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QED corrections to the radiative recombination of an electron with a bare nucleus

V. M. ShabaeV;? V. A. Yerokhin?3T. Beier! and J. Eichléet
!Department of Physics, St. Petersburg State University, Oulianovskaya 1, Petrodvorets, St. Petersburg 198904, Russia
2Bereich Theoretische Physik, Hahn-Meitner-Institut, 14109 Berlin, Germany
3Institute for High Performance Computing and Data Bases, Fontanka 118, St. Petersburg 198005, Russia
“4Fysik och Teknisk Fysik, Chalmers Tekniskagskmla och Gteborgs Universitet, SE-412 96 @borg, Sweden
(Received 27 October 1999; published 18 April 2p00

Complete formulas for the QED corrections of the first ordewirio the radiative recombination of an
electron with a bare nucleus are derived. An analysis of the ultraviolet and infrared divergences is presented.
Application of the formulas to the radiative electron capture process is discussed. Numerical results are
presented for the vacuum-polarization correction evaluated in the Uehling approximation and for a part of the
self-energy correction.

PACS numbd(s): 12.20.Ds, 11.86-m, 34.80.Kw

[. INTRODUCTION which is put at the origin of the coordinate frame. This cor-
responds to the projectile system if we study the radiative

ion and a lowZ target atom, an electron may be captured byr ecpmpination Of. a freg target eIectr_on with a bare hea\_/y
the projectile, while a simultaneously emitted photon carriesp.rojecgle' The differential cross section of this process is
away the excess energy and momentum. This process is d8V€Mn PY

In an energetic collision between a highly charged high-

noted as radiative electron captuiREC). Since a loosely (2m)
bound target electron can be considered as quasifree, it is do= | 7|26(e 4+ k9 —p?)dk;, (1)
essentially equivalent to radiative recombinati&R) or its Ui

time-reversed analogon, the photoelectric effect. At the GSI 0 5 . o
Darmstad{1,2], reactions of this type have been extensivelywherep;=+/p;+m* is the energy of the incident electron,
studied using bare projectiles up t62J with energies up to &, is the energy of the final stateof the one-electron atom,
several hundred MeV/u. The relativistic theory of REC Waskf=(k?,kf) with k? and ks being the photon energy and
considered in detail in Ref$3-5], and the results of this momentum, respectively; is the velocity of the incident
theory are in excellent agreement with experiment. In parelectron in the nucleus frame, ands the amplitude of the
ticular, the spin-flip contribution to REC, calculated in Refs. process which is connected with tBematrix element by
[3-5], was recently identified in angular-differential mea-
surement$6). (ki €r;@]SIpi iy =2mi S(e4+ K7 —p) 7. 2
In view of the increasing experimental accuracy and the
well-defined theoretical description, it is tempting to searchHere €;=(0,¢) is the photon polarization arﬂ:(p?,pi)_
for quantum electrodynami¢QED) effects supplementing According to the standard reduction technigsee, e.g., Ref.
the existing theory3-5]. Indeed, heavy ions are good sys- [11]) we have
tems for testing QED effects in strong electric fields. How-
ever, until now, such effects in heavy ions, for example, the . I g "o w
Lamb shift, were investigated only for bound statsse Ref. (ki erialSpi i) =@l ol ks €)bin(Pi 4110}
[7], and references thergirOn the other hand, QED correc- :(—izgl’z)(—izgm)
tions to the photoeffect were considered only to the lowest
order inaZ [8,9]. Since calculations based on a@ expan- ef expliks-y)
sion are not valid for highz systems, it is desirable to per- X f dtydiz————
form calculations for the complete@Z dependence. \/2|<?(27T)3
A systematic QED theory of the RR process has been

worked out in[10]. In the present paper, we apply this theory X(a|Tj (y)¥(2)[0)(—id,—m)
to derive the formulas for the QED corrections of the first ]
order in « to radiative recombination of an electron with a u(p;, mi)exp(—ip;-2) 3
bare nucleus. We analyze the infrared and ultraviolet diver- X 0 ' @)
gences and discuss the application of these formulas to the p_, 3

. (27)
REC process. We calculate the vacuum-polarization correc- m

tion using the Uehling approximation and a part of the self-
energy correction. Relativistic unit§ic=1) are used in whereT is the time-ordering operatos: b=a"b,,(x) is the
the paper. electron-positron field operator in the Heisenberg representa-

tion, j,,(y)=(e/2)[$(y),yy¢(y)] is the electron-positron
Il. BASIC FORMULAS current operatorZ, and Z; are the renormalization con-

We consider the radiative recombination of an electrorstants, andi(p;,x;) is the free wave function of the incident
with momentump; and polarizationu; with a bare nucleus electron normalized by the conditiaru=1.
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Equation(3) is rather formal and cannot be used for the 2 ; 0
direct calculation of the amplitude |&) is a bound atomic ~ 9a(E)(E'—E)= I—f dxdya(X)G(E",E,X,y) v #a(y),
state. To calculate this amplitude by perturbation theory we

5
need a special technique. Such a technique was developed in ®
Ref.[10] for the general case of a few-electron atom. In the
present paper we apply this technique to the case of a bare 0 0_ 0
nucleus in the initial state and an one-electron atom in the 9y aie(B,P7) S(EFKT—pT)
final state. In this case the amplitude of the process is calcu-
lated by = f dxi3(X)G,, o (K°E,p%X), (6)

(ke €5;aSIpi i) =~ 8(ea+k?—pp)
(77 ,1,2§ E (E.p° Ya(X) is the wave function of the_ finaI_ state of _the one-
(Z,Z5) Fd 9y aie(E.PD) electron atomG andG,, . are defined in the Heisenberg

representation by the equations
X

1 —1/2
o idEga(E)} : (4)

HereT is a contour in the comple& plane which surrounds G(E',E,x,y)= 1 fx dx°dy® exp(iE'x°—iEYy©)
the levela and does not surround other levels and it is as- U 2m)?) -

sumed to be counterclockwise. The functioggE) and o

0y, e (E.P¥) are defined by (O[T 9(y)|0), @)

ef exp(—ikg-y)
V2kd(2m)3

u(pi,umi)explip;-2)

0
V p—l(zﬂ)3
m

As is evident from these equatiorG,is simply the full one- Ill. ZEROTH-ORDER APPROXIMATION

elef:t.ron Green fl.m.ct|on and,, '€ 'S_ the Green function de- To the zeroth order we have the diagram shown in Fig. 1.
scribing the radiative recombination process. B@hand  The formula(4) gives

G, ¢ are constructed by perturbation theory after the tran-
fo=i

1 (=
Gy, (K% E,p%x)=— 2—f dx? exp(i Exo)f d*yd*zexp(ik%°—ip°z°)
1 am) —w

X (O] Tg(x)j () (2)|0)(—id,—m) @)

sition to the interaction representation in E¢&.and(8) and (ke €r;aSOp;, pi)=— 824+ K{—pf)
using Wick’s theorem. The Feynman rules férandef e
are given in Ref[10]. G, . differs from G by presence of X id Eg(y(:),a;ei(E,p?), 9

the outgoing photon line and by insertion of the incident

electron wave function instead of the initial electron propa-where the superscript indicates the ordewirHere we have
gator. taken into account that

1fﬁdE(°>E—1§>dE ! =1 10
2ai DOER(B)=50 §dEg——=1. (10

According to the Feynman rules from RELO0], we have

i
G(y(:)vei(ko,E,po,x)=f dy5—S(E,xy)(—iey"2m)
FIG. 1. The radiative recombination of an electron with a bare &

nucleus in the zeroth-order approximation. The double line denotes X S(E+KO— pO)A? W ()Y,
the electron propagating in the Coulomb field of the nucleus. The ' 1
wavy line ended by the arrow denotes the emitted photon. (11
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where

Sty =3 L RN v S

n

. . i (a) (b) ()
is the electron propagator in the Coulomb field of the

nucleus,
L. €fexplike-x)
ol e QN 9 N Q
(d) (e) (f)

is the wave function of the outgoing photon, apq#i(ﬂ(x)

is the wave function of the incoming electron in the Cou-

lomb field defined by the equatidsee Ref[10] for detail9 FIG. 2. The first-order QED corrections to the radiative recom-
bination of an electron with a bare nucleus.

€

u(pi, i) explip;-x)

Ppu(+)= : +[pP—Ho(1-i0)]"*
Pi or according to the definitiof)
—(2m)®
m
O=—(alea”A} |pi,mi)=(alea-A¥|p;,umi). (1
chwpi#i(ﬂ' (14) T < | @ f,y|p| M|> < | (44 f|p| M|> (17)

HereHy=ap+ Bm is the free-electron Hamiltonian antk ~ The corresponding cross section is
is the Coulomb field of the nucleus. The apparent expres-
sions foryy, , (+) are given, e.g., in Ref4]. Substituting the

expression(11) into the Eq.(6), we obtain dol® _(277)4 2 _(0)[2
de Uj
(alea”AT |pi,pi)
g(yg),a;ei(E,poF . (15

E—¢
a IV. QED CORRECTIONS OF THE FIRST ORDER IN «

Equations(9) and (15) yield The QED corrections of first order im are defined by the

diagrams shown in Fig. 2. Let us consider in detail the deri-
vation of the formal expressions for the self-ene(g§¥) cor-
rections[diagrams(a)—(c)]. The formula(4) gives in the or-
X(alea"Af Ipi,ui)  (16)  der under consideration

(k. er;a|SOp; , wi)=—27i (e, + kI —pp)

1 1
(s el SOy )= — Ble o+ K= p?)[ § AEGD e (E00)— 5 § AEGD (.00 § dE(E)

+(2,Y-1) ﬁdEg&‘?,a;exE,p? } (19

whereg{"(E) is defined by the first-order self-energy diagram. We omitted here the f&gt4f in the last term since it
contributes only to the vacuum-polarizatioviP) correction. Consider first the diagraf@. According to the Feynman rules
from Ref.[10], we have

[ 2
G(ylf"f‘gi(ko,E, p%x")=S(E+k°— po)f dxdydzES(E,x’ X)=— Y2 (E,X,y)

i
X5 S(EY, DAL (D~ 18727 P (+)(2), (20
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where
i
E(E,x,y)=eZZJ dwy’y*S(E— w,%,Y) y'D (@, X~Yy) _fs,m _\5,m
(21) 7\ 7\
) FIG. 3. The mass counterterm corrections to the radiative re-
is the self-energy operator, combination of an electron with a bare nucleus.
dk  exdik-(x—y)] and
D, (w,x—y)=— Uf 22
pol XY=, (2m)° 0?—k2—u?+i0 (22
(1b) 0\ _ o, i v 0
is the photon propagator in the Feynman gauge, @ard a fﬁrdEgvaa;ei(E’pi )_ZW'J dzeAr (2)A"(ea,Pi’2),
photon mass which is introduced to regularize the infrared (26)
divergences. According to the definitig6) one finds
where
(1) 0 :E (a|2(E)|n>(n|ea"A{V|pi i) _
ng ae( P ) m (E—sa)(E—Sn) A"( o Z):eZI_JOC g ded E(X) pS( Cux Z)
(23 &P 27 ) 00| KYPLOYSET X,
and X y"S(p°~ ,2,y) ¥’D o @,X—Y)

X lppiMi("')(y)' 27
55 dEG) Y. (E.pD) _ .
r Let us now calculate the second term in Ef9). A simple

:ZWi{ > (S () |n)(n|ea”A% |pi i) calculation of the second factor in this term yields
nta €a~ €n
5o B E =@ el (29
+(alX' (ea)la)(alea”AT Ipi i) |, (24)
We obtain

whereE’(ea)EdE(s)/ds|E:8a. A similar calculation of the

diagrams(c) and (b) gives
~ 5 $ AEGD, L 005 § dEd(E)

§4EQ L E P Lo ,
=~ S2mi(alea’A7 Ipi ui)(al (s0)la). (29

oY (alea”AT,In)(n[=(p))|pi i)

< p?—sn(l—iO) Substituting Eqs(24)—(26), (29) into Eq. (19), taking into

(25) counterterm diagram@-ig. 3), we find

2 al ol VA*V i Mi
<kf16f;a|S(SlE)|pivﬂi>:_277i5(8a+k?_pio){§ (a2 (ea) = Bomin)(njeaAf,[pi )

€a—€p

(alea”At,In)(n[Z(p) — Bomlp; , i)
pP—en(1—i0)

1
+§<a|2’(sa)|a><a|ea” ?,V|pi,,ui>+;
+ f dzeAr (2)A"(eq,p),2)+(Z;, V= 1)(alea’AF |pi,mi) |- (30)

A similar calculation of the VP correctiorf&ig. 2, diagramgd)—(f)] gives

052112-4
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> (alUyp|n)(nlea”AT |pi,ui)

n+a €a~” €n

(ks € ;a|SS/1P)|pi i) =—2mi 8(eat k?‘ pio)|:

<a|eaVA?,V|”><n| Uvplpi s mi)

+ [ dzent (20700 2)+ (25 7~ 1(aleatAT,Jpi ) |

n p?—sn(l—iO)
(31
|
Here delldy (2m)*
QED *
dQ; B Vi kuZRE{T(O) TS%D}
a 1 % do(® do©®
U] x=—.Jd—der AR _

vp(X) 2 y|x—y| ue [S(w,y,y)y"] a0, Omro_s a0, (34)

f i a

(32) kf=pp el

Here 7o2p= 52+ 7{2 is the QED correction given by Egs.
(30) and (31) in accordance with the definitio(2). e, and
) are the energies of the bound statevith and without
the QED correction, respectively.

is the VP potential and

Q(K2,2) =~ [ Ay a0 YU 119D, (KX)
V. INFRARED DIVERGENCES

I oo}
Xﬁj do T y"S(w,Y,2) y’'S(w+k° zy)]. Let us now consider the infrared divergent partrofT his
o part results from the region of small momenta of the virtual
(33 photon and is regularized by the nonzero photon mass
The first term in the right side of E¢30) does not contain
infrared divergences. A simple evaluation of the infrared di-

Comparing the expressiori$0),(31) with the related ex- o oot narts of the second, third, and fifth terms yields

pressions of Ref[8] we find that the contribution of the
reducible part of the diagram with the SE loop on the outgo-
ing electron line[the second term in the right side of Eq. 1
(3%)] is absent |n[ Ref[8] I q §[<a|2,(8a)|a><a|eavA;V|pi vMi)]infr
Some individual terms in Eq$30) and (31) contain ul-
traviolet divergences. These divergences arise solely from
the zero- and one-potential terms in the expansion of the
electron propagators in powers of the external potential. Us-
ing the standard expressions for the divergent parts of the
zero- and one-potential SE terifsee, e.g., Ref11]) and the (alea”A} In)(n|=(pY)— Bom|p;, mi)
Ward identity ¢Z,=2,) one easily finds that the ultraviolet pP—&, (1-i0)
divergences cancel each other in E2). As to Eq.(31), the boon
divergent p:la/rzts incorporate into the charge renormalization =[Z, 1]im(@lea” AL, |pi i), (36)
factor (e=Z35ey).
An alternative approach to the renormalization problem

1
25[22—1]infr<a|eaVA?,u|pi NS (35

=}

infr

consists in using from the very beginning the renormalized [(Z;Y*=1)(alea’Af ,|pi i) linr
field operatorsyr=2, Y4y, Ag=25?A, the renormalized .
— _—-—1 1/2 . )
electron charge=ey+ de=2, “Z,Z5 e, and, respectively, = E[Zz_l]infr<a|ea AF LI Pi ). (37)

the renormalized Green functions. As a result, the renormal-
ization constantZ, and Z; disappear from the reduction

formulas (3) and (4) and, instead, additional counterterms ‘LL]C! - “\ . \L T . ‘\\ T
arise in the diagram technique rules. = = $ +
In addition to the QED corrections derived in this section, L"wj " ?‘w] LR,V-'), s

we must take into account the contribution originating from

changing the photon energy in the zeroth-order cross section
(18) due to the QED correction to the energy of the bound FIG. 4. Decomposition of the vertex diagram in powers of the
statea. It follows that the total QED correction of first order Coulomb field. The single line denotes a free electron and the
in « to the cross section is given by double line denotes an electron propagating in the Coulomb field.

(a) (b) (c)

052112-5



SHABAEV, YEROKHIN, BEIER, AND EICHLER PHYSICAL REVIEW A61 052112

Summing these terms we find in the Feynman gauge To derive the infrared divergent part of the fourth term in Eq.
(30), we expand the vertex diagram in powers of the Cou-
lomb field as shown in Fig. 4. In this figure the single line
indicates the free electron and the double line indicates the

[Z,—1]i(alea”AF |p; ,Mi>:_ﬁ|n(ﬂ/m) electron propagating in the Coulomb field of the nucleus.
77 The dashed line ended by the cross denotes the interaction
with the Coulomb field. The infrared divergences arise only
from the diagramga) and (b). The contribution of the dia-
(38  gram(a) is

x(alea”AT |pi, i),

Pn(X) Yn(2)

g~ w—gn(1-i0

i (= _
&= —ezﬂj_wde dxdydzi,(x) y‘); ) y'eAl (2)

‘S f df Ua@Ua(y) V@V
pP—w—VPP+m*+i0  pl—w+g>+m?—i0

(e
expik- (x—y)) W, 39

X
v g””)f (2m)% w2~ K2~ p2+i0 P*

where v_(q,)\)u(q,)\’)=0.
u(g,N)expiq-x) The infrared singularity in Eq39) results from the region of
Up(X)= ———=—=", small momenta in the integration ovier Only the term with
/4 5.3 n=a and the positive energy part of the free electron propa-
E( ) gator contribute to this singularity. Taking into account that
for smallk
v(g,N)exp(—iqg-x) ; ,
Vr(X)= o , f dxU g (x)exp( —ik-X)Up . (X)= 8(q+K—p;) Sy,

—(2m)®
m and

u(g,\) andv(q,\) are the Dirac bispinors corresponding to

the positive and negative energy states, respectively. They dwa(x)exp(ik~x)zp (X)%J dwa(x)w (x)=1,
are normalized by the equations 2 2 anre

u(gMU(N ) =80, v(GN)o(gN)=— S\, we obtain for the infrared part

dk — 1 1
N _f f fdx x)ey"Af (X)U, , (X >
|nfr _U)+|O \k\<m(277)3 ¢a( ) 7 f,V( ) pi/.Li( )wz—kz—,u,2+i0 plo_w_ (pl_k) +m +|0

_ dk 1
=—e? | dxy, YA (X)U, . 40
eJ Xalx)eY AL () K=m(2m)3 2(k?+ u?) (p7 — VK> + = (pi—k)?+m?) 49

Integrating ovelk and retaining only the terms which are singulaat:0 we obtain

052112-6
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_ @ m2 [ JpZ+m2—|p|
T =~ f Ox(X)€Y"AT, (0 Up, (X) lod(m/ ) \[ 1+5in —mﬂpfl
1 1 1

. 41

A similar evaluation of the diagrartb) and adding it to Eq. just from the infrared divergent parts of the diagrams. The
(41 results in replacement o,  (x) in Eq. (41) by infrared divergent terms are defined by the diagrams de-

Yo (+)(X) defined by Eq(14). So, we have picted in Fig. 6. Using the standard technique described, e.g.,
Pitt in Ref.[12] one can find that the infrared divergent part of
v the diagrams shown in Fig. 6 is
5920 ) /14 Mol p‘2+m2_|p‘|) ’ ’
i f - A _ iy s ., |
o 27 pi | Vpi+m’+|pj
42 @ — 0 ce-Pi !

Tyinfe =T "9 o — 2, 2 0 51,0 3’
where 7, is the zeroth-order contribution given by E4.7). py— VK2 + u? = (pi—K)?+m? pPy2k (277()45)

Summing this term with the infrared contribution from the
other terms, given by E438), we find

where 7% is given by Eq.(17), k is the momentum of the
soft photon andk is its polarization. To find the related con-
tribution to the cross section we must evaluate

2
ro= 10| ZIn(im) = Sn(aim) A/ 14 o
infr aT M 2 K 2

|
><In< \/pi2+m2_|pi|>
Vp{+m?+ ||

The related contribution to the cross section according to Eq.
Q) is where the index\ runs over the polarizations of the soft

photon. Using the identitj12]
2
[ m
=2In(w/m)—In(/m) \/ 1+ —
Pi

Xlog( Vpi+m?—|pj]
VP! +m?+ ]

whereda(9/d(); is the cross section in the zeroth-order ap-
proximation defined by Eq.18).

As is known(see, e.g., Ref12,13), to cancel the infra- >, f dk|7,|?
red divergent contributiorf44) we must take into account *» /IkI<AE
that any experiment has a finite energy resolutioB. It dk (K24 u2)p2—(pi-k)2
means that any numbers of photons of the total energy less =|T(°)|2ezf KR — (P
thanAE can be emitted in the process. It follows that to find Kl<aE(27)°  2(K%+ u?)¥(p?)?
the total cross section in the order under consideration we

. (43

do,(AE) (2m)* )
= k dk|r,|?, 46
dQ; v f; K|<AE I (48)

Ao 3 do©® «
dQ¢  dQ; =

. k)2
> (e~p><e‘p>=p2—% (47

] , (44)

we find

must include diagrams in which one photon of enekdy y 1 49
=kZ+ ,uz less thamAE is emitted along with the emission (p?— JKZ+ pu2— \/(pi—k)2+m2)2'

of the photon with the energ?~p’—¢, (we assume\E

<k?). These diagrams are shown in Fig. 5. Assuming that

the energy resolution is high enoughE<k?,m) we will  Integrating ovek in Eq. (48) and omitting terms which ap-
retain only those contributions from the diagrams shown irProach zero ap—0, we obtain

Fig. 5 which dominate aAE— 0 . These contributions result

ks k ky
k¢ k k ky
@ pi a Pi (a)
FIG. 5. The radiative recombination accompanied by emission FIG. 6. The infrared divergent part of the radiative recombina-
of a soft photon. tion accompanied by emission of a soft photon.

052112-7
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(0) photon energy. Fox>AE the cross section under consider-
do (AE) do'¥ « S ; ; .
? = —[1-2In2—2log(AE/w) ation is the difference of the related cross sections with the
@y dQdy soft-photon-energy limitx and x— AE, respectively. If the
5 energy distribution of the incident electrons is described by a
m 1 function f(&), the total cross section into the interval of the
J— —_ ) 0 — | — )
V1t i2F(|p||/p,) 2+|n(AE/’U“)) photon energyK? k?+ AE) is
o J1s m2In JpZ+m2—|p| “9) do(AE) JAEd ot KO+ )do(x)
SN = /| —_—= xf(e X)——~—
pi | PP+ m?+|pj Ao Jo SRR 10
N do(x) do(x—AE)
where 0 -
+ Ldef(saJr ki +x) a0, a0,
° X 1+a)(yx®+1—ax » do(x)
F(a)=J’ dx In ( N ) . (50 =f dxf(e,+kI+x)
o x2+1 |(1-a)(yx®+1+ax) 0 ddy
* 0. do(x—AE)
One can see that the infrared divergent parts in E®.and - fAEde(8a+ ki +X)d—Qf' (52)

(49) cancel each other:

dojyy  do(AE) do©® « wheredo(x)/dQ; anddo(x—AE)/dQ; are the cross sec-

a0, a0, d0, = 1-21In2-2In(AE/m) tions with the electron energy,+ K9+ x and with the soft-
photon-energy limitx andx— AE, respectively. Assuming a
m? 0 very weak dependence dir(x)/d(); on the electron energy
n 1+EF(|pi|/pi) within the electron energy spread interval and taking into
|

5 account thahE<I" we obtain
1 / m
E"‘ln(AE/m)) 1+F

i 1 do(AE)
Vpi+m?—|pj| AE  dO;
VP +m+ | p

According to this equation, at a fixed energy of the incident
electron the QED correction depends on the photon-energy o
resolutionAE and becomes infinite whehE—O0. It means ~_ jwdxdo(x) df(eatki+x) (53)
that the validity of this equation is restricted by the condition o dOy dx '
(a/)|log(AE/m)|<1. For extension of the theory beyond

this limit it is necessary to include the radiative corrections , . . i
of higher orders ina (see Refs[12,13, and references According to Eq.(51), the cross sectioda(x)/d€); includ

- X o e ing the lowest order QED corrections can be written as
therein. It results in an “exponentiation” of the radiative 9 Q
corrections and removes the singularity foE— 0.

X In : (51

= do(x) [f(eat kd+x)—f(ea+ kI +x+AE)]
Jo g, AE

do(x)
VI. ELECTRON ENERGY DISTRIBUTION dQy;

=AlInx+B. (54)

In the derivation of the formulag49),(51) we assumed ] ]
that the incident electrons have a fixed energy. These formJt follows that for any reasonable functidife) the integral
las remain also valid in the case when the energy spread ## Ed. (53) is convergent at smai and
the incident electrons is much smaller than the energy inter-
vfal AE in which the photons are detected. Let us now con- (1/A E)[d;(AE)/de]
sider how we should modify the formulas to calculate the
QED corrections to the RR cross section if the energy spread .
of the incident electrons characterized by a paramBtgs ~ does not depend olE. If we assume, for instance, a
much larger thamAE. For simplicity, we will neglect the Lorentz-type form forf(¢),
transverse component of the electron momentum. Let us rep-

resent the energy of an incident electronsase ,+k?+x. 1 r

Only if x>0, the electron can be captured to the statgth fle)=g—————7, (55
the emission of a photon in the energy intervéd (k' (e—gg)’+—

+AE). For AE>x>0 the cross section of this process is 4

equal to the cross section with the electron enetgye,
+k?+x and withx considered as the upper limit for the soft integrating oveix in Eq. (53) yields
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1 d;(AE) 1 T TABLE |. The relative values of the QED corrections to the
- = 5 total cross section for the radiative recombination intoKrehell of
AE dQ; 2 (6.t k0— s )2+F_ bare uranium, expressed in percent.

a f 0 4
Impact Vacuum Self-
% {B+A 1In[( 0 )2+(F2/4)] energy Correction polarization, in % energy, in %
ST K —&p
2 o) 0.061 ~0.230
eatkP—eg 100 MeV/u 0—%3 0.065 —0.160
T ol —0.006 ?
Total 0.120 —0.390
(1) _
T 0.058 0.219
0 en
X {m—2arctaf2(e,+ kf—SO)/T]}“- 300 MeV/u ol 0.117 ~0.295
ol —0.003 ?
(56) Total 0.173 ~0513
(1) _
For a rectangular form fof(e), ”ef 0.056 0211
1000 MeV/u o) 0.164 —0.380
(1) 2
1 oo 0.043 ?
fle)=p 0(e—eo+'/2)0(eo+'/2—e), (57) Total 0.263 -0.591

where 6(x) = (x+|x|)/(2[x[), one finds Uehling correction of the first order ia, higher-order itera-

tions of the Uehling potential are accounted for as well.

Since the higher-order corrections decrease rapidly with in-
(59 . ;

creasing number of the VP loops, this approach serves as a

good estimation scheme for the Uehling correction of the
if £,+k? belongs to the intervalso—I'/2,6q+1/2). As one first order ina.
can see from Eqs(56),(58), for AE<I" the cross section In the present work, the Uehling correction to the RR
depends ord’ but not onAE. cross section is evaluated numerically according to the for-

In the REC experimentfl,2] the effective energy spread mula (34). The results of this evalution are in a good agree-

caused by the momentum spread of a quasifree target element with those from Refd14,15. Expressed in terms of
tron bound in a lowZ target atom is much larger than the the unperturbed cross section, the individual Uehling correc-
photon-energy resolution. It follows that the formulal)  tions to the total cross section for the radiative recombination
cannot be directly employed for the calculation of the QEDinto the K shell of bare uranium are presented in the third
corrections to the REC cross section into the photon-energgolumn of Table I. This table contains also the numerical
interval determined by the photon-energy resolution. How-alues for some SE corrections calculated in this work. The
ever, it can be used for the evaluation of the QED correctiongorrectiono results from changing the bound state energy.
to the REC cross section into a photon-energy inted&l |t is determined by the term in the square brackets of Eq.
(AE<k{,m) which is much larger than the effective energy (34). The corrections{%) corresponds to the irreducible part

1 do(AE) 1 do(eg+T/2—g,~k?)
AE dOQ; T dQ;

spread of the target electron. of the diagrams describing the first-order QED effect on the
bound-state electron wave functigfrigs. 2a),2(d)]. The
VIl. NUMERICAL RESULTS correction agj results from the diagrams describing the

QED effect on the continuum-state wave funct|éiig. 2(c),
2(f)]. The calculations of the QED corrections were per-
ormed by employing the methods developed in REIS—

As is known from calculations of QED effects for bound
states(see[7] and references therginthe dominant contri-
bution of the vacuum polarization correction can be obtaine
by using the Uehling approximation. In this approximation
the vacuum polarization potential in the diagrams depicted irIHIing approximation accounts for a dominant part of the VP
Figs._Zd),Z(f) is r_epl_aced by the Uehling potenti_a_l which is correction. As to the self-energy correction, we expect only
the first non\_/anlshlng term in the decomposmpn of theat the terms calculated in this work give a reasonable esti-
vacuum loop in pOwWers of_the external Coulomb f|e!d. AS 10ate of the order of magnitude of the self energy correction
the d'agram d‘?p'Cted n F_|g.(®, one can _ShOW that it does which is beyond the correction depending on the photon-
not contribute in the Uehling approximation. energy intervalAE [see Eq.(51)]. The relative value of the

In Refs.[14,15 we evaluated numerically the Uehling last correction. which we denote BAE) . is defined b
part of the VP correction to the RR cross section by includ- on. BAE), y
AE

ing the Uehling potential into the Dirac equation and taking a 1 1+8

the difference between the cross section obtained with the O(AE)=—| =2+ ZIn0—|In—, (59
e : (0 B 1-B] m

modified wave functions and bound-state energy and the

cross section obtained with the unperturbed wave functionshereB=uv;/c. As it follows from the derivation of Eq51)

and bound-state energy. In this method, in addition to theand from the discussion in the previous section, the photon-

As in the bound-state QED, one may expect that the Ue-
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FIG. 7. The QED corrections to the differential cross section for FIG. 8. The QED corrections to the differential cross section for
the radiative recombination into th€ shell of bare uranium at a the radiative recombination into the shell of bare uranium at a
projectile energy of 100 MeV/u, in the laboratory system MR, projectile energy of 300 MeV/u, in the laboratory system MR
is the correction resulting from changing the bound-state energys the correction resulting from changing the bound-state energy
and the bound-state wave function due to the vacuum polarizatioand the bound-state wave function due to the vacuum polarization
effect. SE.,w denotes the corresponding self-energy correction.effect. SE,., denotes the corresponding self-energy correction.
VP, is the correction which accounts for the vacuum polarizationVP,,, is the correction which accounts for the vacuum polarization
effect on the continuum-state wave function. ((Rs the total effect on the continuum-state wave function. (¥Rs the total
vacuum polarization correction calculated in the Uehling approxi-vacuum polarization correction calculated in the Uehling approxi-
mation. QERQg denotes the correction which depends on themation. QEDQg denotes the correction which depends on the
photon-energy interval. The relative value of this correction is dephoton-energy interval. The relative value of this correction is de-
fined by Eq.(59). The photon-energy interval is chosen to be 15fined by Eq.(59). The photon-energy interval is chosen to be 25
keV in the projectile frame. Since the correction due to the SEkeV in the projectile frame. Since the correction due to the SE
effect on the continuum-state wave function has not yet been cakffect on the continuum-state wave function has not yet been cal-
culated, the related VP correction is not included in the sum of theculated, the related VP correction is not included in the sum of the
QED corrections denoted as QERyw+ag. dol®/dQ is the QED corrections denoted as QERyy.ae. dol®/dQ is the
zeroth-order cross section which is presented to display the relativeeroth-order cross section which is presented to display the relative
values of the QED corrections. values of the QED corrections.

spectively. The corresponding photon-energy intervals in the

(;nkeorgy lnr:erviil I:]as t? t_)e c:]hosen in the ragﬁftﬁE_ . laboratory(gas-targetframe are determined according to the
i ,m wherel" characterizes the energy spread of the inci- |-+ 12 sformation

dent electrons. In the REC experiments which are being per-

formed at GSI[1,2] the effective electron-energy spread is AE 0= AEapy(1— B cOSbyp), (60)
determined by the momentum distribution of the quasifree

target electrons. The width of this spread in the projectilewhere y=1/\1— 2. At a fixed AE, from this equation
system increases with increasing the impact energy. In thene findsAE,,, as a function of the polar angle. For the
case of a N gas target, which is presently being employed inphoton-energy intervals chosen abo®€AE) amounts to

the experiments, the effective energy spread in the projectile-0.11, —0.28, and—0.59 % for the impact energy 100, 300
(heavy ion) frame amounts to about 10—40 keV for the im- MeV/u, and 1 GeV/u, respectively. To find the complete
pact energy in the range 100—1000 MeV/u. This value willself-energy correction, accurate calculations of the diagrams
be considerably reduced in the experiments on, @&k tar-  depicted in Figs. @),2(c) are required.

get which are under preparation. In the case of .agds Adding the Uehling correction and the part of the SE
target, to satisfy the conditions akE given above we can correction presented in Table | to the correcti6(AE)
chooseAE to be 15, 25, and 50 keV in the projectile frame evaluated above, we find the QED correction to the total
for the impact energies 100, 300 MeV/u, and 1 GeV/u, re<ross section amounts t60.38,—0.62, and—0.92 % for the
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FIG. 10. The QED corrections to the differential cross section
for the radiative recombination into theshell of bare uranium at a
projectile energy of 1000 MeV/u, expressed in percents of the
zeroth-order cross section. For an explanation of the notations, see
Fig. 9.

1.0 |

correction which depends on the photon-energy interval. The
i ng*, 1000 MeV/u relative value of this correction, which is defined by Esp),
e does not depe_nd on the angles in b_oth proj_ectile and labora-
0 20 40 60 80 100 120 140 160 180 tory systems, if the photon-energy interval in the laboratory
frame is chosen according to E@60). Comparing the
VPenipw COrrection with the Sg,. ,,, correction reveals a ten-
FIG. 9. The QED corrections to the differential cross section fordency of cancellation between them. Expecting a similar
the radiative recombination into th€ shell of bare uranium at a cancellation between the P and SE, contributions, we
projectile energy of 1000 MeV/u, in the laboratory systeme VR,  have not included the VP term into the sum of the QED
is the correction resulting from changing the bound-state energyorrections denoted as QERy,. ae . In order to display the
and the bound-state wave function due to the vacuum polarizatiope|ative values of the QED corrections, we present the
effect. SEnpw denotes the corresponding self-energy correction.;aroth-order cross section as well.
VP, is the correction which accounts for the vacuum polarization To present the relative magnitude of the calculated effects
effect on the continuum-state wave function. &/Rs the total 410 ‘clearly, the ratio of the QED corrections and the
vacuum polarization correction calculated in the Uehling approxi-, o th-order cross section is given in Fig. 10 for a projectile

mation. QEQE. denotes the correction Wh'Ch. depends_, on theenergy of 1 GeV/u. As one can see from this figure, the
photon-energy interval. The relative value of this correction is de-

fined by Eq.(59). The photon-energy interval is chosen to be 50 relative value of the QERpw+ e Correction varies from

- 0,
keV in the projectile frame. Since the correction due to the SE 0.8 % at the forward angles t61.4% at the backward

effect on the continuum-state wave function has not yet been ca@"9/€S. However, the contribution of the QED corrections
culated, the related VP correction is not included in the sum of théVhich are omitted in Fig. 10 may significantly change this
QED corrections denoted as QERyyiae. do©/dQ is the behavior, especially at forward and backward angles.

zeroth-order cross section which is presented to display the relative It iS also interesting to note that the differential cross sec-
values of the QED corrections. tion at the backward direction vanishes at an impact energy

close to 130 MeV/u. It results, in particular, in relatively

impact energy 100, 300 MeV/u, and 1 GeV/u, respectivelylarge contribution of the QED correction to the backward
For comparison, the calculation of Rg®] gives —0.03,  cross section at the energy 130 MeV/u. So, at this energy, the
—0.13, and—0.34 %, respectively, for the same values of theQED.n pw+ ae COrrection is about 0.022 mb/sr while the
photon-energy intervahE. zeroth-order cross section amounts only to 0.009 mb/sr.

Figures 7, 8, and 9 show the angular dependence of the
QED corrections to the radiative recombination into #e
shell of bare uranium in the laborato(gas-target system.
The transformation of the differential cross section from the In this paper we derived the complete formulas for the
projectile system to the laboratory system was done accord@ED corrections of the first order im to the cross section of
ing to the formulas from Ref4]. In these figures, VR, ,wiS  the radiative recombination of an electron with a bare
the correction resulting from changing the bound-state ennucleus. We found that, in addition to the expressions de-
ergy and the bound-state wave function due to the vacuurrived previously in Ref[8], there is a nonzero contribution
polarization effect. Sg. ., denotes the corresponding self from the reducible part of the diagram with the self-energy
energy correction. Vg, is the correction which accounts for loop on the outgoing electron line. The ultraviolet and infra-
the vacuum polarization effect on the continuum-state waveed divergences of the QED corrections have been analyzed.
function. VR, is the total vacuum polarization correction In particular, we demonstrated that at a fixed incident elec-
calculated in the Uehling approximation. QEPdenotes the tron energy the infrared divergence is eliminated in the total

do%da [ barn/sr |
i
[4,]

Angle [ degrees |

VIIl. CONCLUSION
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cross section by allowing for the emission of an unobserved We evaluated numerically the Uehling part of the
soft photon with an energy less than the photon-energy resaacuum-polarization correction to the RR cross section and a
lution. We note that the contribution of soft photons to thepart of the self-energy correction. The calculation of the total
cross section depends on the energy interval in which theelf-energy correction is under way and will be published
photons are detected if this interval is much larger than thelsewhere.
effective energy spread of the incident electrons. If this in-

terval is much smaller than the effective electron-energy

spread, the contribution of soft photons is essentially deter-

mined by the parameters which define the line shape of the We want to thank S. Karshenboim, G. Soff, and Th.
effective energy spread of the incident electrons. It does nobtohlker for stimulating discussions. Financial support by
depend on the energy resolution of the photon detector, prddFG (Grant No. 436 RUS 113/479by RFBR (Grant No.
vided this resolution is good enough to accurately define th®8-02-0411]}, by GSI, and by EU-TMR prograrfContract
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