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Alternative quantum perturbation theory without divergences
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A different integral form of the Schro¨dinger equation and some boundedness conditions of the wave func-
tions are proved, which exhibit the origin of some divergences in quantum mechanics. The iterations from the
integral equation and the boundedness conditions lead to a method for avoiding the divergence difficulties. The
result is extended to the time-dependent and the multidimensional cases. Examples of an electron in the Wigner
spherical ‘‘box’’ with a 1/r perturbed potential, some heliumlike ions in the ground state, and the Stark effect
of the hydrogen atom show that this different perturbation method can give rational multiorder corrections of
the wave function and energy.

PACS number~s!: 03.65.Ge, 03.65.Bz, 32.90.1a
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I. INTRODUCTION

In quantum mechanics the states of a microscopic sys
are described by the wave functions and the latter are g
erned by the Schro¨dinger equation. Therefore, solving th
Schrödinger equation is the most important task of this su
ject. However, this equation is not exactly soluble for t
most physically interesting systems, except a few syste
such as the hydrogen atom, harmonic oscillator, and r
rotator@1–3#. For applicable purposes the quantum pertur
tion theories were established and developed@4–7#. In many
cases the system of interest differs from an exactly solu
system by only a small disturbance, enabling an approxi
tion to be made by the Rayleigh-Schro¨dinger expansions

c5ck5(
i 50

`

ck
( i ) ,

E5Ek5(
i 50

`

Ek
( i ) for uck

( i )u!uck
( i 21)u, ~1!

uEk
( i )u!uEk

( i 21)u,

wherec and E are the wave function and energy with th
quantum numberk. The expansions change the perturb
Schrödinger equation

1

2
cxx2@V~x!2E#c5H8~x!c ~2!

with potentialV(x) and perturbed potentialH8(x) into a set
of nonhomogeneous ones,

1

2
ck,xx

( i ) 2@V~x!2Ek
(0)#ck

( i )5«k
( i ) , for i 50,1,2, . . . ,̀ ,
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~3!

with Ek
(0) being the energy eigenvalues associated with

eigenfunctionsck
(0) . Equations~3! are some nonhomoge

neous equations with the nonhomogeneous terms«k
( i ) for i

51,2, . . . ,̀ . The corresponding homogeneous equation
just the zeroth-order unperturbed Schro¨dinger equation for
any i. Here the atomic unit has been adopted such tha\
5m5e51. Unfortunately, Eqs.~3! still are not exactly
soluble for many interesting systems. Suppose that the
ergy eigenfunctionsck

(0) of the unperturbed equation form
complete orthonormal set in Hilbert space. The previous p
turbation theories had to expand the wave functionck

( i ) in
terms ofck

(0) for i ,k51,2, . . . . But therecent@8# and previ-
ous @9–12# works on quantum theory have shown that t
Rayleigh series~1! diverges for most practically disturbe
potentials in Hilbert space. This may lead to an infin
square integral of the corrected wave function. The div
gence difficulties have puzzled many physicists for 60 ye
@8–13#. Although some large order perturbation theories
improving the results were presented@14–17#, the genuine
cause of the previous divergences is still not found in th
works.

Recently, we gave a method for exactly solving the no
homogeneous Schro¨dinger equations~3! and used the exac
solutions to obtain the convergent Rayleigh series@18# and
scattering amplitudes@19#. In this paper we will prove an
integral equation equivalent to the Schro¨dinger one and some
boundedness conditions of the wave function. Using
equation and conditions, we find that the divergences in
previous perturbation theory originate from expanding
corrected wave functions in Hilbert space. Avoiding the H
bert space or using it under the boundedness conditions
making iterations from the integral equation can produce
convergent Rayleigh series. We will also extend the resul
©2000 The American Physical Society05-1
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the time-dependent and the multidimensional systems
show that the method can be applied to degenerate and
degenerate cases. For examples we calculate the sec
order energy corrections of an electron in the Wigner sph
cal ‘‘box’’ with a 1/r perturbed potential and some helium
like ions in the ground state and discuss the Stark effec
the hydrogen atom. The results show that our perturba
method can give rational multiorder perturbation results.

II. QUANTUM PERTURBATION OF THE
ONE-DIMENSIONAL SYSTEMS

We have known that the functionck
(0) is a solution of the

unperturbed Schro¨dinger equation associated with energy
genvalueEk

(0) . Given this solution, we construct another s

lution of the equation byc̃k
(0)5ck

(0)*(ck
(0))22dx. Making

use of the two linearly independent solutions, we can ea
prove that the integral equation

c5ck
(0)12c̃k

(0)E
A

x

ck
(0)~H82E1Ek

(0)!cdx

22ck
(0)E

B

x

c̃k
(0)~H82E1Ek

(0)!cdx ~4!

is completely equivalent to the Schro¨dinger one~2!. HereA
and B are arbitrary constants determined by the normali
tion and boundary conditions. From Eq.~4! we perform the
calculations

cx5ck,x
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cxx5ck,xx
(0) 12c̃k,xx

(0) E
A

x

ck
(0)~H82E1Ek

(0)!cdx22ck,xx
(0)

3E
B

x

c̃k
(0)~H82E1Ek

(0)!cdx12~ c̃k,x
(0)ck

(0)

2ck,x
(0)c̃k

(0)!~H82E1Ek
(0)!c

52@V~x!2Ek
(0)#c12~H82E1Ek

(0)!c

52@V~x!1H8~x!2E#c.

This is just Eq.~2!, as our assertion. As in Eq.~4!, the gen-
eral solution of the second-order ordinary differential equ
tion ~2! also contains two arbitrary constants. So the integ
equation~4! is completely equivalent to the Schro¨dinger one
~2!.

Assume that the initial state is a bound state such thatck
(0)

and ck,x
(0) vanish at the boundary pointsx→6`. Then c̃k

(0)

tends to infinity at the boundaries and does not represent
physical state. Inserting such an unbounded function into
~4! shows that its solution is bounded if and only if th
conditions

P6~A!5 lim
x→6`

E
A

x

ck
(0)~H82E1Ek

(0)!cdx50 ~5!

are satisfied. Given Eq.~5!, we can apply the l’Hospital rule
to Eq. ~4! producing the limit
lim
x→6`

c5 lim
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(0)!S ck

(0)c

@~c̃k
(0)!21#x

2
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(0)c
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(0)!21#x

D G
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@~H82E1Ek
(0)!c# lim

x→6`
F ~ck

(0)!2c̃k
(0)
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(0)

2
~ c̃k

(0)!2ck
(0)
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(0) G
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(0)!c# lim
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Fck

(0)c̃k
(0)
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(0) ~ck
(0)c̃k,x
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(0)!G
52 lim

x→6`

@~H82E1Ek
(0)!c# lim

x→6`
Fck

(0)c̃k
(0)
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(0)c̃k,x

(0)G
52 lim

x→6`

@~H82E1Ek
(0)!c# lim

x→6`
F ck

(0)c̃k,x
(0)1c̃k

(0)ck,x
(0)

ck,xx
(0) c̃k,x

(0)1ck,x
(0)c̃k,xx

(0) G
5 lim

x→6`
FH82E1Ek

(0)

V~x!2Ek
(0) G lim

x→6`

c5L lim
x→6`

c,
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where

L5 lim
x→6`

F ~H82E1Ek
(0)!

V~x!2Ek
(0) GÞ1.

This equation cannot be satisfied unless limx→6`c50. Thus
we have proved the sufficiency of Eq.~5!. In the calculation
for limit only the second term in Eq.~4! depends on the
conditions~5!. Without Eq.~5!, this term will tend to infinity
asx→6`. This is the proof for the necessity of the cond
tions.

In order to solve the integral equation~4! and evidence
the boundedness conditions~5!, we apply the Rayleigh-
Schrödinger expansions~1! to Eq. ~4! and equate the sum o
i th-order terms for both sides, arriving at thei th-order cor-
rected wave functions as

ck
( i )52c̃k

(0)FAk
( i )1E

0

x

ck
(0)«k

( i )dxG
22ck

(0)FBk
( i )1E

0

x

c̃k
(0)«k

( i )dxG , ~6!

for i 51,2, . . . ,̀ , whereAk
( i ) and Bk

( i ) are constants assoc
ated with the expansions of the constantsA andB. Combin-
ing Eq. ~5! with Eqs.~1! yields the boundedness condition

P6
( i )~Ak

( i )!5 lim
x→6`

FAk
( i )1E

0

x

ck
(0)«k

( i )dxG50, i 51,2, . . . ,̀

~7!

of the solutions~6!. By applying the l’Hospital rule to Eq.~6!
we can readily prove their boundedness under the cond
~7!. For sufficiently small potentialH8(x) and bounded cor-
rections of the wave function, the Rayleigh series~1! will be
convergent. Applying the second of Eqs.~3! to ~7!, from
P1

( i )2P2
( i )50 we get

Ek
( i )5E

2`

`

ck
(0)FH8~x!ck

( i 21)2(
j 51

i 21

Ek
( j )ck

( i 2 j )Gdx,

i 51,2, . . . ,̀ . ~8!

These are just the formulas of the corrected energies.
corrected solution~6! is formally a general solution of the
perturbed equations~3!, which differ from the common so
lutions of the equations. In previous perturbation theory,
solutions of Eqs.~3! are expanded as

ck
( i )5 (

n51

`

akn
( i )cn

(0) for akn
( i )5const, i 51,2, . . . ,̀

~9!

in Hilbert space. When Eqs.~3! are not exactly soluble, an
series of Eq.~9! cannot be truncated as finite terms. Ho
ever, it is impossible to count in infinite terms in any prac
cal calculation. Letck8

( i ) be the finiteN terms of a series in
Eq. ~9! for the calculation. It is certainly different fromck

( i )
05210
n
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with infinite terms so that it may not obey the boundedn
condition~7!. Thus the unbounded wave functionsck8

( i ) and
infinite energy correctionsEk

( i ) for i 51,2, . . . ,̀ are pro-
duced in the practical calculations. This may lead to the
vergence of the Rayleigh series~1! in previous perturbation
theory. Our results, the formal solution~6! and boundednes
condition ~7!, have avoided the infinity and divergence. A
interesting thing is that the first-order energy correction
Eq. ~8! with i 51 agrees with the previous result. Partic
larly, our perturbation method is valid for the degenerate a
near degenerate cases, where the previous theory fa
Therefore our method can be applied to a wider area of
scientific investigations.

As a simple example we consider the motion of a sin
electron in the Wigner spherical ‘‘box’’ with an infinite ra
diusR and a perturbed potentialH8521/r . The unperturbed
Schrödinger equation has the spherically symmetric solut
@9#

Cn
(0)5sin~anr !/~Cr !, n51,2, . . . ~10!

for the energy eigenvaluesEn
(0)5an

2/2 and constantC. The
orthonormalization conditions require that

anR5np, C252pR, En
(0)5an

2/2→0 as R→`.
~11!

SettingCn
( i )5cn

( i )(r )/r for i 50,1,2, . . . , thencn
( i ) obey the

nonhomogeneous equations~3! with the formally general so-
lution ~6! andx→r , where

cn
(0)5sin~anr !/C,

c̃n
(0)5cn

(0)E ~cn
(0)!22dx52C cos~anr !/an . ~12!

Substituting Eqs.~12! into Eq. ~6! arrives at thei th-order
corrected wave functions

Cn
( i )5

cn
( i )~r !

r
5

2

anr Fsin~anr !S Bn
( i )1E

0

r

cos~anr !«n
( i )dr D

2cos~anr !S An
( i )1E

0

r

sin~anr !«n
( i )dr D G

~13!

with «n
( i ) given by Eqs.~3! for i 51,2, . . . . Theboundary

conditions

lim
r→0

Cn
( i )5finite value, lim

anr→anR5np

Cn
( i )50

imply that

E
0

R

sin~anr !«n
( i )dr/C5E

0

R

cn
(0)«n

( i )dr50,

An
( i )50 for anR5np, ~14!
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TABLE I. The possible energies of an electron in the21/r potential~atomic units!.

n 1 2 3 4 5 6 7 8 9 10
2Bn

(1) 1.09704 0.99391 0.94556 0.91737 0.89765 0.88377 0.87321 0.86489 0.85813 0.

2En
c 0.50000 0.12500 0.05556 0.03125 0.02000 0.01389 0.01020 0.00781 0.00617 0.

2En
(2) 0.41051 0.17998 0.10544 0.07071 0.05142 0.03940 0.03135 0.02566 0.02147 0.

DEn
(2) 0.08949 0.05498 0.04988 0.03946 0.03142 0.02552 0.02115 0.01785 0.01530 0.
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which agrees with Eqs.~7! and~8!. Obviously, the first-order
energy vanishes for the infiniteR. Applying An

(1)50, En
(1)

50, Eqs.~10!, ~13!, and~3! with i 51 to the normalization
condition yields

05 lim
anR→np

E
0

R

Cn
(0)Cn

(1)4pr 2dr

5
8p

anC2E0

np

sinrFcosrE
0

r

sin2r8
dr8

r8

2sinrS Bn
(1)1E

0

r

cosr8sinr8
dr8

r8
D Gdr ~15!

in the first approximation forn51,2, . . . ,where the trans-
formationr5anr has been used. These conditions give
constantsBn

(1) as Table I. Inserting Eqs.~10!, ~11!, ~13!, and
~3! with i 52 into Eqs.~14! leads to the second-order corre
tions

En
(2)5 lim

anR→np
E

0

R

Cn
(0)H8~r !Cn

(1)4pr 2dr

5
4

npE0

np

sinrFsinrS Bn
(1)1E

0

r

cosr8sinr8
dr8

r8
D

2cosrE
0

r

sin2r8
dr8

r8
G dr

r
~16!

of energy. GivenBn
(1) by Eq. ~15!, from Eq.~16! the second

corrected energies are evaluated numerically in Table I.
correct energy values of the system should beEn

c5
21/(2n2), which are also shown in Table I. Setting diffe
ences between the correct energy and second energy co
tion asDEn

(2)5uEn
c2En

(2)u for any n, Table I showsDEn
(2)

being less thanEn
(2) such that the result can be improved

the third approximation.
We know that the previous perturbation method used

pansion~9! in Hilbert space and gave a meaningless wa
function and inaccurate energy value for this instance@9#.
Our method has greatly improved the previous result. O
result reveals that the Rayleigh-Schro¨dinger perturbation ex-
pansions~1! are correct, but the expansion~9! in Hilbert
space may bring divergences. To overcome the divergen
we have to avoid the expansion~9! and employ the formally
general solution~6! or use Eq.~9! under the boundednes
condition~7!. The Hilbert space is the mathematical found
tion of quantum mechanics, which has been queried by
05210
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validity by the above results. Further exploration to th
problem will be quite interesting.

III. QUANTUM TRANSITIONS IN OUR THEORY

Applying the above-mentioned method to the tim
dependent Schro¨dinger equation

1

2
cxx2V~x!c5H8~x,t !c2 i ]c/]t, H850 for t<t0 ,

~17!

the corresponding integral form is directly given as

c5ck
(0)~x!exp~2 iEk

(0)t !12c̃k8
(0)

~x!E
A

x

ck8
(0)

~x!

3@H8~x,t !1Ek8
(0)

2 i ]/]t#cdx22ck8
(0)

~x!

3E
B

x

c̃k8
(0)

~x!@H8~x,t !1Ek8
(0)

2 i ]/]t#cdx, ~18!

whereck
(0)(x) andck8

(0)(x), respectively, represent the initia
and final states associated withH850, andA andB are two
arbitrary constants. Inserting Eq.~18! into Eq. ~17! can
readily prove the result. As in Eq.~5!, the boundedness con
ditions of Eq.~18! become the differential and integral equ
tions

G6~A,t !5 lim
x→6`

E
A

x

ck8
(0)

~x!@H8~x,t !1Ek8
(0)

2 i ]/]t#cdx50.

~19!

When the perturbed potentialH8 is small, transition ampli-
tude of the system can be easily obtained as follows.

~a! For the caseuEk
(0)2Ek8

(0)u@uH8u, we make the Ray-
leigh expansion

c5(
i 50

ck
( i )~x,t !exp~2 iEk

(0)t !

for uck
( i )u!uck

( i 21)u, ck
(0)~x,t !5ck

(0)~x! ~20!

and substitute Eq.~20! into Eq. ~19!, obtaining the bounded
ness conditions

G6
( i )~Ai ,t !5 lim

x→6`
E

Ai

x

ck8
(0)

~x!@H8~x,t !ck
( i 21)

1~Ek8
(0)

2Ek
(0)2 i ]/]t !ck

( i )#dx50 ~21!
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with Ai andBi being constants corresponding to expansio
of the constantsA and B for i 51,2, . . . ,̀ . From G1

( i )

2G2
( i )50 we have thei th-order equations

i ]c̄k8k
( i )

~ t !/]t2Hk8k
8( i )

~ t !2~Ek8
(0)

2Ek
(0)!c̄k8k

( i )
~ t !50,

i 51,2, . . . ,̀ ,

c̄k8k
( i )

5E
2`

`

ck8
(0)

~x!ck
( i )~x,t !dx,

Hk8k
8( i )

5E
2`

`

ck8
(0)

~x!H8~x,t !ck
( i 21)~x,t !dx. ~22!

Integrating Eqs.~22!, one easily yields the functions

c̄k8k
( i )

52 iexp@2 i ~Ek8
(0)

2Ek
(0)!t#

3E
t0

t

Hk8k
8( i )

~ t !exp@ i ~Ek8
(0)

2Ek
(0)!t#dt, ~23!

If we introduce the Hilbert space as in the ordinary quant
mechanics, the functionc̄k8k

( i ) (t) in Eqs. ~22! is a projection

of the solutionck
( i )(x,t) to the basis vectorck8

(0)(x) of the
Hilbert space, which is just thei th-order transition amplitude
from statek to k8 @1–3#. The corresponding transition prob
ability is its norm and the total probability is the sum of th
norms. In the first-order approximation, the transition pro
ability reads

Pk8k
(1)

5uc̄k8k
(1) u25U E

0

t

Hk8k
8(1)

~ t !exp@ i ~Ek8
(0)

2Ek
(0)!t#dtU2

,

~24!

which is in complete agreement with the previous result. T
new multiorder results, of course, differ from the previo
ones. Our results are certainly convergent, since they c
from the boundedness conditions~19! and~21!. And the pre-
vious multiorder results may contain infinity such that t
corresponding Rayleigh series diverges.

~b! WhenuEk
(0)2Ek8

(0)u is in the order ofuH8(x,t)u, insert-
ing Eq.~20! into Eqs.~19! gives the boundedness conditio

G6
( i )~Ai ,t !5 lim

x→6`
E

Ai

x

ck8
(0)

~x!$@H8~x,t !1Ek8
(0)

2Ek
(0)#ck

( i 21)

2 i ]ck
( i )/]t%dx50 ~25!

for i 51,2, . . . ,̀ . The equationG1
( i )2G2

( i )50 becomes the
i th-order ones

i ]c̄k8k
( i )

~x,t !/]t2Hk8k
8( i )

~ t !2~Ek8
(0)

2Ek
(0)!c̄k8k

( i 21)
~ t !50,

i 51,2, . . . ,̀ . ~26!

Noticing that Eqs.~22! imply c̄k8k
(0)

50, the solutions of Eq.
~26! are obviously
05210
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c̄k8k
(1)

52 i E
t0

t

Hk8k
8(1)

~ t !dt52 i E
t0

t E
2`

`

ck8
(0)H8~x,t !ck

(0)dxdt,

c̄k8k
( i )

52 i E
t0

t

@Hk8k
8( i )

1~Ek8
(0)

2Ek
(0)!c̄k8k

( i 21)
#dt

for i 52,3, . . . . ~27!

The caseuEk
(0)2Ek8

(0)u'uH8u!1 means near degenerate
the initial and final states. An interesting example of the c
is the one-dimensional~1D! hydrogen atom with large quan
tum numbersn5k andn115k8 and weak microwave field
H8(x,t)5ax cos(vt). This is a typical instance of the quan
tum chaos @20,21#. The previous quantum perturbatio
method is invalid for such problems. The above analysis
supplied a useful method for studying the quantum cha
Making use of the above method in this instance, from E
~27! we find thatc̄k8k

( i ) consists of the terms proportional t

@a j (DEk8k
(0) ) i 2 j /v i # for DEk8k

(0)
5uEk

(0)2Ek8
(0)u and j

51,2, . . . ,i . The total transition probability from statek to
k8 therefore reads

Pk8k5(
i 51

`

uc̄k8k
( i ) u25(

i 51

` F (
j 51

i

bi~ t !a j~DEk8k
(0)

! i 2 j /v i G2

,

~28!

wherebi(t) are some periodic functions of timet. Equation
~28! denotes a polynomial ofa andv21 that possess man
different extreme points on the (a,v) plane. An important
property is that the probability at the resonance freque
v5DEk8k

(0) may get less than one atv,DEk8k
(0) for some

times. These qualitatively agree with the previous results
the multiphoton ionization and excitation of the hydrog
atom @22#. Further work along this line will give a fully
quantum-mechanical explanation to the chaotic behavio
the highly excited atoms and the multiphoton ionization a
excitation.

IV. THE CORRESPONDING MULTIDIMENSIONAL
RESULTS

Let us extend the above results to spatially thre
dimensional~3D! case with the perturbed potentialH8 being
a 3D function. For convenience sake, we take perturbed
drogen atom as an example to discuss the problem. Adop
the spherical coordinates (r ,u,w), the Schro¨dinger equation
of the system is

F1

2
,21

1

r
1EGc5H8~r ,u,w!c. ~29!

Settingc5r 21x(r ,u,w) and inserting it into Eq.~29! yields
the equation

]2x~r ,u,w!

]r 2
1F2S En

(0)1
1

r D2
l ~ l 11!

r 2 Gx~r ,u,w!

5Qx~r ,u,w!, ~30a!
5-5
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Q5@ L̂2~u,w!2 l ~ l 11!#r 2212@En
(0)2E1H8~r ,u,w!#,

~30b!

with the angular momentum operatorL̂. When the right-hand
side of Eq.~30a! is equal to zero, the equation agrees w
the unperturbed radial equation, which has the two fun
mental solutions, boundedxnl

(0) and unboundedx̃nl
(0) ,

xnl
(0)~r !5rRnl

(0)~r !,

x̃nl
(0)~r !5xnl

(0)E ~xnl
(0)!22dr5rR̃nl

(0)~r ! ~31!

for the energy eigenvalueEn
(0) . The similarity of Eqs.~30! to

Eq. ~2! leads the integral equation associated with Eqs.~30!
to the form of Eq.~4!, namely,

xnlm
l 5xnlm

l(0)1x̃nl
(0)~r !E

A

r

Rnl
(0)~r !Qxnlm

l rdr

2xnl
(0)~r !E

B

r

R̃nl
(0)~r !Qxnlm

l rdr ,

xnlm
l(0)5 (

l 850

n21

(
m852 l 8

l 8

al 8m8
l rcnl8m8

(0)
~r ,u,w!,

l 50,1, . . . ,~n21!, m50,61, . . . ,6 l , ~32!

where we have considered the degeneracy of the states
set the initial statexnlm

l(0) as a linear superposition o
cnl8m8

(0) (r ,u,w). For fixed principal quantum numbern, thel
describes different initial states andA and B are arbitrary
boundary constants. The expansion coefficients are thus
lected,

al 8m8
l

561/n, l51,2, . . . ,ln , ln5 (
l 850

n21

~2l 811!5n2

~33!

that the initial states are orthonormalized for all ofl. Here
we have assumed the system with the same probability
sity (al 8m8

l )2 in statecnl8m8
(0) for any set ofl 8,m8. Two bound-

edness conditions of Eq.~32! are the coefficient functions o
the unbounded functionx̃nl

(0)(r ) equating to zero at its two
singular pointsr 50,̀ . Using Eqs.~30!, from the difference
of the two conditions we have the equation

E
0

`

Rnl
(0)$@ L̂22 l ~ l 11!#r 22

12@En
(0)2E1H8~r ,u,w!#%xnlm

l rdr 50. ~34!

Applying the angular momentum operator to Eq.~34! gives
the two-dimensional~2D! equations
05210
-

nd

se-

n-

F2
1

sinu

]

]u S sinu
]

]u D1
m2

sin2u
2 l ~ l 11!GQnlm

l

5S m22 l̂ z
2

sin2u
D Qnlm

l 1«nlm
l ,

Qnlm
l 5E

0

`

Rnl
(0)~r !xnlm

l r 21dr,

«nlm
l 52E

0

`

@E2En
(0)2H8~r ,u,w!#Rnl

(0)xnlm
l rdr . ~35!

Equating the left-hand side of first in Eqs.~35! to zero results
in an associated Legendre equation with the two linea
independent solutions

Q lm
(0)5~21!mA~2l 11!~ l 2m!!

2~ l 1m!!
Pl

m~cosu!,

Q̃ lm
(0)52Q lm

(0)E du

~Q lm
(0)!2sinu

. ~36!

Here Pl
m(cosu) is the associated Legendre polynomial a

Q̃ lm
(0) has the singular pointsu50,p. The integral equation

corresponding to the first of Eq.~35! therefore is constructed
as

Qnlm
l ~u,w!5Q̃ lm

(0)E
C

u

Q lm
(0)@~m22 l̂ z

2!Qnlm
l ~u,w!/sinu

1«nlm
l ~u,w!sinu#du2Q lm

(0)

3E
D

u

Q̃ lm
(0)@~m22 l̂ z

2!Qnlm
l ~u,w!/sinu

1«nlm
l ~u,w!sinu#du ~37!

with C,D being arbitrary constants. At the singular points
the unbounded functionQ̃ lm

(0) , there exist two boundednes
conditions. Their difference gives the 1D equation

~m22 l̂ z
2!Fnlm

l ~w!5 «̄nlm
l ~w!, l̂ z52 i ]/]w,

Fnlm
l 5E

0

p

Q lm
(0)Qnlm

l ~u,w!~sinu!21du,

«̄nlm
l ~w!52E

0

p

Q lm
(0)«nlm

l ~u,w!sinudu. ~38!

One thing apparent from Eqs.~38! and~35! is that the func-
tions Fnlm

l (w) and «̄nlm
l (w) of w contain functionals of the

solution xnlm
l of Eq. ~32!. If H8(r ,u,w) includes periodic

functions of the variablew, Eq. ~38! becomes a modified
Mathieu equation of these functionals. However, we are
able to solve this severe equation analytically. Numerical a
perturbed solutions of this equation should be important.
5-6
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We are interested in determining the perturbed solution
Eq. ~38! for the smallH8. Settingck5xnlm

l ,Ek5Enlm
l , and

substituting the Rayleigh expansions~1! into Eqs.~38! yields

@]2/]w21m2#Fnlm
l( i )~w!5 «̄nlm

l( i )~w!, i 51,2, . . . ,̀ ,

«̄nlm
l( i )~w!522E

0

`E
0

p

Rnl
(0)Q lm

(0)

3F (
j 51

i

Enlm
l( j )xnlm

l( i 2 j )2H8xnlm
l( i 21)G r sinududr.

~39!

Here «̄nlm
l( i )(w) are only some nonhomogeneous terms a

Fnlm
l( i )(w) comes from Eqs.~38! with xnlm

l( i ) instead ofxnlm
l .

The general solutions of Eqs.~39! are known in the form

Fnlm
l( i )~w!5

i

2m
e2 imwE

Ci

w

«̄nlm
l( i )~w!eimwdw

2
i

2m
eimwE

Di

w

«̄nlm
l( i )~w!e2 imwdw. ~40!

HereCi andDi are arbitrary boundary constants. Given E
~40!, the periodicity condition Fnlm

l( i )(2p)2Fnlm
l( i )(0)50

leads to the new formulas of energy corrections

E
0

2p

«̄nlm
l( i )~w!sin~mw!dw50, i 51,2, . . . ,̀ . ~41!

Combining Eqs.~39! with Eq. ~32! yields the first-order per-
turbed function

«̄nlm
l(1)522E

0

p

sinuduE
0

`

Rnl
(0)Q lm

(0)@Enlm
l(1)2H8~r ,u,w!#

3 (
l 8m8

al 8m8
l cnl8m8

(0) r 2dr, ~42!

whereal 8m8
l are given by Eqs.~33!. Inserting Eq.~42! into

Eqs. ~40! and ~41! can produce evident forms of the firs
order corrections of the wave function and energy. Only
first-order energy corrections agree with the previous resu
In order to obtain any order corrections, we sometimes co
combine these results with the expansion in Hilbert sp
under the boundedness conditions. In some cases, the
turbed potentialH8 does not contain one or two of the var
ables (r ,u,w) such that the problems can be simplified in
one or two-dimensional ones. The following simple e
amples could be helpful for understanding these comp
results.

V. SECOND-ORDER ENERGY CORRECTION
OF THE HELIUMLIKE IONS

For simplicity we only consider the heliumlike ions und
ground state with the main quantum numbern5k51 and
angular onel 50. First-order corrected energy of the syste
05210
f

d

.

e
s.
ld
e
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has been derived from the previous perturbation theory.
to obtain second-order energy correction is difficult from t
previous theory. Our method will simplify this work an
make possibility to produce multiorder results. Taking t
electron-electron interaction as perturbation, we have the
pansion formula@1#

H8~r 1 ,r 2!5
1

r 12
5

1

r 2
(
l 50

` S r 1

r 2
D l

pl~cosu12!5
1

r 2

for r 1<r 2 , l 50,

H8~r 1 ,r 2!5
1

r 12
5

1

r 1
(
l 50

` S r 2

r 1
D l

pl~cosu12!5
1

r 1

for r 1>r 2 , l 50, ~43!

where pl(cosu12)5@4p/(2l 11)#(m52 l
l Ylm* (u1 ,

w1)Ylm(u2 ,w2)51 for l 50 with (r i ,u i ,w i) being coordi-
nates of the electroni. Setting the radial wave function in th
form c(r 1 ,r 2)5R(r 1 ,r 2)5x(r 1 ,r 2)/(r 1r 2), the Schro¨-
dinger equation of the system is only the radial one

(
i 51

2
]2x~r 1 ,r 2!

]r i
2

12S E1
Z

r i
Dx~r 1 ,r 2!52H8~r 1 ,r 2!x~r 1 ,r 2!

~44!

with Z being the number of nuclear charges. As in Eqs.~32!
the corresponding integral equation is

x~r 1 ,r 2!5x (0)~r 1 ,r 2!1x̃ (0)~r a!E
A

r a
x (0)~r a!Q8xdra

2x (0)~r a!E
B

r a
x̃ (0)~r a!Q8xdra ,

Q8~r 1 ,r 2!52
]2

]r b
2

2
2Z

r b
12@H8~r 1 ,r 2!2E1Ea

(0)#

for a,b51,2, aÞb. ~45!

Here A and B are arbitrary constants,Ea
(0)52 1

2 Z2 is the
ground-state energy of an unperturbed electron and the f
tions

x (0)~r 1 ,r 2!5x (0)~r 1!x (0)~r 2!, x (0)~r a!52Z3/2r ae2Zra,

x̃ (0)~r a!5x (0)~r a!E @x (0)~r a!#22dra ~46!

for a51,2 denote the solutions of Eq.~44! at H850. Be-
causex̃ (0)(r a) is an unbounded function with the singula
points r a50,̀ , the boundedness conditions of Eqs.~45!
which are similar to Eq.~34! leads to
5-7
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E
0

`

x (0)~r a!F2
]2

]r b
2

2
2Z

r b
12~H8~r 1 ,r 2!2E1Ea

(0)!G
3x~r 1 ,r 2!dra50. ~47!

Setting

x̄~r b!5E
0

`

x (0)~r a!x~r 1 ,r 2!dra . ~48!

Equation~47! can be written as

F ]2

]r b
2

1
2Z

r b
12Eb

(0)G x̄~r b!5«~r b!,

«~r b!52E
0

`

x (0)~r a!@H8~r 1 ,r 2!

2E1Ea
(0)1Eb

(0)#x~r 1 ,r 2!dra . ~49!

Its equivalent integral equation reads

x̄~r b!5x̃ (0)~r b!E
C

r b
x (0)~r b!«~r b!drb

2x (0)~r b!E
D

r b
x̃ (0)~r b!«~r b!drb . ~50!

Applying the Rayleigh-Schro¨dinger expansions~1! to Eq.
~50! gives the solutions

x̄ ( i )~r b!5x̃ (0)~r b!E
Ci

r b
x (0)~r b!« ( i )~r b!drb

2x (0)~r b!E
Di

r b
x̃ (0)~r b!« ( i )~r b!drb ~51!

for i 51,2, . . . ,̀ ;a,b51,2 and aÞb with the perturbed
functions

« ( i )~r b!52E
0

`

x (0)~r a!FH8~r 1 ,r 2!x ( i 21)~r 1 ,r 2!

2(
j 51

i

E( j )x ( i 2 j )~r 1 ,r 2!Gdra . ~52!

The boundedness conditions of Eq.~51! give the energy for-
mulas

E( i )52E
0

`E
0

`

x (0)~r 1 ,r 2!FH8~r 1 ,r 2!x ( i 21)~r 1 ,r 2!

2(
j 51

i 21

E( j )x ( i 2 j )~r 1 ,r 2!Gdr1dr2 ~53!

for i 51,2, . . . ,̀ . By substituting Eqs.~43! and~46! into Eq.
~53!, we easily get the first-order energy correctionE(1)

55Z/8 that agrees with the previous result@1,23–25#.
05210
Whenr 1<r 2 in Eqs.~43!, from Eqs.~45! and~48! we can
take

x~r 1 ,r 2!5x (0)~r 1!x~r 2!5x (0)~r 1!x̄~r 2!,

x ( i )~r 1 ,r 2!5x (0)~r 1!x̄ ( i )~r 2!. ~54!

Combining Eqs.~54! with Eq. ~51! results in

x ( i )~r 1r 2!5x (0)~r 1!F x̃ (0)~r 2!E
Ci

r 2
x (0)~r 2!« ( i )~r 2!dr2

2x (0)~r 2!E
Di

r 2
x̃ (0)~r 2!« ( i )~r 2!dr2G

5x (0)~r 1!x (0)~r 2!E
Di

r 2
@x (0)~r 2!#22

3F E
Ci

r 2
x (0)~r 2!« ( i )~r 2!dr2Gdr2

for i 51,2, . . . , ~55!

whereCi and Di are constants,« ( i ) is given by Eqs.~52!,
~54!, and~43! as

« ( i )~r 2!5
2

r 2
x̄ ( i 21)~r 2!22(

j 51

i

E( j )x̄ ( i 2 j )~r 2!. ~56!

Let us consider the simplest casei 51. Combining Eqs.~55!
and ~56! with Eqs.~54! and ~46! yields

« (1)~r 1 ,r 2!52F 1

r 2
2E(1)Gx (0)~r 1 ,r 2!

58Z3r 1r 2F 1

r 2
2

5Z

8 Ge2Z(r 11r 2), ~57!

x (1)~r 1 ,r 2!5x (1)~r 1<r 2!

5
Z3

2
r 1r 2e2Z(r 11r 2)

3F5r 22
3

Z
lnr 21

3

2Z2r 2

1D18G , ~58!

where D18 is a normalization constant associated withD1.
Another integration constant has been taken as zero such
the first-order wave function converges at the infinite bou
ary. Supposing that the two electrons cannot simultaneo
reach zero point, we haver 2Þ0 in Eq. ~58!.

Similarly, in the caser 1>r 2 of Eqs. ~43!, we have the
first-order wave function
5-8
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x (1)~r 1>r 2!5
Z3

2
r 1r 2e2Z(r 11r 2)

3F5r 12
3

Z
lnr 11

3

2Z2r 1

1D18G ,

for r 1Þ0. ~59!

In the first-order approximation, the normalization conditio
means that

E
0

`E
0

`

x (0)~r 1 ,r 2!x (1)~r 1 ,r 2!dr1dr2

5E
0

`

dr2F E
0

r 2
x (0)~r 1 ,r 2!x (1)~r 1<r 2!dr1

1E
r 2

`

x (0)~r 1 ,r 2!x (1)~r 1>r 2!dr1G50. ~60!

Applying Eqs.~46!, ~58!, and~59! to Eq. ~60!, the long cal-
culation produces the constant

D1852~9.044813 lnZ!/Z. ~61!

The substitution of Eqs.~43! and~60! into Eq.~53! gives the
second-order energy correction

E(2)5E
0

`E
0

`

x (0)~r 1 ,r 2!@H8~r 1 ,r 2!2E(1)#

3x (1)~r 1 ,r 2!dr1dr2

5E
0

`

dr2F E
0

r 2
x (0)~r 1 ,r 2!x (1)~r 1<r 2!r 2

21dr1

1E
r 2

`

x (0)~r 1 ,r 2!x (1)~r 1>r 2!r 1
21dr1G . ~62!

Inserting Eqs.~46!, ~58!, ~59!, and~61! into Eq.~62! numeri-
cally arrives at the corrected energy value

E(2)50.66121
15

64
ln Z1

5

64
ZD18520.045 43. ~63!

Up to second-order we have the total energy

E5E1
(0)1E2

(0)1E(1)1E(2)52Z215Z/820.045 43.
~64!

The result is in good agreement with the previous exp
mental data, which is shown in Table II. In this table, we a
exhibit the corresponding result of the variation method@1#.
Although the perturbation result up to second order is no
good as that of the variation method, theith-order energy
corrections fori.2 i in Eqs. ~53! can further improve the
result.
05210
s

i-
o

s

VI. FIRST-ORDER STARK EFFECT
IN THE HYDROGEN ATOM

Consider a hydrogen atom interacting with an elect
field that leads to the Stark effect. In this case, the pertur
potential reads

H85ar cosu, for uau!1, ~65!

which is independent of the variablew. Therefore, we can se
the wave functions in the separated forms

cnlm
l ~r ,u,w!5r 21xnlm

l ~r ,u,w!5r 21xnlm
l ~r ,u!Fm

(0)~w!,
~66!

Qnlm
l ~u,w!5Qnlm

l ~u!Fm
(0)~w!,

«nlm
l ~u,w!5«nlm

l ~u!Fm
(0)~w!. ~67!

Inserting Eqs.~66! and ~67! into Eqs.~37! and ~35! yields

Qnlm
l ~u!5Q̃ lm

(0)E
C

u

Q lm
(0)«nlm

l ~u!sinudu

2Q lm
(0)E

D

u

Q̃ lm
(0)«nlm

l ~u!sinudu

5E
0

`

Rnl
(0)~r !xnlm

l ~r ,u!r 21dr, ~68!

«nlm
l ~u!52E

0

`

@E2En
(0)2H8~r ,u!#Rnl

(0)~r !xnlm
l ~r ,u!rdr .

~69!

Using the Rayleigh-Schro¨dinger expansions

E5Enlm
l 5En

(0)1(
i 51

`

Enlm
l( i ) , xnlm

l ~r ,u!5(
i 50

`

xnlm
l( i )~r ,u!

~70!

to Eqs.~68! and ~69!, we arrive at

TABLE II. Energies of the heliumlike ions in the ground sta
@1,26# ~atomic units!. Ee represents the experimental values;Ep1

represents2Z215Z/8; Ep2 represents2Z215Z/820.4543; and
Ev represents results of the variation method.

Ions Z 2Ee 2Ep1 2Ep2 2Ev

He 2 2.9037 2.7500 2.7954 2.8476
Li1 3 7.3087 7.1250 7.1704 7.2226
Be11 4 13.6557 13.5000 13.5454 13.5975
B111 5 22.0232 21.8750 21.9204 21.9725
C41 6 32.4098 32.2500 32.2954 32.3474
N51 7 44.7887 44.6250 44.6704 44.8707
O61 8 59.1696 59.0000 59.0454 59.0972
5-9
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Qnlm
l( i )~u!5Q̃ lm

(0)~u!E
Ci

u

Q lm
(0)~u!«nlm

l( i )~u!sinudu

2Q lm
(0)~u!E

Di

u

Q̃ lm
(0)~u!«nlm

l( i )~u!sinudu

5E
0

`

Rnl
(0)~r !xnlm

l( i )~r ,u!r 21dr

5E
0

`

Rnl
(0)~r !cnlm

l( i )~r ,u!dr, ~71!

«nlm
l( i )~u!52E

0

`F (
j 51

i

Enlm
l( j )xnlm

l( i 2 j )~r ,u!

2H8~r ,u!xnlm
l( i 21)~r ,u!GRnl

(0)~r !rdr . ~72!

From the two equations we can derive the corrected w
functions. On the other hand, given Eqs.~67!, the bounded-
ness conditions~38! become

«̄nlm
l 52E

0

p

Q lm
(0)~u!«nlm

l ~u!sinudu50. ~73!

Combining Eqs.~70! with Eq. ~73! results in

«̄nlm
l( i )52E

0

p

Q lm
(0)~u!«nlm

l( i )~u!sinudu50

for i 51,2, . . . ,̀ , ~74!

which implies the formulas of energy corrections.
Let us take the degenerate casei 51 and n52, where

Eqs. ~66!, ~32!, and ~33! give the orthonormalized initia
states

c2lm
1(0)~r ,u!5

1

2
c200

(0)~r ,u!1
1

2
c210

(0)~r ,u!

1
1

2
c2121

(0) ~r ,u!1
1

2
c211

(0)~r ,u!, ~75!

c2lm
2(0)~r ,u!5

1

2
c200

(0)~r ,u!2
1

2
c210

(0)~r ,u!

1
1

2
c2121

(0) ~r ,u!2
1

2
c211

(0)~r ,u!, ~76!

c2lm
3(0)~r ,u!52

1

2
c200

(0)~r ,u!1
1

2
c210

(0)~r ,u!

1
1

2
c2121

(0) ~r ,u!2
1

2
c211

(0)~r ,u!, ~77!
05210
e

c2lm
4(0)~r ,u!52

1

2
c200

(0)~r ,u!2
1

2
c210

(0)~r ,u!

1
1

2
c2121

(0) ~r ,u!1
1

2
c211

(0)~r ,u!, ~78!

where c2lm
(0) (r ,u)5c2lm

(0) (r ,u,w)/Fm
(0)(w)5R2l

(0)(r )Q lm
(0)(u).

For i 51 Eqs.~71!, ~72!, and~74! read

Qnlm
l(1)~u!5Q̃ lm

(0)~u!E
C1

u

Q lm
(0)«nlm

l(1)~u!sinudu

2Q lm
(0)~u!E

D1

u

Q̃ lm
(0)«nlm

l(1)~u!sinudu

5E
0

`

Rnl
(0)~r !xnlm

l(1)~r ,u!r 21dr

5E
0

`

Rnl
(0)~r !cnlm

l(1)~r ,u!dr, ~79!

«nlm
l(1)~u!52E

0

`

@Enlm
l(1)2ar cosu#cnlm

l(0)~r ,u!Rnl
(0)~r !r 2dr,

~80!

E
0

p

Q lm
(0)~u!sinuduE

0

`

@Enlm
l(1)2ar cosu#

3cnlm
l(0)~r ,u!Rnl

(0)~r !r 2dr50. ~81!

The substitutions of Eqs.~75!–~78! into Eq.~81! produce the
first-order corrected energies

E200
1(1)52E200

2(1)52E200
3(1)5E200

4(1)5E210
1(1)

52E210
2(1)52E210

3(1)5E210
4(1)53a,

E211
l(1)5E2121

l(1) 50, l51,2,3,4, ~82!

which agree with the previous results@1#. To construct the
first-order solutionxnlm

l(1)(r ,u), we could expand it in terms
of Rnl

(0) under the boundedness conditions, that is

cnlm
l(1)~r ,u!5 (

n851

`

(
l 850

n821

bn8 l 8m
l(1)

~u!r 2Rn8 l 8
(0)

~r !. ~83!

Applying Eqs.~83!, ~82!, and~80! to Eqs.~79!, we obtain the
coefficient functions

bn8 l 8m
l(1)

~u!5Qn8 l 8m
l(1)

~u!

5Q̃ l 8m
(0)

~u!E
C1

u

Q l 8m
(0)

~u!«n8 l 8m
l(1)

~u!sinudu

2Q l 8m
(0)

~u!E
D1

u

Q̃ l 8m
(0)

~u!«n8 l 8m
l(1)

~u!sinudu.

~84!
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Substituting Eqs.~36!, ~80!, and~75!–~78! into Eqs.~84! and
~83!, one can get an obvious form of the first-order corre
tion of wave function. BecauseQ̃ l 8m

(0) (u) has the singular
pointsu50,p, Eq. ~84! implies that if the boundedness co
ditions

lim
u→0,p

E
C1

u

Q l 8m
(0)

~u!«n8 l 8m
l(1)

~u!sinudu50 ~85!

are satisfied, the corrected wave functions and energies
certainly bounded. This can be realized through selection
the constantC1 and energy correctionEn8 l 8m

(1) , say selecting
C150 andEn8 l 8m

(1) to obey Eq.~81!. Knowing the first order
result, the above method can give the second-order one.
i th-order result is proportional toa i for a!1 that leads to a
converdent Rayleigh series. The detailed calculations wil
made in further work.

VII. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have proved an integral equation tha
completely equivalent to the Schro¨dinger one. The bounded
ness conditions of the solution are given as a complex eq
tion of functionals of the wave function. The Rayleig
Schrödinger perturbation method and the iterations from
integral equation lead to the corrected wave functions, wh
may contain some nonintegrable terms. Their boundedn
conditions are just the formulas of energy corrections. Un
e

n

05210
-

re
of

ny

e

is

a-

e
h
ss
r

the boundedness conditions we have constructed the con
gent Rayleigh series of the wave function and energy. Co
parison between the new and old formulas of energy cor
tions shows that only the first-order-corrected energy giv
by them is certainly same. This means that some high-o
results are mathematically unbounded, which leads to
divergence of the Rayleigh series in the previous pertur
tion theory. The result implies that, given the appropria
perturbations, atoms may automatically tend to stability
changing their energy. On the other hand, we also can c
trol the states of atoms by setting and adjusting some c
trollable perturbations to fit the boundedness conditions. T
examples of hydrogen atoms with~111!D space-time and
3D spatial perturbations reveal that this method is valid
the degenerate and near degenerate cases. The second
corrections of energies for an electron in the Wigner sph
cal ‘‘box’’ and some heliumlike ions are calculated and t
first-order Stark effect of hydrogen atom is investigate
Good agreement is found between the analytical results
experimental ones. The results supply a quantum pertu
tion theory without divergences.
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