
2 t 0

0 2 1
2 t

D ,

with the torsion a general function of time, and the wa
function is given by

c rt5S a0expS 2
i

2E0

t

t~ t8!dt8D
b0expS i

2E0

t

t~ t8!dt8D D .

B. Planar curve

Of more interest is the caset50 everywhere. The geo
metrical meaning of the torsion is the amount of nonpla
twisting of the curve@13#, and a curve with zero torsion
everywhere is called planar. The HamiltonianHrt is

Hrt5S 0 1
2 k

1
2 k 0

D ,

with the curvature an arbitrary function of time. The Schr¨-
dinger equation for this case can be solved analytically
any k by other means~see, e.g.,@3#!, but the solution using
the canonical transformation is immediate. From~3.13! and
~3.14! one deduces that all the planar curves are member
the same family, characterized by the canonical torsiontc
50, i.e., the canonical curve is just the unit circle. The c
nonical Hamiltonian, i.e., the one for whichk51, is constant
and the appropriate wave function is trivial,

c rt
c 5S a0 cos1

2 s2 ib0 sin 1
2 s

2 ia0 sin 1
2 s1b0 cos1

2 s
D ,
3-7
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where the superscriptc stands for ‘‘canonical.’’ To obtain
the solution for generalk, all we need do is substitutes
→*kdt to get

c rt5S a0 cos1
2 E kdt2 ib0 sin 1

2 E kdt

2 ia0 sin 1
2 E kdt1b0 cos1

2 E kdt
D .

V. THE HYPERGEOMETRIC MODEL

Rosen and Zener@16# discussed the results of a doub
Stern-Gerlach experiment. In our notation, their model is

k rz5a sechgt,

t rz5b.

They solved this model analytically, using the gauge tra
formation z5 1

2 (11tanhgt), replacing the timetP(2`,`)
by the parameterzP@0,1#. They showed that in terms ofz,
the Schro¨dinger equation becomes identical with the hyp
geometric differential equation, thus the wave function co
ponents can be found analytically in terms of hypergeome
functions. Since their pioneering work, many other stud
further generalized this model~see below!. In the present
section we find the most general model that can be so
using the hypergeometric equation, and demonstrate
many related models, including the Rosen-Zener mode
self, emerge as special cases of our solution. In the deriva
we follow the guidelines established by Rosen-Zener
others~see, e.g.,@17,19#!.

The differential equation for the componenta of the wave
function in the Rosen-Zener frame is

ärz2S k̇

k
1 i t D ȧrz1S k

2D 2

arz50.

A similar equation but witht→2t holds for the componen
b. We transform to the argumentz, such that

z~2`!50, z~`!51, ż~ t !.0.

The differential equation forarz(z) is

arz9 1
arz8

ż
F d

dt
ln

ż

k
2 i tG1S k

2ż
D 2

arz50, ~5.1!

with dot denoting time derivative and prime denoting t
derivative with respect toz. This equation can be brough
into the form of the hypergeometric equation~see Appendix!
only if

k

ż
5

2A2pq

Az~12z!
~5.2!

t

ż
5

~p1q!z1 1
2 2r

iz~12z!
.
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The requirement that the curvature and torsion be real
poses the constraints

2pq5non-negative real,

p1q5pure imaginary,

Re~r !5
1

2
, Im~r !Þ0,

from which we see thatq52p!. The canonical transforma
tion can be applied to~5.2! to give

s2s05E k~ t !dt5E k~z!

ż
dz54A2pqtan21A z

12z
,

so that

z5sin2
s2s0

4A2pq
.

The canonical torsion is therefore

tc5

1
2 2r 1~p1q!sin2

s2s0

4A2pq

iA2pqUsin
s2s0

2A2pq
U .

To obtain a more compact form we chooses05
23pA2pq and then

tc5

1
2 ~11p1q!2r 2 1

2 ~p1q!sin
s

2A2pq

iA2pqUcos
s

2A2pq
U .

Defining now

p52q!5
Aa22d21 id

2g
, r 5

1

2
2 i

b2d

2g
,

with a,b,g,d real constants, we can substitute the relatio

A2pq5
a

2g
, p1q5 i

d

g
,

1

2
~11p1q!2r 5 i

b

2g
,

into the expression for the canonical torsion, to get the fo

tc5

b1d sin
gs

a

aUcos
gs

a
U . ~5.3!

This defines a three-parameter family of Hamiltonians,
associated with the hypergeometric equation, and thus
3-8
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name this familythe hypergeometric family. arz is a solution
of the hypergeometric equation; thus~see Appendix! it is
given by

arz5AF~p,q,r ;z!1Bz12rF~p112r ,q112r ,22r ;z!,

with constantsA andB. brz is also a solution of the hyper
geometric equation, but with different coefficients. Applyin
the transformationt→2t one finds that these coefficien
are precisely the complex conjugates of those forarz , i.e.,
p→p!52q, q→q!52p and r→r !512r . Thus,

brz5CF~2p,2q,12r ;z!1DzrF~r 2p,r 2q,11r ;z!,

with constantsC and D. The dependence ofC and D on A

and B can be revealed using the relationi ȧ rz5 1
2 kei *tdtbrz

~which emerges out of the Schro¨dinger equation!,
tri
re
e

ne

a
er
e

05211
C522id/g
12r

Apq
B D522id/g

Apq

r
A.

The full solutions have the form

arz5AF~p,q,r ;z!1Bz12rF~p112r ,q112r ,22r ;z!,
~5.4!

brz522id/g
12r

Apq
BF~2p,2q,12r ;z!

22id/g
Apq

r
AzrF~r 2p,r 2q,11r ;z!,

with A andB given in terms of the initial valuesa0 andb0,
taken in timet0 ~or z0),
A5
12r /ApqF~2p,2q,12r ;z0!a0122 id/gz0

12rF~p112r ,q112r ,22r ;z0!b0

12r /ApqF~p,q,r ;z0!F~2p,2q,12r ;z0!2Apq/rz0F~p112r ,q112r ,22r ;z0!F~r 2p,r 2q,11r ;z0!

B5
22 id/gF~p,q,r ;z0!b01Apq/rz0

r F~r 2p,r 2q,11r ;z0!a0

Apq/rz0F~p112r ,q112r ,22r ;z0!F~r 2p,r 2q,11r ;z0!212r /ApqF~p,q,r ;z0!F~2p,2q,12r ;z0!
.
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This is the most general solution of the hypergeome
model. Various special cases can be obtained using diffe
choices ofż and of the model parameters. The original mod
of Rosen and Zener@16# is the special caseż52gz(12z)
andd50, from which we obtain indeed

zrz5
1

2
~11tanhgt !,

k rz5a sechgt,

t rz5b.

Hioe @17# presented a generalization of the Rosen-Ze
model. In our notation, he removed the constraintd50.
Hence, the Hioe model is

zH5
1

2
~11tanhgt !,

kH5a sechgt,

tH5b1d tanhgt.

Another model was proposed by Bambini and Berm
@20#. They investigated cases in which the torsion is not z
and the curvature is an asymmetric function of time. Th
model is described by taking
c
nt
l

r

n
o
ir

ż5
z~12z!

m1lz
, d50.

Two very significant generalizations of the model a
worth mentioning here. Dinterman and Delos@9# found the
general solution associated with the canonical torsion

tc
DD5

b

aUcos
gs

a
U ,

which is obviously the special cased50 in ~5.3!. Hioe and
Carroll @18# realized how to find all the models associat
with the most general canonical torsion~5.3!. They found a
way to associate all the members of the hypergeometric f
ily with a single function, analogous to the canonical torsio
Therefore, they were the first to solve analytically the hyp
geometric model.

We mention two more well-known analytic models th
are special members of the hypergeometric family. B
were developed using the RWA with the Bloch equatio
The first is due to McCall and Hahn@21#, who considered the
transition of optical radiation in matter and formulated t
quantum area theorem. To demonstrate their claims t
built a model that may be obtained by choosingż52gz(1
2z),d50, anda52g, to yield
3-9
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kMH52g sechgt,

tMH5b.

For this model, the solutions~5.4! may be expressed in term
of simple analytic functions. The second model was dev
oped by Allen and Eberly~ @3#, Sec. 4.6!, and is obtained by
choosing ż52gz(12z), b50, and a5gA11d2/g2, to
yield

kAE5gA11d2/g2 sechgt,

tAE5d tanhgt.

For this model, too, it is possible to express the solutio
~5.4! in terms of simple analytic functions.

VI. THE PARABOLIC-CYLINDRIC MODEL

Landau@22# and Zener@23# investigated the level struc
ture of a two-atom molecule undergoing level crossing. T
triggered the Stueckelberg analysis@8#, which yielded the
Stueckelberg parameter. Landau and Zener were interest
the final transition probability, for the model described by

kLZ5g,

tLZ5dt,

which is called the Landau-Zener model. This model w
already solved analytically for all times, assuming cert
initial conditions @24#. We show that the Landau-Zene
model is a special case of a generalized model, which
solve analytically. This model emerges from identifying t
Schrödinger equation with the parabolic-cylindric equatio
and therefore we name it the parabolic-cylindric model.

The differential equation for the componenta of the ca-
nonical wave function in thert frame is

d2art
c

ds2
1F1

4
~11tc

2!1
i ṫc

2
Gart

c 50.

A similar equation but withtc→2tc holds for the compo-
nent b. This equation can be brought into the form of t
parabolic-cylindric equation~see Appendix! only if

2i ṫc54ps214qs14r 212tc
2 . ~6.1!

This is the general definition of the parabolic-cylindric c
nonical torsion, but we do not know the general solution
this equation. However, we can find a special solution
assuming a finite polynomial for the canonical torsiontc

5( j 50
n ajs

j . Inserting this polynomial into the equation re
veals that the only possible finite polynomial that solves i

tc5a1bs. ~6.2!

This canonical torsion defines a subfamily of the parabo
cylindric family. For this subfamily, the components of th
wave function satisfy the equations
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d2art
c

ds2
1F1

4
b2s22

1

2
abs1

1

4
~11a2!1

1

2
ibGart

c 50,

d2brt
c

ds2
1F1

4
b2s22

1

2
abs1

1

4
~11a2!2

1

2
ibGbrt

c 50.

To obtain the standard form of the parabolic-cylindric equ
tion ~see Appendix!, we transform to the variablew5Aibs
1Ai /ba. In terms of this variable the equations become

d2art
c

dw2
2S 1

4
w21VaDart

c 50,

d2brt
c

dw2
2S 1

4
w21VbDbrt

c 50,

with Va andVb given by

Va52Vb
!5

i

4b
2

1

2
.

These equations are solved by~see Appendix!

art
c 5Ae$2~1/4!w2%M S f ,

1

2
;
1

2
w2D

1Bwe$2~1/4!w2%M S f 1
1

2
,
3

2
;
1

2
w2D ,

brt
c 5Ce$2~1/4!w2%M S f 1

1

2
,
1

2
;
1

2
w2D

1Dwe$2~1/4!w2%M S f 11,
3

2
;
1

2
w2D ,

where we denotedf 5 i /8b. We can use the relation
2idart

c /ds5tcart
c 1brt

c ~which results from the Schro¨dinger
equation! to expressC andD in terms ofA andB. We get

C522Ab

i
B D524 fAb

i
A.

Now we can write down the full solution

art
c 5Ae$2~1/4!w2%M S f ,

1

2
;
1

2
w2D

1Bwe$2~1/4!w2%M S f 1
1

2
,
3

2
;
1

2
w2D , ~6.3!

brt
c 524 fAb

i
Awe$2~1/4!w2%M S f 11,

3

2
;
1

2
w2D

22Ab

i
Be$2~1/4!w2%M S f 1

1

2
,
1

2
;
1

2
w2D ,

with A andB given in terms of the initial conditions
3-10
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A5e$~1/4!w0
2%

a0M ~ f 1 1
2 , 1

2 ; 1
2 w0

2!1 1
2 Ai /bb0w0M ~ f 1 1

2 , 3
2 ; 1

2 w0
2!

2 f w0
2M ~ f 1 1

2 , 3
2 ; 1

2 w0
2!M ~ f 11,3

2 ; 1
2 w0

2!2M ~ f , 1
2 ; 1

2 w0
2!M ~ f 1 1

2 , 1
2 ; 1

2 w0
2!

,

B5e$~1/4!w0
2%

2 f a0w0M ~ f 11,3
2 ; 1

2 w0
2!1 1

2 Ai /bb0M ~ f , 1
2 ; 1

2 w0
2!

M ~ f , 1
2 ; 1

2 w0
2!M ~ f 1 1

2 , 1
2 ; 1

2 w0
2!22 f w0

2M ~ f 1 1
2 , 3

2 ; 1
2 w0

2!M ~ f 11,3
2 ; 1

2 w0
2!

.
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The original Landau-Zener model is obtained fora50 and
s5gt, which yields

kLZ5g,

tLZ5bg2t[dt.

The solution is given by~6.3! with w5Aibgt. One may
obtain many other models by choosing different transform
tions. For example, we can generalize the Landau-Ze
model by choosingk5gtn, for which we get

k5gtn, ~6.4!

t5agtn1
bg2

n11
t2n11,

with w5Aibg/(n11)tn111Ai /ba. The constraintk.0
will limit the solution for oddn to the regiontP@0,̀ ). The
Landau-Zener model is a special case of this model witn
50.

VII. THE CONFLUENT-HYPERGEOMETRIC MODEL

We choose again Eq.~5.1! as a starting point, but now w
try to write it in the form of the confluent-hypergeometr
equation~see Appendix!. For the sake of brevity, let us des
ignate

F~z![
bh8

h
2h82

h9

h8
,

G~z![
R

z
1 f 8,

H~z![
R~R21!

z2
1

2R f8

z
1 f 91 f 822

ah82

h
5G81G22

ah82

h
.

Equation ~5.1! will have the form of the confluent
hypergeometric equation if

k

ż
52AFG1H,

t

ż
5 i ~2G1F !1

i

2

F8G1G8F1H8

FG1H
.

These expressions can be put in an even more compact
by adopting the notation

P[FG1H, Q[2G1F.
05211
-
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Then

k

ż
52AP, ~7.1!

t

ż
5 iQ1

i

2

P8

P
.

Any particular member in the confluent-hypergeometric fa
ily will be defined through the functionsG(z),H(z) and the
parametersa and b. We demonstrate in the following line
how different choices of these quantities reproduce m
known models.

Let us start by assuming thatG50. Then P5H5
2ah82/h andQ5F5bh8/h2h82h9/h8, and thus

k

ż
52iAa

h8

Ah
,

t

ż
5 i

h8

h S b2
1

2D2 ih8.

Applying the canonical transformation we use~3.13! to get

h52
s2

16a
.

Substitution in the equation for the torsion yields

t

ż
5

2i

s

k

ż
S b2

1

2D2
s

8ia

k

ż
.

For the torsion to be real we must havea5 ia and b5 1
2

2 ib, with a,b real constants. Substituting the above resu
in the expression for the canonical torsion we find

tc5
2b

s
1

s

8a
. ~7.2!

The solution of the equation is given by~see Appendix!

arz
c 5AMS ia,

1

2
2 ib;hD

1Bh1/21 ibM S 1

2
1 i ~a1b!,

3

2
1 ib;hD ,

where we used the fact thatG50 yields f 852R/z, or f 5
2R ln z1f0, and thereforez2Re2 f (z)5ef 05Const. brz

c is
3-11
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also a solution of the confluent-hypergeometric equati
whose coefficients are determined by the mappinga→2a
andb→2b. The result is

brz
c 5CMS 2 ia,

1

2
1 ib;2hD

1D~2h!1/22 ibM S 1

2
2 i ~a1b!,

3

2
2 ib;2hD .

As usual, the coefficientsC andD will be related toA andB
through the Schro¨dinger equation that givesidarz

c /ds
5 1

2 ei *tcdsbrz
c , so that

C5BS 1

2
1 ib De$~ i /16!a%

i

Aa/ i
S 16a

i D 2 ib

,

D5A
a

1
2 2 ib

S 2
16a

i D 2 ib

e$~ i /16!a%
i

Aa/ i
.

Eventually we get

arz
c 5AM~ ia, 1

2 2 ib;h!1Bh1/21 ibM ~ 1
2

1 i ~a1b!, 3
2 1 ib;h!, ~7.3!

brz
c 5S 16a

i D 2 ib

ei /16a
i

Aa/ i F ia
1
2 2 ib

Ah1/22 ibM ~ 1
2 2 i ~a

1b!, 3
2 2 ib;2h!1B~ 1

2 1 ib!M ~2 ia, 1
2 1 ib;2h!G .

Writing A andB explicitly in terms of the initial conditions is
possible, but the resulting expression is so long that we
cided to eliminate it here. The model we developed her
obtained then by

G~s!50, h~s!5 i
s2

16a
, a5 ia, b5

1

2
2 ib.

This model is a generalization of the Demkov model@25#,
originally proposed to describe atomic collisions. His mod
in our notations can be written as

kD5k0e2gt,

tD5t0 .

Applying the canonical transformation givess2s05
2(k0 /g)e2gt so that

tc
D52

t0

g~s2s0!
.

Taking s050, and comparing with~7.2! shows that the
Demkov model is the special casea→` andb52t0 /2g.
Using the behavior of the confluent-hypergeometric fu
tions for a→` ~see Appendix!, we get from~7.3! the result
05211
,

e-
is

l

-

arz
c 5As1/21 ibI 21/21 ibS is

2 D ,

brz
c 5BJ1/22 ibS is

2 D .

Not lettinga go to infinity, and assuming the samek, we
may easily generalize the Demkov model. The generali
model is

k5k0e2gt, ~7.4!

t5t01t1e22gt,

with t0522bg and t152k0
2/8ag. Surely for a→` we

get the simple Demkov model.
Another model that is a special member of the conflue

hypergeometric family is the Crothers model@10#,

kCR5k0e2gt,

tCR5t01k1e2gt.

The canonical transformation givess2s052(k0 /g)e2gt

and

tc
CR52

t02
gk1

k0
~s2s0!

g~s2s0!
.

It can be shown that this model is obtained by the set

GCR~ t !5g2 i t02
i

2
~k11Ak0

21k1
2!e2gt,

hCR~ t !5
i

g
Ak0

21k1
2e2gt,

aCR512
i t0

2g
2

t0k1

2igAk0
21k1

2
,

bCR522 i
t0

g
.

The Nikitin model@26#,

kN5k0 ,

tN5t01t1e2gt,

is yet another special member of the conflue
hypergeometric family. The canonical transformation yie
s2s05k0t and

tc
N5

t0

k0
1

t1

k0
e$2~g/k0!~s2s0!%.

This model is reproduced using the set
3-12
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GN~ t !52
i

2
~t01Ak0

21t0
2!2 i t1e2gt,

hN~ t !5
i t1

g
e2gt,

aN512
i

2g
~Ak0

21t0
22t0!,

bN512
i

g
Ak0

21t0
2.

As a final example we note that the model proposed
Petcov@4# to describe matter-enhanced neutrino oscillatio
is characterized by

kP5k0 ,

tP5t1e2gt,

thus being a special case of the Nikitin model witht050.

VIII. DISCUSSION

This work established a relation between two-lev
Hamiltonians and spatial curves. Consequently, a relativ
simple framework was obtained that can be utilized to a
lyze physical models. Defining the canonical torsion enab
a simple and systematic approach that results in conven
classification and generalization methods. Another impli
tion of this approach is that all two-level Hamiltonians a
grouped into three-parameter families, the members of e
family sharing a common solution.

When encountering a brand new model, one may ap
the canonical transformation and see if it is a member o
known family. Only if this is not the case, the problem ne
be solved, either for the particular Hamiltonian or for any
its comembers in the family.

A different approach may be used to develop new anal
cally solvable models. The whole process may be rever
starting from a general, arbitrarily chosen, curve, and p
ceeding backwards to find the associated three-param
family, the solution of which is then guaranteed.
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APPENDIX

Several useful differential equations and some of th
characteristics are summarized here; this material is par
larly relevant to the derivations in Secs. V–VII. All the re
sults are taken from@27#.

The hypergeometric equation is defined as
05211
y
s

l
ly
-
s
nt
-

ch

ly
a

f

i-
d,
-
ter

ch

ir
u-

y91
r 2~p1q11!z

z~12z!
y82

pq

z~12z!
y50,

with p,q,r , andz complex numbers. This equation is solve
by

y5AF~p,q,r ;z!1Bz12rF~p112r ,q112r ,22r ;z!,

with A,B constants andF the hypergeometric function, give
by the series

F~p,q,r ;z!511
pq

13r
z1

p~p11!q~q11!

1323r ~r 11!
z21•••,

which converges for21,uzu,1 as long as Re(r 2p2q)
.21.

The parabolic-cylindric equation is defined as

d2y

dx2
1~px21qx1r !y50,

with p,q, andr complex constants. Usually this equation
brought into one of two standard forms,

d2y

dx2
2~ 1

4 x21V!y50,

d2y

dx2
2~ 1

4 x22V!y50,

with V a complex constant. The solution of the first equati
is given by

y5Ae$2~1/4!x2%M S 1

2
V1

1

4
,
1

2
,
1

2
x2D

1Bxe$2~1/4!x2%M S 1

2
V1

3

4
,
3

2
,
1

2
x2D ,

and that of the second equation by a similar expression
which V is replaced by2 iV andx is replaced byxe$(1/4)ip%.
M is the confluent-hypergeometric function given by the
ries

M ~a,b;z!511
a

13b
z1

a~a11!

1323b~b11!
z2

1
a~a11!~a12!

132333b~b11!~b12!
z31•••.

For very largea these functions satisfy

lim
a→`

M S a,b;
z

aD5G~b!z$~1/2!~12b!%I b21~2Az!,

lim
a→`

M S a,b;2
z

aD5G~b!z$~1/2!~12b!%Jb21~2Az!,
3-13
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with I andJ the appropriate Bessel functions.
The confluent-hypergeometric equation is

y91S 2R

z
12 f 81

bh8

h
2h82

h9

h8
D y81F S bh8

h
2h82

h9

h8
D S R

z

1 f 8D1
R~R21!

z2
1

2R f8

z
1 f 91 f 822

ah82

h
Gy50,

with a, b, andR constants andf ,h functions ofz. The solu-
tion of this equation is given by

y5Az2Re2 f (z)M „a,b;h~z!…1Bz2Re2 f (z)U„a,b;h~z!…,
pl.

so

05211
whereM is the confluent-hypergeometric function andU is
given by

U~a,b;z!5
p

sinpb F M ~a,b;z!

G~11a2b!G~b!

2z12b
M ~11a2b,22b;z!

G~a!G~22b! G .
Substituting this definition, the solution may be written
terms of the confluent-hypergeometric function only:

y5Az2Re2 f (z)M „a,b;h~z!…

1Bz2Re2 f (z)@h~z!#12bM „11a2b,22b;h~z!….
-
g,
-

. In
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