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The goal in this effort is twofold(1) to develop an understanding of Casimir forces in geometries more
complicated than the usual parallel-plate geometry @)do provide extensive numerical computations to
elucidate quantitative and qualitative aspects of the vacuum fluctuation energy and Casimir forces for the
rectangular cavity. We review geometries for which Casimir forces and vacuum energy have been computed,
and point out some of the difficulties with the ideal-conductor boundary conditions and ideal-shape boundary
conditions, e.g., infinitely sharp edges. We investigate the vacuum electromagnetic stress-energy tensor at 0 K
for a perfectly conducting three-dimensional rectangular cavity with sidesa, < a;. The elements of the
tensor are averaged over the appropriate spatial coordinates of the cavity. We first consider the average energy
density T®=e(a)/V from the viewpoint of symmetry, where(a, ,a,,a;)=e(a) is the finite change in the
zero-point energy from the free-field case. The vacuum enefgy and the total vacuum force on the wall
normal to the direction,F;= —del/da;, are both homogeneous functions of the cavity dimensions. Because of
this symmetry, the energy and forces are related by the equef®ra- F(a). We compute the vacuum
forces and energy numerically for cavities with a broad range of dimensions. The implications of the perfect-
conductor boundary conditions and the effects of the edges of the cavity are both considerets, The
symmetry of the constant-energy surfaces is apparent. The zero-energy surface, which is invariant under
dilations and therefore extends to infinity, separates the nested, concave, positive-energy surfaces from the
open, negative-energy surfaces. The positinegative} energy surfaces are mapped into each other by scale
changes. The forc&(a) is normal to the constant-energy surfaceaafThe surfaces corresponding to zero
forces, F;(a)=0, are invariant under dilations and are therefore infinite. The zero-energy surface and the
zero-force surfaces delineate the different geometries for which there are zero, one, or two Meyedinceor
attractive forces on the cavity walls, along with the sign of the corresponding energy. There is no rectangular
cavity geometry for which all forces are negative or zero; conversely, only geometries that are not too different
from a cube have all positiv@utward or repulsiveforces. Only for the last case is the eneafg) necessarily
positive. To provide an intuitive feeling for these vacuum energies, comparisons are made to other forms of
energy in small cavities. We consider the energy balance for changes in cavity dimensions.

PACS numbd(s): 12.20—m, 42.50.Lc, 03.70:k

I. INTRODUCTION Since Sparnaay'’s first attempts in 1959, various measure-
ments have been made on dielectfi¢sthat have generally
Casimir predicted the existence of an attractive force beverified the theory of Casimir forces as developed for dielec-
tween two infinite parallel uncharged perfectly conductingtrics[8], but not until quite recently was the existence of this
plates in vacuum over 50 years afibl. This force arises attractive Casimir force between metallized surfaces verified,
because of the boundary conditions that the quantizeth two separate experiments. Lamorol®{ used a torsion
source-free electromagnetic field must meet at the metal supendulum with an electromechanical feedback system to
faces[2]. The prediction came very shortly after Betf8) = measure the Casimir force between a metallized spherical
and Welton[4] explained the Lamb shift in the hydrogen lens and a flat plate to an accuracy of about 5-10% for
atom as due to interaction of the electron with the quantizedeparations of about 0.6—6m. Mohideen and Roy10]
vacuum electromagnetic field. The Casimir force was aused an atomic force microscogdFM) to measure the
startling and unexpected mesoscopic phenomenon arisirfgrce between a metallized optical flat and a metallized ball
from the presence of surfaces in the quantized vacuum fieldnounted on the AFM cantilever, obtaining a precision of
The force was predicted to vary as the inverse fourth poweabout 1% for separations of 0.1-08m. As measured by
of the separation between the plates. At a separation of 10fe AFM, the forces on an effective area of approximately 10
nm the predicted force/area was equivalent to about*10 um? were in the piconewton range. Mohideen and Rbgj]
atm; at 10 nm it was about 1 atm. The Casimir force has alsincluded corrections for the surface roughness, the plasma
been computed using the alternative language of sourciequency of the material, finite temperature, finite size and
theory and radiative reaction, without explicit reference tocurvature of the surfaces, and instrumental effects.
vacuum fluctuation$s,6]. With the advent of improved methods of making micron
and submicron structures, such as microfabrication technol-
ogy, it has become possible to explore forces arising from
*The web address of Quantum Fields LLC is www.quantumfield-quantum fluctuations in greater detail. For example, the can-
s.com. Electronic address: jordanmaclay@quantumfields.com tilever used by Mohideen and Rdy0] is a silicon micro-
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TABLE I|. Change in vacuum energyt 8 K for different perfectly conductive geometriésnly cutoff-
independent, geometry-dependent terms are incjuded

Parallel plate Cylinder
(spacinga, infinite plates, Cube Sphere (radiusr, infinitely long,
energy in an ared XL) (sidea) (radiusr) energy in length.
—0.013%cL?a® +0.0916:c/a +0.0923:c/2r —0.0156cL/r?

machined device, often called a MEMS devigeicroelec- the two principal radii of curvature and varies inversely as
tromechanical system The small separation between the cube of the distance to the surface. It follows that the
neighboring surfaces in various MEMS devices means it isotal vacuum energy in any compact region that contains part
possible that the presence of Casimir forces may result igf the ideal curved conducting surface is infinite. For two
adjacent surfaces being attracted to or sticking to each othgferfectly conducting intersecting planes, Dowker and
[11]. Using micromachining methods, a variety of MEMS Kennedy[18] showed that the renormalized stress-energy
structures in which vacuum stresses are present can be fafgmsor depends on the intersection angle and varies as the
ricated. A harmonic oscillator with a Casimir interaqtion hasj,verse fourth power of the distance from the intersection
been modeled but not yet bujlt2]. Some structures, includ- e Again, it follows that any compact region containing
ing cavities, can be built to investigate Casimir forces espepa i of the line of intersection contains an infiniteegative
cially using AFM method$13]. vacuum energy contribution.

Most of the discussions of the Casimir forces are given Lukosz[19] has computed the change in the vacuum en-

for the perfectly conducting, infinite-parallel-plate geometry, L
which is a very special and symmetric geometry. It contains ' %Y due to the infinitely sharp edges of a perfectly conduct-

no curved surfaces, such as right angles, and it retains Lot™Y rectangu]ar cavity. He ﬁFdS a quadratical!y divergent
entz invariance in two of the three spatial directipfd]. It term_proportlonal to the perlm_etgr of the cavity. For the
is common to explain the attractive Casimir force for thisPhysically relevant case of a finite radius of curvatite
geometry: “Since the plates exclude vacuum radiation<@1.8.8s, the divergence vanishes and he obtains a cor-
modes with wavelengths longer than twice the spacing, théection to the total energy equal toE=A%c(a;+a,
energy density within the cavity is less than the energy den# as)/R? whereA is a constant of proportionality, which he
sity outside the plates. Hence the force is attractive.” Thadoes not compute, but notes it may be zero. The effect of this
this explanation is simplistic is clear when we consider thatdditional termdE, which depends on the radius of curva-
cubical or spherical cavities, which also exclude certainture, will be discussed.
modes, have a positive energy density and positweward The infinities that appear for ideal conductors represent a
forces(see Table)l In rectangular cavities, the energy den- breakdown of the perfect-conductor approximation. The
sity may be positive, negative, or zero depending on the ratiether cannot store an infinite amount of eneigyhether
of the sides, while the forces may be outward, inward, omositive or negativein a compact region, nor can the con-
even zero. Forces depend on the derivative of the energguctor support the infinite stresses. The perfect-conductor
with respect to the corresponding direction, not on the sigboundary conditions are pathological, and lead to an infinite
of the energy density. If we examine the infinite-parallel- physically observable gravitational fie[d4,16. For a real
plate geometry more fully, and imagine placing perfectlymetal the edges are not infinitely sharp, and the electrons are
conductive metal surfaces normal to the parallel plates iunable to follow an applied electromagnetic field at frequen-
order to enclose the volume between the plates, then thees above the plasma frequency of the metal. Thus, for fre-
would be outward forces on these additional four infinitely quencies above the plasma frequency, the zero-point electro-
long, narrow surfacefl5]. magnetic field is not effectively altered by the presence of
Geometries with curved surfaces or intersecting planethe conductive plates and the boundary conditions for an
present special problems with respect to vacuum energigeal conductor are not met.
[16,17], which we mention briefly since these issues have When a wavelength cutoff corresponding to finite plasma
received little attention in the literature. Curved surfaces altefrequency is included, then the infinities in the stress-energy
the local density of modes and the vacuum energy in théensor disappear. However, the question then arises whether
region near the surface. In general, the change in mode dethe use of a cutoff produces terms in the vacuum energy that
sity from the free-field case that occurs very near a surfacdepend on the molecular properties through the plasma fre-
varies as the inverse of the radius of curvafuré]. Thisisa quency, and further, whether these terms depend on the ge-
significant observation since it shows that conductive suremetry or not. To date, only the sphere has been analyzed in
faces can yield a mode density greater tiias well as less detail, with the result that a geometry-independent, cutoff-
than that for the free field and it may provide some expla-dependent term has been fouf0]. Since this term is ge-
nation for the appearance of positive as well as negativemetry independent, it will not affect the computation of the
energy densities. For gently curved conductors, Deutsch angacuum stress from the vacuum energy.
Candelag16] have shown that the stress-energy tensor is Lifshitz [8] has developed a general theory of Casimir
approximately proportional to the sum of the reciprocals offorces in terms of a frequency-dependent complex permittiv-
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ity that can be applied to imperfect conductors or dielectrics. For cubes with sides of 100 and 0.1 nm, respectively, the
For metals such as aluminum, copper, or silver, the firstvacuum energies are 0.18 and 180 eV. The corresponding
order theory predicts a reduction in the ideal perfect-pressures are 0910 4 and 0.9< 10° atm. These pressures
conductor Casimir force of approximately 10% if the spacingare equivalent to the blackbody radiation pressty&*(3) at
is greater than the wavelength corresponding to the plasm@mperatures of 1:310* and 1.3< 10" K, respectively. Al-
frequency{21]. though the vacuum energy density in this example is small
The total Casimir force on a surface cannot be accuratelysy some scales, it increases rapidly as dimensions decrease
obtained by adding differential contributions from different and is about % 10° and 4x 10°°, respectively, times as large
regions of the surface. Instead, the geometry as a whole muat the energy density of an infinite photon gas at room tem-
be considered because it determines the modes of thserature.
vacuum electromagnetic field fluctuations that are present There is no easy way to understand the geometrical de-
within the geometry22]. The different modes determine the pendence of the vacuum stress and energy. Schwistgalr
energy within the cavity and the derivative of the energyhave described the Casimir force between uncharged con-
determines the force. ductors as “one of the least intuitive consequences of quan-
Vacuum energy and Casimir forces have been computetlm electrodynamic$29].” In a recent review article de-
for several simple symmetric geometries aside from thescribing ways of computing vacuum energy and the Casimir
parallel-plate geometry, as shown in Table I. For a conducteffect, a section was titled “The mystery of the Casimir ef-
ing spherical shel[23,24 and a conducting hollow cube fect” [30]. In an effort to gain some understanding of the
[25] the predicted Casimir forces are repulsive or outwardCasimir effect, particularly the geometrical dependence of
The vacuum stress on two intersecting planes is attractivehe force, we have explored the conductive rectangular cav-
For conductive rectangular cavities with square cross sectioity in some detail, paying attention to the fundamental con-
1x1Xc), the Casimir energy and the forces on the cavitycepts and the symmetries, and to analyzing and graphing the
walls have been computd@5—27, with the result that the three-dimensional computations. We have performed nu-
forces can be inward or outward depending on the specifimerical computations of the vacuum energies and Casimir
dimensions. For example, the energy is positive in the interforces for the general case of a cavity with sidgsa,, and
val [28] as.
The organization of the paper is as follows. In Sec. Il we
0.408<c/a<3.48 present the details of the numerical calculations of the
vacuum energe(a) and forced-(a). In Sec. Il we consider
fhe nature of the vacuum energy and stresses in a rectangular
cavity with sidesa;,a,,as, including the implications of the
geometrical symmetry. In this section, we illustrate the gen-

he f it . f th eral results using figures based on the calculations of Sec. I,
The four different computations of the stress-energy tenypich show constant-energy surfaces, constant-force sur-

sor (referenced in the previous paragrajor special cases faces, and contours. In Sec. IV we give a brief conclusion.
of a conductive rectangular cavity were done using a variety

of methods as discussed in Sec. Il. These calculations all

agree with each other, although none of the calculations has II. COMPUTATION OF THE VACUUM ENERGY

explicitly included the vacuum energy associated with the AND VACUUM FORCES

right angles. Hacyaret al. [27] idgntified two divgrgent The vacuum energe at 0 K, given as a function of the
terms, one proportlor_lal to the perimeter of the cavity and Yimensions of a rectangular box with perfectly conductive
second term proportional to the volume. The term Lukoszs.des of lengtha=(a, .a,,as), is e(ay,a,,a5)=6(a). This
[19] identified as a divergent correction to the energy for the : 9 i11 2’h 3): 1S ﬁ 2:93) ==\ 9
case of a perfect rectangular cavity with infinitely sharp cor-Nergy represents the change in the zero-point vacuum en-

ners appears to correspond to the divergence of Haetyah ergy due to the presence of the_ c_onductlve surfaces of _the
: : : box. We do not consider the variation of the energy density
[27] that is proportional to the perimeter. For the real cor-

. -~ with position within the cavity. Formally, the vacuum energy
ners, the correction to t_he energy for the ef_fe_ct of a flmtee(a) is computed as the total vacuum energy with the box
radius of curvature is finite and equal to the finite correctlonpresent minus the total vacuum energy when the box dimen-
5E.'|_0 et some idea of the scale of the Casimir eneray i sions go to infinity. By defining the energy in this manner,

9 - " . ="9Y Mhe free-field vacuum energy divergence can be made to can-
terms of familiar quantities, we can rewrite the equation forcel by suitable mathematical procedures and a finite result
the vacuum energy in a culj€able |) in terms of the Comp- for e(a) is obtained
ton wavelengthc and massn of the electron, Ambjorn and Wolfran{26] derived an expression for the

Ec=0.0916)\c/a)mc (1) change in the vacuum energya) due to a perfectly con-
’ ductive rectangular box with sides{,a,,a3) by summing

or in terms of the energig,, of the longest-wavelength pho- the eigenmodes. The divergent sums were regularized by us-

and zero at the endpoint of this interval, and negative outsid
the interval. Ambjorn and Wolfrarfi26] have computed the
constant-energy contours far; X a,x<a; geometry for the
regiona,,az>1.

ton (\=2a) that just fits in the cavity, ing analytic continuation in the dimensionality of the cavity
and the result was given in terms of the Epstein Zeta function
Ec=(0.09167)Ep. (2) [31]. From their equations, and the definition of the standard

052110-3



G. JORDAN MACLAY PHYSICAL REVIEW A 61 052110

Zeta function, one can show that for the case of electromag- In this paper, we evaluate E() for e(a) to compute the
netic radiation in a three-dimensional cavity, the Casimir en-energies for arbitrary dimensiong,(,a,,a;). The evalua-

ergy is given by tion was done using an algorithm developed by Crandall and
Buhler [34]. To secure accurate sums, this algorithm uses
e(a;,a,,a3) = — (hc/l6m?)[a,a,a3l(a,,a,,85;4) direct summation in which progressively larger sets of terms
3 are averaged together asincreases. In principle, the accu-
—(7°13)(1la; + La,+ 1/ag)], (3 racy of each calculation should be to ordexp(—9m)]~5

. . o _ x10™ %3, In all computations we sét=c=1. The figures do
where this form of the Epstein Zeta function is defined by ot include the effect of the correction tersiE. which de-

pends on the radius of curvature, since we do not know the

S constant of proportionality.
o) — 2 2
g(al'aZ'a&S)_nzs nEZ nzl [(a1n1)"+(azn2) Most of the graphs are based on computations of
e(a;,a,,a3) for values ofa;, a,, andas between 0.1 and
+(asng)?] %2 (4 4.0, with a mesh of 0.1. Derivatives were computed numeri-

cally to first order. Equatior{14) was used to check the
The sum is over all values af;,n,,n; except when all consistency of the computations. The first few points near
indices equal zero. This Zeta function is absolutely converthe beginning of the intervalalues ofa, ,a,,as in the range
gent for nonzera; if s>3, in which case the terms may be 0.1 to 0.3 show a small error; the remaining points do not
summed in any order as long as all terms are incly@l  show significant error. The computations were done on a
The energye(a) is finite as long as each sidg ,a,,az is Dell XPS R450 450 MHz computer with 384 megabytes of
nonzero. There is a manifestly negative contributiorta) ~ RAM, and took several weeks running 24 h/day to finish.
given by the Zeta function, and a manifestly positive contri-
bution given by the second term, which is proportional to the Ill. NATURE OF THE VACUUM ENERGY AND STRESS
area/volume of the cavity. To give a sense of scale, we note )
that this positive term equat times the total energy of the '€ energy differences(a) can depend only on the

three longest-wavelength photons that can fit in the cavit;}engthS of the sidesassumed to be positiyeon Planck’s

(\;=2a;). Mathematically, the positive term occurs becauseconstantt, and on the speed of lighd From dimensional

modes in which two of the three indices,n,,n; are zero consideration, the engrgymust be proportioqal téc tﬁmes
cannot propagate within the cavityhe fields vanish and f(a), where the functiorf(a) has the dimensions of inverse
th?refore cannot contribute to the energy. This term equal$"9th:

— 5 of the sum of the zero-point energies of one-dimensional _

resonators of length,,a,,as, respectively[25]. If one (or e(a)=hcf(d). ©

two) of the dimensions is much larger than the other dimengince the energy cannot depend on the choice of axes, the
sion(s), then the second term becomes negligible, and th%ependence oé(a) on a; must be identical to the depen-
energy is always negative and depends on only the smallgfance ona, or a;. Hence the functiori(a; ,a,,as), as well
sides[33]. The Zeta function term has been interpreted as;s the function e(a;,a,,a3), which is proportional to
arising from the multiple reflections of virtual photons trav- f(a;,a,,a3), are homogeneous functions @f, a,, andas

eling perpendicular to the walls in periodic orbj&3]. of degree—1:
This expression for the energy, E(B), agrees exactly
with that obtained by Lukosz25|, who summed all the e(Naj,\a,,\az)=\"le(a;,a,,as). (6)

modes in the cavity and employed an exponential conver-

gence factor. The justification for the validity of the conver- This property allows us to calculate values of the energy for
gence factor was provided by the generalized Weyl theoremgrguments that are proportional. It also indicates that the sur-
which states that the eigenfrequency density per unit voluméaces of constant energy will be nested as a function of the
of the resonator is independent of the size and form of thenergy, with higher energies for smaller cavities. All surfaces
resonator for frequencies much higher than the fundamentaif constant positive energy are identical with a uniform di-
eigenfrequency. A third calculation for cavities is provided lation a— \a; similarly all surfaces of constant negative en-
by Hacyanet al. [27], who obtained expressions for the ergy are identical with a scale change. For example, if the
stress-energy tensor from the Fourier transforms of the corenergy corresponding to a constant-positive-energy surface
relation functions for the quantized electromagnetic field.is doubled, then the dimensions for the new surface are cut in
This process allowed them to isolate and remove the diverhalf. The zero-energy surface is unique in that scale changes
gences. They did numerical calculations of components ofap it into itself, which means the surface must extend to
the stress-energy tensor in configuration space for<dl 1 infinity, separating the negative- and positive-constant-
X ¢ cavity which are in agreement with E¢B) and our re-  energy surfaces.

sults. This agreement shows that our application of the prin- The energye(a) will be unchanged if any two dimen-
ciple of virtual work to calculate forces from the energy is sions, for examplea; anda,, are interchanged by a reflec-
justifiable. Mostepanenko and Trunf®8] also report results tion. In addition, a rotation by+-120° about the symmetry
for the special case @&, =a, that are in agreement with our axis a;=a,=agz results in the cyclic permutatioa;—a,,
formulation above. a,—ag, azg—aj, which leaves the energy unchangéedo-
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tations or reflections in which the valuesaf, a,, oraz can
assume negative values are not allowed. The @@ must
remain unchangefd The symmetry group corresponding to
these geometrical transformationsds, , where theC indi-
cates “cyclic,” the 3 indicates a threefold axis of symmetry,
and thev indicates the presence of three vertical planes of
symmetry through the symmetry axis. The molecules;NH
and CICH are members of this symmetry group. Each sur-
face of constant energy displays tig, symmetry and is a a,
one-dimensional representation of this gr¢8p]. The trans-
formation of the constant-energy surfaces under dilations
constitutes an additional symmetry.

A. Constant-energy surfaces

It is useful to consider the special case of a cube in order
to derive some general results about constant-energy surface
for positive and negative energies. For the special case of i
cube, the energy dependence collapses fe¢ay ,a,,az) to (a) ®o
e(a,a,a) and for dimensional reasons discussed abeve
must be proportional to &/ The constant of proportionality
in e, which must be obtained by direct computation, is shown
in Table 1.

For every positive energ¥,, there is a corresponding
cube that has that energy. The axis of symmetty=(a,
=ag) must intersect the constant-energy surfaceHgrat
the point that corresponds to this cube. At this point, the
surface is normal to the axis of symmetry sineg=F,
=F,. From the homogeneity and symmetry effa), it fol-
lows that all the surfaces of constant positive energy are
continuous, nested or nonintersecting surfaces that close o
themselves for positiva. The zero-energy surface separates
all positive-energy surfaces from the negative-energy sur-
faces. This also implies that all negative-energy surfaces will
be open, nested surfaces. It also follows that for all rectan-
gular cavities with a given positive energy, the cube is the
one with the longest main diagonal. The statements in this
paragraph are valid whether we are talking about energy den
sity or energy.

In order to illustrate these results, we present some of the (1)
figures based on the computations described in Sec. Il. Fig
ure 1 shows two views of the surfa& corresponding to
zero vacuum energy for values of the sides up toMe use FIG. 1. Surface of zero energg(a)=0 plotted for values
natural units in whichi=c=1.) Figure 2 shows a separate 21,82,8;3<4. In (a) the surface is plotted with the symmetry axis
computation of the zero-energy surface for values up to 1071=8=2s vertical; m(k_)) the surface is plotted with the viewpoint
The surfaces in both these figures show the rotational an@lond the symmetry axis.
reflection symmetry of the grou@,;, discussed above. In f . .

o . : ; rom along the axis of symmetry, a small hexagonal opening
addition, the zero-energy surface is seen to be invariant un- e constant-energy surface surrounds the or[giiy
der dilation. Figure 3 shows a positive-energy surface fro '

(b)),

two different views to display unambiguously the symmetry One of the advantages of working in terms of constant-

of the surface. Figures 4—6 show different sets of nested ; . e
. e . energy surfaces is that they provide a geometrical interpreta-
negative- and positive-energy surfaces, from different obser: -
. X . tion of the vacuum forces. From the first-order theory of
vation points. Portions of the surfaces for values of

a,,a,,a5>4 are not plotted, resulting in the holes in tae functions, the changde in the vacuum energy in the cavity

=0.025 surface in Fig. 6. All positiveor negative} energy that occurs when we move a distardzis given by

surfaces are similar and can be obtained from each other de=da- V e(a), 7
using the dilation operation becausg) is a homogeneous

function. All constant-energy surfaces approach the origin agshere the gradient is taken with respect ta; (@,,as).
a—0 but do not converge to it. When the origin is viewed Physically, this equation represents the principle of virtual

052110-5



G. JORDAN MACLAY PHYSICAL REVIEW A 61 052110

FIG. 2. Surface of zero energg(a)=0 plotted for values
a,,a,,a3<10. The roughness along the sides of the surface is an
artifact due to the coarseness of the mesh. The surface is the same
shape as that in Fig. 1.

work, in which the differential change in vacuum energy in
the cavity equals the sum of the external forces exerted on
the cavity walls times the differential changes in the corre-
sponding dimension. The external force on each wall equals
the negative of the force on the walls of the cavity due to
vacuum fluctuations. Thus we identify

F(a)=—V.e(a), 8

where the componenk,=—de/da; is the total vacuum
force on the face normal to tleg direction, etc. The average
pressure in the, direction isF/(a,xas3). The energye(a)
decreases most rapidly in the direction of the fd¥¢a). The
conservation of energy that occurs when the dimensions of
the cavity are altered quasistatically is represented by

de=—da-F(a). 9

Consider a surfac8y of constant energK defined by

K=e(a). (10
FIG. 3. Constant-energy surface witfa) equal to 0.03. Ina)
If the displacementla is tangent to the surface of constant the surface is viewed from the side; {h) the surface is viewed
energy, then the corresponding change in energy vanishdw®m along the symmetry axis.
and
SF=A#%c/R? direct along the main diagonal of the cube,
O0=da-F, (1) perpendicular to the constant-energy surface.

L . The components of the averaged stress-energy tensor as
which implies the important result that the vacuum forcefunctions ofa are given ag37]

F(a;,a,,a3) corresponding to the cavity with sides
(a;,a,,a3) must be perpendicular to the surfage of con-
stant energy atd;,a,,a;) [36]. The relationship is also
obeyed by the correctiodE =A% c(a;+a,+az)/R? to the

(T™@)=e(a)V,

energy for a finite radius of curvature The surface of con- (T*(@))=F1(a)/azaz=—(1/aas) de(a)/da,
stantSE is a plane perpendicular to the main diagonal of the
cavity. From Eq.(8) we find thatSE yields a constant force (and cyclic permutations (12
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4

FIG. 4. Set of nested surfaces of constant energy plotted,f@,,a;<4. The values oé(a) are —100,-50,—20,—1,0.0. The energy
increases as the surfaces get closer to the symmetry axis.

The averaged stress-energy tensor has no dependence on a-F(a)=e(a). (14)
X,Y,z since we have averaged over the voluvhef the cav-
ity, or averaged over the area of a face. The off-diagonal
terms, which contain sine and cosine functions, vanish aftef e write this equation in components and divide by the
averaging. The divergence of the stress tensor vanish&gyme, we find that the trace of the stress-energy tensor
within the cavity, as it must, since the electromagnetic field,5nishes identically.
is free exce_pt gt the bqundarles. Since the photon_ is ma§sless, Equation(14) also shows that the energy in the cavity can
there is no intrinsic unit of length, and the theory is invarianty,o interpreted as the sum of the produf; of the force on
under scale transformations of the electromagnetic fielgach side times the length of that side. This result, which is a
strength. This invariance is reflected in the vanishing of thgy,m of the mean-value theorem applied to the conservation
trace of the stress-energy ten$ab. of energy, helps explain some of the results obtained for
We can demonstrate directly that the stress-energy tenseg tangular cavities, for example, the followir(@) Cavities
defined in Eq(12) has zero trace by applying Euler's theo- yith zero total energy must have positive forces on one or
rem for homogeneous functlor_{§8]. This theorem states ore faces and negative forces on one or more fa@s.
that for a homogeneous functidi(x) of degreep, f(\X)  cavities with negative(positive) total energy must have a

=\Pf(x), and we have negative (positive) force on at least one sid¢3) Cavities
with all positive forces must have positive energy. If we
X- V, f(x)=pf(x). (13)  apply Eq.(14) to a cube, we obtain a forde(a) = e(a)/3a
on each face. This result is comparable to the usual result for
Applying Euler’s theorem t@(a) we obtain the isotropic pressurg of an infinite photon gas in terms of
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ap 4 4 ag

FIG. 5. Set of nested surfaces of constant enex®) equal to—10,—1,—0.05,0.05, plotted fom;,a,,a3<4. The most negative
surfaces are closest to the axes.

its energy density), namely,p=U/3. In the general case the formation to the &;,a;,a3) system are
energy within the cavity is not isotropic.
a;=(12)(a;~ay),

B. Constant-energy contours and energy surfaces

a;=(1/\6)(a;+a,) — (2/3)as, (15)

Two-dimensional contour plots of constant energy can be
obtained by taking cross sections of the constant-energy sur- ,
faces such as are shown in Figs. 4-6. If we take cross sec- a3=(113)(ar+a+ay).
tions with constant values ci;, we obtain the constant- ) . . . ,
energy contours, given as functionsaf andas, in Fig. 7,  1hiS rotation takes the symmetry axig=a,=as into theas
for a;=0.5,1.0,3.5. The dark line in each graph shows the?Xis in the rotated system. Thus thg axis is the axis of
zero-energy contour. The maximum energy in the contour§ymmetry of the constant-energy surfaces. To obtain the en-
occurs for the geometries 0<3.3x 0.5, 0.6x0.6x 1.0, and  €rgy contours in the primed system for a constant value of
2.1x2.1x 3.5, respectively. The contours do not show theds, We plot the locus of points for whick(a;,a;,a3) has
rotational symmetry of the constant-energy surfaces becaus@nstant values and whera, +a,+ a;=const=(y/3)a;.
the planes with constarat; cut through the constant-energy This locus of points will lie in a plane in both coordinate
surfaces at an angle. Ambjorn and Wolfrd26] reported systems. All the points on this plane of constagtcorre-
that, for a contour witta;= 1.0, the maximum energy would spond to boxes that have the same unvarying perimeter. Fig-
occur for X 1x 1. However, based on their graph, they did ure 8 shows two-dimensional contour plots of the energy in
not consider values ddi; anda, less than 1. Hacyaset al.  the primed system foa;=0.8, 1.75, and 3. In Fig.(8), the
[27] reported a maximum energy for axil X az box when  region near the point (Q0’) corresponds to the maximum
a;=0.57 that is in agreement with our calculations.(3). energy e=0.19, which is the energy of a cube of side

It is useful to consider the constant-energy surfaces in a}//3=0.46. Similarly in Fig. 8b), a;=1.75 and the maxi-
coordinate system that explicitly displays th€g, symme-  mum energy corresponds to the contas0.09 near the
try. One such coordinate system can be obtained by a Euleenter.
rotation, rotating by—45° about thea; axis and then by The energy contours in the rotated system lie in the plane
cos Y(1/4/3) about the neva; axis. The equations of trans- perpendicular to the axis of symmetry and therefore show

052110-8



ANALYSIS OF ZERO-POINT ELECTROMAGNETC . . . PHYSICAL REVIEW A 61 052110

200,
i
447

Z
7

AW

A0
\ \
BT AN

\ \

\ \
T\

/

7 ALK/
’ﬁ//.«.,

4
/X X
7 (X /% AW
,;;27;;:;’7,{,‘}!@7"!
i 4 6’{%‘
B,

N\ \
TUR

\ \
LAY

DHBHRABHE

VAT LN

g
g
g
¢
g
g
g
2
¢
g
s
o
g
=
v

4

FIG. 6. Set of nested surfaces of constant ene(@) equal to—5,—0.5,—0.05,0.0,0.02,0.025,0.03, with the most negative surfaces
closest to the axes.

Cyy symmetry about the origin. The maximum positive en-the contour plots of Fig. 7. The sharp changes in energy for
ergy for each plane will be the point (@) that corresponds small values ofa; and a, correspond to the “pizza box”

to the cube (0,0',a3), which is a cube with sidea  geometries.

=a’/\/3. The symmetry plane determined By=const is
tangent to the constant-energy surface corresponding to this
cube at the point (Q0’,a3). The constant-energy surfaces h ; . h -
for higher-energy cubes are smaller and so will not intersect The Zero-energy sur ac® (Fig. 1) separates the positive-
the plane normal to the symmetry axis. The surfaces fofand. nggatwe—energy su.rfaces. Much of the behavior of th?
smaller energies will be larger and therefore intersect th&avity 1S governed by this _surfac_e. Its shape can be approxi-
symmetry plane. Thus, for boxes with a constant perimeter’ ate_d as three planes, with thelr_corners held at the origin,
the cube has the largest positive energy. The largest negati\%'d t||tgd by an angle toward th? limg=a,=as. The ques-.
energy is unbounded, since we may make one side arbitrarilyo"n arses, Wh'?“ govems the tilt Of. these pIanes_,? Consider
small, ande(a) becomes arbitrarily large and negative. In he vect<|)ra, wrr]uchhgoes from thlf Or'g.'?]t?] any p0|r|1t .

this primed coordinate system, the correcti@h to the en- The angled; that the vectoa makes with thei;=0 plane is
iriééc();é?/ggfte radius of curvature can be written & Da=tan Yas/[(a;)2+ (ay)?]Y2. (16)

As an alternative to two-dimensional energy contour ke — 2= d obtain th le of
plots, we can employ a three-dimensional plot in which the':hro'”r,]I s;(/jmrretry, we taka; =a,=a and obtain the angle o
energye(a) is given as a function of, and a, for fixed the tilted plane
values of a;. Figure 9 shows the plots of the energy
e(a;,a,) for a;=0.5,1.0,3.5. These figures correspond to d>3=tan‘1[a3/a\/§]. a7

C. Approximate form of zero-energy surface
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FIG. 7. Contours of constant energfa) as a function of; and
a, for a; = (@ 0.5, (b) 1.0, (c) 3.5. The contours correspond to FIG. 8. Contours of constant energya) for a;= (a) 0.8, (b)
values of e=0.111,0.1,0.05,0.03,0.60.05—-0.1—0.15-0.2, 1.75,(c) 3.0. These contours are in a rotated coordinate system in
—0.25-0.5—1.0. (Not all contours are present for every pjot. which the newa; axis is the axis of symmetry. The contours cor-
The zero-energy contour is the heavy black line. Positive-energyespond to  values of e(a) equal to —5.0-0.5,
contours lie within the zero-energy contour. —0.05,0,0.052,0.9,0.2. Not all contours appear in each plot.
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(c) 4

FIG. 9. The energg(a) as a function of; anda, for a;= (a)
0.5, (b) 1.0, (c) 3.5, respectively.

The value of®4 can be obtained by noting thafa,a,as)

PHYSICAL REVIEW A 61052110
D. Constant-force surfaces

The componentE;(a) of the total vacuum force are first-
order partial derivatives oé(a), which is a homogeneous
function of degree-1, and thef;(a) are therefore homoge-
neous functions of degree2:

Fi()\al,)\az,)\as):)\72Fi(a1,a2,a3). (18)

The surface that corresponds to the constant fBree0 will
transform into itself under scale changes for arbitrarily large
\, and must therefore extend to infinity, separating the region
in which F; is positive from the region in whick; is nega-
tive. The region of space that includes the lmg=a,=as,
corresponding to a cubic geometry, is the domain of all posi-
tive forcesF; .

In Fig. 10@), we show the surface corresponding to the
constant forcd=3=0. In the regions closest to the plaag
=0, the forceF; is negative; on the other side of the surface
the force is positive. In Fig. 10), the three surfacef;
=0, F,=0, F3=0 are plotted. These surfaces define the
various cavity geometries for which the forces are positive or
negative or zero. The intersection of two of these surfaces
defines a set of geometries,(,a,,a3) for which, for ex-
ample,F;=F,=0. In this regionF;>0, so the energy must
be positive. The central conical region corresponds to ap-
proximately cubical boxes for which all three forces are posi-
tive, and for whichlby Eq. (14)] the energy is also positive.
The largest regions, near each plane 0, have two forces
positive and one negative, and correspond to geometries
ranging from a cake box to a pizza b¢ke one side which
is smaller than the other two sides experiences the negative
or attractive forcg In the limit of a thin, large, square pizza
box, the energy density is negative, the attractive pressure is
three times the energy density, and the repulsive pressures
are both minus the energy densjtis]. In the three narrow
regions bounded by the intersection of two surfaces, two
forces are negative, one positive. These regions correspond
to toothpaste boxes that have an approximately square cross
section, with a longer third side. The longer sides experience
approximately equal attractive forces. For a long, square
toothpaste box, the energy density is negative, four sides
have attractivgiinward) pressures equal to the energy den-
sity, and the two ends have repulsiveutward pressures
equal to minus the energy densfg5].

Figure 11a) shows a two-dimensional contour plot of the
zero-force surfaces fa;=1. TheF,;=0 (F,=0) contour
is concave toward tha, (a;) axis. Also shown in this fig-
ure is the approximately triangular contour for the zero en-
ergy e=0. From this figure one can see, for example, the
following. (a) If both F; andF, are negative, thea may be

=e(1,1a3/a)=0. For this energy to vanish, we compute positive or negative(b) If only F; is negative,e may be
az/a=0.408 and 3.48. The smaller value corresponds to th@ositive or negative(c) If no forces are negative, thenis
adjacent surface 0§, which is visible in Fig. 1, and the positive. (d) There are no regions in which all forces are
larger value to the portion of the zero-energy surface that igiegative. Figure 1(b) shows the corresponding contours in

hidden from view. We findb;=16.1°,67.9°.

the rotated coordinate system faf=3.
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FIG. 11. Contour plots of the zero-force surfaces and the zero-
energy surface fofa) a;=1.0; (b) a;= 3.0 (rotated coordinate sys-
tem). The curve concave toward the axis isF,;=0. The bold
black lines correspond to the zero-energy surface.

vacuum stresses, but the stress was computed to be outward,
(b) 4 resulting in instability. Our results show that a rectangular
box also cannot provide a stable structure with attractive
FIG. 10. Contours of zero forcel@ Fs(a)=0. The force forces on all faces, but suggest that perhaps a torus could be
Fi(a;.a,,85) is negative for points 4;,a,,a;) on the concave Stable[39].
side of this surface.(b) Intersecting surfaces foF;=0, F, We have computed constant-force surfaces for a represen-
=0, F3=0. These surfaces define regions in which forces havdative set of forces. Figure 12 shows a set of contours of
characteristic signs, for example, in the region that includes thgonstant forceF, ranging from—5 to +50 (F; and F3
symmetry axis all forces are positive. would have the same shape but would be rotat&€de four
positive forces are on the side of the zero-force contour that
There is no geometry for which all forces are zero, andncludes the linea;=a,=as. Every positive surface has a
thus there is no local maximum or minimum valueegh),  transition region in which it bends about 90° away from the
and there are no stable rectangular cavities without introdud==0 surface. The most negative values ©f (near 0
ing some material properties. Casimir attempted to model thesa,) correspond to the attractive force on the large surface
electron as a spherical shell of charge held together byn the parallel-plate(pizza box configuration. The most
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FIG. 12. Contours of constant forég(a)= —5.0,—0.5,—0.05,0.0,0.005,0.05,0.5,5.0,50.0, where the contours are labeled in order from
the top left corner down, from-5 to +50.

positive values ofF, (near Gsa; or 0<aj) correspond to In order to understand physically the appearance of posi-
the four surfaces around the edge of the pizza box. tive forces in some of the characteristic rectangular cavities
If we take slices withas constant through the set of mentioned in the previous paragraph, we consider the mode
constant-force contours fét, in Fig. 12, and similar sets for  densities. The mode density near a curved surface has been
F. andF_3, we obtain a set of two-dimensional contour sur-ghown to vary as the radius of curvatJis]. For a right
faces. Figure 13 shows these contours as functioms ahd 5416 of a conductive material, the mode density in the im-
az for a;=1. The thick line represents the contour of Zero . cdiate region of the right angle is very high: in fact, it is

force, ‘The transition regions fd¥, andF; are clearly vis- infinite without a frequency cutoff, leading to a high positive

ible. Also shown are the contours of constant energy. Th . )
thick line with a triangular shape is the zero-energy contour/acuum energy concentrated in the region. The vacuum

The dark regions near the axes represent the regions of lard@/Ces are such that they try to open the right angles to create
positive and negative forces. These two-dimensional contoui flat region. In the cavity geometries in which one or two
plots can be obtained from graphs of the forEgsF,,F; as  sides are much smaller than the other sides, several right
functions ofa, andas, for a fixed value ofi;=1, which are  angles are adjacent and the combined effect of the increased
shown in Fig. 14F, andF, are simply rotated versions of mode density appears to be a local net positive energy den-
each other, andF; becomes positive wheneves>a, or  Sity and an outward force on the surface lying between the
az>a,, which corresponds to one of the long sides in theright angles. This interpretation might provide a rough physi-
usual pizza box configuration. A contour plot of the magni-cal picture for the outward forces predicted for a pizza box
tude of the total force is shown in Fig. 15, in which the geometry and a toothpaste box geometry. However, it may
largest values of are closest to the axes, and the smalleshot be applicable since no explicit account was taken of the
values ofF are in the central region in which shapes areeffects of the intersecting conductive planes in the energy
approximately cubical. analysis.
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(b)

(c)

(c)

FIG. 13. Constant-energy contours fa§=1 superimposed on )
the constant-force contour fé8) F,;=0; (b) F,=0; (c) F3=0. The FIG. 14. Forces plotted as function af ,a,, for a;=1.0: (a)
triangular-shaped bold line is the zero-energy contour. The othef 1 (b) F2; (¢) Fa.

bold line is the zero-force contour. Constant-energy contours corre=  _ . . .
spond to energy values equal te 0.25—02-0.15—0.1, rivative of the energy with respect #; yields the constant

—0.05,0.0,0.05,0.1,0.111. Constant-force contours correspond rce Fs. .At the maximum of the energy Curveq vanlshes.
force values equal to- 0.2~ 0.1,0.0,0.03,0.031,0.0312,0.032,0.05. | € maximum energy values for the three geometries occur
ata;=0.5,0.75,1.25, respectively. As the energy peaks shift
It is useful to plot graphs of the forces and energy forto largerag, the peak energy and the slope of the energy
several specific, representative geometries. For the geonsurve both decrease. The region in which the energy is posi-
etries 1xX0.5Xa;, 1X1Xas, and 1X3.5Xas Fig. 16 tive first increases and then decreases. Indeed, for the 1
shows the variation of the forces and the energy wihlt is X 3.5X az geometry, the energy peak is almost zero, and for
apparent that the energy and the forces vary approximatelgspect ratios greater than 3.5, the energy is never positive.
linearly with a; for a;>a,,a;. In this linear range, the de- For most values o&;, two forces are positive or two forces
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4

FIG. 15. Contours of constant magnitude of the total fdfee Contours are shown fdF| equal to 5.0,0.5,0.05,0.005.

are negative. Only for the1X a; geometry is there a re- we find f,e(a)=e(a), and Eq.(20) becomes
gion in which all forces are positive (0.Z53<1.6). In Fig. 2 B

17, we have plotted the energy density and the pressure for (fa—1e(a)=0. (22)
the same geometries as in Fig. 16. The operatoi uf, is the generator of dilations. The energy

Some general mathematical results may be obtained fqs(3) is an eigenfunction of this generator, and it transforms
constant-force surfaces. If we apply Euler's theorem to theinder dilations ag(a)— e(e*a)— e *e(a). In terms of the

homogeneous functiorfs;, we obtain usual quantum mechanical operators, the fdfcés analo-
gous to the momentump; and the torque to the angular mo-
a-VFi(a)=—2F(a). (19 mentum.

Equation(2) can be solved to obtain the form efa) for
If we multiply by a; and sum over=1,2,3, and use Eq$4)  a cube. For this case, and for the general case, sinc€6yq.
and(10), we obtain a second-order partial differential equa-is a homogeneous equation that is lineaefa), the bound-
tion for e(a): ary conditions must provide the information for the proper
. numerical factors. One boundary condition that removes any
) B additive constants is that the energy vanishes at infinity. A
“ J.Zl (aya9°/daja;—2)e(ay,a2,83)=0. (200 gecond condition, such as the value of the energy for a spe-
cific cube or for the parallel-plate geometry, appears neces-
Equation(2) can be expressed as an eigenvalue equation i@ t0 secure the proper factors.

terms of the scalar operatby for the component of the force
F alonga, the principal diagonal of the box. Defining

M e

IV. CONCLUSION

By consideration of the symmetry of vacuum energy for a
fa=—a Vg, (21) rectangular cavity, we have been able to derive general re-
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FIG. 16. Forces K., short-dashed lineF,, medium-dashed . .
line; F3, long-dashed lineand energye(a) (solid line) as a function Iine'?llcj' 1IZn Fig;ssshu;gs:ijgé::grg::fhegéwgféoﬂ:jeﬂ:]u;;g??ﬁgd
of a; for cavities with dimensionga) 1X0.5Xas; (b) 1X1Xag; » P, 10Ng-0 . ' energy )
(©) 1x3.5x . same cavity dimensions as in Fig. 1@ 1X0.5Xag; (b) 1X1

Xag; (c) 1X3.5X a;. Note the ordinate scales are different for each

sults that aid in understanding the dependence of the vacuu%aph'

energy and force on the dimensions of the cavity. The energ N )

is a homogeneous function of the dimensions, which leads teurfaces of constant positive enerfgonstant negative en-

a relationship between the forces and the ene(g)=  €rgy are transformed into each other using scale changes.
a-F(a). This equation provides a direct geometrical link pe-Constant-energy surfaces were also plotted in a rotated coor-
tween the energy and the forces, and from it follows thedinate system in which the neaj, axis is the symmetry axis
traceless nature of the stress-energy tensor. It may help réf the constant-energy surfaces. The contours of constant
solve some of the uncertainties in the definition of a physi-energy for a;=const (constant perimetg¢rshow the Cg,

cally meaningful vacuum enerdi6]. The forcesF are nor- Symmetry about the origin, and show that the maximum en-
mal to the surfaces of constant energy. Graphing thesergy occurs for a cube at (0e3). There is no cavity con-
surfaces in three dimensions displays tig, symmetry. figuration for which all forces vaniskor are negative so
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there is no local maximum or minimum of the energy func-vacuum modes that occurs with the boundary conditions for
tion. Only for the cube are all forces equal and we maythe geometry. For the case of a perfectly conducting and an
consider the average energy density as being isotropic.  infinitely permeable plate he showed the repulsive force

The force on each face of the cavity is also a homogearises from the curvature of the mode function. One issue in
neous function of the dimensions. Surfaces of zero force antis explanation is that the curvature leading to the repulsive
the surface of zero energy, which are all invariant undefforce is due entirely to the frequency cutoff function used.
dilations, divide the space spanned by the vecidrgo three Negative energy densities tend to appear in “asymptotic”
types of regions with well-defined characteristiCEhere are  cases, that is, when at least one dimension is a factor of 2 or
a total of nine different regions, three equivalent regions formore smaller than the other dimensions. This suggests that
each axig. The three regions are as followd) A region in  the most important factor leading to negative energy densi-
which the forces and the energy are positive, and the geonties may be mode exclusion. On the other hand, positive
etry is cubical or nearly cubical2) A region in which two  energy densities tend to occur when all dimensions are of
forces are positive, one is negative, and the geometry is liksimilar magnitude, suggesting that the most important factor
a cake box or a pizza box, with the attractive force on themay be the constructive relationship between the electric and
largest side, and the repulsive forces on the smaller sidespagnetic fields in the three orthogonal directions.
and the energy can have either sign depending on the aspectit may be of some value to understand what causes a
ratio. (3) A region with two negative forces and one positive positive energy density and positive forces and negative
force, in which the geometry is like a toothpaste tube, thdorces in order to optimize geometries. Many other puzzles
positive force being on the ends, and the energy can hawsith vacuum fluctuations remain. With an increased under-
either sign depending on the aspect ratio. standing of vacuum forces and energy in rectangular cavities,

Given the energy for a cube, it appears that it may beancluding the effects of temperature, it may be possible to
possible to obtain other geometries with the same energy bgngineer micromachined devices to measure the repulsive
a suitableC3, symmetry coordinate transformation. It might forces and to make useful structures that utilize vacuum en-
be possible to expand the symmetry group to include transergy and Casimir forces. Biological structures, for example,
formations to other energy representationsQyf,. If this  microtubules in cell cytoskeletons, the endoplasmic reticu-
were accomplished, one might be able to generate all valudem, or diatoms, may have functions that involve interaction
of e(a;,a,,az) from one particular value of using the op-  with the vacuum field.
erators of this expanded group.

One of the puzzles that remains is the physical explana-
tion of what determines the sign of the vacuum force. For
example, why is the vacuum stress positive for the sphere, | would like to thank Carlos Villareal for sharing some of
the cube, and similar configurations? One approach to thikis unpublished results on force and energy calculations in
conundrum is to consider the number of modes present. Foectangular cavities, for his generous assistance with
a sphere, using the results of Balian and Duplanfi€l, one  MATHEMATICA, and suggestions regarding the final manu-
computes that; additional modes are present when thescript. | would also like to thank Robert L. Forward and
sphere is put in the vacuum field. Hence the vacuum energleter Milonni for helpful conversations, and Lowell S.
is positive. Although mathematically correct, the notion of aBrown, who first got me interested in vacuum fluctuations
fractional mode is perplexing, and Deutsch and Candelasany years ago. My thanks also to Bryce DeWitt for point-
[16] maintain that the cutoff used by Balian and Duplantiering out some of the problems with perfect-conductor bound-
[17] to derive their mode function is unphysical. In Ref0]  ary conditions. Thanks to the staff at Quantum Fields LLC
Hushwater explained the repulsive Casimir forces in paralleind to the NASA BPP program for their support of the con-
plate geometries as due to the redistribution of the free fieldinuation of this research.
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