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Foundations of quantum mechanics: Connection with stochastic processes
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In this paper we explore the mathematical and epistemological connections between the stochastic derivation
of the Schrdinger equation and the one proposed by ourselves in previous papers. It will be shown that these
connections are accomplished by means of the fluctuation-dissipation theorem, to which we may unambigu-
ously relate the symbols and physical references of both approaches. As a by-product of our investigation, it
will be possible to interpret the time-energy dispersion relation on sounder grounds. It will also be possible to
discuss the superposition principle and to interpret it on a quite simple basis. The origin of the stochasticity and
its relation to stability will be also addressed and the bridge to an axiomatic formulation of stochastic electro-
dynamics will be constructed.

PACS numbgs): 03.65.Bz, 02.50.Ey, 02.50.Kd, 03.65.Ca

[. INTRODUCTION The model created by this approach is one in which the
particles of a system, interacting via mutual forces, remain in
We have already derived the ScHinger equation from dynamic equilibrium because of the balance of these forces
two slightly different axiomatizations, each one with threewith a stochastic force responsible for random movement
postulates[1,2]. These derivations have shown themselved17]. The problem here, however, is to explain tregin of
forma"y equivalent but epistem0|ogica”y Complementary,such StOChaStiCity—and this is pl’eCisely the weakness of the
since insights concealed in one are supplied by the other. It igtochastic approach. Moreover, in carrying out the derivation
always interesting to have several ways of developing ®f the Schrdinger equation, one needs to introduce by pos-
theory, especially when one can connect them mathematiulate the stochastic velocity and acceleration and relate
cally and epistemologically. Indeed, our first axiomatizationthem, also by postulate, with the generalized stochastic force.
of quantum mechanics used a more mathematical approadiius, the argument against the stochastic derivation may be
[1], which simplified the calculations while hiding much of that, by postulating all of these features, one is just forcing
the underlying physics. In our second axiomatizatj@h, ~ the result(Schralinger equation By accepting stochastic
however, the blanks left by the first one were filled using thePehavior without knowing its origin, the derivation of the
central concept of entropy and we also proved these tw&chralinger equation from this line of reasoning, instead of
axiomatizations to be mathematically equivalent. The seconf¥ist postulating it as usual, is only a matter of taste, for we
derivation method, by using the concept of entropy, allowedre replacing the unknown by the obscure.
us to generalize the derivation of the Safirmer equation to The important point here is that in such a theory, where
embrace some generalized versions of the Boltzmann-Gibbgt) is considered a stochastic process, it is not possible to
entropy, in particular that formulated by Tsallis, thus gener.deﬁne a total time derivativel/dt, since the movement is
alizing the Schrdinger equatior3]. discontinuous, and we have to search for substitutes to this
In this paper we will show how the stochastic derivationoperator that might be used to formulate anotiew*‘New-
may be connected with the one we have used in pageq Il tonian” theory, formally equivalent to the ma’ghematical
(and, consequently, also with the one of papéL]). This  Structure of quantum mechanics, as given by the Stthger
will help us to unravel some of the mathematical and episteequation. This is amply reported in the literature and will
mological features stimulated by that derivation. In thisalso be shown schematically in the present paper.
sense, the concept of a stochastic force, central in stochastic We have already shown in some of our previous papers
theory, will be connected with the concept of entropy, fun-[1,2] that it is possible to derive the quantum formalism
damental to one of our previous derivations. (Schradinger equation from three basic postulates. In the
The search for a stochastic support for quantum mecharfirst axiomatization the postulates wetH (A1) the general
ics has taken place since the early 195@sand became a Vvalidity of Newton’s laws for the individual systems com-
fertile research field in the following two decadés-13. It ~ Posing theensemble(A2) the general validity of Liouville’s
is still an important field for investigation of the mathemati- equation for theensemblgand (A3) the possibility of con-
cal and epistemological foundations of quantum mechanicshecting the joint probability density function on phase space
This approach can be illustrated by the mathematical deriE (X,p;t) to a characteristic functioZ(x, 6x;t), defined
vation of the quantum mechanical formalist8chralinger ~ upon configuration space, by means of an infinitesimal trans-
equation using only the formal apparatus of classical statis-formation given by
tical mechanics, together with a kind of “Brownian move-

ment” theory[14]. In this case, the kinematic description of . :f ip- 8%/ .

the Brownian movement assumes a movement with no fric- Zo(x, ;1) € F(x.p:t)dp, @
tion, an approach that has been used in the Einstein-

Smoluchovski theory15,16. where dx is considered an infinitesimal displacement.
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In the second axiomatizatidi2], the first two postulates force (the reader is strongly encouraged to look at RET]
were kept while the third was replaced by (A3the appli- for detail9 in a process known as coarse graining. Using this
cability of quantum mechanical formalism for situations of finite time interval we may define the forward time deriva-
statistical equilibrium with respect to the entropy functiontive (see[14] for detail as
written in configuration spagewhere the relation between

the fluctuations in coordinate and momenta obtained from D= lim E X(t+At) —x(t)| [ ox(At) 3
this entropy function is given by X( _At' ot t At At t'
(5)(—)2 W= ﬁ_z 7 where the averagi[ ] or (), is taken over the\t distribu-
4" tion, which means that it is the conditional average in the

interval At and reflects a statistical distribution of the dis-
This second derivation allowed an interpretation of the vari-placementsix [9]. We may also define the backward deriva-
able 6x, whose significance was concealed by the previougive as
one.

By examining the epistemological and mathematical con- - . . o X(t)—=x(t—At)| [ ox(—At)
nection between our approach and the stochastic method, we #X(t)= |m+ t At N — At ’
sought to gain new insights into fundamental questions. In- At=0 ‘ @
deed, from the proof that quantum mechanics may be under-
stood as a stochastic process, we felt that it would be rath&ghere, in generalDx(t) # D, x(t). From these two deriva-
interesting to know at what point in our approach this sto-tives we form the systematic and stochastic derivatives
chastic character effectively appears and what its ontological
status is. If this goal could be achieved, the point where D-D, D+D,
stochasticity appears in our derivation should explain its Dc= 5 Ds= 2 ®)
physical significance. Because of these considerations, in our
previous derivations we struggled to avoid leaving any sym-  SinceAt is a very small time interval, we may write the
bol of the theory without a physical reference. It is the ob-expansion
jective of the present paper to resolve these questions.

To achieve this goal we will briefly develop, in the second
section, the derivation of the Scliiager equation from the
stochastic point of view. We will follow the pioneering pa-
pers of Nelsorf14], Kershaw[9] and De La Pea[18], and 1 d
the review paper of De La Pafi17] (this latter very closely ~lattar Z [Xi(HAt)_Xi(t)]a_xi
as our guides in the development of the related formalism
and interpretation. In the third section, we will show again, 1
and very schematically, our derivation of the Salinger oAt %‘4 [xi(t+ A —xi(1)]
equation using the configuration space entropy concept. In
the fourth section we will show how the stochastic derivation
is connected with the one presented in the third section. That
is, we will show where, within our own derivation, the sto-
chastic character of matter was revealed by the formalismrhe general velocity of the process is given by
The fifth section will be devoted to clarifying the role played
within our approach by the superposition principle, from )
which we may draw, as we will show, a quite simple inter- c= lim E;
pretation. In the sixth section we will finally address the A0
problem related to the origin of the fluctuations and its rela- , . o . ;
tion to the system’s mechanical stability. The last section iWhICh we may split into two components: the systematic
devoted to our final conclusions.

%[f(x(HAt),HAt)—f(x(t),t)]

2

X[xj(t+At) —x;(1)] .)f(x;t). (6)

aXi aXJ

X(t+At) —x(t)
At

>=Dx(t), (7)

%omponemv and the stochastic ong

c=Dx+Dx=v+u. (8
Il. STOCHASTIC DERIVATION
. ) ) . ) In the “Newtonian” limit we haveDc— dv/dt.
As we mentioned in the previous sectiot(t) is a sto- To build a dynamic theory we must now postulate the

chastic process and we cannot define a time derivalidé  following relation between the stochastic acceleration and
for it. This means that the velocity related to this processhe stochastic derivative af

cannot be obtained by direct derivation, foft) is not, in
general, differentiable. ma=mDc, (9)

In this case we have to introduce a finite time interé)
small compared with the characteristic times of the systemas a substitute for Newton’s equation, but giving Newton’s
atic movementthat related to Newton’s equatiprbut large  second law in the Newtonian limit. This implies that we must
enough compared with the correlation time of thetuating  have
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D.v+Dgu=ma, This equation is of the parabolic typa7] and describes the
(10) irreversible time evolution of théreal) amplitudesy,_ and
D.u+Dy=0. by

If \=+1, then Eq.(16) becomes
Now let f be the total force acting upon the system. This

force also has a stochastic component and may be equally F2imDgdy. [dt=—2m Dész/fiJer//i , (29
written as a linear combination of systematic plus stochastic
forces. In this case we may write having as its solution

f=fo+m(1+N)as, (13) o =eRFIS= ™IS, p=y . (20)

where.fo is the part of the force der_ivable from a potential This is a hyperbolic type equatiofi7] and describes the
and\ is a(yet unknown constant. With all these results we o\ersible evolution of thécompley amplitudesy_ = ¢ and

finally get the system .=yt 1f we put into Eq.(19)

fo=m(Dv—ADgu), 5
(12) Do=5—, (21)

D.u+Dg=0, 2m
which may be written explicitly as wheref: is Planck’s constant, we finally get the Sctirger
equation.
vlot+(v-V)v—v_V2v—A(u-V)u—rv, Veu=fy/m, With the definition
(13 T 2R

aulgt+(v-V)v+(u-V)v+ v, V2v—v_Vu=0. p=y y=eR, (22)

Assuming thatv, and v_ will depend only upon time, we have, because of the second relation in &§),
that the velocities are rotation-free, and that the external
forces are derivable from a potenti] we may rewrite the Vo [ &x(At)]? f
system of equation€l3) as U:Do7; Do= t(z—At) =om (23

2/y_ Ve \UZ/2— . . .
NI+ V (/2= v_V-v= 2=k, V-U) In the same way, since we are considering 1, Eq. (11)
=—VV/m, gives

(14
ulgt+Vv-u+v,V-v—r_V-u)=0. f=fo+2ma;, (29)

To obtain the Schidinger equation from the nonlinear Where[17]
equation(14) we have only to make the ansatz

v=2D,VS, u=2D,VR, (15) &=V|3

12hv 25
—U+% -u ()

with v, =Do, v =0, andy. =expR*i¥y—\), whereR g the stochastic acceleration giving a stochastic fdice
and S are real functions depending upait) andt. After = Ma.= — V ey, related to the “potential”
some algebra we get stoc

(9 + _
+2imDgy/— X %=—2mw§v2¢t+v¢t, (16) bstoc= " 7

V———V 2) (26)
p (Vp)|.

whereV, as was said above, is the potential function relatedrhe resultg23) and(26) will be crucial for the comparison

to the external forcé,. between this derivation and the one based upon the configu-
Since the parameters and D, appear in Eq(16) only  ration space entropy concept, to be presented in the next

through the producb,\— N\, it is clear that we may adjust Ssection.

the scale througlb, and takg\|=1 [17]. If A\=—1 we get The process of derivation of the equation related to a
the equation Brownian-type movement and the one related to the quantum
formalism leaves no doubt about the irreducibility of one
F2mDodip 19t=2mDEV2. + Vi, (17)  type of phenomenon into the other. Indeed, since the very
beginning, we have said that the quantum mechanical pro-
having as its solution cess has to be understood as one where there is no room for
friction, which distinguishes it from the usual Brownian pro-
Yo=eRS=pl%e*S =y 4. (18)  cess[17]. We will return to this question later on.
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I1l. SECOND DERIVATION 1( g2
S=Seqt 5

. (52, 32

Seq
2

Now we will present again the mathematical derivation of
the Schrdinger equation from the Liouville equation and

Newton's laws using the concept of entropy, thus fac'Ilt‘r’ltmgwherese (x) stands for the statistical equilibrium configura-
references to be made later on. q

: . . tion entropy, and where we used the fact that the entropy
In our previous papef2] (to which the reader is also . g
el S . must be a maximum, giving
strongly referregwe begin with the Liouville equation

JF(X,p;t
(x,p )+
ot

=0. (33

IF(Pit) V() F(PD) (ﬁSeq(X)>
. ox=0

P Ped?)
m  ax X ap

Ix
(27)
In this step we used the assumption of local equilibrium.
This makes it possible to define a local entropy, which is the
same function of the local thermodynamics varialllesre
J F(x,p;t)dp=p(x;t); f pF(x,p;t)dp=p(x;t)p(x;t), the positiong as the equilibrium entropy is a function of the
equilibrium statistical parameters: the Callen concept of in-

Using the definitions

stantaneous entrog20]. We thus use Eq$32) and(31) to
Mz(x;t)=J p2F(x,p;t)dp, get, for the position fluctuations,

o 28 .
(3p)2p(x;) = Ma(x;t) — p(x;t)2p(X;t) f (8%)%e~1%d( 5%)

(8x)?= — = i (34)
J e 7(&)2d(5x)

— o0

= f [p—p(X;t)]?F(x,p;t)dp,

where p(x;t) is the probability density on configuration
space, p(x;t) is the so called macroscopic momentum,where we put
M,(x;t) is the second order momentum statistical moment,

and(8p)? is the momentum fluctuatiofprojected upon con- 1 Sy (x;t)|
figuration spack we (@) directly integrate the Liouville 5, ks + (35
equation over the momentum space @bdmultiply it by p Y IX

and integrate it over the momentum space to find the two
equations and where we considered the natural sample space,
+ o] for the fluctuations. The relatiai34) is just a statement
dp(x;t) d (p(xt) ) of the fluctuation-dissipation relation due to Einstein.
ot + x| m p(xt) | =0, (29 We havea priori, no relation between these displacement
fluctuations and those related to the momenta. We then im-
representing a continuity equation for the probability densitypose the restriction that, in this statistical equilibrium situa-

p(x;t), and tion, we must have
Lo et o
E&[ 2(X;1) = p (Xt p(X;t) ]+ p(X;t) at (5p)2 (5)()2:?, (36)
d [pA(x;t)\  aV(X)
>\ om 1T o |70 (300 meaning that, if the fluctuations in the positions are too

broad, they have to occur sufficiently slowly in order to leave
It remains for us to find a functional expression (—Qﬁp)z_ the system enough time to accommodate itgatiabatic

To achieve this goal, we first consider the relation betweer0cesses If, on the other hand, the fluctuations in the mo-

the entropy and the probability density of an isolated systenf’€Nta are too severe, then they have to be confined to very
as given by[19] small portions of the system in such a way that they are too

localized(and have too high a frequencto disturb the sta-
p(x;t)=eSxi/ke, (31 tistical equilibrium situation. We then get, using E¢34)
and (36),
wherekg is the Boltzmann constant.

We are searching for the densities representingstags- #2 [ 32In p(x:t)
tical equilibrium situations of the system, compatible with (6p)?=— Z(—z) (37)
spontaneous local fluctuations in positio’we expect that Ix
the entropy, calculated within some regiox—(6x/2x
+ 6x/2), will be a maximum. We thus write which allows us to write
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IV. COMPARISON BETWEEN THE DERIVATIONS

19— h% 0 |FInp(xt)
p axLOP)P(U]= =7 = 52 Now that both derivations have been presented, there re-
mains the question of what connection exists between them.
1/(dlnp(x;t)\? The unraveling of such a connection may be of great impor-
2 Tax I (38)  tance to clarify some of the interpretations of the quantities
appearing in both formalisms, and also their place in the
Now, puttin underlying _eplstemolog_y. _
W, putiing We begin by stressing that E¢40) can be cast into a
as(x;t) much more intuitive format by writing
POt =—>— (39
ap(xt) | p(xt)?
we may rewrite Eq(30) as ot x| 2m V()
Cd|as(xit) 1 [as(x;t))? h%|dnp 1[dlnp\?
”(X't)&| at +ﬁ( x| TV ~am 7%( — ) NS
_h? | 3Inp I ? which may be written as
am| %2 2\ ox
ap(x;t) J | p(x;t)? h?
-0 (40 7t "5{%“’“ ~amp
Now, writin
g #p 1 [adp\? 46
p(x;t)=R(x;t)? (41) a2 2p\ox) || (48
we get from Eq/(40) the equation This resembles Hamilton’s equation
d|as(x;t) 1 [as(x;t)\?
R?(x;t) — —+—( +V(x) %:_ﬁ
ax| ot 2m\ ax T o (47)
h?  PR(X1)

_ (42) but with the momenturp replaced by an average momentum
' p(x;t), and the Hamiltoniai replaced by an average effec-
tive Hamiltonian

S 2mR(Xt) gy

which we have called thmodified Schrdinger equatiorfor

it is, as we have already shovt], together with Eq(29), p(x;t)? h2 9% 1 (ap\?
equivalent to the Schdinger equation heri(X;t) = om +V(x)— amp| o 5<5) :
h2 ?P(x;t ap(x;t (48)
——L+V(X)¢(X:t)=iﬁ " ), (43 . . o
2m - gx2 ot the stochastic potential appearing in the last term on the
. right, as can be seen by comparing it with expres$& of
with the second section. We call
) — . is(x;t)/h
p(x;H)=R(x;t)e : (44) 72 (0% 1 [ap\2
o . o Ver=V(X) = —| —5— 5| = (49
Note that the derivative in Eq42) is unessential since it 4mp | 9x? 2p |\ X

implies that the expression inside the square brackets is an
arbitrary function of timef(t). We may write this function the effective potential. Moreover, this “potential,” accord-
within the termds/dt in a simple way{1], implying a redefi-  ing to the derivation of the previous section, comes from the
nition of the energy level. Note also that our definition of themomentum fluctuations, as may be seen from expression
probability amplitude in the expressidad) is slightly dif-  (38), which gives the contribution of these fluctuations to the
ferent from the stochastic one, but in a totally unessentiabverall dynamics of the average momentum, as implied by
way since comparisons will be based upon the probabilityeq. (46).
densityp(x;t), which is the same in both approaches. It is well known that it is the fluctuating force that is
Finally, it is worth stressing that the application of the responsible for holding the system within its statistical equi-
entropy concept, defined upon configuration space, to thibrium situation, dissipating the eventual spontaneous fluc-
study of random processes as a means to give a statisticlations, thus leading to the fluctuation-dissipation formula
description of the underlying dynamics is a common proce{34). This is the point that allows us to link treymbolsof
dure already established in the literat(ipd]. both approache& necessary condition, since we are claim-
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ing that they are equivalentTo do this we return to expres- Hamilton-type equation are average quantities, something

sion (8), where the stochastic velocity was defined by that is concealed by the stochastic derivation.
At this point we may also explain the origin of the
u=DgX, (500 parabolic-type equatioril7), which is obtained when we

make the choica.= —1. We begin by noting that the math-

ematical formalism of the derivation made in the third sec-

tion is suitable tostable equilibriumsituations, since we

h o Vp have used the relatio(83). Now, it would be equally pos-

(51 sible to consider the positive value of the entropy second
derivative (unstable equilibriumy which is equivalent to

Now, we rewrite the above expression as choosingh = —1 in the stochastic approach, Ha1). Thus,

the stochastic force will tend to reinforce the action of the

external force, since, in this case, these equations read

and expressiof23), where its analytic expression was given
as

U=om

u V(kglnp)= (52

=— ——VS

2m 2m '
e e fo=m(a.+tas) and f=fg, (58
where S is the entropy, as defined in the third section, and

remembering that, for our fluctuating system, the linear Onand cannot be considered a dissipation function in the sense

sager relations are given by mentioned above—that is, equilibrium will never be attained.
Another aspect of the stochastic derivation that becomes
d ~ clear by the above analysis is its Markovian character, com-
ﬁ(‘m =a-VS (53 ing from the use of only the first three statistical momentum
moments in the derivation procegks].
(see Ref[19], p. 597, where a is the so called friction The fact is that the fluctuations, when related to individual
coefficient and is a tensor given by systems, entangle their description by means of classical

Newtonian dynamics and classical statistical theditye
~ 1 (o | . Liouville equation). To go onto quantum mechanics, from
“=is f __(9x(0)dx(s) )ods, (549 these two classical frameworks, it is necessary onlyeto
strict the fluctuations of the systems, which might be any in
the “cross-correlation function,” thus relating the two fluc- the classical statistical framework, by the expression
tuating velocities.
With these expressions, it is readily seen that

(%) (p)>= ", (59)
d
u=Dex= dt(éx) (55) which not only does not violate this framework, but is, we
stress, a mere restriction made upon the behavior of these
and systems’ position and momentum fluctuations. This is ex-
5 1 ro actly what we have done using our three postuldies),
Zi= _f (3p(0)p(s))ods, (56) _(A2), and (Asy), mentioned in the_fir_st section. Moreover, it
47 2m)_. is an experimental fact that restricti@f9), made upon the
whole class of classically allowed fluctuations, has a ubiqui-
where sp=md(8x)/dt, and1 is the unit matrix. We have tous character, thus giving Planck’s constant its known uni-
already used the fact that the momentum fluctuations in difversal character.
ferent directions are independent—this last result was proven The result of the previous discussion, however, has far-
by us in paper 1[2], Appendix D[see also Ref[17], Eq.  reaching consequences, since the approach we followed led
(8)]. Thus we must have, sincésp;)=0 and <5pi2> to an equationthe Schrdinger equationthat restricts the
=(8pg) by isotropy, the diagonal matrix equation in Eq. energies(e.g., to discrete valugshat an individual system
(56). Expressior(56) thus says that Planck’s constant comesmay have, while introducing the fluctuatingstochastig
from the kinetic energy Corre|atiorﬁsee also the expression force. This feature is not present in Newton’s IaWS, where the

(23)]. It is needless to say that, with the relatiof®) and  €nergy is not restricted as long as it is positive. This behavior
(56), and the connection came, clearly, from the inclusion of postulaté&2) and

(A3"), related to Liouville’s equation and the class of clas-
sically allowed fluctuations.
V= Dcx=p(x;t)=j PF(x,p;)dp, (57 There is a final comment we could make regarding the
ergodic connection between individual systems considered
wherev is the systematic velocity ano(x;t) is the average within a finite time interval and ensembles. For the above
momentum, all the other symbols of theory are connectedormalism to be applicable for individual systems, the time
unambiguously, since the primitive symbols of the stochastiénterval has to be sufficiently largend therefore finitefor
derivation arev, u, D, andDg and the other symbols are these individual systems to behave like an ensemble and be
defined from them. Moreover, the quantities appearing in thelescribable by the Schidinger equatiorthis is precisely the
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restriction of finite time interval related to the stochastic deri-
vation made at the beginning of the second section, before 6E®(t):r
Eq. (4)]. This is nothing more than a qualitative statement of
the quantitative expression

SE(t), —0O<t<O
0, otherwise

(67)

(see Ref[19], p. 582, and making the spectral decomposi-

52 tion of this time-dependent function as
(6E)? (At)%= R (60) 1 o+
SE(t)=—| C(E)eFV"dE, (68)
which says that the time interval within which the quantum V2] =

formalism applies is the one that allows the energy to fluc- ' ' - .
tuate in the manner given by E¢60). This expression, ob- we f_mally find, substituting these results in E@6), the
. . . . relation
viously, leads to the Heisenberg inequality
+ oo

—i — iEs/h
AEAtzg 61) K(s)=5g | _ C(~E)C(E)e™*"dE, (69)

. . With the result
in the same sense that E¢9) leads to the position-

momentum one. Note, however, thit here is a timenter- C(—E)=C*(E) (70)
val, since there can be no fluctuations in time, which is a

parameter within the present approach. This result come$ee[19], p. 583, we get

quite naturally from the present approach; to see this we

begin by defining thenergy correlation functiogiven by —( 5E)2=K(0)= %J'mlC(E”zd E, (71)

K(s)=SE(t)SE(t+s), (62 . i
giving, because of E(q65), the spectral density as
which relates the energy fluctuations at timeandt+s by 7
an ensemble average. This definition implies that the mean J(E)= ==|C(E)|?. (72
square fluctuation in the energy is given by 20

(5T)2= K(0), 63) The expressioti71) may be written as

+ oo
since(SE)=0. Let us now introduce the Wiener-Khintchine (5E)2At=ﬁf |C(E)|*dE, (73
relations(see Ref[19], p. 585, given by o

. which is a restatement of the time-energy Heisenberg disper-
K(S):f J(E)eEdE sion relation if we put

—o0

+oo h
— (64 J |C(E)|%dE= 7, (74)
J(E)= Zf K(s)e E¥ids, -
o in a way quite similar to the substitution done in the expres-
sion (56). It is important to stress that the tinieterval ap-
pears in a very natural way using this approach.
oo This clarifies the meaning of the time-energy Heisenberg
(5E)2:f J(E)dE, (65) relation as a fully objective one and is another improvement
* in our understanding of the quantum formalism that was
brought about by the comparison of the stochastic derivation
with our previous statistical one.

leading to

where J(E) is called the spectral density. Sin&E(t) is
stationary and ergoditby assumptiopn K(s) is time inde-
gﬁgg;rgl,eagsetrg%eeﬂaey use a time average in place of the V. SUPERPOSITION PRINCIPLE

We are now ready to elucidate the role played by the

K(s)=SE(t) SE(t+s)={5E(t)SE(t+5s)} superposition principle within the conceptual structure of the
present framework. To proceed with this task it will be nec-
1 (+0 s : .
_ _j dt’ SE(t')SE(t' +5) (66) essary to turn to the derivation given in papdr], whose
20 )-0 ' postulates were already cited in the Introduction of this paper

under the symbol4A1l)—(A3). In very general termsthe
where 29 =At is the minimum characteristic timthat al- reader is referred to that paper for detailee process of
lows us to use a time average instead of the ensemble aveaderivation begins with the axiom#1)—(A3) where a char-
age. By defining the new function acteristic functionin momentum spagds defined as
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ooxh may be aware that our characteristic function is nothing more
ZQ(X-5X:t)=J e'PIE(x,pst)dp, (75 than the density “matrix”(with one elementwritten in the
coordinate representation
and where the above Fourier transform is applied upon the " " .
Liouville equation, giving an equation satisfied by the func- POXT XD =47 (XD Y(X"1), (8D)
Fon Z?. We nowimposeupon the characteristic function the \ v aras”— v sv/2 andx’ = x+ Sx/2 [see Eq(76)]. The av-
ormal appearance erage process in the expressi@d) is thus simply

X+ %;t)’ (76) (fxp))= lim TEXp)p(x".X" 0], (82

X" x!

5x_)
2

which is formally equivalentas we have shown in paper Il where Trffp) means the trace of tHene-elementmatrix p,
[2]) to the constrain3) of the derivation of the third section. andp is the momentum operator acting upon the probability

Zo(X, 0%;t) =™ | x—

By writing the above amplitudes as amplitudeg[1]. The limiting process is thus clearly equiva-
_ lent to the process of taking the trace of the corresponding
P(x;t)=R(x;t)e'Sxv/A (770 1X1 matrix.

If we have a statistical mixture, however, there will be
and taking the impositiori76) on the equation satisfied by systems occupying many possible states and many probabil-
the characteristic function, we are able to deduce the Schraty amplitudes will be present. In this case, the density matrix

dinger equation. will be written, in coordinate representation, as the matrix
The feature deserving our attention now is that since ex-
pression(75) is a Fourier transform, and the characteristic [onm(X" X 5O 1=[ 8 (XD (X" 0], (83

function is defined as the product in E§6), we must have
the classical Liouville probability density function given by where[a, ] represents the matrix with elemergts,,. The
the convolution integral final state of the system will be given by the average process

(FO6,P)y =TI F(X,P) pam( X", X" 1)1, (84)

exactly as above. This averaging process, however, may be

where the functiongs(x,p;t) may be called the phase space easily translated within our approach as the superposition
probability amplitudes. These are related to the configuration

F(x,p;t>=f *(x2p—p D $(x,p’ AP, (78)

space probability amplitudes given in E§7) by (f(X,D)>:Tr[1Ac X,P)pam(X" X' 51)]
. E 3 J
Y(x+ ox;t) = f e p(x,p;t)dp, (79 =& G lim f TS
as we have already shown in paper Il. With the use of this XZon,m (X, ox;1)dX, (85)

last expression we were able to derive, in paper Il, the Bohr- / q
Sommerfeld quantization rules and the Feynman quantlzel"’here Zo(n,m) (X, OX;1) = g (X— OXI2;t) (X + OX/2;t), an
tion prescription. As a final comment, it is important to note N 18 the dimension of the matriteventually infinitg.

that the average values of operators were defined by the lim- TN€ré are thus two kinds of superpositiofia: one that
iting process comes from the linearity of the Schiimger equation and

may be related even to pure staf@isat are considered as
entangled statesnd(b) the other that takes into account the
(f(x,p))= f f(x,p)F(x,p;t)dp dx fact that we are dealing with a statistical mixture. It is clearly
case(a) that produces controversy, since itassumedhat
N J classical statistical theory, related to the Liouvillian function
= lim jf X, —ih (&))ZQ(X ox;t)dx, F(x,p;t), does not present such a feature, this being the
x=0 alleged main distinction between the conceptual frameworks
(80)  of the classical and quantum theories. Therefore, we shall
begin by discussing caga).
where no ambiguity concerning the order of the operators There might be a misconception in what we have just
appears, since they commute, when related to the charactesitten. Indeed, the argument just presented compares the
istic function[1]. With these results on hand we may now classical probabilitydensity with the quantum probability
return to our main theme. amplitudeswhich is clearly a comparison between two very
Since in the following it will be important to distinguish distinct mathematical and physical objects. If we are to com-
between pure states and statistical mixtures, we will nowpare them, we must do so by comparing classical probability
show how these two cases fit within our approach. The puramplitudes with quantum mechanical amplitudes and classi-
state is given simply by the above developments; the readeral probability densities with quantum mechanical densities.
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Since the formalism we have just derived has furnished the Some widespread interpretations interpret the quantum
classical probability amplituddshe ¢'s in Eq. (78)], we are  system as a single systelpeing considered in some instant
in position to carry out the required comparison. Indeed, weof time t If there is a superposition, then this superposition
may assume that our system is in the superposition state implies that the quantum system may be in more than one
state at thesame time(Schralinger's cat paradgx—it is
%:E Chih (86) needless to say that this interpretation implies that, in the
nene classical limit, there can be no superpositidor this would
really imply in Schralinger's paradox of a deaand alive
macroscopic cat
Our interpretation could not be much farther from this one
Ps(X+ OX;t)= 2, Cothn(X+ SX;t) than it is. As we have already stressed on other occasions
(see paper Il and the previous secjioour approach is able
_ to refer to both single systems and ensembles, their connec-
=> an e g (x,p;t)dp tion being made by the ergodic hypothesis, which is plainly
applicable within the realm of quantum theofg]. This

but, now, according to the expressiofd) we will have

_ ipoxh . means that, when considering a single system, we must con-
_J € $s(x,p;t)dp, (87 sider this single system within a time interval sufficiently
large to allow the fluctuations to let the system fill its acces-
where sible states. The states appearing in the expari8@rof the
superposed probability amplitude are just those accessible
) — . states that have their energy in the interval of the energy
SPID=2 Cabnl(X,Pi1). 3 fluctuation of the system—in the case of degenerate states

even the energy fluctuation is unnecessary, since all the

Thus, we expect to find the same superposition phenomenog;ates have the same energy content and are equally acces-

in the classical level represented by the phase space pmbabélfble. Our single system will thus, by means of the fluctua-

ity amplitudese,(x,p;t), which means that it is a mistake to ;¢ occupy, successively in time, states with a probability
say that this superposition has no classical resemblance. T eater or smaller depending on the specific problem: indeed,

error, as we have already poin;e_d out, comes frpm the COMt \we are considering a problem where we have a single
parison of the quantum probability amplitudes with the clas-,

. . . . ! . t ith di i i b
sical probability density, which are different mathematlcalsyS em With an energy dispersion given by
and conceptual objects. (E)—AE<E<(E)+AE, (91
If we are in the situationb) above, where a statistical

mixture appears, then there is no problem in writing the av/meaning that the fluctuating energies are within the above
erage process as range, then we expect those states that have energy closest to

the average valugE) to be the most probable, this probabil-

ity decreasing as we move to the range extrema. This is why
(f(x,p)>=f f(x,p)Fn(x,p;t)dp dx we may have different coefficients in the expansitor the

degenerate case, whenever there is no field splitting the de-

N generacy, these coefficients are obviously egudie analy-
:nzl Cn | fFOXPDFA(X,pit)dxdp sis for ensembless similar, with the difference that we do
not need to consider finite time intervals, and the coefficients
N . 9 are thus telling us how many systems in the ensemble are
= E Cp lim f f X,—ihm) (most probably occupying the underlying state at each in-
=1l x-0 stant of time[22].
. The explanation of the superposition principle follows the
X Zamm(X, X H)dx, 9 same lines as Ballentine’s statistical explanatj@g]. In-
where deed, in the ensemble picture, we may think of the ensemble

as having each of its component systems occupying a single
specific quantum state at the same time, without the need of
considering each system as occupying a set of states at the
same time, which is implied by the superposition. The er-
There is thus no difference, either mathematical or concepgodic assumption, which takes us from the ensemble picture
tual, between the two frameworks. The confusion appears the single fluctuation system, implies that we are consid-
because, whenever we use the classical probability density iring the same single system at successive instants of time;
the usual classical framework, we usually keep using thehis single system may occupy the quantum states implied by
density F(x,p;t) while the convolution in Eq(78) is kept  the underlying superposition at distinct instants of time, thus
hidden, together with its related ‘“interference” resolving the paradox. The same formal machinery that al-
phenomena—which is obviously identical to the quantumlowed us, in paper Il, to avoid the duality problem is the one
mechanical case, as becomes clear from what we have juallowing us to avoid thépseud@paradox of the Schobnger
shown in expression&8) and(88). cat.

Zo(n,n)(x,rSX;t)=f eP¥hE (x,p;t)dp. (90)
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The great mathematical advantage of the quantum men which only thestatic Coulomb potentiakb (x) appears.
chanical formalism is that it has a prescriptigiven by the  The question then is: is there a reason to choose(®s).
restriction(76) or (78)] to select(reveal, uncover among all  instead of Eq.(94)? In the following we will see that the
the classically allowed probability densities, those havinganswer to this question leads to the profound role played by
underlying amplitudes satisfying the principle of superposi-the fluctuations within the quantum formalism.
tion. As a last comment, we stress that we have not made any It is known that one of the major historic reasons for
impositions on thesize of the system. The cautious reader, developing the quantum mechanical formalism was the fact
however, may feel uneasy with that, since the quantum forthat, when considering the full electromagnetic potentials,
malism seems to be applicable, at least in general, to micrdnstead of only the electrostatic one, Newton’s equations fur-
scopic, instead of macroscopic, phenomena. The reason msshed rapidly decayingunstable solutions because of the
that macroscopic systems are usually quite insensible to vemadiation of electromagnetic enerdpf course, the same
small fluctuations, although this does not need to be alwayBlewton’s equations will give stable solutions when only the
true. This, in turn, explains why it is so hard to observeelectrostatic potential is considejedHowever, if we con-
interference phenomena in macroscopic objects. Thus, it isider Eq.(94) with the vector potential as given by the
not true that the quantum formalism is applicable only toLienard-Wiechert formulagwhich is time dependeptthe
microscopic(smal) systems, but, instead, that it is more ad- solution will not be stationary anymore, and the process will
equate for studying these systems, since these are the on@sas unstable within the realm of quantum mechanics as it is
that are more sensitive to the fluctuations it encompasses. from the perspective of Newtonian mechaniesd for the
same reasonslf one accepts that this disappearance of the
vector potential from the quantum equation justifies the sta-
bility, then one must also allow the same prerogative for the

Our approach may also help us in clarifying the importantNewtonian approach.
issue concerning therigin of the stochasticity. As it is prob- This is why it is an old misconception, which is still be-
ably better to do this by means of an example, we shallieved by many of us, that the usual Sctiirmger quantum
discuss the case of the hydrogen at@s a working cage theory explains the stability of the atoms; this is surely not
stressing, however, that the present considerations may libe case, for the stability is being imposed rather than ex-
easily generalized to any other physical system. We willplained.[What is indeed correct to say is that the quantum
again use the approach related to the infinitesimal Wignerformalism explains the quantization of the spectrum by as-
Moyal transform of the previous section. suming the stability, which is obvious from the stationary

It is easy to show that, to derive the Sctlimger equation format of Eq.(95) and the inexplicable disappearance of the
and include the electromagnetic figldonrelativistically, it ~ time-dependent vector potentigive will see in the follow-
is only necessary to put ing that by eliminating the vector potential from E§4), we

will perceive the key to understanding the origin of the fluc-
L (1) [P+ (E/O)A] - o _ tuations(stochasticity._ o '
Zo(x,pit)=| € F(x,p;t)dp (92 From the expressio92) for the characteristic function
we may derive, following the same steps as given in paper Il,
the Bohr-Sommerfeld relation

VI. ORIGIN OF STOCHASTICITY

and the potential

V()= V(x)+ B(x,1), (93) jﬁ p+oA-dr=nh, (96)
C

whereA(x;t) and®(x,t) are the vector and scalar electro- ow involving also the electromaanetic vector potential. and
magnetic potentials—this means that we just have to replac'% W invoving 9 P 0
wheredr is the vector taken over the orli@. This relation,

the mechanical momentum with the total canonical momen: < iust tell that th is adiabatic i .

tum. By applying the same steps mentioned above we finall owever, 1S Just telling us that there IS aniabauc invari-

end with the usual Schdinger equation nce of the magnetic flux through the orbit qf the particle
[23]. This adiabatic invariance of the magnetic flux has far-

reaching consequences that have not been very much ex-
(1) ploited in the literature. Indeed, we may recall that the cru-

2
+[V(X)+P(x,1)]

1( ) e
>m —IﬁV'f'EA(X,t)

cial step, when moving from the electrostatic and
apxt) magnetostatic theories toward the unified electromagnetic
=i# i (94)  theory, is given by the link established by the Faraday inte-
at gral equation. This equation, in its integral form, says that
This, however, is not the equation we must solve when con- d d
?idering, ftor example, the hydrogen atom. Indeed, the equa- EﬁcEdr: T SB‘dS= ~d CA'df, (97)
ion is jus

whereC is the closed curve defining the limits of the open
surfaceS. If the magnetic flux is an adiabatic invariant, the
right hand side of Eq(97) will be just zero and the electric

2
_ g—mvz+[v(x)+<1>(><)] YOO =Eg(xt), (95
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and magnetic fields will uncouple, which means that we retions are such as to compensate and to maintaintats
main within the realm of a static theory, since magnetic flux invariant, and it is the total flux that is to be
considered in Eq(97). The analysis of Eq(96) thus fur-

3g E.dr=0=VxE=0 99) nishe; the rgsult that we were searching for: according to this
c equation, since the sum of the magnetic flux and the me-
chanical momentum around the orbit is a constant, any local
(for arbitrary C) and thus variation in the magnetic fluxfluctuation in the vector po-
tentia) will be transferred to the mechanical momentum,
E=—-V®d(x). (99 which means a transfer from electromagnetic to mechanical

energy. However, this local variation will be quickly com-

In this case, it is adequate to remove the vector potentigbensatedthe fluctuationsand there will be a flux of energy
from Eq. (94) and work with the static electric potential in in the opposite direction in such a way as to keep the mag-
Eqg. (95). Thus, now, and only now, we may say that quan-netic flux constant—this flow of energy may be understood,
tization (which implies constant magnetic fluyeeads to in the particular example here discussed, as the initial ab-
stability. sorption of a virtual photon by the electron in the process of

One more aspect may be mentioned with respect to Eclectromagnetic to mechanical energy transfer and then its
(97); the constancynd quantizatiorof the path integral oA release by the electron in the inverse process.
are possible only when the potential being integrated has This is precisely the point. It is well known that “the
singularities. These singularities prevent us from passingquilibrium state, static from the viewpoint of classical ther-
freely from the integral format of the Maxwell equations to modynamics, is incessantly dynamic. Local inhomogeneities
their differential format, from which the Lienard-Wiechert continually and spontaneously generate, only to be attenu-
vector potential is derived. But, as we have shown in papeated and dissipated . . ” (Ref. [20], p. 210, and, what is
I, the fluctuations play precisely the role of introducing anmost important for our present analysis, “the ‘subsystem’
effective potential that does have singularities, and this is thenay, in fact, be a small portion of a larger system, the re-
profound reason that explains and justifies the use of the sol@ainder of the system then constituting the ‘reservoir’. In
electrostatic potential within the Scliinger equation. The that case the fluctuations atecal fluctuationswithin a
question here addresses the priority that one might give taominally homogeneous systeniRef. [20], p. 423. In the
the integral over the differential format of Maxwell's equa- present example, the Scldinger equation refers to thedec-
tions; this choice of the prevalence of the first over the lattetron energy; the electromagnetic field energy is not consid-
may be sustained by remembering the historical developmemired and plays the role of the “reservoir’ of the system. The
of the theory, which was a phenomenological theory basetbtal energy is obviously conserved in the process, since we
upon circuits, etc. If this choice is accepted, then some carare within a closed system—the electron and field energies
must be taken when passing from the integral format to thevill fluctuate separately because of the exchange process
differential one. Whenever singularities appear within thementioned above. This is the main difference between a
domain of integration, the integral theoreri®okes, diver- closed system and an open system interacting with its sur-
gence, etg.do not reduce the integral equations into theroundings; in the closed system total energy is conserved
differential ones in a simple mannéwe may recall that (exactly as with the Schdinger formalism while in the
Dirac built upon this fact to propose his magnetic monopoleopen system it is ndi24].
which is nothing but a singularity of the vector potential that It is obvious from our analysis in the third sectisee Eq.
furnishes the quantization of the ratio of the electric and(33)] that here we are interested in local fluctuations. What
magnetic charges; it is also such a phenomenon that is irwe have said above allows us to treat the hydrogen atom
volved in the Bohm-Aharonov effectThese singularities, (and, in general, any other quantum systasa locally fluc-
within the present framework, may be seen if we look at thetuating system. For the specific case of the hydrogen atom,
effectivepotential, defined in the expressig#9) [see also the usual stochastic electrodynamic appro@dhich consists
Eq. (45)]. The last term is the derivative of the entropy, in postulating the hydrogen atom as an open sysi2&j
which is Inp(x); thus, whenever we have zeros in the prob-with a ubiquitous zero-point electromagnetic field as its res-
ability density function, infinities will appear in the effective ervoir) is unnecessary—thanks to the distinction between lo-
potential. As we have seen, this term represents precisely tteal and global fluctuations. The above mentioned postulate
momentum fluctuations and thus confirms that it is the stomay be withdrawn without any consequences to the stochas-
chasticity that introduces such singularities, which, in turn tic electrodynamic main concept, which consists in using the
quantize the vector potential decoupling Maxwell's equa-classical Maxwell equations with the boundary condition as-
tions and making the system stable. sociated with fluctuating potentials and fields. In this case,

The next question thus refers to the meaning of the abovEg. (96) may furnish a powerful insight into the connections
adiabatic invariance. As is well known, adiabatic invariancebetween the stochastic electrodynamic approach and the
implies that, whenever the system undergoes variations iquantum field theory, something exhaustively searched for in
the relevant parameters that are slow compared with its pehe literature[25]. At this point it is interesting to note that
riods (adiabatic variatiop the related action integrals remain Boyer, on a somewhat intuitive basis, had already pointed
invariant. Thus, Eq(97) says that, although there may be out the deep connection between the adiabatic invariants and
local variationsof the vector potential in a cycle, these varia- stochastic electrodynamics. Indeed, we may quote him:
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“here we wish to point out a curious sidelight found in the comment in Ref[18] before Eq.(3)], the stochastic velocity
further development of the theory. It turns out that theu does have a classical origin, since it is nothing but the
action-angle variables provide a convenient description ofluctuating velocity appearing in the linear Onsager relation,
mechanical systems in random classical radiation [for] coming from the classically defined entropy.
it is easy to show that the zero-point radiation is the unique (5) |t is possible to show that there is a superposition
spectrum of random classical radiation, which leaves theyinciple in the deepest realm of classical statistical mechan-
adiabatic invariants of a nonrelativistic periodic mechanicalics which corresponds in every sense to the superposition
system withno harmonicgmy italics] as still adiabatically principle of quantum mechanics. This principle can be inter-
invariant in the presence of radiation. Furthermore, an adigsreted in very simple terms by referring it to local fluctua-
batic invariantd,=¢p,dp, in classical zero-point radiation tjons and by using the ergodic assumption; the role of the
takes the average valyd,)=h/2.” [26]. superposition principle is governed by the relevance of the
Thus our developments suggest the replacement of thg,ctuations for the overall behavior of the system, implying
interpretation postulate of a ubiquitous all-pervading externa{hat’ for macroscopic systems, these fluctuations will be
zero-point electromagnetic energy figldeat bath of con-  ,uch more difficult to observe.
stant magnitudéi/2 by the interpretation, following solely (6) Contrary to the universally accepted opinion among
from the axioms, of a closed system with local fluctuationsagepts of the stochastic view, the stochastic forces do not
depending on the actual state of the field. In keeping th@ome from an interaction of the system with its surroundings
stochasticity of the boundary conditions intact, while chang—(at least in a necessary waythis is because, within our
ing the fixed value of:/2 by the field-state-dependent value gerivation, it was not necessary to include the surroundings
(n+1/2)2/2, this implies an alteration that may introduce j, any sense, since the system is a closed one composed
many new results within the framework of stochastic elechowever, of a subsystem linked to a reservoir giving rise to
trodynamics, in particular with respect to its explanation ofspontaneous local fluctuationghe statistical characterof
the stability of excited state orbits. It also seems, at least t¢ne theory comes from the fact that we adopt the strategy of
this author, that the idea of local fluctuations of the e|eCtr0‘treating the local fluctuations as hidden internal degrees of
magnetic field of the system is a much more acceptable coffreedom(we treat them statisticallj21])—this prescription
cept than a constant electromagnetic field filling all of spacgs gllowed whenever the Heisenberg relations remain ful-
(this would imply, for instance, an infinite energy that is fjjjeq.
detectable by the gravitational field (7) The effective potential, derived in paper Il, may be
The relations between the stochastic approach to electrqsasily interpreted by using the notions of stochasticity. A
dynamics and quantum field theory were only sketched hergomparison of the derivation process given in that paper with
within a rather intuitive and somewhat qualitative perspecthe present one is capable of unraveling the dynamical pro-
tive. We leave the unraveling of all their interconnections togegg underlying the quantum mechanical statistical (spe
a future paper. the discussion below
Another important achievement was the clarification of
VII. CONCLUSIONS the st.ocha.stic_postulates. Indeed, \_/vhen developing the sto-
chastic derivation, we were faced with matwell-reasonegl
In the previous sections we have shown how the stochasmpositions, such as the postulate of the behavior of the sto-
tic derivations of the Schrbnger equation reduce to our chastic velocity upon time revers@l7], which becomes
previous derivations; this equivalence was established najuite natural if we remember that this velocity is related to
only with respect to the formalism but also with respect tothe damping force of the Onsager relations and that, being a
the interpretation of the symbols of both theories. This re-damping force, it should behave this way upon time inver-
duction of the stochastic derivation into ours was importansion. Other postulates may also be clarified. Indeed, the sto-
in order to unravel many of the obscurities @pparent chastic derivation always had in mind the reduction of its
arbitrariness of the former. It was also important to clarify formalism to Newton'’s in the limit of non-stochasticity, such
some features of our own derivation; it is precisely this in-as the postulate related to expressi®i where Newton’s
terplay that enriches the interpretation by furnishing manysecond law is generalized to include the stochastic behavior.
perspectives from which the same problem may be viewedThis expression, however, is nothing but our expres&ién
Indeed, we were able to show the following. and comes from the fact that the Liouville equation naturally
(1) The stochastic behavior comes from the spontaneouassumes this formdor the average valuewhen fluctuating
local fluctuations of the system. systems are being considered.
(2) The stochastic force is the damping fluctuating force  On the other hand, the stochastic approach, when linked
of the fluctuation-dissipation theorem. with ours, has also furnished the key to the interpretation of
(3) The quantities appearing in the stochastic expressionsany features of quantum theory, such as the time-energy
should be considered asveragevalues[e.g., the average dispersion relations, since it shows that we should consider
momentump(x;t)] and are not equivalent to the quantities the symbolSE as an energftuctuationand the symbolt as
appearing in Newton'’s law, except when the limit of no fluc- the characteristic minimum time that allows us to consider
tuation is consideredu= 0)—when both formalisms reduce the individual system as aensemble(the time interval
to Newton’s equations. within which the system fluctuates enough so as to validate
(4) Contrary to the usually accepted opiniofgee the the ergodic assumptignit was also useful to understand the
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origin of the fluctuations and their relation to stability, com- some amount of quasiparticles responsible for carrying the
ing from the analysis of the Bohr-Sommerfeld relations.  physical interaction. However, when it emits these quasipar-

Another important advantage of showing the equivalenceicles, it transfers energy to the force field and its own energy
between the stochastic derivation and ours is that, by means lowered(the fact that the quasiparticles have a finite ve-
of this equivalence, we automatically append to our ownocity implies the effectiveness of this phenomendthen
framework all the many results achieved by the stochastighe quasiparticles are absorbed by the other particle partici-
approach within recent decades. Examples are the relativistigating in the interaction process, the energy transferred from
extensions giving both the Klein-Gordon and the Dirac equane particle subsystem to the force field is again transferred
tion [27-29, their radiative correction§30,31], a path inte-  pack to the particle subsystem—thus generating a fluctuation
gral formulation[32] together with its application to the i, the force-field energy. This procefise number of quasi-
problem of barrier penetratiof83], to cite but a few. In  yarticles present in each interaction, ptepends upon the
particular, a comparison between the stochastic derivation Qfiate of the field. This is the main difference between the
the Feynman path integral formulati¢82] with ours[2]  present approach and the usual Newtonian one: in the latter
furnishes another beautiful example of the equivalence of thewe force field is always supposed to be fixed, in the sense
two approaches. _ that the potential functioW(x,, . .. Xy) does not fluctuate.

We also presente@n the particular case of the hydrogen yowever, it is important to stress that, although this is a
atom the physics governing the interpretation of the procesgjeparture from the Newtonian mechanistic mathematical ap-
described by the Schdnger equation. For a general physi- hroach to the study of physical systems, it does not represent
cal system this interpretation is as follows. Within the any departure from a classical description of Nature, since all
present framework we are considering one single systene conceptshere developed are part of the conceptual
where a force_ field[with_ a physicall potent?al function  framework of classical statistical mechanics.
V(xq, ... xy)] is responsible for the interaction of the We would like to stress that this paper is a continuation of
particles composing the system. This system is a closed ong, series of other papef4,2] in which we have shown how
since no other external force field is present in the exacihe various derivation methods of the Safirger equation
Newtonian equations governing the movement of each Pafmay be reducedor rephrasedto only one. This may be
ticle. The total energy of the system is, therefore, conserveginderstood as the first step in the endeavor to establish a
(which is generally not the case with open systerNew we  consistent interpretation of quantum formalism based upon
make the decision to treat the closed single system as congs own postulating foundations, and not, as seems to be
posed of two subsystems, the particles and the force field;syal, upon wild guesses and/or philosophical presupposi-
each one capable of keeping some amount of enghiyis,  tjons.
obviously, only a distinction in words We also choose to Thus, we have derived the Schinger equation by a
describe the parameters of the subsystem composed of thgyre mathematical approach in papdrl], which allowed
particles(e.g., the enerdy while ignoring those related 0 ys to unravel the origin of the operator structure of quantum
the force field. With the adoption of this strategy of descrip-mechanics and, as a by-product, allowed us to show how to
tion, statistical physics tells us that fluctuations will appeargyantize in generalized coordinates, a shameful void of the
that are responsible for the exchange of energy between thgeory previously. We then derived the Satlirger equation
two subsystems. In this case, for instance, the energy of thgom a more physical set of postulates in papéi2ll which
particles, being taken into account explicitly, will fluctuate, gjjowed us to make evident the meaning of the symbols in
sometimes being lowered by transferring energy to the forcgne approach made in paper I. The concept of entropy was
field, sometimes being increased by taking energy from thénen introduced. With the derivation of paper I, which is
force field. This means that the average potential governingasier for mathematical manipulation, we were able, also in
the average movement of the particles will not be given simpaper |1, to derive and generalize the Bohr-Sommerfeld
ply by V(xy, ... Xy), but we will have to correct it to take guantization rules and show that they are consistent with the
into account, as an average, the energy fluctuations. Thisgme set of postulates giving rise to the Sdimger equa-
correction is given precisely by the extra term appearing agon, since they could be derived from this very same set.
the “potential” ¢g(x) [Eq. (26)] in the second section, \oreover, the Feynman path integral derivation of quantum
which is equivalent to the so called Bohm “potentigline  mechanics was shown to be equivalent to our previous one
has to recall the ansatz used in the expres&@and make  and closely related to the Bohr-Sommerfeld quantization
the changep=R'Ze?® to find the common expressiap  rules and the results of paper I. In this paper we have shown
=—(#2/2mR')V?R’]—it is important to note that it has a how the stochastic derivation is also equivalent to ours. We
kinetic origin, not a true potential one. are thus close to achieving our goal.

We may still ask which physical process would give rise  Indeed, since our derivation is a fully axiomatic one, in
to such fluctuations in the exchange of energy between thehich the interpretation is much easier to carry dot, it
two subsystems. The answer is that, when considering must be contained only in the (few) postulates sincerely
field, we are implicitly assuming the existence of the “qua-hope that at the end of this series we will be in a suitable
siparticles” responsible for the interaction procésg., pho- position to present a coherent interpretation of quantum me-
tons for the electromagnetic figldThus, when a particle of chanics. Moreover, we are being careful to fix the physical
the subsystem under explicit consideration is to interact withreference of every relevant symbol of the theory—and this is
another particle of this same subsystem, it must interchangene of the important features in showing the equivalence
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between all of these derivations, since each one looks moraso the advantage of being capable of giving us the means to
deeply at a different aspect of reality, and thus uses one setject other widespread interpretations, based solely upon the
of physical references more than anotlietg., operator relations between the formalism and its symbolic references.
structure (paper ), entropy, fluctuations, and adiabatic in-  Although many of the underlying interpretation features
variance (paper 1), stochasticity(the present papgretc].  have already been discussed, whenever allowed by the de-
The important aspect of this program is that, after showing,e|opment of the formalism, the complete interpretation will

the formal and epistemologicaéquivalence between these pe |eft for a future paper, where they will be stated in a more
derivations(world views, the interpretation developed for systematic manner.

one will be necessarily the interpretation of them all. It has
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