
PHYSICAL REVIEW A, VOLUME 61, 052109
Foundations of quantum mechanics: Connection with stochastic processes
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In this paper we explore the mathematical and epistemological connections between the stochastic derivation
of the Schro¨dinger equation and the one proposed by ourselves in previous papers. It will be shown that these
connections are accomplished by means of the fluctuation-dissipation theorem, to which we may unambigu-
ously relate the symbols and physical references of both approaches. As a by-product of our investigation, it
will be possible to interpret the time-energy dispersion relation on sounder grounds. It will also be possible to
discuss the superposition principle and to interpret it on a quite simple basis. The origin of the stochasticity and
its relation to stability will be also addressed and the bridge to an axiomatic formulation of stochastic electro-
dynamics will be constructed.

PACS number~s!: 03.65.Bz, 02.50.Ey, 02.50.Kd, 03.65.Ca
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I. INTRODUCTION

We have already derived the Schro¨dinger equation from
two slightly different axiomatizations, each one with thr
postulates@1,2#. These derivations have shown themselv
formally equivalent but epistemologically complementa
since insights concealed in one are supplied by the other.
always interesting to have several ways of developing
theory, especially when one can connect them mathem
cally and epistemologically. Indeed, our first axiomatizati
of quantum mechanics used a more mathematical appr
@1#, which simplified the calculations while hiding much o
the underlying physics. In our second axiomatization@2#,
however, the blanks left by the first one were filled using
central concept of entropy and we also proved these
axiomatizations to be mathematically equivalent. The sec
derivation method, by using the concept of entropy, allow
us to generalize the derivation of the Schro¨dinger equation to
embrace some generalized versions of the Boltzmann-G
entropy, in particular that formulated by Tsallis, thus gen
alizing the Schro¨dinger equation@3#.

In this paper we will show how the stochastic derivati
may be connected with the one we have used in paper II@2#
~and, consequently, also with the one of paper I@1#!. This
will help us to unravel some of the mathematical and epis
mological features stimulated by that derivation. In th
sense, the concept of a stochastic force, central in stoch
theory, will be connected with the concept of entropy, fu
damental to one of our previous derivations.

The search for a stochastic support for quantum mech
ics has taken place since the early 1950s@4# and became a
fertile research field in the following two decades@5–13#. It
is still an important field for investigation of the mathema
cal and epistemological foundations of quantum mechan

This approach can be illustrated by the mathematical d
vation of the quantum mechanical formalism~Schrödinger
equation! using only the formal apparatus of classical sta
tical mechanics, together with a kind of ‘‘Brownian mov
ment’’ theory@14#. In this case, the kinematic description
the Brownian movement assumes a movement with no f
tion, an approach that has been used in the Einst
Smoluchovski theory@15,16#.
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The model created by this approach is one in which
particles of a system, interacting via mutual forces, remain
dynamic equilibrium because of the balance of these for
with a stochastic force responsible for random movem
@17#. The problem here, however, is to explain theorigin of
such stochasticity—and this is precisely the weakness of
stochastic approach. Moreover, in carrying out the derivat
of the Schro¨dinger equation, one needs to introduce by p
tulate the stochastic velocity and acceleration and re
them, also by postulate, with the generalized stochastic fo
Thus, the argument against the stochastic derivation ma
that, by postulating all of these features, one is just forc
the result ~Schrödinger equation!. By accepting stochastic
behavior without knowing its origin, the derivation of th
Schrödinger equation from this line of reasoning, instead
just postulating it as usual, is only a matter of taste, for
are replacing the unknown by the obscure.

The important point here is that in such a theory, whe
x(t) is considered a stochastic process, it is not possibl
define a total time derivatived/dt, since the movement is
discontinuous, and we have to search for substitutes to
operator that might be used to formulate anothernew‘‘New-
tonian’’ theory, formally equivalent to the mathematic
structure of quantum mechanics, as given by the Schro¨dinger
equation. This is amply reported in the literature and w
also be shown schematically in the present paper.

We have already shown in some of our previous pap
@1,2# that it is possible to derive the quantum formalis
~Schrödinger equation! from three basic postulates. In th
first axiomatization the postulates were@1# ~A1! the general
validity of Newton’s laws for the individual systems com
posing theensemble; ~A2! the general validity of Liouville’s
equation for theensemble; and ~A3! the possibility of con-
necting the joint probability density function on phase spa
F(x,p;t) to a characteristic functionZQ(x,dx;t), defined
upon configuration space, by means of an infinitesimal tra
formation given by

ZQ~x,dx;t !5E eip•dx/\F~x,p;t !dp, ~1!

wheredx is considered an infinitesimal displacement.
©2000 The American Physical Society09-1
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L. S. F. OLAVO PHYSICAL REVIEW A 61 052109
In the second axiomatization@2#, the first two postulates
were kept while the third was replaced by (A38) the appli-
cability of quantum mechanical formalism for situations
statistical equilibrium with respect to the entropy functi
written in configuration space, where the relation betwee
the fluctuations in coordinate and momenta obtained fr
this entropy function is given by

~dx!2 ~dp!25
\2

4
. ~2!

This second derivation allowed an interpretation of the va
able dx, whose significance was concealed by the previ
one.

By examining the epistemological and mathematical c
nection between our approach and the stochastic method
sought to gain new insights into fundamental questions.
deed, from the proof that quantum mechanics may be un
stood as a stochastic process, we felt that it would be ra
interesting to know at what point in our approach this s
chastic character effectively appears and what its ontolog
status is. If this goal could be achieved, the point wh
stochasticity appears in our derivation should explain
physical significance. Because of these considerations, in
previous derivations we struggled to avoid leaving any sy
bol of the theory without a physical reference. It is the o
jective of the present paper to resolve these questions.

To achieve this goal we will briefly develop, in the seco
section, the derivation of the Schro¨dinger equation from the
stochastic point of view. We will follow the pioneering pa
pers of Nelson@14#, Kershaw@9# and De La Pen˜a @18#, and
the review paper of De La Pen˜a @17# ~this latter very closely!
as our guides in the development of the related formal
and interpretation. In the third section, we will show aga
and very schematically, our derivation of the Schro¨dinger
equation using the configuration space entropy concep
the fourth section we will show how the stochastic derivat
is connected with the one presented in the third section. T
is, we will show where, within our own derivation, the st
chastic character of matter was revealed by the formali
The fifth section will be devoted to clarifying the role playe
within our approach by the superposition principle, fro
which we may draw, as we will show, a quite simple inte
pretation. In the sixth section we will finally address t
problem related to the origin of the fluctuations and its re
tion to the system’s mechanical stability. The last section
devoted to our final conclusions.

II. STOCHASTIC DERIVATION

As we mentioned in the previous section,x(t) is a sto-
chastic process and we cannot define a time derivatived/dt
for it. This means that the velocity related to this proce
cannot be obtained by direct derivation, forx(t) is not, in
general, differentiable.

In this case we have to introduce a finite time intervalDt,
small compared with the characteristic times of the syste
atic movement~that related to Newton’s equation!, but large
enough compared with the correlation time of thefluctuating
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force ~the reader is strongly encouraged to look at Ref.@17#
for details! in a process known as coarse graining. Using t
finite time interval we may define the forward time deriv
tive ~see@14# for details! as

Dx~ t !5 lim
Dt→01

EtS x~ t1Dt !2x~ t !

Dt D5 K dx~Dt !

Dt L
t

, ~3!

where the averageEt@ # or ^ & t is taken over theDt distribu-
tion, which means that it is the conditional average in t
interval Dt and reflects a statistical distribution of the di
placementsdx @9#. We may also define the backward deriv
tive as

D* x~ t !5 lim
Dt→01

EtS x~ t !2x~ t2Dt !

Dt D5 K dx~2Dt !

2Dt L
t

,

~4!

where, in general,Dx(t)ÞD* x(t). From these two deriva-
tives we form the systematic and stochastic derivatives

Dc5
D2D*

2
; Ds5

D1D*
2

. ~5!

SinceDt is a very small time interval, we may write th
expansion

1

Dt
@ f „x~ t1Dt !,t1Dt…2 f „x~ t !,t…#

'S ]

]t
1

1

Dt (
i

@xi~ t1Dt !2xi~ t !#
]

]xi

1
1

2Dt (
i j

@xi~ t1Dt !2xi~ t !#

3@xj~ t1Dt !2xj~ t !#
]2

]xi]xj
D f ~x;t !. ~6!

The general velocity of the process is given by

c5 lim
Dt→0

EtS x~ t1Dt !2x~ t !

Dt D5Dx~ t !, ~7!

which we may split into two components: the systema
componentv and the stochastic oneu,

c5Dcx1Dsx5v1u. ~8!

In the ‘‘Newtonian’’ limit we haveDc→dv/dt.
To build a dynamic theory we must now postulate t

following relation between the stochastic acceleration a
the stochastic derivative ofc:

ma5mDc, ~9!

as a substitute for Newton’s equation, but giving Newton
second law in the Newtonian limit. This implies that we mu
have
9-2
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Dcv1Dsu5ma,
~10!

Dcu1Dsv50.

Now let f be the total force acting upon the system. Th
force also has a stochastic component and may be eq
written as a linear combination of systematic plus stocha
forces. In this case we may write

f5f01m~11l!as , ~11!

where f0 is the part of the force derivable from a potent
andl is a ~yet unknown! constant. With all these results w
finally get the system

f05m~Dcv2lDsu!,
~12!

Dcu1Dsv50,

which may be written explicitly as

]v/]t1~v•“ !v2n2¹2v2l~u•“ !u2ln1¹2u5f0 /m,
~13!

]u/]t1~v•“ !v1~u•“ !v1n1¹2v2n2“u50.

Assuming thatn1 and n2 will depend only upon time,
that the velocities are rotation-free, and that the exter
forces are derivable from a potentialV, we may rewrite the
system of equations~13! as

]v/]t1“„v2/22n2“•v2lu2/22ln1“•u…

52“V/m,
~14!

]u/]t1“„v•u1n1“•v2n2“•u…50.

To obtain the Schro¨dinger equation from the nonlinea
equation~14! we have only to make the ansatz

v52D0“S; u52D0“R, ~15!

with n15D0 , n250, andc65exp(R6iS/A2l), whereR
and S are real functions depending uponx(t) and t. After
some algebra we get

72imD0A2l
]c6

]t
522mlD0

2¹2c61Vc6 , ~16!

whereV, as was said above, is the potential function rela
to the external forcef0.

Since the parametersl and D0 appear in Eq.~16! only
through the productD0A2l, it is clear that we may adjus
the scale throughD0 and takeulu51 @17#. If l521 we get
the equation

72mD0]c6 /]t52mD0
2¹2c61Vc6 , ~17!

having as its solution

c65eR6S5r1/2e6S; r5c1c2 . ~18!
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This equation is of the parabolic type@17# and describes the
irreversible time evolution of the~real! amplitudesc2 and
c1 .

If l511, then Eq.~16! becomes

72imD0]c6 /]t522mD0
2¹2c61Vc6 , ~19!

having as its solution

c65eR7 iS5r1/2e7 iS; r5c1c2 . ~20!

This is a hyperbolic type equation@17# and describes the
reversible evolution of the~complex! amplitudesc25c and
c15c†. If we put into Eq.~19!

D05
\

2m
, ~21!

where\ is Planck’s constant, we finally get the Schro¨dinger
equation.

With the definition

r5c†c5e2R, ~22!

we have, because of the second relation in Eq.~15!,

u5D0

“r

r
; D05EtS @dx~Dt !#2

2Dt D5
\

2m
. ~23!

In the same way, since we are consideringl51, Eq. ~11!
gives

f5f012mas , ~24!

where@17#

as5“S 1

2
u21

\

2m
“•uD ~25!

is the stochastic acceleration giving a stochastic forcefs
5mas52“fstoc related to the ‘‘potential’’

fstoc52
\2

4m S ¹2r

r
2

1

2r2
~“r!2D . ~26!

The results~23! and ~26! will be crucial for the comparison
between this derivation and the one based upon the con
ration space entropy concept, to be presented in the
section.

The process of derivation of the equation related to
Brownian-type movement and the one related to the quan
formalism leaves no doubt about the irreducibility of o
type of phenomenon into the other. Indeed, since the v
beginning, we have said that the quantum mechanical p
cess has to be understood as one where there is no room
friction, which distinguishes it from the usual Brownian pr
cess@17#. We will return to this question later on.
9-3
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III. SECOND DERIVATION

Now we will present again the mathematical derivation
the Schro¨dinger equation from the Liouville equation an
Newton’s laws using the concept of entropy, thus facilitati
references to be made later on.

In our previous paper@2# ~to which the reader is also
strongly referred! we begin with the Liouville equation

]F~x,p;t !

]t
1

p

m

]F~x,p;t !

]x
2

]V~x!

]x

]F~x,p;t !

]p
50.

~27!

Using the definitions

E F~x,p;t !dp5r~x;t !; E pF~x,p;t !dp5p~x;t !r~x;t !,

M2~x;t !5E p2F~x,p;t !dp,

~28!
~dp!2r~x;t !5M2~x;t !2p~x;t !2r~x;t !

5E @p2p~x;t !#2F~x,p;t !dp,

where r(x;t) is the probability density on configuratio
space, p(x;t) is the so called macroscopic momentu
M2(x;t) is the second order momentum statistical mome
and(dp)2 is the momentum fluctuation~projected upon con-
figuration space!, we ~a! directly integrate the Liouville
equation over the momentum space and~b! multiply it by p
and integrate it over the momentum space to find the
equations

]r~x;t !

]t
1

]

]x S p~x;t !

m
r~x;t ! D50, ~29!

representing a continuity equation for the probability dens
r(x;t), and

1

m

]

]x
@M2~x;t !2p2~x;t !r~x;t !#1r~x;t !F]p~x;t !

]t

1
]

]x S p2~x;t !

2m D1
]V~x!

]x G50. ~30!

It remains for us to find a functional expression for(dp)2.
To achieve this goal, we first consider the relation betwe
the entropy and the probability density of an isolated sys
as given by@19#

r~x;t !5eS(x;t)/kB, ~31!

wherekB is the Boltzmann constant.
We are searching for the densities representing thestatis-

tical equilibrium situations of the system, compatible wi
spontaneous local fluctuations in positions. We expect that
the entropy, calculated within some region (x2dx/2,x
1dx/2), will be a maximum. We thus write
05210
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S5Seq1
1

2 S ]2Seq

]x2 D ~dx!2, ~32!

whereSeq(x) stands for the statistical equilibrium configur
tion entropy, and where we used the fact that the entr
must be a maximum, giving

S ]Seq~x!

]x D
dx50

50. ~33!

In this step we used the assumption of local equilibriu
This makes it possible to define a local entropy, which is
same function of the local thermodynamics variables~here
the positions! as the equilibrium entropy is a function of th
equilibrium statistical parameters: the Callen concept of
stantaneous entropy@20#. We thus use Eqs.~32! and ~31! to
get, for the position fluctuations,

~dx!25

E
2`

1`

~dx!2e2g(dx)2
d~dx!

E
2`

1`

e2g(dx)2
d~dx!

5
1

2g
, ~34!

where we put

1

2g
5kBU]2Seq~x;t !

]x2 U21

~35!

and where we considered the natural sample space@2`,
1`# for the fluctuations. The relation~34! is just a statemen
of the fluctuation-dissipation relation due to Einstein.

We have,a priori, no relation between these displaceme
fluctuations and those related to the momenta. We then
pose the restriction that, in this statistical equilibrium situ
tion, we must have

~dp!2 ~dx!25
\2

4
, ~36!

meaning that, if the fluctuations in the positions are t
broad, they have to occur sufficiently slowly in order to lea
the system enough time to accommodate itself~adiabatic
processes!. If, on the other hand, the fluctuations in the m
menta are too severe, then they have to be confined to
small portions of the system in such a way that they are
localized~and have too high a frequency! to disturb the sta-
tistical equilibrium situation. We then get, using Eqs.~34!
and ~36!,

~dp!252
\2

4 S ]2ln r~x;t !

]x2 D , ~37!

which allows us to write
9-4
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1

r

]

]x
@~dp!2r~x;t !#52

\2

4

]

]x F ]2ln r~x;t !

]x2

1
1

2 S ] ln r~x;t !

]x D 2G . ~38!

Now, putting

p~x;t !5
]s~x;t !

]x
, ~39!

we may rewrite Eq.~30! as

r~x;t !
]

]x H ]s~x;t !

]t
1

1

2m S ]s~x;t !

]x D 2

1V~x!

2
\2

4mF ]2ln r

]x2
1

1

2 S ] ln r

]x D 2G J
50. ~40!

Now, writing

r~x;t !5R~x;t !2 ~41!

we get from Eq.~40! the equation

R2~x;t !
]

]x F ]s~x;t !

]t
1

1

2m S ]s~x;t !

]x D 2

1V~x!

2
\2

2mR~x;t !

]2R~x;t !

]x2 G50, ~42!

which we have called themodified Schro¨dinger equationfor
it is, as we have already shown@1#, together with Eq.~29!,
equivalent to the Schro¨dinger equation

2
\2

2m

]2c~x;t !

]x2
1V~x!c~x;t !5 i\

]c~x;t !

]t
, ~43!

with

c~x;t !5R~x;t !eis(x;t)/\. ~44!

Note that the derivative in Eq.~42! is unessential since i
implies that the expression inside the square brackets i
arbitrary function of timef (t). We may write this function
within the term]s/]t in a simple way@1#, implying a redefi-
nition of the energy level. Note also that our definition of t
probability amplitude in the expression~44! is slightly dif-
ferent from the stochastic one, but in a totally unessen
way since comparisons will be based upon the probab
densityr(x;t), which is the same in both approaches.

Finally, it is worth stressing that the application of th
entropy concept, defined upon configuration space, to
study of random processes as a means to give a statis
description of the underlying dynamics is a common pro
dure already established in the literature@21#.
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IV. COMPARISON BETWEEN THE DERIVATIONS

Now that both derivations have been presented, there
mains the question of what connection exists between th
The unraveling of such a connection may be of great imp
tance to clarify some of the interpretations of the quantit
appearing in both formalisms, and also their place in
underlying epistemology.

We begin by stressing that Eq.~40! can be cast into a
much more intuitive format by writing

]p~x;t !

]t
52

]

]x H p~x;t !2

2m
1V~x!

2
\2

4mF ]2ln r

]x2
1

1

2 S ] ln r

]x D 2G J , ~45!

which may be written as

]p~x;t !

]t
52

]

]x H p~x;t !2

2m
1V~x!2

\2

4mr

3F ]2r

]x2
2

1

2r S ]r

]xD 2G J . ~46!

This resembles Hamilton’s equation

dp

dt
52

]H

]x
, ~47!

but with the momentump replaced by an average momentu
p(x;t), and the HamiltonianH replaced by an average effec
tive Hamiltonian

he f f~x;t !5
p~x;t !2

2m
1V~x!2

\2

4mr F ]2r

]x2
2

1

2r S ]r

]xD 2G ,

~48!

the stochastic potential appearing in the last term on
right, as can be seen by comparing it with expression~26! of
the second section. We call

Ve f f5V~x!2
\2

4mr F ]2r

]x2
2

1

2r S ]r

]xD 2G ~49!

the effective potential. Moreover, this ‘‘potential,’’ accord
ing to the derivation of the previous section, comes from
momentum fluctuations, as may be seen from expres
~38!, which gives the contribution of these fluctuations to t
overall dynamics of the average momentum, as implied
Eq. ~46!.

It is well known that it is the fluctuating force that i
responsible for holding the system within its statistical eq
librium situation, dissipating the eventual spontaneous fl
tuations, thus leading to the fluctuation-dissipation form
~34!. This is the point that allows us to link thesymbolsof
both approaches~a necessary condition, since we are clai
9-5
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L. S. F. OLAVO PHYSICAL REVIEW A 61 052109
ing that they are equivalent!. To do this we return to expres
sion ~8!, where the stochastic velocity was defined by

u5Dsx, ~50!

and expression~23!, where its analytic expression was give
as

u5
\

2m

“r

r
. ~51!

Now, we rewrite the above expression as

u5
\

2mkB
“~kBln r!5

\

2mkB
“S, ~52!

whereS is the entropy, as defined in the third section, a
remembering that, for our fluctuating system, the linear O
sager relations are given by

d

dt
~dx!5â•“S ~53!

~see Ref.@19#, p. 597!, where â is the so called friction
coefficient and is a tensor given by

â5
1

kB
E

2`

0

^d ẋ~0!d ẋ~s!&0ds, ~54!

the ‘‘cross-correlation function,’’ thus relating the two fluc
tuating velocities.

With these expressions, it is readily seen that

u5Dsx5
d

dt
~dx! ~55!

and

\

4
1̂5

1

2mE
2`

0

^dp~0!dp~s!&0ds, ~56!

wheredp5md(dx)/dt, and 1̂ is the unit matrix. We have
already used the fact that the momentum fluctuations in
ferent directions are independent—this last result was pro
by us in paper II@2#, Appendix D †see also Ref.@17#, Eq.
~8!‡. Thus we must have, sincêdpi&50 and ^dpi

2&
5^dpk

2& by isotropy, the diagonal matrix equation in E
~56!. Expression~56! thus says that Planck’s constant com
from the kinetic energy correlations@see also the expressio
~23!#. It is needless to say that, with the relations~55! and
~56!, and the connection

v5Dcx5p~x;t !5E pF~x,p;t !dp, ~57!

wherev is the systematic velocity andp(x;t) is the average
momentum, all the other symbols of theory are connec
unambiguously, since the primitive symbols of the stocha
derivation arev, u, Dc , andDs and the other symbols ar
defined from them. Moreover, the quantities appearing in
05210
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Hamilton-type equation are average quantities, someth
that is concealed by the stochastic derivation.

At this point we may also explain the origin of th
parabolic-type equation~17!, which is obtained when we
make the choicel521. We begin by noting that the math
ematical formalism of the derivation made in the third se
tion is suitable tostable equilibriumsituations, since we
have used the relation~33!. Now, it would be equally pos-
sible to consider the positive value of the entropy seco
derivative ~unstable equilibrium!, which is equivalent to
choosingl521 in the stochastic approach, Eq.~11!. Thus,
the stochastic force will tend to reinforce the action of t
external force, since, in this case, these equations read

f05m~ac1as! and f5f0 , ~58!

and cannot be considered a dissipation function in the se
mentioned above—that is, equilibrium will never be attaine

Another aspect of the stochastic derivation that becom
clear by the above analysis is its Markovian character, co
ing from the use of only the first three statistical momentu
moments in the derivation process@18#.

The fact is that the fluctuations, when related to individu
systems, entangle their description by means of class
Newtonian dynamics and classical statistical theory~the
Liouville equation!. To go onto quantum mechanics, fro
these two classical frameworks, it is necessary only tore-
strict the fluctuations of the systems, which might be any
the classical statistical framework, by the expression

~dx!2 ~dp!25
\2

4
, ~59!

which not only does not violate this framework, but is, w
stress, a mere restriction made upon the behavior of th
systems’ position and momentum fluctuations. This is
actly what we have done using our three postulates~A1!,
~A2!, and (A38), mentioned in the first section. Moreover,
is an experimental fact that restriction~59!, made upon the
whole class of classically allowed fluctuations, has a ubiq
tous character, thus giving Planck’s constant its known u
versal character.

The result of the previous discussion, however, has
reaching consequences, since the approach we followed
to an equation~the Schro¨dinger equation! that restricts the
energies~e.g., to discrete values! that an individual system
may have, while introducing the fluctuating~stochastic!
force. This feature is not present in Newton’s laws, where
energy is not restricted as long as it is positive. This behav
came, clearly, from the inclusion of postulates~A2! and
(A38), related to Liouville’s equation and the class of cla
sically allowed fluctuations.

There is a final comment we could make regarding
ergodic connection between individual systems conside
within a finite time interval and ensembles. For the abo
formalism to be applicable for individual systems, the tim
interval has to be sufficiently large~and therefore finite! for
these individual systems to behave like an ensemble an
describable by the Schro¨dinger equation@this is precisely the
9-6
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restriction of finite time interval related to the stochastic de
vation made at the beginning of the second section, be
Eq. ~4!#. This is nothing more than a qualitative statement
the quantitative expression

~dE!2 ~Dt !25
\2

4
, ~60!

which says that the time interval within which the quantu
formalism applies is the one that allows the energy to fl
tuate in the manner given by Eq.~60!. This expression, ob
viously, leads to the Heisenberg inequality

DEDt>
\

2
, ~61!

in the same sense that Eq.~59! leads to the position-
momentum one. Note, however, thatDt here is a timeinter-
val, since there can be no fluctuations in time, which is
parameter within the present approach. This result co
quite naturally from the present approach; to see this
begin by defining theenergy correlation functiongiven by

K~s!5dE~ t !dE~ t1s!, ~62!

which relates the energy fluctuations at timest and t1s by
an ensemble average. This definition implies that the m
square fluctuation in the energy is given by

~dE!25K~0!, ~63!

since(dE)50. Let us now introduce the Wiener-Khintchin
relations~see Ref.@19#, p. 585!, given by

K~s!5E
2`

1`

J~E!eiEs/\dE,

~64!

J~E!5
\

2pE2`

1`

K~s!e2 iEs/\ds,

leading to

~dE!25E
2`

1`

J~E!dE, ~65!

where J(E) is called the spectral density. SincedE(t) is
stationary and ergodic~by assumption!, K(s) is time inde-
pendent, and thuswe may use a time average in place of t
ensemble average; hence

K~s!5dE~ t !dE~ t1s!5$dE~ t !dE~ t1s!%

5
1

2QE
2Q

1Q

dt8dE~ t8!dE~ t81s!, ~66!

where 2Q5Dt is the minimum characteristic timethat al-
lows us to use a time average instead of the ensemble a
age. By defining the new function
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dEQ~ t !5H dE~ t !, 2Q,t,Q

0, otherwise
~67!

~see Ref.@19#, p. 582!, and making the spectral decompos
tion of this time-dependent function as

dE~ t !5
1

A2p
E

2`

1`

C~E!eiEt/\dE, ~68!

we finally find, substituting these results in Eq.~66!, the
relation

K~s!5
\

2QE
2`

1`

C~2E!C~E!eiEs/\dE. ~69!

With the result

C~2E!5C* ~E! ~70!

~see@19#, p. 583!, we get

~dE!25K~0!5
\

2QE
2`

1`

uC~E!u2dE, ~71!

giving, because of Eq.~65!, the spectral density as

J~E!5
\

2Q
uC~E!u2. ~72!

The expression~71! may be written as

~dE!2Dt5\E
2`

1`

uC~E!u2dE, ~73!

which is a restatement of the time-energy Heisenberg dis
sion relation if we put

E
2`

1`

uC~E!u2dE5
\

4
, ~74!

in a way quite similar to the substitution done in the expr
sion ~56!. It is important to stress that the timeinterval ap-
pears in a very natural way using this approach.

This clarifies the meaning of the time-energy Heisenb
relation as a fully objective one and is another improvem
in our understanding of the quantum formalism that w
brought about by the comparison of the stochastic deriva
with our previous statistical one.

V. SUPERPOSITION PRINCIPLE

We are now ready to elucidate the role played by
superposition principle within the conceptual structure of
present framework. To proceed with this task it will be ne
essary to turn to the derivation given in paper I@1#, whose
postulates were already cited in the Introduction of this pa
under the symbols~A1!–~A3!. In very general terms~the
reader is referred to that paper for details! the process of
derivation begins with the axioms~A1!–~A3! where a char-
acteristic function~in momentum space! is defined as
9-7
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ZQ~x,dx;t !5E eipdx/\F~x,p;t !dp, ~75!

and where the above Fourier transform is applied upon
Liouville equation, giving an equation satisfied by the fun
tion ZQ . We nowimposeupon the characteristic function th
formal appearance

ZQ~x,dx;t !5c* S x2
dx

2
;t DcS x1

dx

2
;t D , ~76!

which is formally equivalent~as we have shown in paper
@2#! to the constraint~3! of the derivation of the third section
By writing the above amplitudes as

c~x;t !5R~x;t !eiS(x;t)/\ ~77!

and taking the imposition~76! on the equation satisfied b
the characteristic function, we are able to deduce the Sc¨-
dinger equation.

The feature deserving our attention now is that since
pression~75! is a Fourier transform, and the characteris
function is defined as the product in Eq.~76!, we must have
the classical Liouville probability density function given b
the convolution integral

F~x,p;t !5E f* ~x,2p2p8;t !f~x,p8;t !dp8, ~78!

where the functionsf(x,p;t) may be called the phase spa
probability amplitudes. These are related to the configura
space probability amplitudes given in Eq.~77! by

c~x1dx;t !5E eipdx/\f~x,p;t !dp, ~79!

as we have already shown in paper II. With the use of t
last expression we were able to derive, in paper II, the Bo
Sommerfeld quantization rules and the Feynman quant
tion prescription. As a final comment, it is important to no
that the average values of operators were defined by the
iting process

^ f ~x,p!&5E f ~x,p!F~x,p;t !dp dx

5 lim
dx→0

E f̂ S x̂,2 ih
]

]~dx! DZQ~x,dx;t !dx,

~80!

where no ambiguity concerning the order of the operat
appears, since they commute, when related to the chara
istic function @1#. With these results on hand we may no
return to our main theme.

Since in the following it will be important to distinguis
between pure states and statistical mixtures, we will n
show how these two cases fit within our approach. The p
state is given simply by the above developments; the rea
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may be aware that our characteristic function is nothing m
than the density ‘‘matrix’’~with one element! written in the
coordinate representation

r~x9,x8;t !5c* ~x9;t !c~x8;t !, ~81!

wherex95x2dx/2 andx85x1dx/2 @see Eq.~76!#. The av-
erage process in the expression~80! is thus simply

^ f ~x,p!&5 lim
x9→x8

Tr@ f̂ ~ x̂,p̂!r̂~x9,x8;t !#, ~82!

where Tr(f r̂) means the trace of the~one-element! matrix r̂,
andp is the momentum operator acting upon the probabi
amplitudes@1#. The limiting process is thus clearly equiva
lent to the process of taking the trace of the correspond
131 matrix.

If we have a statistical mixture, however, there will b
systems occupying many possible states and many prob
ity amplitudes will be present. In this case, the density ma
will be written, in coordinate representation, as the matri

@ r̂nm~x9,x8;t !#5@cn* ~x9;t !cm~x8;t !#, ~83!

where@anm# represents the matrix with elementsanm . The
final state of the system will be given by the average proc

^ f ~x,p!&5Tr@ f̂ ~ x̂,p̂!r̂nm~x9,x8;t !#, ~84!

exactly as above. This averaging process, however, ma
easily translated within our approach as the superpositio

^ f ~x,p!&5Tr@ f̂ ~ x̂,p̂!r̂nm~x9,x8;t !#

5 (
n51

N

cn lim
dx→0

E f̂ S x̂,2 ih
]

]~dx! D
3ZQ(n,n)~x,dx;t !dx, ~85!

where ZQ(n,n)(x,dx;t)5cn* (x2dx/2;t)cn(x1dx/2;t), and
N is the dimension of the matrix~eventually infinite!.

There are thus two kinds of superpositions:~a! one that
comes from the linearity of the Schro¨dinger equation and
may be related even to pure states~that are considered a
entangled states! and~b! the other that takes into account th
fact that we are dealing with a statistical mixture. It is clea
case~a! that produces controversy, since it isassumedthat
classical statistical theory, related to the Liouvillian functio
F(x,p;t), does not present such a feature, this being
alleged main distinction between the conceptual framewo
of the classical and quantum theories. Therefore, we s
begin by discussing case~a!.

There might be a misconception in what we have j
written. Indeed, the argument just presented compares
classical probabilitydensity with the quantum probability
amplitudes, which is clearly a comparison between two ve
distinct mathematical and physical objects. If we are to co
pare them, we must do so by comparing classical probab
amplitudes with quantum mechanical amplitudes and cla
cal probability densities with quantum mechanical densiti
9-8
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FOUNDATIONS OF QUANTUM MECHANICS: . . . PHYSICAL REVIEW A61 052109
Since the formalism we have just derived has furnished
classical probability amplitudes@thef ’s in Eq. ~78!#, we are
in position to carry out the required comparison. Indeed,
may assume that our system is in the superposition stat

cS5( cncn , ~86!

but, now, according to the expression~79! we will have

cS~x1dx;t !5( cncn~x1dx;t !

5( cnE eipdx/\fn~x,p;t !dp

5E eipdx/\fS~x,p;t !dp, ~87!

where

fS~x,p;t !5( cnfn~x,p;t !. ~88!

Thus, we expect to find the same superposition phenome
in the classical level represented by the phase space prob
ity amplitudesfn(x,p;t), which means that it is a mistake t
say that this superposition has no classical resemblance.
error, as we have already pointed out, comes from the c
parison of the quantum probability amplitudes with the cl
sical probability density, which are different mathematic
and conceptual objects.

If we are in the situation~b! above, where a statistica
mixture appears, then there is no problem in writing the
erage process as

^ f ~x,p!&5E f ~x,p!Fn~x,p;t !dp dx

5 (
n51

N

cnE f ~x,p;t !Fn~x,p;t !dx dp

5 (
n51

N

cn lim
dx→0

E f̂ S x̂,2 ih
]

]~dx! D
3ZQ(n,n)~x,dx;t !dx, ~89!

where

ZQ(n,n)~x,dx;t !5E eipdx/\Fn~x,p;t !dp. ~90!

There is thus no difference, either mathematical or conc
tual, between the two frameworks. The confusion appe
because, whenever we use the classical probability densi
the usual classical framework, we usually keep using
densityF(x,p;t) while the convolution in Eq.~78! is kept
hidden, together with its related ‘‘interference
phenomena—which is obviously identical to the quant
mechanical case, as becomes clear from what we have
shown in expressions~78! and ~88!.
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Some widespread interpretations interpret the quan
system as a single systembeing considered in some instan
of time t. If there is a superposition, then this superpositi
implies that the quantum system may be in more than
state at thesame time~Schrödinger’s cat paradox!—it is
needless to say that this interpretation implies that, in
classical limit, there can be no superposition~for this would
really imply in Schro¨dinger’s paradox of a deadand alive
macroscopic cat!.

Our interpretation could not be much farther from this o
than it is. As we have already stressed on other occas
~see paper II and the previous section!, our approach is able
to refer to both single systems and ensembles, their con
tion being made by the ergodic hypothesis, which is plai
applicable within the realm of quantum theory@2#. This
means that, when considering a single system, we must
sider this single system within a time interval sufficient
large to allow the fluctuations to let the system fill its acce
sible states. The states appearing in the expansion~86! of the
superposed probability amplitude are just those access
states that have their energy in the interval of the ene
fluctuation of the system—in the case of degenerate st
even the energy fluctuation is unnecessary, since all
states have the same energy content and are equally a
sible. Our single system will thus, by means of the fluctu
tions, occupy, successively in time, states with a probabi
greater or smaller depending on the specific problem; inde
if we are considering a problem where we have a sin
system with an energy dispersion given by

^E&2DE,E,^E&1DE, ~91!

meaning that the fluctuating energies are within the ab
range, then we expect those states that have energy clos
the average valuêE& to be the most probable, this probab
ity decreasing as we move to the range extrema. This is w
we may have different coefficients in the expansion~for the
degenerate case, whenever there is no field splitting the
generacy, these coefficients are obviously equal!. The analy-
sis for ensemblesis similar, with the difference that we do
not need to consider finite time intervals, and the coefficie
are thus telling us how many systems in the ensemble
~most probably! occupying the underlying state at each i
stant of time@22#.

The explanation of the superposition principle follows t
same lines as Ballentine’s statistical explanation@22#. In-
deed, in the ensemble picture, we may think of the ensem
as having each of its component systems occupying a si
specific quantum state at the same time, without the nee
considering each system as occupying a set of states a
same time, which is implied by the superposition. The
godic assumption, which takes us from the ensemble pic
to the single fluctuation system, implies that we are cons
ering the same single system at successive instants of t
this single system may occupy the quantum states implied
the underlying superposition at distinct instants of time, th
resolving the paradox. The same formal machinery that
lowed us, in paper II, to avoid the duality problem is the o
allowing us to avoid the~pseudo!paradox of the Schro¨dinger
cat.
9-9
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L. S. F. OLAVO PHYSICAL REVIEW A 61 052109
The great mathematical advantage of the quantum
chanical formalism is that it has a prescription@given by the
restriction~76! or ~78!# to select~reveal, uncover!, among all
the classically allowed probability densities, those hav
underlying amplitudes satisfying the principle of superpo
tion. As a last comment, we stress that we have not made
impositions on thesizeof the system. The cautious reade
however, may feel uneasy with that, since the quantum
malism seems to be applicable, at least in general, to mi
scopic, instead of macroscopic, phenomena. The reaso
that macroscopic systems are usually quite insensible to
small fluctuations, although this does not need to be alw
true. This, in turn, explains why it is so hard to obser
interference phenomena in macroscopic objects. Thus,
not true that the quantum formalism is applicable only
microscopic~small! systems, but, instead, that it is more a
equate for studying these systems, since these are the
that are more sensitive to the fluctuations it encompasse

VI. ORIGIN OF STOCHASTICITY

Our approach may also help us in clarifying the importa
issue concerning theorigin of the stochasticity. As it is prob
ably better to do this by means of an example, we sh
discuss the case of the hydrogen atom~as a working case!,
stressing, however, that the present considerations ma
easily generalized to any other physical system. We w
again use the approach related to the infinitesimal Wign
Moyal transform of the previous section.

It is easy to show that, to derive the Schro¨dinger equation
and include the electromagnetic field~nonrelativistically!, it
is only necessary to put

ZQ~x,p;t !5E e( i /\)[p1(e/c)A] •dxF~x,p;t !dp ~92!

and the potential

VT~x!5V~x!1F~x,t !, ~93!

whereA(x;t) and F(x,t) are the vector and scalar electr
magnetic potentials—this means that we just have to rep
the mechanical momentum with the total canonical mom
tum. By applying the same steps mentioned above we fin
end with the usual Schro¨dinger equation

F 1

2m S 2 i\“1
e

c
A~x;t ! D 2

1@V~x!1F~x,t !#Gc~x;t !

5 i\
]c~x;t !

]t
. ~94!

This, however, is not the equation we must solve when c
sidering, for example, the hydrogen atom. Indeed, the eq
tion is just

S 2
\2

2m
¹21@V~x!1F~x!# Dc~x;t !5Ec~x;t !, ~95!
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in which only thestatic Coulomb potentialF(x) appears.
The question then is: is there a reason to choose Eq.~95!
instead of Eq.~94!? In the following we will see that the
answer to this question leads to the profound role played
the fluctuations within the quantum formalism.

It is known that one of the major historic reasons f
developing the quantum mechanical formalism was the
that, when considering the full electromagnetic potentia
instead of only the electrostatic one, Newton’s equations
nished rapidly decaying~unstable! solutions because of th
radiation of electromagnetic energy~of course, the same
Newton’s equations will give stable solutions when only t
electrostatic potential is considered!. However, if we con-
sider Eq. ~94! with the vector potential as given by th
Lienard-Wiechert formulas~which is time dependent!, the
solution will not be stationary anymore, and the process w
be as unstable within the realm of quantum mechanics as
from the perspective of Newtonian mechanics~and for the
same reasons!. If one accepts that this disappearance of
vector potential from the quantum equation justifies the s
bility, then one must also allow the same prerogative for
Newtonian approach.

This is why it is an old misconception, which is still be
lieved by many of us, that the usual Schro¨dinger quantum
theory explains the stability of the atoms; this is surely n
the case, for the stability is being imposed rather than
plained.@What is indeed correct to say is that the quantu
formalism explains the quantization of the spectrum by
suming the stability, which is obvious from the stationa
format of Eq.~95! and the inexplicable disappearance of t
time-dependent vector potential.# We will see in the follow-
ing that by eliminating the vector potential from Eq.~94!, we
will perceive the key to understanding the origin of the flu
tuations~stochasticity!.

From the expression~92! for the characteristic function
we may derive, following the same steps as given in pape
the Bohr-Sommerfeld relation

R
C
S p1

e

c
AD •dr5nh, ~96!

now involving also the electromagnetic vector potential, a
wheredr is the vector taken over the orbitC. This relation,
however, is just telling us that there is anadiabatic invari-
anceof the magnetic flux through the orbit of the partic
@23#. This adiabatic invariance of the magnetic flux has f
reaching consequences that have not been very much
ploited in the literature. Indeed, we may recall that the c
cial step, when moving from the electrostatic a
magnetostatic theories toward the unified electromagn
theory, is given by the link established by the Faraday in
gral equation. This equation, in its integral form, says tha

R
C
E•dr52

d

dtES
B•dS52

d

dt RC
A•dr , ~97!

whereC is the closed curve defining the limits of the ope
surfaceS. If the magnetic flux is an adiabatic invariant, th
right hand side of Eq.~97! will be just zero and the electric
9-10
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and magnetic fields will uncouple, which means that we
main within the realm of a static theory, since

R
C
E•dr50⇒“3E50 ~98!

~for arbitraryC) and thus

E52“F~x!. ~99!

In this case, it is adequate to remove the vector poten
from Eq. ~94! and work with the static electric potential i
Eq. ~95!. Thus, now, and only now, we may say that qua
tization ~which implies constant magnetic fluxes! leads to
stability.

One more aspect may be mentioned with respect to
~97!; the constancyand quantizationof the path integral ofA
are possible only when the potential being integrated
singularities. These singularities prevent us from pass
freely from the integral format of the Maxwell equations
their differential format, from which the Lienard-Wieche
vector potential is derived. But, as we have shown in pa
II, the fluctuations play precisely the role of introducing
effective potential that does have singularities, and this is
profound reason that explains and justifies the use of the
electrostatic potential within the Schro¨dinger equation. The
question here addresses the priority that one might giv
the integral over the differential format of Maxwell’s equ
tions; this choice of the prevalence of the first over the la
may be sustained by remembering the historical developm
of the theory, which was a phenomenological theory ba
upon circuits, etc. If this choice is accepted, then some c
must be taken when passing from the integral format to
differential one. Whenever singularities appear within t
domain of integration, the integral theorems~Stokes, diver-
gence, etc.! do not reduce the integral equations into t
differential ones in a simple manner~we may recall that
Dirac built upon this fact to propose his magnetic monopo
which is nothing but a singularity of the vector potential th
furnishes the quantization of the ratio of the electric a
magnetic charges; it is also such a phenomenon that is
volved in the Bohm-Aharonov effect!. These singularities
within the present framework, may be seen if we look at
effectivepotential, defined in the expression~49! @see also
Eq. ~45!#. The last term is the derivative of the entrop
which is lnr(x); thus, whenever we have zeros in the pro
ability density function, infinities will appear in the effectiv
potential. As we have seen, this term represents precisely
momentum fluctuations and thus confirms that it is the s
chasticity that introduces such singularities, which, in tu
quantize the vector potential decoupling Maxwell’s equ
tions and making the system stable.

The next question thus refers to the meaning of the ab
adiabatic invariance. As is well known, adiabatic invarian
implies that, whenever the system undergoes variation
the relevant parameters that are slow compared with its
riods ~adiabatic variation!, the related action integrals rema
invariant. Thus, Eq.~97! says that, although there may b
local variationsof the vector potential in a cycle, these vari
05210
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tions are such as to compensate and to maintain thetotal
magnetic flux invariant, and it is the total flux that is to b
considered in Eq.~97!. The analysis of Eq.~96! thus fur-
nishes the result that we were searching for: according to
equation, since the sum of the magnetic flux and the m
chanical momentum around the orbit is a constant, any lo
variation in the magnetic flux~fluctuation in the vector po-
tential! will be transferred to the mechanical momentu
which means a transfer from electromagnetic to mechan
energy. However, this local variation will be quickly com
pensated~the fluctuations! and there will be a flux of energy
in the opposite direction in such a way as to keep the m
netic flux constant—this flow of energy may be understo
in the particular example here discussed, as the initial
sorption of a virtual photon by the electron in the process
electromagnetic to mechanical energy transfer and then
release by the electron in the inverse process.

This is precisely the point. It is well known that ‘‘the
equilibrium state, static from the viewpoint of classical the
modynamics, is incessantly dynamic. Local inhomogenei
continually and spontaneously generate, only to be atte
ated and dissipated. . . ’’ ~Ref. @20#, p. 210!, and, what is
most important for our present analysis, ‘‘the ‘subsyste
may, in fact, be a small portion of a larger system, the
mainder of the system then constituting the ‘reservoir’.
that case the fluctuations arelocal fluctuationswithin a
nominally homogeneous system’’~Ref. @20#, p. 423!. In the
present example, the Schro¨dinger equation refers to theelec-
tron energy; the electromagnetic field energy is not cons
ered and plays the role of the ‘‘reservoir’’ of the system. T
total energy is obviously conserved in the process, since
are within a closed system—the electron and field energ
will fluctuate separately because of the exchange proc
mentioned above. This is the main difference betwee
closed system and an open system interacting with its
roundings; in the closed system total energy is conser
~exactly as with the Schro¨dinger formalism! while in the
open system it is not@24#.

It is obvious from our analysis in the third section@see Eq.
~33!# that here we are interested in local fluctuations. W
we have said above allows us to treat the hydrogen a
~and, in general, any other quantum system! as a locally fluc-
tuating system. For the specific case of the hydrogen at
the usual stochastic electrodynamic approach~which consists
in postulating the hydrogen atom as an open system@25#
with a ubiquitous zero-point electromagnetic field as its r
ervoir! is unnecessary—thanks to the distinction between
cal and global fluctuations. The above mentioned postu
may be withdrawn without any consequences to the stoc
tic electrodynamic main concept, which consists in using
classical Maxwell equations with the boundary condition
sociated with fluctuating potentials and fields. In this ca
Eq. ~96! may furnish a powerful insight into the connection
between the stochastic electrodynamic approach and
quantum field theory, something exhaustively searched fo
the literature@25#. At this point it is interesting to note tha
Boyer, on a somewhat intuitive basis, had already poin
out the deep connection between the adiabatic invariants
stochastic electrodynamics. Indeed, we may quote h
9-11
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‘‘here we wish to point out a curious sidelight found in th
further development of the theory. It turns out that t
action-angle variables provide a convenient description
mechanical systems in random classical radiation . . .@for#
it is easy to show that the zero-point radiation is the uniq
spectrum of random classical radiation, which leaves
adiabatic invariants of a nonrelativistic periodic mechani
system withno harmonics@my italics# as still adiabatically
invariant in the presence of radiation. Furthermore, an a
batic invariantJl5rpldpl in classical zero-point radiation
takes the average value^Jl&5h/2.’’ @26#.

Thus our developments suggest the replacement of
interpretation postulate of a ubiquitous all-pervading exter
zero-point electromagnetic energy field~heat bath! of con-
stant magnitude\/2 by the interpretation, following solely
from the axioms, of a closed system with local fluctuatio
depending on the actual state of the field. In keeping
stochasticity of the boundary conditions intact, while chan
ing the fixed value of\/2 by the field-state-dependent valu
(n11/2)\/2, this implies an alteration that may introduc
many new results within the framework of stochastic el
trodynamics, in particular with respect to its explanation
the stability of excited state orbits. It also seems, at leas
this author, that the idea of local fluctuations of the elect
magnetic field of the system is a much more acceptable c
cept than a constant electromagnetic field filling all of spa
~this would imply, for instance, an infinite energy that
detectable by the gravitational field!.

The relations between the stochastic approach to elec
dynamics and quantum field theory were only sketched h
within a rather intuitive and somewhat qualitative persp
tive. We leave the unraveling of all their interconnections
a future paper.

VII. CONCLUSIONS

In the previous sections we have shown how the stoch
tic derivations of the Schro¨dinger equation reduce to ou
previous derivations; this equivalence was established
only with respect to the formalism but also with respect
the interpretation of the symbols of both theories. This
duction of the stochastic derivation into ours was import
in order to unravel many of the obscurities or~apparent!
arbitrariness of the former. It was also important to clar
some features of our own derivation; it is precisely this
terplay that enriches the interpretation by furnishing ma
perspectives from which the same problem may be view
Indeed, we were able to show the following.

~1! The stochastic behavior comes from the spontane
local fluctuations of the system.

~2! The stochastic force is the damping fluctuating for
of the fluctuation-dissipation theorem.

~3! The quantities appearing in the stochastic express
should be considered asaveragevalues @e.g., the average
momentump(x;t)# and are not equivalent to the quantiti
appearing in Newton’s law, except when the limit of no flu
tuation is considered (u50)—when both formalisms reduc
to Newton’s equations.

~4! Contrary to the usually accepted opinions@see the
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comment in Ref.@18# before Eq.~3!#, the stochastic velocity
u does have a classical origin, since it is nothing but
fluctuating velocity appearing in the linear Onsager relati
coming from the classically defined entropy.

~5! It is possible to show that there is a superpositi
principle in the deepest realm of classical statistical mech
ics which corresponds in every sense to the superpos
principle of quantum mechanics. This principle can be int
preted in very simple terms by referring it to local fluctu
tions and by using the ergodic assumption; the role of
superposition principle is governed by the relevance of
fluctuations for the overall behavior of the system, implyi
that, for macroscopic systems, these fluctuations will
much more difficult to observe.

~6! Contrary to the universally accepted opinion amo
adepts of the stochastic view, the stochastic forces do
come from an interaction of the system with its surroundin
~at least in a necessary way!—this is because, within ou
derivation, it was not necessary to include the surroundi
in any sense, since the system is a closed one compo
however, of a subsystem linked to a reservoir giving rise
spontaneous local fluctuations. The statistical characterof
the theory comes from the fact that we adopt the strateg
treating the local fluctuations as hidden internal degrees
freedom~we treat them statistically@21#!—this prescription
is allowed whenever the Heisenberg relations remain
filled.

~7! The effective potential, derived in paper II, may b
easily interpreted by using the notions of stochasticity.
comparison of the derivation process given in that paper w
the present one is capable of unraveling the dynamical p
cess underlying the quantum mechanical statistical one~see
the discussion below!.

Another important achievement was the clarification
the stochastic postulates. Indeed, when developing the
chastic derivation, we were faced with many~well-reasoned!
impositions, such as the postulate of the behavior of the
chastic velocity upon time reversal@17#, which becomes
quite natural if we remember that this velocity is related
the damping force of the Onsager relations and that, bein
damping force, it should behave this way upon time inv
sion. Other postulates may also be clarified. Indeed, the
chastic derivation always had in mind the reduction of
formalism to Newton’s in the limit of non-stochasticity, suc
as the postulate related to expression~9!, where Newton’s
second law is generalized to include the stochastic behav
This expression, however, is nothing but our expression~45!,
and comes from the fact that the Liouville equation natura
assumes this formatfor the average valueswhen fluctuating
systems are being considered.

On the other hand, the stochastic approach, when lin
with ours, has also furnished the key to the interpretation
many features of quantum theory, such as the time-ene
dispersion relations, since it shows that we should cons
the symboldE as an energyfluctuationand the symbolDt as
the characteristic minimum time that allows us to consid
the individual system as anensemble~the time interval
within which the system fluctuates enough so as to valid
the ergodic assumption!. It was also useful to understand th
9-12
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origin of the fluctuations and their relation to stability, com
ing from the analysis of the Bohr-Sommerfeld relations.

Another important advantage of showing the equivale
between the stochastic derivation and ours is that, by me
of this equivalence, we automatically append to our o
framework all the many results achieved by the stocha
approach within recent decades. Examples are the relativ
extensions giving both the Klein-Gordon and the Dirac eq
tion @27–29#, their radiative corrections@30,31#, a path inte-
gral formulation @32# together with its application to the
problem of barrier penetration@33#, to cite but a few. In
particular, a comparison between the stochastic derivatio
the Feynman path integral formulation@32# with ours @2#
furnishes another beautiful example of the equivalence of
two approaches.

We also presented~in the particular case of the hydroge
atom! the physics governing the interpretation of the proc
described by the Schro¨dinger equation. For a general phys
cal system this interpretation is as follows. Within th
present framework we are considering one single sys
where a force field@with a physical potential function
V(x1 , . . . ,xN)# is responsible for the interaction of theN
particles composing the system. This system is a closed
since no other external force field is present in the ex
Newtonian equations governing the movement of each
ticle. The total energy of the system is, therefore, conser
~which is generally not the case with open systems!. Now we
make the decision to treat the closed single system as c
posed of two subsystems, the particles and the force fi
each one capable of keeping some amount of energy~this is,
obviously, only a distinction in words!. We also choose to
describe the parameters of the subsystem composed o
particles~e.g., the energy!, while ignoring those related to
the force field. With the adoption of this strategy of descr
tion, statistical physics tells us that fluctuations will appe
that are responsible for the exchange of energy between
two subsystems. In this case, for instance, the energy of
particles, being taken into account explicitly, will fluctuat
sometimes being lowered by transferring energy to the fo
field, sometimes being increased by taking energy from
force field. This means that the average potential govern
the average movement of the particles will not be given s
ply by V(x1 , . . . ,xN), but we will have to correct it to take
into account, as an average, the energy fluctuations.
correction is given precisely by the extra term appearing
the ‘‘potential’’ fB(x) @Eq. ~26!# in the second section
which is equivalent to the so called Bohm ‘‘potential’’@one
has to recall the ansatz used in the expression~22! and make
the changer5R825e2R to find the common expressionfB
52(\2/2mR8)¹2R8#—it is important to note that it has
kinetic origin, not a true potential one.

We may still ask which physical process would give ri
to such fluctuations in the exchange of energy between
two subsystems. The answer is that, when considerin
field, we are implicitly assuming the existence of the ‘‘qu
siparticles’’ responsible for the interaction process~e.g., pho-
tons for the electromagnetic field!. Thus, when a particle o
the subsystem under explicit consideration is to interact w
another particle of this same subsystem, it must intercha
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some amount of quasiparticles responsible for carrying
physical interaction. However, when it emits these quasip
ticles, it transfers energy to the force field and its own ene
is lowered~the fact that the quasiparticles have a finite v
locity implies the effectiveness of this phenomenon!. When
the quasiparticles are absorbed by the other particle par
pating in the interaction process, the energy transferred f
the particle subsystem to the force field is again transfer
back to the particle subsystem—thus generating a fluctua
in the force-field energy. This process~the number of quasi-
particles present in each interaction, etc.! depends upon the
state of the field. This is the main difference between
present approach and the usual Newtonian one: in the la
the force field is always supposed to be fixed, in the se
that the potential functionV(x1 , . . . ,xN) does not fluctuate.
However, it is important to stress that, although this is
departure from the Newtonian mechanistic mathematical
proach to the study of physical systems, it does not repre
any departure from a classical description of Nature, since
the conceptshere developed are part of the conceptu
framework of classical statistical mechanics.

We would like to stress that this paper is a continuation
a series of other papers@1,2# in which we have shown how
the various derivation methods of the Schro¨dinger equation
may be reduced~or rephrased! to only one. This may be
understood as the first step in the endeavor to establis
consistent interpretation of quantum formalism based u
its own postulating foundations, and not, as seems to
usual, upon wild guesses and/or philosophical presupp
tions.

Thus, we have derived the Schro¨dinger equation by a
more mathematical approach in paper I@1#, which allowed
us to unravel the origin of the operator structure of quant
mechanics and, as a by-product, allowed us to show how
quantize in generalized coordinates, a shameful void of
theory previously. We then derived the Schro¨dinger equation
from a more physical set of postulates in paper II@2#, which
allowed us to make evident the meaning of the symbols
the approach made in paper I. The concept of entropy
then introduced. With the derivation of paper I, which
easier for mathematical manipulation, we were able, also
paper II, to derive and generalize the Bohr-Sommerf
quantization rules and show that they are consistent with
same set of postulates giving rise to the Schro¨dinger equa-
tion, since they could be derived from this very same s
Moreover, the Feynman path integral derivation of quant
mechanics was shown to be equivalent to our previous
and closely related to the Bohr-Sommerfeld quantizat
rules and the results of paper I. In this paper we have sho
how the stochastic derivation is also equivalent to ours.
are thus close to achieving our goal.

Indeed, since our derivation is a fully axiomatic one,
which the interpretation is much easier to carry out,for it
must be contained only in the (few) postulates, we sincerely
hope that at the end of this series we will be in a suita
position to present a coherent interpretation of quantum
chanics. Moreover, we are being careful to fix the physi
reference of every relevant symbol of the theory—and thi
one of the important features in showing the equivalen
9-13
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L. S. F. OLAVO PHYSICAL REVIEW A 61 052109
between all of these derivations, since each one looks m
deeply at a different aspect of reality, and thus uses one
of physical references more than another@e.g., operator
structure~paper I!, entropy, fluctuations, and adiabatic in
variance~paper II!, stochasticity~the present paper!, etc.#.
The important aspect of this program is that, after show
the formal and epistemologicalequivalence between thes
derivations~world views!, the interpretation developed fo
one will be necessarily the interpretation of them all. It h
es

n

05210
re
et

g

s

also the advantage of being capable of giving us the mean
reject other widespread interpretations, based solely upon
relations between the formalism and its symbolic referenc

Although many of the underlying interpretation featur
have already been discussed, whenever allowed by the
velopment of the formalism, the complete interpretation w
be left for a future paper, where they will be stated in a mo
systematic manner.
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