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Geometrical approach to two-level Hamiltonians
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Two-level systems were shown to be fully described by a single function, known sometimes as the Stueck-
elberg parameter. Using concepts from differential geometry, we give geometrical meaning to the Stueckelberg
parameter and to other related quantities. As a result, a generalization of the Stueckelberg parameter is
introduced, and a relation obtained between two-level systems and spatial one-dimensional curves in three-
dimensional space. Previous authors used this Stueckelberg parameter to solve analytically several two-level
models. We further develop this idea, and solve analytically three fundamental models, from which many other
known models emerge as special cases. We present the detailed analysis of these models.

PACS numbes): 03.65.Db, 34.10tx, 31.15—p, 42.50—p

[. INTRODUCTION real Hamiltonians, while an additional term should be added
in the general case. The use of a single characteristic func-
Two-level systems have been a subject of major researction to describe Hamiltonians is demonstrated to be very
interest since the early days of quantum mechanics. The pigfficient in categorizing models, and reveals equivalence be-
neering work of Rabj1] analyzing(analytically a two-level ~ tween apparently different ones. As a matter of fact, we solve
model is well known. Since then, many other models werehree fundamental models and show how all the analytically
proposed, of which only a few have a known analytical so-solvable models known to us emerge as special cases of
lution. The interest in these systems is due to several reasori§ese models. Furthermore, it is shown how by solving a
First, these are usually the simplest systems that really can Iséngle Hamiltonian, a variety of other models, mathemati-
seen in nature. Maybe the most obvious examples are spRlly equivalent but of different shapes, can be produced. We
1/2 and light polarizatiofi2]. Second, many systems can be @lso give a geometrical interpretation to the modified Stueck-
approximated as two-level SystemS, when most of the interelberg parameter and to other related quantities, and so asso-
action occurs within a two-dimensional subspace of theciate these three-parameter families with special spatial
Hamiltonian. This is the case, for example, in two-level at-curves that we dulsanonical curvesHowever, it should be
oms[3] or in two-neutrino oscillation§4]. Third, it is used kept in mind that although elegant and of potential useful-
to describe level crossing in otherwise adiabatic systemdless, the geometrical interpretation is not necessary for the
The most famous example is probably the Born-€efficientimplementation of the method.
Oppenheimer approximation in molecular phydi6s In Sec. Il we introduce basic notations and give brief
In many cases two-level systems can be analyzed usinggViews on two subjects that are fundamental for the rest of
various numerical estimations. But this approach has twdhe paper. The first is the intrinsic representation of spatial
major drawbacks. First, it is not always accurate endigjh ~ curves, and the second is the analogy between the two-level
and second, it is difficult to gain insight about the depen-Schralinger equation and the three-dimensional precession
dence of the system on its parameters. equation, known as the Bloch equation. In Sec. Il we de-
For these reasons, efforts were invested in seeking tools t¢elop the general Delos-Thorson approach and establish its
facilitate two-level analytical evaluations. One of the mostgeometrical interpretation. In Sec. IV we investigate two
efficient tools was introduced by Delos and Thor§ghwho ~ Special spatial curves — the straight line and the planar
showed that only one real function, the Stueckelberg paranfurve. In Secs. V-VII we analyze three basic models, that
eter[8], is needed to fully describe a Hamiltonian. Normally, Will be shown to generalize all the known analytically solv-
a two-level Hamiltonian is characterized by four real param-2ble models. Section VIl is a summary.
eters(functiong, and therefore the immediate outcome of the
Delos-Thorson approach is that all the two-level Hamilto-
nians can be grouped into three-parameter families, each as-
sociated with a single differential equation. This techniqgue The two-level Schrdinger equation was shown to be
was used by Delos, Thorson, and othéxg.,[9] and[10])  equivalent to a vectorial three-dimensional precession equa-
to generalize several analytical models. tion, mostly known in physics as the Bloch equation or the
In the present paper we further develop the Delosmagnetization equation. This equivalence was demonstrated
Thorson approach. We show that the function that charactetsy Feynmaret al.[11], and then further investigated by oth-
izes the Hamiltonian is the Stueckelberg parameter only foers (e.g.,[12]). In this paper we present another equivalent
equation to the two-level Schiinger equation. This equa-
tion is the one known from differential geometry as the
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Frenet-Serret equatiofil3]. Given a curve (u), u being
some general parameter, it is customary to define at each [y =
point a local orthonormal triagsometimes referred to as the

Frenet triad — the tangenf(u), the principal normaﬁ(u), P

and the binormab(u). The Frenet-Serret equation describes cosz
the rotation of this triad when moving along the curve. This or |¢>:eia (2.6
equation is usually expressed using the natural pararseter '

which is the length of the curve and can be obtained from the

general parameter by
u
=]
Ug defines the problem angl the solution.
o . ) The dynamics of the wave function is determined by the
The Frenet-Serret equation is a precession equation that Ca&thralinger equation, while that of the corresponding den-

a
b

sin= e'¢
2

with aa*+bb*=1. In analogy with the geometrical problem

dr(u) (2.1  Wwe define the pairtd, ) as thephysical problemwhereH

du

be written in matrix form as sity matrix p is determined by the Liouville-Von Neumann
dA equationdp/dt=—i[H,p]. Writing p in the formp=3%(p,
45— PA (2.2 +p-0o) gives the following equation of motion for the vector
f) (mostly referred to as the polarization veotodf)/dt
with =2H x p [14]. This is the equation that is called the magne-
tization equation or the Bloch equati¢h5], and its matrix
A=|n; n, nz|, D=[-« 0 7 (2.3
b, b, by 0 -7 0 al ™ 0 —2H; 2H; P1
. . . . —| P2 |=[ 2Hs 0 —2H, P2
Here x(s) is the curvaturda non-negative variable by defi- dt
nition), and 7(s) is the torsion. Knowing them determines P3 —2H; 2H, 0 P3
uniquely the curve up to translations and rotations, thus their (2.7)

name — the intrinsic parameters of the curve. We Bathe R
Frenet-Serret matrixand A the curve matrix Solving the  The polarization vectop is of unit length and is equivalent
Frenet-Serret equation, i.e., knowigs), is equivalent to to the wave function) up to a global phase. The relation
knowing the curver(s). We define the pair@,A) as the between them is given by=(y|c|y), i.e.,
geometrical problemwhereD defines the problentsystem
andA its solution. > X A% At Ak * "
L . . =(ab*+a*b,i(ab*—a*b),aa*—bb

Two-level Schrdinger equationvs Bloch equation.The p=( I ) )

general two-level Hamiltonian is characterized by four real

parameters. Throughout this paper we adopt two alternate or p=(sinfcose,sindsing,coss). (2.8
representations for this Hamiltonian:
( Hyp le) Hyy |H12|efi 71) Il. SPATIAL CURVES AND TWO-LEVEL
H= . = i ) HAMILTONIANS
Hi, Haz [Hyle'” Ha

In this section we establish the relation between the physi-

Ho+Hs; H;—iH, cal problem and the geometrical problem. In the first two
or H= HeotiHe  HoeHa (2.4 parts we define explicitly this relation, and in the last part we
! 2 o 3 discuss the physical interpretation of the geometrical quanti-
which are related by ties.
1 A. The geometrical equivalent of the Hamiltonian
HOZE(H11+ H22),

The equivalence is based upon identifying the Frenet-
Serret equation,

.1 . .
H=5(HptHpi(Ho—Hp) Hii—Hy). (2.9

2 tl t2 t3 0 K 0 tl tz t3
Notice that the second representation emerges out of expressgs| '+ "2 3| =| 7% O 7[{ M Nz Ngl,
ing H in terms of the Pauli matricesl=Hy+H-o. The b, by bs 0 —7 0/ \by by Dbs
wave function will also be represented alternately by two
representations, with the Bloch equation,
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Py 0 —2H; 2H, Py Now we can safely define
d
at| P2 3 ]| P2 Kk=2H1, 3.9
P3 —2H, 2H; 0 P3
It is clear that three difficulties need to be overcome before 7=2H;.
these equations could be made mathematically identical.
(1) H, should be made zero. Combining this result with(3.1) and (2.5, we can write

(2) Suppose we succeed in makihig vanish. Then itis  these equations in terms of the original Hamiltonian,
tempting to definec= —2H; and 7= —2H,. However, such

a definition is not valid since the curvature must be non-

_ _ 2 2
negative, whileH; is an arbitrary function of time. K=2|H1l =2VH1+Hz, @9
(3) The Bloch equation should be written in a matrix form
instead of a vector form. dy H> d(H,
The first obstacle can be removed by transforming to a 7=Hp1—Hp— EZZH3+—H§+H§ ﬁ(H_z)

rotating coordinate system. Such a transformation is done by
applying a time-dependent unitary transformatidiit) to _ _ _
the wave function, which results in the Hamiltonian trans- Now we obtain well-defined curvature and torsion. All

forming according to that is left is to transform E¢3.3) into a matrix form. This
_ can be carried out in two equivalent methods:
H'=UHU'—iuU™. (1) The evolution operator fo@! is a 3x 3 orthonormal

. . ) ) matrix, designatedl 5, obeying the Frenet-Serret equation
A transformation such that the resultant Hamiltonk&ahwill g Q ying q

be real can always be chosen. Actually, there is an infinite
number of such transformations, for example, =DUq

ei('r]/Z) 0
Um:( 0 e‘i(”’z)) : whereD is defined in(2.3) and the curvature and torsion are
given in (3.4).

all of which give Hamiltonians that differ only by their trace ~ (2) From the structure of the Frenet-Serret equathg),
(which is proportional tdHg), and have the samd’ com-  each of the column vectors
ponent,

- 1 dzy
H'= |H12|,0,§ Hu=Ho= 57 |- 3.1 n;

Even in the primed frame we cannot identify with

—2H} since the latter remains an arbitrary function of time.Obeys an equation similar {8.3). Therefore, assuming that
However, it is obvious from(3.1) that H; is non-negative. we can define an orthonormal triad

We may associate the curvature wit{ by defining a new

unit vector, t
I
Ql=Rp, (3.2 Q=(n|, i=123
with b
0 0 1 such that any of the vectof@' obey (3.3), then the matrix
R={ 0 1 0], 1 A2 A3
1 0 O Q: Q1 Qi
-l 2 & 4,
a transformation that interchanges the spatial axes 1 and 3. ° i 2 i
Q3 Q3 Q3

The equation of motion of the vectd®'=(p5,p5.p}) is

given by . .
will also obey the Frenet-Serret equati¢h2). We found

Q! 0 2H; 0 Q1l explicit expressions for thos®'. The simplest way to write

them is in terms of the wave function in a frame in which the

Hamiltonian is not only real but also traceless. A transforma-

Q3 0 —2H, © Q3 tion to such a frame is always possible using the unitary
(3.3  transformation

d ’ ’
gil Q2| =| —2H1 0 2H;)| Q;
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o

u(t)=

f Ho(t’)dt'+n/2D 0

0 exp{ i

f Ho(t’)dt’—nIZD

We label quantities in this frame by the subscriptiwe  and takingA to beU o We obtain
will return to this frame later in this paperOne can verify

that in terms ofy,; the three vectors Ugt)=AMDAT(ty)
s Y . . .
Q= (CoSOr SN by SNy ,SiN b COSer), (3.6 (which is, of course, the evolution operator@j, or explic-
itl
—sin6y cog 2+ ¢rt) y
0 0 o > - - =
2= —sin 2a, co§7”—sin27nsin(2an+2q0n) t i(O) t rl(O) 'i li(O)
= ’ UQ: n.t(O) n.n(O) n-b(O)
5Zart n2 art L. L o
COS 2, CO > S 7005{2a,t+2cpn) b-f(0) B-n(0) b-b(0)

Thus far we related spatial curves to two-level Hamilto-
nians. While a general Hamiltonian is characterized by four
real parameters, a general curve is characterized by two pa-
rameters only. Therefore, we conclude that a two-parameter
family of Hamiltonians is associated with every single curve.

. Ot O : : :
Sin 2a,; COS—— — Sif——siN(2a +2¢y) In other words, a solution of one geometrical problem yields
2 2 the solutions of a two-parameter family of Hamiltonians. We
R can write explicitly the two-parameter family that is associ-

obey all the above requirementand of courseQ" is the  ated with the curve characterized by curvaturand torsion
sameQ! we have defined before 7. We designate a general member in this family by

Now the differential equations for the Schlinger equa- H, ,(£,{), where¢ and{ serve as the two free parameters.
tion and the Frenet-Serret equation are mathematically iderknowing that the trace does not affect the associated curve,
tical, and their solutions will be the same as long as thet is natural to choosél, as one of the free parameters, say
initial conditions are the same. How can we fiQdor Uq {=H,. We arbitrarily choose the other one to Hg so that
given the solution of the related curve under arbitrary initialé=H3. Comparison of the two representationg2¥) gives
conditions? LefA be the curve matrix for certain initial con-

ditions A(to), and letA be the matrix of the same curve, but H, _ H,
for different initial conditions, sayA(t,). We denote byR cosn= e az M AT
the orthogonal rotation that at tintg rotates the Frenet triad 12 1

of A to overlap the equivalent triad @. Such a rotation is : ; ;
described by This result, together witli3.5), yields

—siné,; sin(2a,;+ @)

6 0
o= COS 2uy 0057” + sinZTrt cog2ay+2¢)

~ ~ 1 1
AT(to)=RAT(ty), Hi=>Kcosy, Hp=>ksiny.
so that
o 7 can be expressed in terms §fand 7 using(3.5) together
R=AT(tg)A(tg). (3.7 with (2.4),
Since the curves are identical, this rotation will make them ”zf (26— 7)dt,

completely overlapping, so that(t)=A(t)R" for all times.

Substituting(3.7) gives
so that

A(t)=A(t)AT(to)A(to). (3.9

1
~ H1=—Kcosf(2§—7-)dt, H2=—Ksinf (2&—71)dt.
Taking A to beQ we get 2 2

Q(H)=A(t)AT(ty)Q(ty), Substituting this in(2.4) gives
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{+¢ %Kexp(—if (2§—¢)dt>

%KEX%iJ(Zf—Tﬂﬂ) [— €&

which is the general form of a member in the family associated with the curve whose curvatuamdswhose torsion is.
Within each family we can consider some interesting one-parameter subfamilies. The one-parameter subfamily of traceless

Hamiltonians is given by
¢ %KEX[{ —if (2&— T)dt)

%Kexp(if (2§—7‘)dt) —&

The one-parameter subfamily of real Hamiltonians is

1 {+31 sk
e[ )

H. (&)= (3.9

H,(§{=0)=

H

K, T

1
HTI:HK,T §:ET! =0|=
(We have mentioned this kind of Hamiltonian earlier, and labeled it by the substyipt is a very common representation

for Hamiltonians in physics, and many models are formulated in this frame. Yet another form that appears frequently in
two-level models is the so-called Rosen-Zener Hamiltohid), which is also a unique member of the family, identified by

zero diagonal elements,
0 %KeX[{iJ Tdt)

%KeXF<—if Tdt) 0

Hrz: HK‘T(§:0,§:O):

B. Definition of canonical curve ds
So far we did not distinguish between the physical time T (W= T(S(u))ﬁ’

parameter and the natural parameter of the curve, and tacitly _ _
regarded them identical. But, considering the possibility ofand thus define the matrix
representing a curve by other parametrizations yields a pow-

erful technique that enables the grouping of all possible ds 0 «'(u) 0
curves into one-parameter families, where the members of p’(u)=D(s(u))—=| —«'(u) 0 7' (u)
each family share a common curve solution. du 0 — 7' (u) 0

Let s be the natural parameter of some curve, and
=s(u) a monotonically increasing function. The Frenet- p|| that is left is to denoteA’ (u) =A(s(u)), so that(3.10

Serret equation in terms of the variahles can be rewritten as
d 3 ds dA’(u)
o AGW)=D(s(u) g, AlS(W). (3.10 qu ~D/(WA'(u). (3.12

However, this equation is nothing but the Frenet-Serret equa-

tion of another curve, characterized ly(u) and 7'(u),

with natural parameteuw. If we know A(s), the solution of
P as the original curve, we can immediately write the solution of

“ (u)_K(S(u))du’ 3.1 the second curvé’(u) simply by substitutings—s(u) in

Let us define “effective” curvature and torsion
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A(s). We can pick any functios(u), as long asdls/du>0. dt

Any such function yields a different curv&' (u). Therefore, [y (u)=|y(t(u))) H (W=HEW)5,

one solution yields the solutions of an entire family of

curves, characterized by the paramesr). Combining this e get the following equation:

conclusion with our previous results concerning Hamilto-

nians, we conclude that one solved geometrical problem en- Ay’ (u) ) )

ables us to solve immediately for a one-parameter family of I—g5 —H (Wlg' (u)), (3.19
curves, or a three-parameter family of Hamiltonians. Thus,

out of the four parameters that normally characterize ayhich is nothing but the Schdinger equation for the Hamil-
Hamiltonian, only one is really needed. _ tonian H’(u). Equation (3.15 is the physical problem
The problem is, given two curves, how to decide whethefequivalent to(3.12. Actually, it is easy to see that the cur-

they belong to the same family. Our approach is to define gatures and torsions associated with the Hamiltonid(g
transformation, which we duthe canonical transformation  andH’(u), obey the relation$3.11).

that when applied to a curve transforms it into a form, called
the canonical curvewhich is common to all curves within
the same family. In other words, the canonical curve is a
unique member in the family, and the canonical transforma- The curvature, torsion, canonical torsion, and natural pa-
tion maps any other curve in the family into the canonicalrameter are all functions of the elements of the Hamiltonian.
form. We define the canonical curve to be characterized by ¥nder what circumstances do they have physical meaning? It
constant unit curvature at all points. Its torsion is a functiondepends, of course, on the interpretation we give to the
of s, the natural parameter of the canonical curve, and deHamiltonian itself. In the following we survey briefly some
notedr,(s). This function can be taken as the parameter tha@f the systems for which interesting physical interpretations
characterizes each family of curves. Given a curve with natumay be obtained.

ral paramete, curvaturex’(u), and torsions’ (u), apply- (1) Two-level atom. The physics is usually described by
ing the canonical transformation yields the varialdeand the pseudo spirs, which is an analog of the polarization
7.. S(u) is obtained from the first of equatio3.11), using  vector defined in2.7). The dynamics of the system, in the

C. Physical interpretation

the fact that for the canonical curvgs(u))=1, rotating wave approximatioiRWA), is described by the
. Bloch equation ds/dt=2Qxs, with Q=(—dE,0,}(w,
S(u):f &' (u)du'. (3.13 —w)) [3]. HereE is the field amplituded is the electric

dipole of the atomy is the frequency gap between the two

Being monotonic, this function must have an inverse func-levels’ ando is the field frequency. In this case it is easy to

tion, u(s). Using this function, we can utilize the second of see that

Eq. (3.11 to produce the canonical torsion, k=2dE,
"(u(s = wn—
Tc(s)=—7,( (=) (3.14 T=wo~ 0.
k' (u(s))

These two functions are very familiar in this figlsee, e.g.,
We can think ofr,(s) as a single function that suffices to [3,17,18). The curvature is known ke field envelopeand
characterize any two-dimensional Hamiltonian. The space ohe torsion is known athe detuning— the frequency differ-
two-dimensional Hamiltonians is therefore constructed ofence between the radiation and the resonance.
three-parameter families, where the members of each family (2) Spin 1/2. The Hamiltonian is usually written &t=
share a common solution, and each family is identified by the- £ yB- &, with y the giromagnetic ratioB the magnetic

canonical torsion. o _field, ando the Pauli matrices. For this case,
Physically, changing the parametrization of a curve is
equivalent to applying a time gauge to the system. We can k=7l /Bi+ BZ,
obtain the same results starting from
2
d[ () Bi d (B)
i - 7=—yB3— ——— | = |,
=g = HO[g(), Y53 g2y g2 dt| B,

and then applying the gauget(u), with t(u) a monothoni-  so that the curvature is proportional to the projection of the

cally increasing function. The Schiimger equation for the magnetic field on the 1-2 plane. The torsion is harder to

variableu is interpret, but ifB; /B, does not depend on time, the torsion
becomes proportional to the projection of the magnetic field

dly(t(u))) dt on the 3 axis.

! du _H(t(u))ﬁh’/’(t(u)»' (3) Double Stern-Gerlach experiment. This is the system

that was treated by Rosen and Zefs]. They analyzed the

Defining case in which one of the output beams of the Stern-Gerlach
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experiment is passed through a rotating weak magnetic fielknown models—a generalization of the Landau-Zener model
and then is subject to a second Stern-Gerlach experimentn Sec. V) and a generalization of the Demkov model
For their model the curvature is the rotation rate of the magSec. VII).
netic field, and the torsion is the frequency gap between the
two levels of the beam. IV. ZERO CURVATURE VS ZERO TORSION
(4) Electronic transitions. Two-level transitions due to }
collisions and level crossings were investigated intensively, FOr completeness, we analyze here the two singular cases,

One definege.g.,[7]) the inelastic action functios and the & x=0 and7=0.
(dimensionlessclassical action difference functidd as
A. Straight line

~s=f Hdt, A straight line is the geometrical curve associated with
zero curvature everywhere. Physically, the Hamiltonian is
diagonal at all times, with time-dependent diagonal elements.
E:f (Hy,—Hyy)dt, This is, of course, a trivial case and we bring it only for
completeness. The torsion in this case is not defined, so we
~ . i can simply associate it with any arbitrary function that we
and the Stueckelberi@] parametert, is defined as pick. No canonical curve can be defined, sit@4.3 is iden-
tically zero and(3.14) is not defined. The real and traceless

i= Hu—Ha Hamiltonian has the form
2H 4,
ir 0
This is the function used by Delos and Thordah as the H, = 2 '
single function that characterizes all the two-dimensional 0 —-ir

Hamiltonians, analogous to our canonical torsion. They also

showed how basic solutions can be generalized using this. . . .
. : I -, __With the torsion a general function of time, and the wave

function to describe three-parameter Hamiltonian famlllesTunction is given b

Notice that they assumed real Hamiltonians, with positive 9 y

off-diagonal elements. Under their assumptions, the Stueck-

elberg parameter is indeed identical to the canonical torsion, it dr
since for real and positive off-diagonal elements 2|H | 3eexp — 3 | (t')dt
=2H, and =0 so that Y= -
i
~ Hy—Hy bOeX[(EJOT(t,)dt’)
Ol v
Therefore, the canonical torsion is a generalization of the B. Planar curve

Stueckelberg parameter. Also, under these assumptions the Of more interest is the case=0 everywhere. The geo-
inelastic action function becomes simply the natural parammetrical meaning of the torsion is the amount of nonplanar
eter of the canonical curve=s, while the classical action twisting of the curve[13], and a curve with zero torsion

difference function is jusg = [ 7dt. everywhere is called planar. The Hamiltonidrp, is
I : o ¢
D. Application of the formalism o= 2K
Whether the formalism is viewed through the eyes of ge- " ik O ’

ometry, or simply as a mathematical tool, it has great advan-

tages in the process of analyzing two-level models. . . . . .
gFirst we slr)muld note thatytwogmodels that belong to theWlth the curvature an arbitrary function of time. The Schro
same family can be unrecognizably different. The above progmger equation for this case can be solved analytically for
ny k by other meangsee, e.g.[3]), but the solution using

cedure is perfectly suited to reveal such cases. Any one wh

formulates new models, should first determine its CanoniCaﬁselcanonlgaldtransf%rn:atlllotu IS |Immed|ate. Fro3ul3 anbd ¢
torsion and compare it to the known onege the following 14 one deduces that all the planar curves are members o

sections, thus instantly checking whether the solution for thethe same family, cr_]aracterlze_d _by the can_om_cal torsipn

model was actually already obtained. In this perspective, thezo'. €., the. canpmc_al curve is just the_ unit C.'rde' The ca-

canonical formalism is an efficient classification procedure.nonlcal Hamllton_lan, l.e., the one forlwh.uzih:l, IS constant
Furthermore, giverr,, Egs.(3.13 and(3.14 can be uti- and the appropriate wave function is trivial,

lized to generate new models that belong to the family. Sim-

ply pick «(u), andr(u) follows from the formalism. a,costs—ibgsinis
Finally, although not designed for this purpose, we were Yr=

able to use the formalism to present two generalizations of —iagsinis+bycosis
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where the superscripgt stands for “canonical.” To obtain The requirement that the curvature and torsion be real im-
the solution for generak, all we need do is substitute  poses the constraints

— [ kdt to get .
— pg=non-negative real,

aocos%f Kdt—ibosin%f Kkdt p+q= pure imaginary,
U=

—iaosin%f Kdt+b0cos§J rdt _1
Re(r) 5 Im(r)#0,

V. THE HYPERGEOMETRIC MODEL from which we see thay= —p*. The canonical transforma-

Rosen and Zen€rl6] discussed the results of a double tion can be applied t¢5.2) to give

Stern-Gerlach experiment. In our notation, their model is

—f tdt—fK(z)d =4 tan 1/ z
K;,= a Sechyt, S78= | w(h)dt= z a patan 1-7

T, = B. so that

They solved this model analytically, using the gauge trans-
formation z= 3 (1+ tanhyt), replacing the time e (—,%) 4W'
by the parametere[0,1]. They showed that in terms af
the Schrdinger equation becomes identical with the hyper-The canonical torsion is therefore
geometric differential equation, thus the wave function com-

ponents can be found analytically in terms of hypergeometric . . ST%g
functions. Since their pioneering work, many other studies 3—r+(p+q)sir

further generalized this modésee below In the present _ 4N—pq
section we find the most general model that can be solved e s—Sp '
using the hypergeometric equation, and demonstrate that iv—pg|sin

many related models, including the Rosen-Zener model it- PAVESE o]

self, emerge as special cases of our solution. In the derivation )
we follow the guidelines established by Rosen-Zener and© obtain a more compact form we choosg=

others(see, e.g.[17,19). — 3= pq and then
The differential equation for the componenof the wave s
function in the Rosen-Zener frame is I(1+p+q)—r—21(p+q)sin
. ) 2N =pq
.. K vicla 4 K a.-0 Te= S .
a,,—|—+tir|a = =0.
rz K rz 2 rz |\/—_pq cOS
- . . 2N—pq
A similar equation but withr— — 7 holds for the component
b. We transform to the argument such that Defining now
2(—%)=0, z(*)=1, z(t)>0. . VJaZ—F+is 1 B4
p: - q = 2 1 r = E _I 2 1
The differential equation foa,,(z) is Y Y
, ; 2 with «,,v, S real constants, we can substitute the relations
" r .
arZJr?Z qiin——ir|+| | a.=0, (5.1)

o o 1 B
Vopa=oo, pra=iz, 5(1+p+q)—r=|2—y,
with dot denoting time derivative and prime denoting the
derivative with respect ta. This equation can be brought into the expression for the canonical torsion, to get the form
into the form of the hypergeometric equati@ee Appendix

. fyS
only if B+ 6sin—
o
K 2\—pq To=—————— (5.3
= (5.2 Vs
Z Z2(1-2) «|COS—
o

1_
T_ w This defines a three-parameter family of Hamiltonians, all

7z iz(l-z2) associated with the hypergeometric equation, and thus we
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name this familythe hypergeometric family,, is a solution 11—y _ \/ﬁ
of the hypergeometric equation; thisee Appendix it is C=-2"9"——B D=-2"9"——A,
given by Vpa '

a,=AF(p,q,r;2)+BZ "F(p+1-r,q+1-r,2—r;2), The full solutions have the form

— . 1— .

with constantsA andB. b, is also a solution of the hyper-  &z=AF(p,q,r;2)+Bz " "F(p+1-r,q+1-r,2-1;2),
geometric equation, but with different coefficients. Applying (5.4
the transformationr— — 7 one finds that these coefficients 1-
are precisely the complex conjugates of thosedgr, i.e., b,,= _2i5/y_rBF(_ p,—q,1-r;2)

p*)p*:—q’ q*)q*:_p andr—r*=1-r. ThUS,

Vg

b,,=CF(—p,—q,1-r;2)+DZ'F(r—p,r—q,1+r;2), _
rz ( p q ) ( p q ) —2'5’“/TAZrF(r—p,r—q,l+r;z),

with constantsC andD. The dependence & andD on A

and B can be revealed using the relatiom,=3«xe'/™%,,  with A andB given in terms of the initial values, andb,,
(which emerges out of the Schilinger equatiop taken in timet, (or zp),

1-r/\paF(—p,—q.1-r;zg)ag+2 972y "F(p+1-r,q+1—r,2—r;z0)b,
1—r/\paF(p,a,r;2)F(—p,—q,1-1;20) — palrzoF (p+1—r,q+1—r,2—1;29) F(r —p,r —q,14r;2)

) 271 (p,q,r;Z0) b+ VPA/rZEF (r — p,r —q,1+1;20)a,
VPO/rZoF (p+1—r1,q+1—1,2-1;20) F(r —p.,r —q,141;29) = 1= r/\pgF(p,a.r:20) F(—p, —9,1-1:20)

This is the most general solution of the hypergeometric . z(1-2)
model. Various special cases can be obtained using different z= S
choices ofz and of the model parameters. The original model

of Rosen and Zendl6] is the special case=2yz(1-z)

and =0, from which we obtain indeed Two very significant generalizations of the model are
worth mentioning here. Dinterman and Del® found the
general solution associated with the canonical torsion

1
zrz=§(1+tanhyt),

K., = a sechyt, Te =

a|COS—

Tz = B.

Hioe [17] presented a generalization of the Rosen-Zener

model. In our notation, he removed the constraiit0.  Which is obviously the special cage=0 in (5.3). Hioe and
Hence, the Hioe model is Carroll [18] realized how to find all the models associated

with the most general canonical torsi@®3). They found a
1 way to associate all the members of the hypergeometric fam-
zH=§(1+tanhyt), ily with a single function, analogous to the canonical torsion.
Therefore, they were the first to solve analytically the hyper-
geometric model.

Ky=a secht, We mention two more well-known analytic models that
are special members of the hypergeometric family. Both
4= B+ Stanhyt. were developed using the RWA with the Bloch equation.

The first is due to McCall and HaH21], who considered the

Another model was proposed by Bambini and Bermar{ransition Of Optica| I’adiation in matter and formulated the
[20]. They investigated cases in which the torsion is not zergluantum area theorem. To demonstrate their claims they
and the curvature is an asymmetric function of time. Theirbuilt a model that may be obtained by choosing?2yz(1
model is described by taking —2),6=0, anda=2v, to yield
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kv =27y secht, d2as,

ds?

+122 L +11+2+1'
B s zapst Z(1+a)+5ip

a=0,

T™™H= B.

For this model, the solution$.4) may be expressed in terms dpf, [1 , . 1 1 5o 1 .
of simple analytic functions. The second model was devel- tgB s sapst (14 a%)— Sip by =0.
oped by Allen and Eberly[3], Sec. 4.6, and is obtained by

choosing z=2yz(1-2), B=0, and a=vy\1+6%9? to  To obtain the standard form of the parabolic-cylindric equa-
yield tion (see Appendix we transform to the variable= \/i 8s

+ i/ Ba. In terms of this variable the equations become
Kag= y\1+ 6% y? sechyt, p a

B d’ay (1 .

TAe= O tanhwyt. I - ZW +V,|a;;=0,
For this model, too, it is possible to express the solutions
(5.4) in terms of simple analytic functions. dzbft 1

dW2 - ZW2+Vb b?t:O,
VI. THE PARABOLIC-CYLINDRIC MODEL
Landau[22] and Zene23] investigated the level struc- With Va andV,, given by

ture of a two-atom molecule undergoing level crossing. This i 1
triggered the Stueckelberg analy$B]|, which yielded the Vo=—Vi=——=.
Stueckelberg parameter. Landau and Zener were interested in 4B 2

the final transition probability, for the model described by These equations are solved fsee Appendix

KLz= 7 11
ac :Ae{—(1/4)w2}M f w2
TLz= Ot, " 22
which is called the Landau-Zener model. This model was +Bwd- vy £y L E'sz
already solved analytically for all times, assuming certain 2'2°2 '

initial conditions [24]. We show that the Landau-Zener
model is a special case of a generalized model, which we
solve analytically. This model emerges from identifying the
Schralinger equation with the parabolic-cylindric equation,
and therefore we name it the parabolic-cylindric model.

The differential equation for the componembf the ca-
nonical wave function in thet frame is

bg,=Cel~ AWy

i1,
222"
3

+Dwel~(1aWip| f+ 15: ;Wz) :

where we denotedf=i/88. We can use the relation

a% |1 LA 2ida’/ds=r.a%+bf, (which results from the Schdinger
g2 |att )t 5|3 =0 equation to expressC andD in terms ofA andB. We get
A similar equation but withr.— — 7. holds for the compo- C=-2 \[iEB D= —4f \[iEA'

nentb. This equation can be brought into the form of the

lic-cviindri ) A sonly if
parabolic-cylindric equatiottsee Appendixonly i Now we can write down the full solution

2iTo=4pSP+4qs+ar—1—72. (6.1)
C 2 1 1
al,=Ael"VIWIM| f, = —w?
This is the general definition of the parabolic-cylindric ca- 2'2
nonical torsion, but we do not know the general solution of 131
this equation. However, we can find a special solution by +Bwe VAW | f+ E,E;sz), (6.3

assuming a finite polynomial for the canonical torsion
=Zf‘:0ajs‘. Inserting this polynomial into the equation re-

. 7 . o 31
veals that the only possible finite polynomial that solves it is be = —4f \/iEAwe{u/z;)WZ}M ( fr 15; zWz)
T.=a+ B3s. (6.2
T . . PN A TR
This canonical torsion defines a subfamily of the parabolic- i 2'2'2 '
cylindric family. For this subfamily, the components of the
wave function satisfy the equations with A andB given in terms of the initial conditions
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M(f+3,5;3wW5) + 3i/ BbowoM (+3,3; 3w3)

A= e{(1/4)wo}
ZfWoM(f+2:%,2W0)M(f+1,2,2Wo) M(f,Zyzwo) ("’%;%?%Wg)

2faOWOM(f+l,2,2WO)+ Vil B boM(f,z,zwo)
M(fIZlZWO)M(f+§l§l§WO) 2fWO (f+21212WO)M(f+1!2!2W0)

B = el(1awg}

The original Landau-Zener model is obtained fo=0 and Then
s=yt, which yields

K
KLz=7, ;=2ﬁ, (7.0
7= BYyt=4t
-
The solution is given by6.3 with w= /i Byt. One may ;:|Q+§3-

obtain many other models by choosing different transforma-
tions. For example, we can generalize the Landau-Zen

e . . .
model by choosing= 11", for which we get Any particular member in the confluent-hypergeometric fam-

ily will be defined through the function&(z),H(z) and the

K=y, (6.4) parametersa andb. We demonstrate in the following lines
how different choices of these quantities reproduce many
By known models.
r=ayt"+ ——t2"*+1 Let us start by assuming tha&=0. Then P=H=
n+1 —ah’?/h andQ=F=bh’/h—h’—h"/h’, and thus
with w= /i 8y/(n+1)t"* 1+ /i/Ba. The constraintx>0 b b
will limit the solution for oddn to the regiornt e[0,»). The ARy Ja— T b—3> —ih’.
Landau-Zener model is a special case of this model with z Jh' z h 2

=0.
Applying the canonical transformation we u&13 to get

VIl. THE CONFLUENT-HYPERGEOMETRIC MODEL 2
s
We choose again E5.1) as a starting point, but now we h=— 16a"
try to write it in the form of the confluent-hypergeometric
equation(see Appendix For the sake of brevity, let us des- gypsitution in the equation for the torsion yields
ignate

bhr hn ’T 2| E
F(Z)ET—h'_F, z Sz

R For the torsion to be real we must hase=i« and b=3
G(z)=—+f1’, —iB, with «, 8 real constants. Substituting the above results
z in the expression for the canonical torsion we find

g RR-D 2RT ah’2_G 2 ah'? 28

( )= 2 Z _T _T TCZ?'F a (7.2)
Equation (5.1) will have the form of the confluent- The solution of the equation is given lggee Appendix
hypergeometric equation if

1
Cc : o
K T i F'G+G'F+H’ arz:AM(la!__|B’h>
—=2JFG+H, =—=i(2G+F)+ 7 ——n— 2
7 7 2  FG+H L 2
, _ +BhY?"AM| = +i(a+B),=+iB:h],
These expressions can be put in an even more compact form 2 2

by adopting the notation
where we used the fact th&=0 yieldsf’'=—R/z, or f=

P=FG+H, Q=2G+F. —RInz+f,, and thereforez Re™ @ =efo=Const. b, is
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also a solution of the confluent-hypergeometric equation,

whose coefficients are determined by the mapping — «
and 8— — B. The result is

1
bfz=CM(—ia,§+i,8;—h)

1

+D(—h)Y2 1AM 5 i(a+,8),g—i,8;—h).

As usual, the coefficient§ andD will be related toA andB
through the Schidinger equation that givesdar,/ds
=1el/7e9%¢, | so that

el(i16)a} _
ali

1 i [16a)\ '8
C:B(§+Iﬁ ( ) ,

D=p_" (_@) olinea '

1-ip i ali
Eventually we get

a%,=AM(ia,—iB;h)+BhY2 1AV (1

+i(a+B),2+iB;h), (7.3
bc:(@)iﬁ i/16ai_ I ARY2-IBM (L (g
rz I \/a_/l %—IB 2

+B),2 1B~ +BHiIAM(~iaz+ig—h) |,

Writing A andB explicitly in terms of the initial conditions is

PHYSICAL REVIEW A 61052113

. is
a’,=As'2t1A| 1/2+iﬁ(§)v

. is
br,=BJiz-ip Xk

Not letting @ go to infinity, and assuming the samewe
may easily generalize the Demkov model. The generalized
model is

Kk=rKoe ", (7.4

=719t Tle_z"t,

with 7o=—28y and 7= — KS/Say. Surely fora—oo we
get the simple Demkov model.

Another model that is a special member of the confluent-
hypergeometric family is the Crothers mod&0],

— —yt
Kcr™ Koe L4 y
TCR™ 7'0+ K187 yt.

The canonical transformation gives—sy=—(ko/y)e "
and

YK1
ToT T (s—$op)
7CR= _ 0
¢ y(s—sp)

It can be shown that this model is obtained by the set

. [ ,
Ger()=y—ity— E(K1+ Viot ke,

possible, but the resulting expression is so long that we de-

cided to eliminate it here. The model we developed here is

obtained then by
G(s)=0, h(s)=i s =i b—1 i

This model is a generalization of the Demkov mo{i25],

originally proposed to describe atomic collisions. His model

in our notations can be written as
— -t
Kp= Kg€ ,

TD=1Tq-

Applying the canonical
—(ko/y)e™ " so that

transformation gives—sy=

70

D
To=———\,
¢ Y(s—sp)

Taking s,=0, and comparing with(7.2) shows that the
Demkov model is the special cage—~> and = —74/27.

i
her(t) = ;\/K§+ kie ",

iTO ToK1

Acp=1—- 77— ——F—,
" 2y 2iyJks+ s
.70
ber=2—-1—.
CR y

The Nikitin model[26],
KN= Ko,
™™ 7'0+ Tle_’yt,

is yet another special member of the confluent-
hypergeometric family. The canonical transformation yields
s—sy=k,t and

N_T0 L T - (k) (s—s)}

¢ ko Ko

Using the behavior of the confluent-hypergeometric func-

tions fora— (see Appendix we get from(7.3) the result

This model is reproduced using the set
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i . r—(p+tg+1)z pq
__ _ — 9yt " !
Gn(t)=—5 (ot VKot mp)—ime 7, Yt ——a—y Y Y0

i1y with p,q,r, andz complex numbers. This equation is solved
—yt
hn(t) = ¢ 7 by

i y=AF(p,q,r;2)+Bz "F(p+1-r,q+1-r,2—-r;2),
=1——(+/ 2+ 2_

an 2y (Vo + 70 7o), with A,B constants an# the hypergeometric function, given

by the series

i
bN=1—;VKS+T£’§- pa _ p(p+1)g(g+1) ,

F(p,q,r;z)=1+ 1sz+ 12X (r1) 2+

As a final example we note that the model proposed by
Petcov[4] to describe matter-enhanced neutrino oscnlatloné"’
is characterized by

hich converges for-1<|z|<1 as long as Re(~p—q)
1.

The parabolic-cylindric equation is defined as

Kp= Kq,
&y —+(px“+gx+r)y=0,
X2+ qx+r
TP:Tle*’yt, d 2 p q y=
thus being a special case of the Nikitin model wit= 0. with p,q, andr complex constants. Usually this equation is

brought into one of two standard forms,

VIil. DISCUSSION 5

This work established a relation between two-level e (3x*+V)y=0,
Hamiltonians and spatial curves. Consequently, a relatively
simple framework was obtained that can be utilized to ana- )
lyze physical models. Defining the canonical torsion enables d_y_ 12 \/)y=0
a simple and systematic approach that results in convenient axz ° y="5
classification and generalization methods. Another implica-
tion of this approach is that all two-level Hamiltonians arewith V a complex constant. The solution of the first equation
grouped into three-parameter families, the members of eadk given by
family sharing a common solution.

When encountering a brand new model, one may apply _ Adl- (1% lV 111,
the canonical transformation and see if it is a member of a y=A¢€ 2 Z 52X
known family. Only if this is not the case, the problem need
be solved, either for the particular Hamiltonian or for any of + Bxd -1y EV 33 } )
its comembers in the family. 2 4'2’ 2

A different approach may be used to develop new analyti-
cally solvable models. The whole process may be reverseénd that of the second equation by a similar expression in
starting from a general, arbitrarily chosen, curve, and prowhich V is replaced by-iV andx is replaced byel(V4i7}
ceeding backwards to find the associated three-parametbt is the confluent-hypergeometric function given by the se-
family, the solution of which is then guaranteed. ries

a(a+1)

2
xb2" Tx2xbb+ 1)
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For very largea these functions satisfy
APPENDIX
lim M

a—®

z
. . . . = (1/2)(1-b)
Several useful differential equations and some of their ab; a) I(b)z! o-2(2V2),

characteristics are summarized here; this material is particu-

larly relevant to the derivations in Secs. V=VII. All the re-

sults are taken frorh27]. lim M
The hypergeometric equation is defined as a—o

4
ab;— 5) =T (b)Z 20Dy, 1(2/2),
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with | andJ the appropriate Bessel functions. whereM is the confluent-hypergeometric function addis
The confluent-hypergeometric equation is given by
2R bh' h bh' h\ (R U(a,b;z)= — M(a,bz)
a,b;z)=—
y'+| —+2f'+ ——-h'——|y'+|| ——-h'"— — (— ( sinmb | I'(1+a—b)I'(b)
z h h' h h/\z
1_pM(1+a—b,2—-b;z)
, -z
R(R—1) 2Rf ., ah I'(a)l'(2—b)
| o T 2 o |y =0, o . .
z? z h Substituting this definition, the solution may be written in

_ ) terms of the confluent-hypergeometric function only:
with a, b, andR constants and,h functions ofz. The solu-

tion of this equation is given by y=Az Re @M (a,b:h(z))
y=Az Re""@M(a,b;h(2))+Bz Re”"@U(a,b;h(2)), +Bz Re”'@[h(2)]'""M(1+a—b,2-b;h(2)).
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