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QED corrections to the radiative recombination of an electron with a bare nucleus
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Complete formulas for the QED corrections of the first order ina to the radiative recombination of an
electron with a bare nucleus are derived. An analysis of the ultraviolet and infrared divergences is presented.
Application of the formulas to the radiative electron capture process is discussed. Numerical results are
presented for the vacuum-polarization correction evaluated in the Uehling approximation and for a part of the
self-energy correction.

PACS number~s!: 12.20.Ds, 11.80.2m, 34.80.Kw
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I. INTRODUCTION

In an energetic collision between a highly charged highZ
ion and a low-Z target atom, an electron may be captured
the projectile, while a simultaneously emitted photon carr
away the excess energy and momentum. This process is
noted as radiative electron capture~REC!. Since a loosely
bound target electron can be considered as quasifree,
essentially equivalent to radiative recombination~RR! or its
time-reversed analogon, the photoelectric effect. At the G
Darmstadt@1,2#, reactions of this type have been extensive
studied using bare projectiles up to U921 with energies up to
several hundred MeV/u. The relativistic theory of REC w
considered in detail in Refs.@3–5#, and the results of this
theory are in excellent agreement with experiment. In p
ticular, the spin-flip contribution to REC, calculated in Re
@3–5#, was recently identified in angular-differential me
surements@6#.

In view of the increasing experimental accuracy and
well-defined theoretical description, it is tempting to sea
for quantum electrodynamic~QED! effects supplementing
the existing theory@3–5#. Indeed, heavy ions are good sy
tems for testing QED effects in strong electric fields. Ho
ever, until now, such effects in heavy ions, for example,
Lamb shift, were investigated only for bound states~see Ref.
@7#, and references therein!. On the other hand, QED correc
tions to the photoeffect were considered only to the low
order inaZ @8,9#. Since calculations based on anaZ expan-
sion are not valid for high-Z systems, it is desirable to pe
form calculations for the completeaZ dependence.

A systematic QED theory of the RR process has b
worked out in@10#. In the present paper, we apply this theo
to derive the formulas for the QED corrections of the fi
order in a to radiative recombination of an electron with
bare nucleus. We analyze the infrared and ultraviolet div
gences and discuss the application of these formulas to
REC process. We calculate the vacuum-polarization cor
tion using the Uehling approximation and a part of the se
energy correction. Relativistic units (\5c51) are used in
the paper.

II. BASIC FORMULAS

We consider the radiative recombination of an elect
with momentumpi and polarizationm i with a bare nucleus
1050-2947/2000/61~5!/052112~12!/$15.00 61 0521
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which is put at the origin of the coordinate frame. This co
responds to the projectile system if we study the radiat
recombination of a free target electron with a bare hea
projectile. The differential cross section of this process
given by

ds5
~2p!4

v i
utu2d~«a1kf

02pi
0!dk f , ~1!

wherepi
05Api

21m2 is the energy of the incident electron
«a is the energy of the final statea of the one-electron atom
kf5(kf

0 ,k f) with kf
0 and k f being the photon energy an

momentum, respectively,v i is the velocity of the incident
electron in the nucleus frame, andt is the amplitude of the
process which is connected with theS-matrix element by

^kf ,e f ;auSupi ,m i&52p id~«a1kf
02pi

0!t. ~2!

Heree f5(0,ef) is the photon polarization andpi5(pi
0 ,pi).

According to the standard reduction technique~see, e.g., Ref.
@11#!, we have

^kf ,e f ;auSupi ,m i&5^auaout~kf ,e f !bin
† ~pi ,m i !u0&

5~2 iZ3
21/2!~2 iZ2

21/2!

3E d4yd4z
e f

n exp~ ik f•y!

A2kf
0~2p!3

3^auT jn~y!c̄~z!u0&~2 i ]”Q z2m!

3
u~pi ,m i !exp~2 ipi•z!

Api
0

m
~2p!3

, ~3!

whereT is the time-ordering operator,a•b[anbnc(x) is the
electron-positron field operator in the Heisenberg represe
tion, j n(y)5(e/2)@c̄(y),gnc(y)# is the electron-positron
current operator,Z2 and Z3 are the renormalization con
stants, andu(pi ,m i) is the free wave function of the inciden
electron normalized by the conditionūu51.
©2000 The American Physical Society12-1
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Equation~3! is rather formal and cannot be used for t
direct calculation of the amplitude ifua& is a bound atomic
state. To calculate this amplitude by perturbation theory
need a special technique. Such a technique was develop
Ref. @10# for the general case of a few-electron atom. In t
present paper we apply this technique to the case of a
nucleus in the initial state and an one-electron atom in
final state. In this case the amplitude of the process is ca
lated by

^kf ,e f ;auSupi ,m i&52d~«a1kf
02pi

0!

3~Z2Z3!21/2 R
G
dEgg f ,a;ei

~E,pi
0!

3F 1

2p i RG
dEga~E!G21/2

. ~4!

HereG is a contour in the complexE plane which surrounds
the levela and does not surround other levels and it is
sumed to be counterclockwise. The functionsga(E) and
gg ,a;e (E,p0) are defined by
f i

-
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a
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ga~E!d~E82E!5
2p

i E dxdyca
†~x!G~E8,E,x,y!g0ca~y!,

~5!

gg f ,a;ei
~E,p0!d~E1k02p0!

5E dxca
†~x!Gg f ,ei

~k0,E,p0,x!, ~6!

ca(x) is the wave function of the final state of the on
electron atom,G and Gg f ,ei

are defined in the Heisenber

representation by the equations

G~E8,E,x,y!5
1

~2p!2E2`

`

dx0dy0 exp~ iE8x02 iEy0!

3^0uTc~x!c̄~y!u0&, ~7!
Gg f ,ei
~k0,E,p0,x!52

1

2p
E

2`

`

dx0 exp~ iEx0!E d4yd4z exp~ ik0y02 ip0z0!
e f

n exp~2 ik f•y!

A2kf
0~2p!3

3^0uTc~x! j n~y!c̄~z!u0&~2 i ]”Q z2m!
u~pi ,m i !exp~ ipi•z!

Api
0

m
~2p!3

. ~8!
. 1.
As is evident from these equations,G is simply the full one-
electron Green function andGg f ,ei

is the Green function de

scribing the radiative recombination process. BothG and
Gg f ,ei

are constructed by perturbation theory after the tr

sition to the interaction representation in Eqs.~7! and~8! and
using Wick’s theorem. The Feynman rules forG andGg f ,ei

are given in Ref.@10#. Gg f ,ei
differs from G by presence of

the outgoing photon line and by insertion of the incide
electron wave function instead of the initial electron prop
gator.

FIG. 1. The radiative recombination of an electron with a b
nucleus in the zeroth-order approximation. The double line den
the electron propagating in the Coulomb field of the nucleus. T
wavy line ended by the arrow denotes the emitted photon.
-

t
-

III. ZEROTH-ORDER APPROXIMATION

To the zeroth order we have the diagram shown in Fig
The formula~4! gives

^kf ,e f ;auS(0)upi ,m i&52d~«a1kf
02pi

0!

3 R
G
dEgg f ,a;ei

(0) ~E,pi
0!, ~9!

where the superscript indicates the order ina. Here we have
taken into account that

1

2p i RG
dEga

(0)~E!5
1

2p i RG
dE

1

E2«a
51. ~10!

According to the Feynman rules from Ref.@10#, we have

Gg f ,ei

(0) ~k0,E,p0,x!5E dy
i

2p
S~E,x,y!~2 iegn2p!

3d~E1k02p0!Af ,n* ~y!cpim i (1)~y!,

~11!

e
es
e
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where

S~v,x,y!5(
n

cn~x!c̄n~y!

v2«n~12 i0!
~12!

is the electron propagator in the Coulomb field of t
nucleus,

Af
n~x!5

e f
n exp~ ik f•x!

A2kf
0~2p!3

~13!

is the wave function of the outgoing photon, andcpim i (1)(x)
is the wave function of the incoming electron in the Co
lomb field defined by the equation~see Ref.@10# for details!

cpim i (1)5
u~pi ,m i !exp~ ipi•x!

Api
0

m
~2p!3

1@pi
02H0~12 i0!#21

3VCcpim i (1) . ~14!

HereH05ap1bm is the free-electron Hamiltonian andVC
is the Coulomb field of the nucleus. The apparent expr
sions forcpim i (1) are given, e.g., in Ref.@4#. Substituting the
expression~11! into the Eq.~6!, we obtain

gg f ,a;ei

(0) ~E,p0!5
^aueanAf ,n* upi ,m i&

E2«a
. ~15!

Equations~9! and ~15! yield

^kf ,e f ;auS(0)upi ,m i&522p id~«a1kf
02pi

0!

3^aueanAf ,n* upi ,m i& ~16!
05211
-

s-

or according to the definition~2!

t (0)52^aueanAf ,n* upi ,m i&5^auea•A f* upi ,m i&. ~17!

The corresponding cross section is

ds (0)

dV f
5

~2p!4

v i
k f

2ut (0)u2. ~18!

IV. QED CORRECTIONS OF THE FIRST ORDER IN a

The QED corrections of first order ina are defined by the
diagrams shown in Fig. 2. Let us consider in detail the de
vation of the formal expressions for the self-energy~SE! cor-
rections@diagrams~a!–~c!#. The formula~4! gives in the or-
der under consideration

FIG. 2. The first-order QED corrections to the radiative reco
bination of an electron with a bare nucleus.
s

^kf ,e f ;auS(1)upi ,m i&52d~«a1kf
02pi

0!F R
G
dEgg f ,a;ei

(1) ~E,pi
0!2

1

2 R
G
dEgg f ,a;ei

(0) ~E,pi
0!

1

2p i RG
dEga

(1)~E!

1~Z2
21/221! R

G
dEgg f ,a;ei

(0) ~E,pi
0!G , ~19!

wherega
(1)(E) is defined by the first-order self-energy diagram. We omitted here the factorZ3

21/2 in the last term since it
contributes only to the vacuum-polarization~VP! correction. Consider first the diagram~a!. According to the Feynman rule
from Ref. @10#, we have

Gg f ,ei

(1,a) ~k0,E,p0,x8!5d~E1k02p0!E dxdydz
i

2p
S~E,x8,x!

2p

i
g0S~E,x,y!

3
i

2p
S~E,y,z!Af ,n* ~z!~2 iegn2p!cpim i (1)~z!, ~20!
2-3
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where

S~E,x,y!5e2
i

2pE dvg0grS~E2v,x,y!gsDrs~v,x2y!

~21!

is the self-energy operator,

Drs~v,x2y!52grsE dk

~2p!3

exp@ ik•~x2y!#

v22k22m21 i0
~22!

is the photon propagator in the Feynman gauge, andm is a
photon mass which is introduced to regularize the infra
divergences. According to the definition~6! one finds

gg f ,a;ei

(1,a) ~E,p0!5(
n

^auS~E!un&^nueanAf ,n* upi ,m i&

~E2«a!~E2«n!
~23!

and

R
G
dEgg f ,a;ei

(1,a) ~E,pi
0!

52p i F (
n5” a

^auS~«a!un&^nueanAf ,n* upi ,m i&
«a2«n

1^auS8~«a!ua&^aueanAf ,n* upi ,m i&G , ~24!

whereS8(«a)[dS(«)/d«u«5«a
. A similar calculation of the

diagrams~c! and ~b! gives

R
G
dEgg f ,a;ei

(1,c) ~E,pi
0!

52p i(
n

^aueanAf ,n* un&^nuS~pi
0!upi ,m i&

pi
02«n~12 i0!

~25!
05211
d

and

R
G
dEgg f ,a;ei

(1,b) ~E,pi
0!52p i E dzeAf ,n* ~z!Ln~«a ,pi

0 ,z!,

~26!

where

Ln~«,p0,z!5e2
i

2pE2`

`

dvE dxdyc̄a~x!grS~«2v,x,z!

3gnS~p02v,z,y!gsDrs~v,x2y!

3cpim i (1)~y!. ~27!

Let us now calculate the second term in Eq.~19!. A simple
calculation of the second factor in this term yields

1

2p i RG
dEga

(1)~E!5^auS8~«a!ua&. ~28!

We obtain

2
1

2 R
G
dEgg f ,a;ei

(0) ~E,pi
0!

1

2p i RG
dEga

(1)~E!

52
1

2
2p i ^aueanAf ,n* upi ,m i&^auS8~«a!ua&. ~29!

Substituting Eqs.~24!–~26!, ~29! into Eq. ~19!, taking into
account Eq.~16!, and adding the contribution of the mas
counterterm diagrams~Fig. 3!, we find

FIG. 3. The mass counterterm corrections to the radiative
combination of an electron with a bare nucleus.
^kf ,e f ;auSSE
(1)upi ,m i&522p id~«a1kf

02pi
0!F (

n5” a

^auS~«a!2bdmun&^nueanAf ,n* upi ,m i&
«a2«n

1
1

2
^auS8~«a!ua&^aueanAf ,n* upi ,m i&1(

n

^aueanAf ,n* un&^nuS~pi
0!2bdmupi ,m i&

pi
02«n~12 i0!

1E dzeAf ,n* ~z!Ln~«a ,pi
0 ,z!1~Z2

21/221!^aueanAf ,n* upi ,m i&G . ~30!

A similar calculation of the VP corrections@Fig. 2, diagrams~d!–~f!# gives
2-4
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^kf ,e f ;auSVP
(1)upi ,m i&522p id~«a1kf

02pi
0!F (

n5” a

^auUVPun&^nueanAf ,n* upi ,m i&
«a2«n

1(
n

^aueanAf ,n* un&^nuUVPupi ,m i&

pi
02«n~12 i0!

1E dzeAf ,n* ~z!Qn~kf
0 ,z!1~Z3

21/221!^aueanAf ,n* upi ,m i&G .

~31!
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UVP~x!5
a

2p i E dy
1

ux2yu E2`

`

dv Tr@S~v,y,y!g0#

~32!

is the VP potential and

Qn~k0,z!52e2E dxdyc̄a~x!grcpim i (1)~x!Drs~k0,x2y!

3
i

2pE2`

`

dv Tr@gsS~v,y,z!gnS~v1k0,z,y!#.

~33!

Comparing the expressions~30!,~31! with the related ex-
pressions of Ref.@8# we find that the contribution of the
reducible part of the diagram with the SE loop on the out
ing electron line@the second term in the right side of E
~30!# is absent in Ref.@8#.

Some individual terms in Eqs.~30! and ~31! contain ul-
traviolet divergences. These divergences arise solely f
the zero- and one-potential terms in the expansion of
electron propagators in powers of the external potential.
ing the standard expressions for the divergent parts of
zero- and one-potential SE terms~see, e.g., Ref.@11#! and the
Ward identity (Z15Z2) one easily finds that the ultraviole
divergences cancel each other in Eq.~30!. As to Eq.~31!, the
divergent parts incorporate into the charge renormaliza
factor (e5Z3

1/2e0).
An alternative approach to the renormalization probl

consists in using from the very beginning the renormaliz
field operatorscR5Z2

21/2c, AR5Z3
21/2A, the renormalized

electron chargee5e01de5Z1
21Z2Z3

1/2e0 and, respectively,
the renormalized Green functions. As a result, the renorm
ization constantsZ2 and Z3 disappear from the reductio
formulas ~3! and ~4! and, instead, additional counterterm
arise in the diagram technique rules.

In addition to the QED corrections derived in this sectio
we must take into account the contribution originating fro
changing the photon energy in the zeroth-order cross sec
~18! due to the QED correction to the energy of the bou
statea. It follows that the total QED correction of first orde
in a to the cross section is given by
05211
-
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e
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,

on
d

dsQED
(1)

dV f
5

~2p!4

v i
k f

22Re$t (0)* tQED
(1) %

1Fds (0)

dV f
U

k
f
05p

i
02«a

2
ds (0)

dV f U
k

f
05p

i
02«

a
(0)

. ~34!

Here tQED
(1) 5tSE

(1)1tVP
(1) is the QED correction given by Eqs

~30! and ~31! in accordance with the definition~2!. «a and
«a

(0) are the energies of the bound statea with and without
the QED correction, respectively.

V. INFRARED DIVERGENCES

Let us now consider the infrared divergent part oft. This
part results from the region of small momenta of the virtu
photon and is regularized by the nonzero photon massm.
The first term in the right side of Eq.~30! does not contain
infrared divergences. A simple evaluation of the infrared
vergent parts of the second, third, and fifth terms yields

1

2
@^auS8~«a!ua&^aueanAf ,n* upi ,m i&# infr

5
1

2
@Z221# infr^aueanAf ,n* upi ,m i&, ~35!

F(
n

^aueanAf ,n* un&^nuS~pi
0!2bdmupi ,m i&

pi
02«n~12 i0!

G
infr

5@Z221# infr^aueanAf ,n* upi ,m i&, ~36!

@~Z2
21/221!^aueanAf ,n* upi ,m i&# infr

52
1

2
@Z221# infr^aueanAf ,n* upi ,m i&. ~37!

FIG. 4. Decomposition of the vertex diagram in powers of t
Coulomb field. The single line denotes a free electron and
double line denotes an electron propagating in the Coulomb fie
2-5
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Summing these terms we find in the Feynman gauge

@Z221# infr^aueanAf ,n* upi ,m i&52
a

p
ln~m/m!

3^aueanAf ,n* upi ,m i&,

~38!
to
h

05211
To derive the infrared divergent part of the fourth term in E
~30!, we expand the vertex diagram in powers of the Co
lomb field as shown in Fig. 4. In this figure the single lin
indicates the free electron and the double line indicates
electron propagating in the Coulomb field of the nucle
The dashed line ended by the cross denotes the intera
with the Coulomb field. The infrared divergences arise o
from the diagrams~a! and ~b!. The contribution of the dia-
gram ~a! is
t (a)52e2
i

2pE2`

`

dvE dxdydzc̄a~x!gr(
n

cn~x!c̄n~z!

«a2v2«n~12 i0!
gneAf ,n* ~z!

3(
l
E dqS Uql~z!Ūql~y!

pi
02v2Aq21m21 i0

2
Vql~z!V̄ql~y!

pi
02v1Aq21m22 i0

D
3gs~2grs!E dk

~2p!3

exp„ik•~x2y!…

v22k22m21 i0
Upim i

~y!, ~39!
pa-
at
where

Uql~x!5
u~q,l!exp~ iq•x!

Aq0

m
~2p!3

,

Vql~x!5
v~q,l!exp~2 iq•x!

Aq0

m
~2p!3

,

u(q,l) andv(q,l) are the Dirac bispinors corresponding
the positive and negative energy states, respectively. T
are normalized by the equations

ū~q,l!u~q,l8!5dll8 , v̄~q,l!v~q,l8!52dll8 ,
ey

v̄~q,l!u~q,l8!50.

The infrared singularity in Eq.~39! results from the region of
small momenta in the integration overk. Only the term with
n5a and the positive energy part of the free electron pro
gator contribute to this singularity. Taking into account th
for small k

E dxUql
† ~x!exp~2 ik•x!Upim i

~x!'d~q1k2pi !dlm i

and

E dxca
†~x!exp~ ik•x!ca~x!'E dxca

†~x!ca~x!51,

we obtain for the infrared part
t infr
(a)5e2

i

2pE2`

`

dv
1

2v1 i0Euku!m

dk

~2p!3E dxc̄a~x!egnAf ,n* ~x!Upim i
~x!

1

v22k22m21 i0

1

pi
02v2A~pi2k!21m21 i0

52e2E dxc̄a~x!egnAf ,n* ~x!Upim i
~x!E

uku!m

dk

~2p!3

1

2~k21m2!„pi
02Ak21m22A~pi2k!21m2

…

. ~40!

Integrating overk and retaining only the terms which are singular atm→0 we obtain
2-6
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t infr
(a)52E dxc̄a~x!egnAf ,n* ~x!Upim i

~x!
a

2p
log~m/m!A11

m2

pi
2
lnS Api

21m22upi u

Api
21m21upi u

D . ~41!
e

E
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A similar evaluation of the diagram~b! and adding it to Eq.
~41! results in replacement ofUpim i

(x) in Eq. ~41! by

cpim i (1)(x) defined by Eq.~14!. So, we have

t infr
(a1b)5t (0)

a

2p
ln~m/m!A11

m2

pi
2
lnS Api

21m22upi u

Api
21m21upi u

D ,

~42!

wheret0 is the zeroth-order contribution given by Eq.~17!.
Summing this term with the infrared contribution from th
other terms, given by Eq.~38!, we find

t infr5t (0)
a

p F2 ln~m/m!2
1

2
ln~m/m!A11

m2

pi
2

3 lnS Api
21m22upi u

Api
21m21upi u

D G . ~43!

The related contribution to the cross section according to
~1! is

ds infr

dV f
5

ds (0)

dV f

a

p F22ln~m/m!2 ln~m/m!A11
m2

pi
2

3 logS Api
21m22upi u

Api
21m21upi u

D G , ~44!

whereds (0)/dV f is the cross section in the zeroth-order a
proximation defined by Eq.~18!.

As is known~see, e.g., Ref.@12,13#!, to cancel the infra-
red divergent contribution~44! we must take into accoun
that any experiment has a finite energy resolutionDE. It
means that any numbers of photons of the total energy
thanDE can be emitted in the process. It follows that to fi
the total cross section in the order under consideration
must include diagrams in which one photon of energyk0

5Ak21m2 less thanDE is emitted along with the emissio
of the photon with the energykf

0'pi
02«a ~we assumeDE

!kf
0). These diagrams are shown in Fig. 5. Assuming t

the energy resolution is high enough (DE!kf
0 ,m) we will

retain only those contributions from the diagrams shown
Fig. 5 which dominate atDE→0 . These contributions resu

FIG. 5. The radiative recombination accompanied by emiss
of a soft photon.
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just from the infrared divergent parts of the diagrams. T
infrared divergent terms are defined by the diagrams
picted in Fig. 6. Using the standard technique described, e
in Ref. @12# one can find that the infrared divergent part
the diagrams shown in Fig. 6 is

tg, infr
(a) 5t (0)

ee•pi

pi
02Ak21m22A~pi2k!21m2

1

pi
0A2k0~2p!3

,

~45!

wheret (0) is given by Eq.~17!, k is the momentum of the
soft photon ande is its polarization. To find the related con
tribution to the cross section we must evaluate

dsg~DE!

dV f
5

~2p!4

v i
k f

2(
l
E

uku<DE
dkutgu2, ~46!

where the indexl runs over the polarizations of the so
photon. Using the identity@12#

(
l

~e•p!~e•p!5p22
~p•k!2

~k0!2
~47!

we find

(
l
E

uku<DE
dkutgu2

5ut (0)u2e2E
uku<DE

dk

~2p!3

~k21m2!pi
22~pi•k!2

2~k21m2!3/2~pi
0!2

3
1

„pi
02Ak21m22A~pi2k!21m2

…

2
. ~48!

Integrating overk in Eq. ~48! and omitting terms which ap
proach zero atm→0, we obtain

n FIG. 6. The infrared divergent part of the radiative recombin
tion accompanied by emission of a soft photon.
2-7
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dsg~DE!

dV f
5

ds (0)

dV f

a

p F122 ln 222 log~DE/m!

2A11
m2

pi
2
F~ upi u/pi

0!2S 1

2
1 ln~DE/m! D

3A11
m2

pi
2
lnS Api

21m22upi u

Api
21m21upi u

D G , ~49!

where

F~a!5E
0

`

dx
x

x211
lnF ~11a!~Ax2112ax!

~12a!~Ax2111ax!
G . ~50!

One can see that the infrared divergent parts in Eqs.~44! and
~49! cancel each other:

ds infr

dV f
1

dsg~DE!

dV f
5

ds (0)

dV f

a

p F122 ln 222 ln~DE/m!

2A11
m2

pi
2
F~ upi u/pi

0!

2S 1

2
1 ln~DE/m! DA11

m2

pi
2

3 ln S Api
21m22upi u

Api
21m21upi u

D G . ~51!

According to this equation, at a fixed energy of the incide
electron the QED correction depends on the photon-ene
resolutionDE and becomes infinite whenDE→0. It means
that the validity of this equation is restricted by the conditi
(a/p)u log(DE/m)u!1. For extension of the theory beyon
this limit it is necessary to include the radiative correctio
of higher orders ina ~see Refs.@12,13#, and references
therein!. It results in an ‘‘exponentiation’’ of the radiative
corrections and removes the singularity forDE→0.

VI. ELECTRON ENERGY DISTRIBUTION

In the derivation of the formulas~49!,~51! we assumed
that the incident electrons have a fixed energy. These for
las remain also valid in the case when the energy sprea
the incident electrons is much smaller than the energy in
val DE in which the photons are detected. Let us now co
sider how we should modify the formulas to calculate t
QED corrections to the RR cross section if the energy spr
of the incident electrons characterized by a parameterG is
much larger thanDE. For simplicity, we will neglect the
transverse component of the electron momentum. Let us
resent the energy of an incident electron as«5«a1kf

01x.
Only if x.0, the electron can be captured to the statea with
the emission of a photon in the energy interval (kf

0 ,kf
0

1DE). For DE.x.0 the cross section of this process
equal to the cross section with the electron energy«5«a

1kf
01x and withx considered as the upper limit for the so
05211
t
gy

s

u-
of
r-
-

d

p-

photon energy. Forx.DE the cross section under conside
ation is the difference of the related cross sections with
soft-photon-energy limitsx and x2DE, respectively. If the
energy distribution of the incident electrons is described b
function f («), the total cross section into the interval of th
photon energy (kf

0 ,kf
01DE) is

ds̄~DE!

dV f
5E

0

DE

dx f~«a1kf
01x!

ds~x!

dV f

1E
DE

`

dx f~«a1kf
01x!Fds~x!

dV f
2

ds~x2DE!

dV f
G

5E
0

`

dx f~«a1kf
01x!

ds~x!

dV f

2E
DE

`

dx f~«a1kf
01x!

ds~x2DE!

dV f
, ~52!

whereds(x)/dV f and ds(x2DE)/dV f are the cross sec
tions with the electron energy«a1kf

01x and with the soft-
photon-energy limitsx andx2DE, respectively. Assuming a
very weak dependence ofds(x)/dV f on the electron energy
within the electron energy spread interval and taking in
account thatDE!G we obtain

1

DE

ds̄~DE!

dV f

'E
0

`

dx
ds~x!

dV f

@ f ~«a1kf
01x!2 f ~«a1kf

01x1DE!#

DE

'2E
0

`

dx
ds~x!

dV f

d f~«a1kf
01x!

dx
. ~53!

According to Eq.~51!, the cross sectionds(x)/dV f includ-
ing the lowest order QED corrections can be written as

ds~x!

dV f
5A ln x1B. ~54!

It follows that for any reasonable functionf («) the integral
in Eq. ~53! is convergent at smallx and

~1/DE!@ds̄~DE!/dV f #

does not depend onDE. If we assume, for instance,
Lorentz-type form forf («),

f ~«!5
1

2p

G

~«2«0!21
G2

4

, ~55!

integrating overx in Eq. ~53! yields
2-8
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1

DE

ds̄~DE!

dV f
5

1

2p

G

~«a1kf
02«0!21

G2

4

3 H B1AF1

2
ln@~«a1kf

02«0!21~G2/4!#

2
«a1kf

02«0

G

3 $p22 arctan@2~«a1kf
02«0!/G#%G J .

~56!

For a rectangular form forf («),

f ~«!5
1

G
u~«2«01G/2!u~«01G/22«!, ~57!

whereu(x)5(x1uxu)/(2uxu), one finds

1

DE

ds̄~DE!

dV f
5

1

G

ds~«01G/22«a2kf
0!

dV f
~58!

if «a1kf
0 belongs to the interval («02G/2,«01G/2). As one

can see from Eqs.~56!,~58!, for DE!G the cross section
depends onG but not onDE.

In the REC experiments@1,2# the effective energy sprea
caused by the momentum spread of a quasifree target
tron bound in a low-Z target atom is much larger than th
photon-energy resolution. It follows that the formula~51!
cannot be directly employed for the calculation of the QE
corrections to the REC cross section into the photon-ene
interval determined by the photon-energy resolution. Ho
ever, it can be used for the evaluation of the QED correcti
to the REC cross section into a photon-energy intervalDE
(DE!kf

0 ,m) which is much larger than the effective ener
spread of the target electron.

VII. NUMERICAL RESULTS

As is known from calculations of QED effects for boun
states~see@7# and references therein!, the dominant contri-
bution of the vacuum polarization correction can be obtain
by using the Uehling approximation. In this approximati
the vacuum polarization potential in the diagrams depicte
Figs. 2~d!,2~f! is replaced by the Uehling potential which
the first nonvanishing term in the decomposition of t
vacuum loop in powers of the external Coulomb field. As
the diagram depicted in Fig. 2~e!, one can show that it doe
not contribute in the Uehling approximation.

In Refs. @14,15# we evaluated numerically the Uehlin
part of the VP correction to the RR cross section by inclu
ing the Uehling potential into the Dirac equation and taki
the difference between the cross section obtained with
modified wave functions and bound-state energy and
cross section obtained with the unperturbed wave functi
and bound-state energy. In this method, in addition to
05211
c-

y
-
s

d

in
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e
e
s
e

Uehling correction of the first order ina, higher-order itera-
tions of the Uehling potential are accounted for as we
Since the higher-order corrections decrease rapidly with
creasing number of the VP loops, this approach serves
good estimation scheme for the Uehling correction of
first order ina.

In the present work, the Uehling correction to the R
cross section is evaluated numerically according to the
mula ~34!. The results of this evalution are in a good agre
ment with those from Refs.@14,15#. Expressed in terms o
the unperturbed cross section, the individual Uehling corr
tions to the total cross section for the radiative recombinat
into the K shell of bare uranium are presented in the th
column of Table I. This table contains also the numeri
values for some SE corrections calculated in this work. T
correctionsen

(1) results from changing the bound state ener
It is determined by the term in the square brackets of
~34!. The correctionsbw

(1) corresponds to the irreducible pa
of the diagrams describing the first-order QED effect on
bound-state electron wave function@Figs. 2~a!,2~d!#. The
correction scw

(1) results from the diagrams describing th
QED effect on the continuum-state wave function@Fig. 2~c!,
2~f!#. The calculations of the QED corrections were pe
formed by employing the methods developed in Refs.@16–
18#.

As in the bound-state QED, one may expect that the U
hling approximation accounts for a dominant part of the V
correction. As to the self-energy correction, we expect o
that the terms calculated in this work give a reasonable e
mate of the order of magnitude of the self energy correct
which is beyond the correction depending on the phot
energy intervalDE @see Eq.~51!#. The relative value of the
last correction, which we denote byd(DE), is defined by

d~DE!5
a

p F221
1

b
ln

11b

12b G lnDE

m
, ~59!

whereb5v i /c. As it follows from the derivation of Eq.~51!
and from the discussion in the previous section, the phot

TABLE I. The relative values of the QED corrections to th
total cross section for the radiative recombination into theK shell of
bare uranium, expressed in percent.

Impact
energy Correction

Vacuum
polarization, in %

Self-
energy, in %

sen
(1) 0.061 20.230

100 MeV/u sbw
(1) 0.065 20.160

scw
(1) 20.006 ?

Total 0.120 20.390
sen

(1) 0.058 20.219
300 MeV/u sbw

(1) 0.117 20.295
scw

(1) 20.003 ?
Total 0.173 20.513
sen

(1) 0.056 20.211
1000 MeV/u sbw

(1) 0.164 20.380
scw

(1) 0.043 ?
Total 0.263 20.591
2-9
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energy interval has to be chosen in the range:G!DE
!kf

0 ,m whereG characterizes the energy spread of the in
dent electrons. In the REC experiments which are being
formed at GSI@1,2# the effective electron-energy spread
determined by the momentum distribution of the quasif
target electrons. The width of this spread in the projec
system increases with increasing the impact energy. In
case of a N2 gas target, which is presently being employed
the experiments, the effective energy spread in the proje
~heavy ion! frame amounts to about 10–40 keV for the im
pact energy in the range 100–1000 MeV/u. This value w
be considerably reduced in the experiments on a H2 gas tar-
get which are under preparation. In the case of a H2 gas
target, to satisfy the conditions onDE given above we can
chooseDE to be 15, 25, and 50 keV in the projectile fram
for the impact energies 100, 300 MeV/u, and 1 GeV/u,

FIG. 7. The QED corrections to the differential cross section
the radiative recombination into theK shell of bare uranium at a
projectile energy of 100 MeV/u, in the laboratory system. VPen1bw

is the correction resulting from changing the bound-state ene
and the bound-state wave function due to the vacuum polariza
effect. SEen1bw denotes the corresponding self-energy correcti
VPcw is the correction which accounts for the vacuum polarizat
effect on the continuum-state wave function. VPtot is the total
vacuum polarization correction calculated in the Uehling appro
mation. QEDDE denotes the correction which depends on
photon-energy interval. The relative value of this correction is
fined by Eq.~59!. The photon-energy interval is chosen to be
keV in the projectile frame. Since the correction due to the
effect on the continuum-state wave function has not yet been
culated, the related VP correction is not included in the sum of
QED corrections denoted as QEDen1bw1DE . ds (0)/dV is the
zeroth-order cross section which is presented to display the rela
values of the QED corrections.
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spectively. The corresponding photon-energy intervals in
laboratory~gas-target! frame are determined according to th
Lorentz transformation

DEproj5DElabg~12b cosu lab!, ~60!

whereg51/A12b2. At a fixed DEproj , from this equation
one findsDElab as a function of the polar angle. For th
photon-energy intervals chosen aboved(DE) amounts to
20.11,20.28, and20.59 % for the impact energy 100, 30
MeV/u, and 1 GeV/u, respectively. To find the comple
self-energy correction, accurate calculations of the diagra
depicted in Figs. 2~b!,2~c! are required.

Adding the Uehling correction and the part of the S
correction presented in Table I to the correctiond(DE)
evaluated above, we find the QED correction to the to
cross section amounts to20.38,20.62, and20.92 % for the
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FIG. 8. The QED corrections to the differential cross section
the radiative recombination into theK shell of bare uranium at a
projectile energy of 300 MeV/u, in the laboratory system. VPen1bw

is the correction resulting from changing the bound-state ene
and the bound-state wave function due to the vacuum polariza
effect. SEen1bw denotes the corresponding self-energy correcti
VPcw is the correction which accounts for the vacuum polarizat
effect on the continuum-state wave function. VPtot is the total
vacuum polarization correction calculated in the Uehling appro
mation. QEDDE denotes the correction which depends on t
photon-energy interval. The relative value of this correction is
fined by Eq.~59!. The photon-energy interval is chosen to be
keV in the projectile frame. Since the correction due to the
effect on the continuum-state wave function has not yet been
culated, the related VP correction is not included in the sum of
QED corrections denoted as QEDen1bw1DE . ds (0)/dV is the
zeroth-order cross section which is presented to display the rela
values of the QED corrections.
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impact energy 100, 300 MeV/u, and 1 GeV/u, respective
For comparison, the calculation of Ref.@9# gives 20.03,
20.13, and20.34 %, respectively, for the same values of t
photon-energy intervalDE.

Figures 7, 8, and 9 show the angular dependence of
QED corrections to the radiative recombination into theK
shell of bare uranium in the laboratory~gas-target! system.
The transformation of the differential cross section from
projectile system to the laboratory system was done acc
ing to the formulas from Ref.@4#. In these figures, VPen1bw is
the correction resulting from changing the bound-state
ergy and the bound-state wave function due to the vacu
polarization effect. SEen1bw denotes the corresponding se
energy correction. VPcw is the correction which accounts fo
the vacuum polarization effect on the continuum-state w
function. VPtot is the total vacuum polarization correctio
calculated in the Uehling approximation. QEDDE denotes the

FIG. 9. The QED corrections to the differential cross section
the radiative recombination into theK shell of bare uranium at a
projectile energy of 1000 MeV/u, in the laboratory system. VPen1bw

is the correction resulting from changing the bound-state ene
and the bound-state wave function due to the vacuum polariza
effect. SEen1bw denotes the corresponding self-energy correcti
VPcw is the correction which accounts for the vacuum polarizat
effect on the continuum-state wave function. VPtot is the total
vacuum polarization correction calculated in the Uehling appro
mation. QEDDE denotes the correction which depends on
photon-energy interval. The relative value of this correction is
fined by Eq.~59!. The photon-energy interval is chosen to be
keV in the projectile frame. Since the correction due to the
effect on the continuum-state wave function has not yet been
culated, the related VP correction is not included in the sum of
QED corrections denoted as QEDen1bw1DE . ds (0)/dV is the
zeroth-order cross section which is presented to display the rela
values of the QED corrections.
05211
.

he

e
d-

-
m

e

correction which depends on the photon-energy interval. T
relative value of this correction, which is defined by Eq.~59!,
does not depend on the angles in both projectile and lab
tory systems, if the photon-energy interval in the laborato
frame is chosen according to Eq.~60!. Comparing the
VPen1bw correction with the SEen1bw correction reveals a ten
dency of cancellation between them. Expecting a sim
cancellation between the VPcw and SEcw contributions, we
have not included the VPcw term into the sum of the QED
corrections denoted as QEDen1bw1DE . In order to display the
relative values of the QED corrections, we present
zeroth-order cross section as well.

To present the relative magnitude of the calculated effe
more clearly, the ratio of the QED corrections and t
zeroth-order cross section is given in Fig. 10 for a projec
energy of 1 GeV/u. As one can see from this figure,
relative value of the QEDen1bw1DE correction varies from
-0.8 % at the forward angles to21.4% at the backward
angles. However, the contribution of the QED correctio
which are omitted in Fig. 10 may significantly change th
behavior, especially at forward and backward angles.

It is also interesting to note that the differential cross s
tion at the backward direction vanishes at an impact ene
close to 130 MeV/u. It results, in particular, in relative
large contribution of the QED correction to the backwa
cross section at the energy 130 MeV/u. So, at this energy
QEDen1bw1DE correction is about 0.022 mb/sr while th
zeroth-order cross section amounts only to 0.009 mb/sr.

VIII. CONCLUSION

In this paper we derived the complete formulas for t
QED corrections of the first order ina to the cross section o
the radiative recombination of an electron with a ba
nucleus. We found that, in addition to the expressions
rived previously in Ref.@8#, there is a nonzero contributio
from the reducible part of the diagram with the self-ener
loop on the outgoing electron line. The ultraviolet and infr
red divergences of the QED corrections have been analy
In particular, we demonstrated that at a fixed incident el
tron energy the infrared divergence is eliminated in the to
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FIG. 10. The QED corrections to the differential cross sect
for the radiative recombination into theK shell of bare uranium at a
projectile energy of 1000 MeV/u, expressed in percents of
zeroth-order cross section. For an explanation of the notations
Fig. 9.
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cross section by allowing for the emission of an unobser
soft photon with an energy less than the photon-energy r
lution. We note that the contribution of soft photons to t
cross section depends on the energy interval in which
photons are detected if this interval is much larger than
effective energy spread of the incident electrons. If this
terval is much smaller than the effective electron-ene
spread, the contribution of soft photons is essentially de
mined by the parameters which define the line shape of
effective energy spread of the incident electrons. It does
depend on the energy resolution of the photon detector,
vided this resolution is good enough to accurately define
line shape.
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We evaluated numerically the Uehling part of th
vacuum-polarization correction to the RR cross section an
part of the self-energy correction. The calculation of the to
self-energy correction is under way and will be publish
elsewhere.
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