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Alternative quantum perturbation theory without divergences
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A different integral form of the Schrdinger equation and some boundedness conditions of the wave func-
tions are proved, which exhibit the origin of some divergences in quantum mechanics. The iterations from the
integral equation and the boundedness conditions lead to a method for avoiding the divergence difficulties. The
result is extended to the time-dependent and the multidimensional cases. Examples of an electron in the Wigner
spherical “box” with a 1f perturbed potential, some heliumlike ions in the ground state, and the Stark effect
of the hydrogen atom show that this different perturbation method can give rational multiorder corrections of
the wave function and energy.

PACS numbds): 03.65.Ge, 03.65.Bz, 32.96a

I. INTRODUCTION e(9=0,
In quantum mechanics the states of a microscopic system . i o
are described by the wave functions and the latter are gov- ¢("=H'(x)yg{ V- > EDy{ D for i=1,2,... e,
erned by the Schrdinger equation. Therefore, solving the =1
Schralinger equation is the most important task of this sub- )

ject. However, this equation is not exactly soluble for the . ©) ma: . . .
most physically interesting systems, except a few system‘é"th E\”’ being the energy eigenvalues associated with the

such as the hydrogen atom, harmonic oscillator, and rigi(?'ge”fU”C“O”S‘ﬂﬁo)- Equations(3) are some nonhomoge-

rotator[1—3]. For applicable purposes the quantum perturbal€ous equations with the nonhomogeneous tesffisfor i

tion theories were established and developed7]. In many  =1,2,... . The corresponding homogeneous equation is

cases the system of interest differs from an exactly solublgust the zeroth-order unperturbed Satirger equation for

system by only a small disturbance, enabling an approximaany i. Here the atomic unit has been adopted such that

tion to be made by the Rayleigh-ScHinger expansions =wu=e=1. Unfortunately, Egs.(3) still are not exactly
soluble for many interesting systems. Suppose that the en-

o ergy eigenfunctiong/{’) of the unperturbed equation form a
= lﬂk:_Zo W, complete orthonormal set in Hilbert space. The previous per-
a turbation theories had to expand the wave functq'/z&H in
. terms of %) for i,k=1,2, .. .. But theecent{8] and previ-
E—E,— ED  for [40|<|gli~ 1), 1 ous[9-12] works on quantum theory have shown that the
K ;o k [icl=<lonc @ Rayleigh serieq1) diverges for most practically disturbed

potentials in Hilbert space. This may lead to an infinite

|ED|<|E(~Y) square integral of the corrected wave function. The diver-
k k ' ceee . ..

gence difficulties have puzzled many physicists for 60 years

where ¢ and E are the wave function and energy with the [8—13). Although some large order perturbation theories for

quantum numbek. The expansions change the perturbedMProving the results were presentfti—17, the genuine
Schrainger equation cause of the previous divergences is still not found in these

works.
1 Recently, we gave a method for exactly solving the non-
S~ [V(X)—EJy=H'(X) ¢ (20  homogeneous Schilinger equation$3) and used the exact
2 solutions to obtain the convergent Rayleigh sefis8 and
scattering amplitudeg19]. In this paper we will prove an
integral equation equivalent to the Sctimger one and some
boundedness conditions of the wave function. Using the
1 equation and conditions, we find that the divergences in the
O _=(0)7,,() — (D) D previous perturbation theory originate from expanding the
2 Voo VOO —BT M=o, for 120,12 2=, corrected wave functions in Hilbert space. Avoiding the Hil-
bert space or using it under the boundedness conditions and
making iterations from the integral equation can produce the
*Electronic address: adcve@public.cs.hn.cn convergent Rayleigh series. We will also extend the result to

with potentialV(x) and perturbed potentidd’ (x) into a set
of nonhomogeneous ones,
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the time-dependent and the multidimensional systems and ©) o0 [*0ysr © ©
show that the method can be applied to degenerate and near¥xx= lﬂk,xx+2¢k,xxJA e (H' = E+E7) pdX= 24y 5,
degenerate cases. For examples we calculate the second-

order energy corrections of an electron in the Wigner spheri- X~ o o ~ ) (0
cal “box” with a 1/r perturbed potential and some helium- Xf O(H' —E+EX) ydx+ 2(§ "
like ions in the ground state and discuss the Stark effect of B
the hydrogen atom. The results show that our perturbation ~ '

) o ’ —ULH)(H —E+EQ)y

method can give rational multiorder perturbation results.
=2[V(x)—EPy+2(H' —E+ED) y
ll. QUANTUM PERTURBATION OF THE
ONE-DIMENSIONAL SYSTEMS =2[V(x)+H'(x)-E]¢.

We have known that the functiopl”) is a solution of the
unperturbed Schrbinger equation associated with energy ei-This is just Eq.(2), as our assertion. As in E€4), the gen-
genvalueE(” . Given this solution, we construct another so- gra| solution of the second-order ordinary differential equa-
lution of the equation by\”= O (")) ~2dx. Making  tion (2) also contains two arbitrary constants. So the integral
use of the two linearly independent solutions, we can easilgquation(4) is completely equivalent to the Scldinger one

prove that the integral equation 2).
Assume that the initial state is a bound state suchitffit
=0+ 250 J g JOH' —E+E®) pdx and y{°) vanish at the boundary poinis— . Theng{”
A tends to infinity at the boundaries and does not represent any
« physical state. Inserting such an unbounded function into Eq.
_2¢(k0)f T/,f(o)(H'_EJr E(ko))l/IdX (4) (4) shows that its solution is bounded if and only if the
B conditions

is completely equivalent to the Scldinger one(2). Here A

and B are arbitrary constants determined by the normaliza- «

tion and boundary conditions. From Ed) we perform the P.(A)= lim f YOMH —E+E@)pdx=0 (5
calculations - Yt d A

X
_ <0>+2~(0>f O’ — E+E®) ydx
U= ot 2x Awk ( v are satisfied. Given Ed@5), we can apply the I'Hospital rule
to Eqg. (4) producing the limit

X~
—24{9) f . POH —E+EQ)ydx,

lim = lim

X— oo X— o

Py POy H
[T T [ 1,
RS (?ﬁﬁ‘”)zwﬁ‘”]

2(H’—E+E(k0))(

=2 lim [(H' —E+E®)y] lim

oo el W W
O
i 4 0 i 0)77(0 0)77.(0
=2 lim [(H'=E+E@)y] lim | —romo (R~ o)
X— L Xﬂi“_wk,x K, x
. : [
=2 lim [(H'=E+EQ)y] lim | —omes
X E x— oo P xPox
_ Y QU R ORI
=2 lim [(H'~E+EQ)y] lim | —m=t—os
X— %o X— o] l/’k,xx‘rljk,x+ lpk,xwk,xx
i H —E+EQ i w
= lim | ————g~| lim ¢=L lim 4,
X— * o0 V(X)_E(ko) X— * 0 X— * o0
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where

(H'—E+ED)

L= lim
V(x)—E®

X— + oo

This equation cannot be satisfied unless lim.,¢s=0. Thus
we have proved the sufficiency of EG). In the calculation
for limit only the second term in Eq4) depends on the
conditions(5). Without Eq.(5), this term will tend to infinity

asx— *oo, This is the proof for the necessity of the condi-

tions.

In order to solve the integral equatigd) and evidence
the boundedness conditior($), we apply the Rayleigh-
Schralinger expansionél) to Eq. (4) and equate the sum of
ith-order terms for both sides, arriving at tht@-order cor-
rected wave functions as

) ~ ) X .
o =200 A0+ [y efpax
) X )
2y B0+ JO JOeDdx], ®)
fori=1,2,..., whereA{’ andB{’ are constants associ-

ated with the expansions of the constaitand B. Combin-
ing Eq. (5) with Egs.(1) yields the boundedness conditions

=0, i=12,...¢

(7
of the solutiong6). By applying the I'Hospital rule to Eq6)

. . . X .
PUAD)— fim {Agu [ ofpan

X— *+ o

we can readily prove their boundedness under the condition

(7). For sufficiently small potentiaH’(x) and bounded cor-
rections of the wave function, the Rayleigh selig&swill be
convergent. Applying the second of EqS8) to (7), from
PY—-PY=0 we get

PHYSICAL REVIEW A61 052105

with infinite terms so that it may not obey the boundedness
condition (7). Thus the unbounded wave functiogg'” and
infinite energy correction&!) for i=1,2,... ¢ are pro-
duced in the practical calculations. This may lead to the di-
vergence of the Rayleigh seri€b) in previous perturbation
theory. Our results, the formal solutidf) and boundedness
condition (7), have avoided the infinity and divergence. An
interesting thing is that the first-order energy correction in
Eqg. (8) with i=1 agrees with the previous result. Particu-
larly, our perturbation method is valid for the degenerate and
near degenerate cases, where the previous theory failed.
Therefore our method can be applied to a wider area of the
scientific investigations.

As a simple example we consider the motion of a single
electron in the Wigner spherical “box” with an infinite ra-
diusR and a perturbed potentied’ = — 1/r. The unperturbed
Schralinger equation has the spherically symmetric solution

[9]
VY O=sin(a,r)/(Cr), n=12,... (10)

for the energy eigenvalues!®)= %/2 and constan€. The
orthonormalization conditions require that

aR=n7m, C?=27R, EP=a2/2-0 asR—w».
(12)

SettingW (V= y\(r)/r fori=0,1,2 ..., theny!" obey the
nonhomogeneous equatiof® with the formally general so-
lution (6) andx—r, where

PO =sin(a,r)/C,

= t/f(no’f ()" 2dx=—Ccodap)/a,. (12

Substituting Eqs(12) into Eq. (6) arrives at theith-order
corrected wave functions

i—1 )
. © , . . L ) (i) r 2 . r .
E(k')=J_w¢(k0) H' (%) g 1)—21 EQyi D dx, \Ifﬁ,'):wnT()z — | sin(aqr) Bg')+f cos(anr)sg"dr)
n 0
i=1,2,...¢. 8 ; r. ;
® —cogar) Af{)+f sm(anr)sf{)dr”
These are just the formulas of the corrected energies. The 0
corrected solutior(6) is formally a general solution of the (13
perturbed equation3), which differ from the common so- o .
lutions of the equations. In previous perturbation theory, thavith _8_51') given by Egs.(3) for i=1,2,.... Theboundary
solutions of Eqs(3) are expanded as conditions
oz _ lim W () =finite value, lim w=0
= 21 ally®  for all=const, i=1,2,...% r0 apgi—anR=n7
n=
©) imply that
in Hilbert space. When Eq$3) are not exactly soluble, any R R
series of Eq.(9) cannot be truncated as finite terms. How- f sin(anr)gg)dr/czf #VeWdr=0,
ever, it is impossible to count in infinite terms in any practi- 0 0
cal calculation. Letj;,") be the finiteN terms of a series in 0
Eq. (9) for the calculation. It is certainly different from{" Ay’=0 for ayR=nm, (14)
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TABLE I. The possible energies of an electron in thd/r potential(atomic unitg.

n 1 2 3 4 5 6 7 8 9 10
—Bgl) 1.09704 0.99391 0.94556 0.91737 0.89765 0.88377 0.87321 0.86489 0.85813 0.85253

—E; 050000 0.12500 0.05556 0.03125 0.02000 0.01389 0.01020 0.00781 0.00617 0.00500
—E(® 0.41051 0.17998 0.10544 0.07071 0.05142 0.03940 0.03135 0.02566 0.02147 0.01828
AE® 0.08949 0.05498 0.04988 0.03946 0.03142 0.02552 0.02115 0.01785 0.01530 0.01328

which agrees with Eq$7) and(8). Obviously, the first-order validity by the above results. Further exploration to this
energy vanishes for the infinit®. Applying A{Y=0, E(Y)  problem will be quite interesting.
=0, Egs.(10), (13), and(3) with i=1 to the normalization

condition yields Ill. QUANTUM TRANSITIONS IN OUR THEORY
_ R (L) g2 Applying the above-mentioned method to the time-
0= gm fo WA edr dependent Schdinger equation
apR—nNm
1 .
8w (nm p ., dp’ S~ VX)) y=H'(X,t)y—idylat, H'=0 for t=<ty,
= 5| sinp| cosp | sinfp’—- 2
anCJo 0 P’ 17
L p dp’ the corresponding integral form is directly given as
—sinp| BY )+f cosp'sinp’'—||dp (15
0 ’ o= P00 exp —IEPD) + 294 (%) f O
. . i . k k K’ k!
in the first approximation fon=1,2, ... ,where the trans- A

formation p= a,r has been used. These conditions give the

' (0) _; _,(0)
constant8Y) as Table I. Inserting Eq$10), (11), (13), and XLHTOGH By =101 9] X =24, 7(X)

(3) with i =2 into Egs.(14) leads to the second-order correc- X~ (0) ©
tions X fB Y X[H (X, 1)+ Ep —idlat]ydx,  (18)
R
E@=lim f VOR ()W Dazr2dr where{?(x) and \2(x), respectively, represent the initial
apR—n- 0 and final states associated wkt =0, andA andB are two
4 (om do’ arbitrary constants. Inserting Eq18) into Eq. (17) can
= _f sinp| sinp| B+ IPCOSp'Sinp’L) readily prove the result. As in E¢5), the boundedness con-
nmjo 0 p’ ditions of Eq.(18) become the differential and integral equa-
tions
r ., dp'|dp
_COSpf sinfp’ —| — (16) _ X () ©
0 p' | P G.(At)= lim b’ (X[H'(x,t)+E,;’—idldt]pdx=0.
X— oo A
of energy. GiverB{") by Eq.(15), from Eq.(16) the second (19

corrected energies are evaluated numerically in Table I. The o - .
correct energy values of the system should BB= When the perturbed potentiad’ is small, transition ampli-

—1/(2n?), which are also shown in Table I. Setting differ- tude of the system ca}(r;) be (%?S”y obtained as follows.
ences between the correct energy and second energy correc-(@ For the casgE;”’—E;;’[>|H’|, we make the Ray-

tion asAE®=|ES—E®)| for any n, Table | showsAE(?)  leigh expansion

being less thaE?) such that the result can be improved by

the third approximation. = D (x,t)exp —iEQ)
=0

We know that the previous perturbation method used ex-
pansion(9) in Hilbert space and gave a meaningless wave _ _
function and inaccurate energy value for this instaf@e for [yil<lyi Ml P60 = V(%) (20
Our method has greatly improved the previous result. Our ) . .
result reveals that the Rayleigh-Sétimger perturbation ex- and substitute Eq20) into Eq. (19), obtaining the bounded-
pansions(1) are correct, but the expansia) in Hilbert — N€ss conditions
space may bring divergences. To overcome the divergences,

we have to avoid the expansi®®) and employ the formally GO(A )= lim fx zp(k(?)(x)[H’(x,t)://(ki’l)
general solution6) or use Eq.(9) under the boundedness B X+t A

condition(7). The Hilbert space is the mathematical founda- ©)_ =(0)_: 0

tion of quantum mechanics, which has been queried by the +(Ep —E ' —idldt) iy’ 1dx=0  (21)
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with A; andB; being constants corresponding to expansions

of the constantsA and B for i=1,2,... . From G\
—~G"=0 we have thath-order equations

iy (1at—H D) - (EQ-E@) ) (1)=0,

i=1,2,...o,
W= | s xnax,

H;SL)=f:zp(k‘ﬁ(x)H'(x,t)lp(k‘*l)(x,t)dx. (22)

Integrating Eqs(22), one easily yields the functions
PO =—iexd —i(EQ-EO)t]

t . 0
xf H QWexdi(EQ-EM)t1dt, (23
t

0

PHYSICAL REVIEW A61 052105

t

t oo
PD=—i f H () dt=—i f J YOH! (0 gOdxdt,
to tO -

) t ) )
E(kl/)k: _| J’t [Hll(slk)'f'(E(k(?)_E(ko))Z(kl/kl)]dt
0

for i=23,.... (27

The caselE{L’—E(?|~|H'|<1 means near degenerate of
the initial and final states. An interesting example of the case
is the one-dimensiona&l D) hydrogen atom with large quan-
tum numbersi=k andn+ 1=k’ and weak microwave field
H’(x,t) = ax cos(t). This is a typical instance of the quan-
tum chaos[20,21. The previous quantum perturbation
method is invalid for such problems. The above analysis has
supplied a useful method for studying the quantum chaos.
Making use of the above method in this instance, from Egs.

(27) we find thatE,((i,)k consists of the terms proportional to
[@I(AEQ) /0] for AED=|EQ-EY| and |
=1,2,...j. The total transition probability from stateto

k" therefore reads

If we introduce the Hilbert space as in the ordinary quantum

mechanics, the functioE(ki,)k(t) in Egs.(22) is a projection

of the solutiony{’(x,t) to the basis vector”(x) of the

Hilbert space, which is just thi¢h-order transition amplitude
from statek to k’ [1-3]. The corresponding transition prob-
ability is its norm and the total probability is the sum of the
norms. In the first-order approximation, the transition prob-

ability reads

t 2
PSL=|@%LIF‘foHLfi)<t>exm<Eﬁ9)—E‘é”)t]dt ,
(24

©

<) I 2
P S, TS, | 3, mroaaefy el

=1i=
(28

whereb;(t) are some periodic functions of tinte Equation
(28) denotes a polynomial of andw ™! that possess many
different extreme points on thex(w) plane. An important
property is that the probability at the resonance frequency
szEff,’f( may get less than one am<AEf<9f( for some
times. These qualitatively agree with the previous results on
the multiphoton ionization and excitation of the hydrogen
atom [22]. Further work along this line will give a fully

which is in complete agreement with the previous result. Théluantum-mechanical explanation to the chaotic behavior of
new multiorder results, of course, differ from the previousthe highly excited atoms and the multiphoton ionization and
ones. Our results are certainly convergent, since they comfxcitation.

from the boundedness conditioft9) and(21). And the pre-
vious multiorder results may contain infinity such that the
corresponding Rayleigh series diverges.

0) . - , .

-0 When.|E(k°)— E| is in the order ofH'(x,t)|, insert- Let us extend the above results to spatially three-

ing Eq. (20) into Eqgs.(19) gives the boundedness conditions dimensional3D) case with the perturbed potentld! being

a 3D function. For convenience sake, we take perturbed hy-
drogen atom as an example to discuss the problem. Adopting
the spherical coordinates,, ¢), the Schrdinger equation

of the system is

IV. THE CORRESPONDING MULTIDIMENSIONAL
RESULTS

GU(A; ,t)= lim

X— F oo

fA Ui COTH (x ) + B —E g~
—igylattdx=0 (25

1 1
=V2+—+E
2 r

fori=1,2,... . The equatiorG"—G"=0 becomes the Yp=H'(r,0,¢) . (29
ith-order ones
Settingy=r " 1x(r,6,¢) and inserting it into Eq(29) yields

iyl (x,0/ot—H Dt) — (ED—E@) gl Dty =0, the equation

i=1,2,.... 26 ?x(r, 0, 1) 1(+1
| o0 ( ) X(ﬁ . QD)+ Z(Ego)‘l'F)— ( - ) X(I’,a,go)
r r
Noticing that Eqs(22) imply E(k(,)f(:O, the solutions of Eq.
(26) are obviously =Qx(r,0,¢), (303
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Q=[L2(6,0)—1(1+1)]r 2+ 2[EQ—E+H'(r,0,0)],
(30b)

with the angular momentum operaforWhen the right-hand

side of EQ.(309 is equal to zero, the equation agrees with
the unperturbed radial equation, which has the two funda-

mental solutions, bounded? and unbounded?,

xQr)=rRQ(r),

Q) =x f (xP)~2dr=rR{(r) (31)

for the energy eigenvalug!®) . The similarity of Eqs(30) to
Eq. (2) leads the integral equation associated with E86)
to the form of Eq.(4), namely,

\0)

anm Xnim T (?)(r)f (0)(r)Qanmrdr

x5 f RO(Qxhmrdr,

n—-1 I’

le(r%)_ 2 2 a|rmrr¢n|/m;(r,0,@),

I"'=0m'=-1'

1=0,1,...(n—1), m=0,*1,...=I, (32

PHYSICAL REVIEW A61 052105

1 9 d m?
_M£ S|n0£ Sirfo —1(l1+1) ®nlm
m?—12
= sin20 ®nIm nlmi

?)(V)Xﬁmf_ldr'

®nl :f Rg
0

ENm=2 fo [E-EQ—H'(r,0,0) RO X} rdr. (35)

Equating the left-hand side of first in E485) to zero results
in an associated Legendre equation with the two linearly
independent solutions

e ni-mr
O=(-1) WP' (cos#),

~ de
09=— 0(°)f —_—. 36

" (0@)%sing 39
Here P"(cos#) is the associated Legendre polynomial and

0% has the singular point§=0,7. The integral equation
correspondlng to the first of E35) therefore is constructed
as

I . _
O 0.0)=0(3) | O -T210},(, 01500

where we have considered the degeneracy of the states and

set the initial statey(%

fﬁ?m,(r 0,¢). For fixed principal quantum numbar the A

describes different initial states amd and B are arbitrary

boundary constants. The expansion coefficients are thus se-

lected,

n—-1
No= 2 (2I'+1)=n?
I”’=0 33

al ,=*1n, A=12,...)\,,

that the initial states are orthonormalized for allxafHere

as a linear superposition of

+e) (0,¢)sin0]do— 0
0~

XJG'(’?‘)[( 2—12)ONm(0,0)/sin0
D

+&h (0, 0)sing]de (37)

with C,D being arbitrary constants. At the singular points of

the unbounded functio® (%, there exist two boundedness
conditions. Their difference gives the 1D equation

(M =Ty (@) =ehm(@), 1,=—idldg,

we have assumed the system with the same probability den-

sity (a ,m,)2 in statezp for any setofl’,m’. Two bound-

nl! ’

edness conditions of E¢32) are the coefficient functions of

the unbounded funcnopym)(r) equating to zero at its two
singular pointg =0,. Using Eqs(30), from the difference
of the two conditions we have the equation

f:Rg?>{[E2—|(| +1)]r 2
+2[EQ—E+H'(r,0,0) 1 xhrdr=0. (34)

Applying the angular momentum operator to E84) gives
the two-dimensional2D) equations

q)nlm f ®I0)®nlm(0v‘/’)(sm0)_ld0,

Anlo)=— | Oehn(0.0)5m0d0. (39

One thing apparent from Eq&38) and(35) is that the func-

tions 3, (¢) andeh,(¢) of ¢ contain functionals of the
solution x3,, of Eq. (32). If H'(r,6,¢) includes periodic
functions of the variablep, Eq. (38) becomes a modified
Mathieu equation of these functionals. However, we are un-
able to solve this severe equation analytically. Numerical and
perturbed solutions of this equation should be important.
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We are interested in determining the perturbed solution ohas been derived from the previous perturbation theory. But
Eq. (38) for the smallH'. Settingys= xhm Ex=EX,. and  to obtain second-order energy correction is difficult from the
substituting the Rayleigh expansiofis into Eqs.(38) yields  previous theory. Our method will simplify this work and

make possibility to produce multiorder results. Taking the

[0% 99>+ m2]<13§(')(go)—s?,|(r'%(go), i=12,...m, electron-electron interaction as perturbation, we have the ex-
pansion formuld 1]
(D) - _ 0@ (0) %
nlm(‘P) Zf f R . , 1 1 ry | 1
H'(ry,rp)=—=— > = pi(cosbip) = —
i r12 r2 |1=0 r2 r2
2 EMDAA D —H7 ) M1 ¢ singdedr.
=1 for ri=<r,, 1=0,
(39
o , 1 14 ([r, 1
Here sﬁfr'%(go) are only some nonhomogeneous terms and H (fl,rz):r—:r— |Zo T p|(COS¢912)=r—
®AND (o) comes from Eqs(38) with xA() instead ofy?,,. oo '
The general solutions of Eq&39) are known in the form
for ry=r,, 1=0, (43
ﬁf'ni(cp)— ”“*”f enm(@)eMde where pi(cosbyy) =[4m/(21 +1)]S- _ Y% (0,

©1)Yim(02,0,)=1 for =0 with (r;,6;,¢;) being coordi-
ime [*520) () im nates of the electron Setting the radial wave function in the
- —e ‘pf enm(@)e”M¥de. (400 form W(rq,ro)=R(rq,r)=x(rq1,r2)/(riry), the Schre
dinger equation of the system is only the radial one
HereC,; andD; are arbitrary boundary constants. Given Egs.

2 2
(40), the perlod|C|ty condition ®A1(27) — drD(0)=0 x(T1,12) 7 ,
leads to the new formulas of energy corrections 2 T 2| B+ X(rl r2)=2H"(ry,ra)x(ry,r)
1
o (44)
fo ehD(@)sinme)de=0, i=1,2,...5. (41

with Z being the number of nuclear charges. As in E§®)

Combining Eqs(39) with Eq. (32) yields the first-order per- the corresponding integral equation s

turbed function .
x(rl,rz)=x‘°)(r1,r2)+x(°)(ra)f xO(r)Q’ xdr,
m . o , A
D= —2f0 smadaJO ROOOIEMD—H'(r,0,¢)]

rll~
—xr,) L xO(r)Q’ xdr,,

XE al’m’ nl’m'r dl’ (42)
2
wherea}, ., are given by Eqs(33). Inserting Eq.(42) into Q'(ry,rp)=- 2 T, +2[H'(ry,r,)—E+EQ]
Egs. (40) and (41) can produce evident forms of the first- B A
order corrections of the wave function and energy. Only the
first-order energy corrections agree with the previous results. for a,8=12, a#p. (45)

In order to obtain any order corrections, we sometimes could

combine these results with the expansion in Hilbert spacélere A and B are arbitrary constant&(?)=—172 is the
under the boundedness conditions. In some cases, the pground-state energy of an unperturbed electron and the func-
turbed potentiaH’ does not contain one or two of the vari- tions

ables ¢, 6,¢) such that the problems can be simplified into

one or two-dimensional ones. The following simple ex- y©(r;,r,)=xOr)xO(r,), xO(r,)=22%% e %',
amples could be helpful for understanding these complex
results. 5

KO =3O [ ) 7ar, @)

V. SECOND-ORDER ENERGY CORRECTION

OF THE HELIUMLIKE IONS for a=1,2 denote the solutions of E¢44) at H'=0. Be-

For simplicity we only consider the heliumlike ions under causeyx(®)(r,) is an unbounded function with the singular
ground state with the main quantum numimerk=1 and points r ,=0.°, the boundedness conditions of Ed45)
angular ond = 0. First-order corrected energy of the systemwhich are similar to Eq(34) leads to
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> 2z , ©
— o2y, TARLR) —ESEY)

[
0 B B

X x(rq,r)dr,=0.

(47)
Setting

;(r;;)=f:x(o)(ra)x(rl.rz)dra- (48)

Equation(47) can be written as

9 2z
— + —+2EQ | x(
s

3"3 x(rg)=e(rp),

e(rg)= ZJ XO(r JIH'(r1,15)
—E+EQ+EQx(ry.ry)dr, . (49)

Its equivalent integral equation reads
=20 [0
X(rg)=x"(rp) c X (rp)e(rpg)drg

—x‘o’(rﬂ)f:}w)(rﬁ)s(rﬁ)drﬁ. (50)

Applying the Rayleigh-Schidinger expansiongl) to Eq.
(50) gives the solutions

S - g )
X(')(r,g):)((o)(r/;) J;} X(O)(rﬁ)a(l)(rﬁ)drﬁ

—x‘o’(rg)f:}(‘”(rﬁ)s(”(rﬁ)drﬁ (51)

fori=1,2,...
functions

ja,8=1,2 and a# B with the perturbed

e(rp)= ZJ xO(r ){H (r,rx " H(ry,rp)

i
_jgl E(J')X(ij)(rl,rz)}dra. (52)

The boundedness conditions of E§1) give the energy for-
mulas

E(i)zzj J xO(ry,ro)
0Jo

i—1
—]Zl E“’x“‘“(rl,u)}dndrz

H’(rl,rz))((iil)(rlyrz)

(53

fori=1,2,... . By substituting Eqs43) and(46) into Eq.
(53), we easily get the first-order energy correctigft
=527/8 that agrees with the previous resil{23—29.

PHYSICAL REVIEW A61 052105

Whenr ;<
take

<r, in Egs.(43), from Eqgs.(45) and(48) we can

xX(r1,12)=xOr)x(r2)=xO(r)x(ry),
xO(ry,r2)=xO(r)xW(ry). (54)

Combining Eqs(54) with Eq. (51) results in

(')(rlrz) X(O)(rl)[ (0)(r2)jc (0)(I’2)8()(I’2)dl’2

_X(O)(rz) f:}(o)(rz)«?(i)(rz)drz}

= X9 )X O(r) f “IOr,)] 2
Dj

M2
|
C

X

(0)(r2)s(i)(r2)dr2}dr2

for i=1,2,..., (55)

whereC; and D; are constantsz() is given by Eqs.(52),
(54), and(43) as

2_ L
()= X" Drp =22 EVXD(ry). (56
2 j=1

Let us consider the simplest casel. Combining Eqs(55)
and (56) with Egs.(54) and (46) yields

1
8(1)(f1,r2)=2[a—E(l)}x(o)(fl,fz)

1 57
=823r1r2[__ — e, (57)
r., 8
xB(ry,rp)=xM(ri=<ry)
Z3
= ?rlrzefz(rlJrrz)
x| 5 I +— 3 +D (58)
r nr s
2= 2 572, 1

where D; is a normalization constant associated wih.
Another integration constant has been taken as zero such that
the first-order wave function converges at the infinite bound-
ary. Supposing that the two electrons cannot simultaneously
reach zero point, we hawe#0 in Eq. (58).

Similarly, in the case ;=r, of Egs. (43), we have the
first-order wave function
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Z3
X(l)(rl/rz)—7r1r e Z(ntra)

3
X 5r1—zlnr1+—+D1 ,

Zrq

for r;#0. (59

In the first-order approximation, the normalization conditionsBe"

means that
fo jo X(O)(rl,fz))((l)(l’1.r2)df1dr2
:f drz[f (0)(r1 fz)X(l)(rl rp)dry
0 0

"‘j xO(ry,1r) xM(ry=r,)dry [=0. (60)
r2

Applying Egs.(46), (58), and(59) to Eq.(60), the long cal-
culation produces the constant
D;=—(9.0448+3In2)/Z. (61)

The substitution of Eqg43) and(60) into Eq. (53) gives the
second-order energy correction

E@= fo fo X(O)(rllrz)[H'(rl.l’z)_E(l)]

X xB(rq,rp)drdr,

=j drz{f xO(r 1, 1) xO(ri=<r,)r,*dr,
0 0

+f XO L XD =) tdr|. (62
2

Inserting Eqs(46), (58), (59), and(61) into Eq.(62) numeri-
cally arrives at the corrected energy value

5
E®®=0.6612+ —In Z+—2ZD;=

64 —0.04543.

(63

Up to second-order we have the total energy

E=EY+EQ+EM+E®=-72+57/8—0.04543.
(64)

PHYSICAL REVIEW A61 052105

TABLE Il. Energies of the heliumlike ions in the ground state
[1,26] (atomic unity. E. represents the experimental valués;
represents—Z2+527/8; E,, represents— Z2+527/8—0.4543; and
E, represents results of the variation method.

lons z  -E —Ep —Ep, ~E,
He 2 29037 27500 27954  2.8476
Li* 3 73087 71250 @ 7.1704  7.2226

4 136557  13.5000  13.5454  13.5975
B 'Y 5 220232 21.8750  21.9204  21.9725
cH 6 324098 322500  32.2954  32.3474
No* 7 447887  44.6250  44.6704  44.8707
0%+ 8  59.1696  59.0000  59.0454  59.0972

VI. FIRST-ORDER STARK EFFECT
IN THE HYDROGEN ATOM

Consider a hydrogen atom interacting with an electric
field that leads to the Stark effect. In this case, the perturbed
potential reads

H'=ar cosd, for |a|<1, (65)
which is independent of the variabfe Therefore, we can set
the wave functions in the separated forms

(T, )P0 (),
(66)

lp;lm(ri61@)=rilxhlm(r101¢)=ri

ONm(6,0)=ON (OO (o),

enm(0,¢)=enm( P (@). (67)

Inserting Eqs(66) and (67) into Egs.(37) and(35) yields
Ol 0)=012 [ 00k (0)5in a0
—fr??f O Qe (6)sin6d6

= f R0 xhim(r, 6)r ~1dr, (68)

sglm(9)=2f:[E—E§f’>—H’(r,9)]R<n?>(r)xg|m(r,e)rdr.
(69

_Using the Rayleigh-Schrdinger expansions

The result is in good agreement with the previous experi-
mental data, which is shown in Table II. In this table, we also
exhibit the corresponding result of the variation metfbf
Although the perturbation result up to second order is not as
good as that of the variation method, thik-order energy
corrections fori>2 i in Egs. (53) can further improve the
result.

xh.mu,e):igo Xh(r,6)
(70)

_EN 0 (i
E_Enlm_Esw )+i21 Enl(ll’r)l!

to Egs.(68) and(69), we arrive at
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. ~ 0 _ 1 1
@Qf;g(a):@)f,?)(e)L_@fm(a)s*("(a)suneda ¢g|<,§1>(r,a):—§¢<%(r 6) = 5 WAIlr . 6)
0 _ )
~0f6) fD_fﬁ?( 0)nin(0)sinodo (2‘? (1,0)+ 5 w&%’1<r,e>. (78)
(0) — 40) O ) = R(O) (0)
— [ ROy D -1 where 5 (r,0) = oim(r, 0,¢) P’ () = R5(r) O (6).
jo Rar (1) Xnim(T, )1~ dr Fori=1 Eqgs.(71), (72), and(74) read

= f RW(r) ghfa(r, o)dr, (72) OrXL(0)=6((0) J 0D (g)sinad g

N
o=z |

—H'(r,0) X1, 0)

§|: MDD (¢ g) —.(O)(ﬁ)f 09 D g)sinad e
EfimXnim (1,

= f RO xhm(r, 0)r ~dr
ROMyrdr. (72 0

= f RO yAM(r,6)dr, (79
From the two equations we can derive the corrected wave
functions. On the other hand, given E@87), the bounded-
ness condition$38) become 8)5%1)( a)zzfo [E>r;l(r11) ar cosd] ml(r?]) r 0)R§1?)(r)r2dr,
(80)
f 0{9(0)eh,(6)sinado=0. (73
f 0{9(6) smedaf [EMY— ar cosd]
Combining Eqs(70) with Eq. (73) results in
Xy O(r, )RY(r)r2dr=0. (81)
Enin= _f (e (0)sinodo=0 The substitutions of Eq$75)—(78) into Eq.(81) produce the
first-order corrected energies
iR e XY — £ -~ EXY- Y- L
which implies the formulas of energy corrections. =—E2M)= _pE3D=p4D=3,,
. 210 210 210
Let us take the degenerate cdsel andn=2, where
Egs. (66), (32), and (33) give the orthonormalized initial E’Z‘ﬁ) Eggl)l_o AN=1234 82
states
which agree with the previous results]. To construct the
g p
1(0) ) () first-order solutionyp/'(r, ), we could expand it in terms
Yaim (1,6)= 5 ¥20d 1, 0) l’/jzm(r’a) of R under the boundedness conditions, that is
P9 (ro)+ = 1p<°>(r 9, (75 5ot
Vo ROEDS 2 bX P (02RO (r). (83
n=11=

Applying Egs.(83), (82), and(80) to Egs.(79), we obtain the

1
2(0) _ = (0 _ =0
Poim (1, 6) 2‘/’ oo T ) 'p 1d1.9) coefficient functions

A(l) A1)
YL a(r,0) &%(r 0), (76 niml 0)= O 17 0)

(G)J 0 (0)ehl) (6)sinede

YA 0)=— > «//“’%)(r 0)+5 ¢<2%<r 0)
. @,‘E”(e)f B (6)eh) (6)sineds.
+5 l/le (=598 0), (77 -
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Substituting Eqs(36), (80), and(75)—(78) into Egs.(84) and  the boundedness conditions we have constructed the conver-
(83), one can get an obvious form of the first-order correc-gent Rayleigh series of the wave function and energy. Com-
tion of wave function. Becaus@)f?r)n(a) has the singular Parison between the new and old formulas of energy correc-
points 6= 0,7, Eq. (84) implies that if the boundedness con- tions shqws tha’g only the first.—order—corrected energy given
ditions by them is certainly same. This means that some high-order
results are mathematically unbounded, which leads to the
. (0 A1) ] B divergence of the Rayleigh series in the previous perturba-
lim JC O m(O)eniin(0)sinodo=0 (85 tion theory. The result implies that, given the appropriate
f=0mo perturbations, atoms may automatically tend to stability by

are satisfied, the corrected wave functions and energies aff@nding their energy. On the other hand, we also can con-
certainly bounded. This can be realized through selections ({fo:ltgle stat(ta.s l;)ft_atomts llzi/ﬂs]ettl;ng %ndd adjustmgd_stpme CTOh”'
the constanC,; and energy correctioEfﬁf,m, say selecting roflablé perturbations 1o hit tne boundedness conditions. the
B 1) bev Eq(81). K it the first ord example_s of hydrog_en atoms W|(I1+1)_D space-time a_nd

C,=0 andE,,, to obey Eq.(81). Knowing the first order  3p gpatial perturbations reveal that this method is valid for
result, the above method can give the second-order one. Aiffie degenerate and near degenerate cases. The second-order
ith-order result is proportional ta' for «<1 that leads to & ¢orrections of energies for an electron in the Wigner spheri-
converdent Rayleigh series. The detailed calculations will ba| “pox” and some heliumlike ions are calculated and the

made in further work. first-order Stark effect of hydrogen atom is investigated.
Good agreement is found between the analytical results and
VIl. CONCLUSIONS AND DISCUSSIONS experimental ones. The results supply a quantum perturba-

In conclusion, we have proved an integral equation that istlon theory without divergences.

completely equivalent to the Schiinger one. The bounded-
ness conditions of the solution are given as a complex equa-
tion of functionals of the wave function. The Rayleigh-  Partial support of this work by the National Natural Sci-
Schralinger perturbation method and the iterations from theence Foundation of China under Grant Nos. 19734060 and
integral equation lead to the corrected wave functions, whicli9775023 and the Science Foundation of the Educational
may contain some nonintegrable terms. Their boundednesSommittee of Hunan Province of China is gratefully ac-
conditions are just the formulas of energy corrections. Undeknowledged.
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