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Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms
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We propose a scheme for preparing an Einstein-Podolsky-Rosen state in position and momentum of a pair
of distantly separated trapped atoms. The scheme utilizes the entangled light fields output from a nondegen-
erate optical parametric amplifier. Quantum-state exchange between these fields and the motional states of the
trapped atoms is accomplished via interactions in cavity QED.

PACS number~s!: 03.65.Bz, 03.67.Hk, 42.50.2p
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I. INTRODUCTION

In 1935, Einstein, Podolsky, and Rosen~EPR! @1# pro-
posed a now famous gedanken experiment involving a
tem of two particles spatially separated but correlated in
sition and momentum as described by a Wigner function
the form

W~q1 ,p1 ;q2 ,p2!;d~q11q2!d~p12p2!, ~1!

whereq1 andq2 are the continuous position variables of t
particles with corresponding conjugate momentap1 and p2
@2#. That is, the positions and momenta of the two partic
are perfectly anticorrelated (q152q2) and correlated (p1
5p2), respectively. With the assumption of local realis
but with theapparentability to assign definite values to ca
nonically conjugate variables of one particle from measu
ments of the other particle in this system, a conflict with t
Heisenberg uncertainty principle seemingly follows, whi
led EPR to conclude that quantum mechanics is incompl
Bohm @3# adapted this argument to a system of discrete~di-
chotomic! variables, to which Bell applied his classic anal
sis, deriving the so-called Bell inequalities@4–6# which
quantify explicitly the conflict between local realism an
quantum mechanics. Note that, although measurement
(qi ,pi) do not lead to a violation of a Bell inequality for th
original EPR state of Eq.~1! ~Ref. @5#, p. 196!, the entangle-
ment of this state guarantees that an appropriate set of
ables exists for which a contradiction with local realis
would be manifest@7–9#.

Experimental demonstrations of the conflict betwe
quantum mechanics and local realism have concentrate
most exclusively on systems of discrete variables, such
electron spin or photon polarization@6,10#. Only one experi-
ment, by Ouet al. @11,12#, following suggestions by Reid
and Drummond@13#, has in fact realized the EPR paradox
originally envisioned by EPR; that is, for canonically conj
gate variables with a continuous spectrum. The E
‘‘source’’ in this experiment was a nondegenerate opti
parametric amplifier~NOPA!, and the relevant variable
were the quadrature amplitudes of the entangled electrom
netic fields generated in the parametric process. These
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plitudes are analogous to the position and momentum o
particle and can be measured very efficiently via homod
detection@14#.

In the present work, we describe a scheme that goes
yond an analogy and actually realizes an EPR state in p
tion and momentum for a pair of massive particles at disti
physical locations. Our proposal for achieving stored e
tanglement for continuous quantum variables is based up
set of interactions in cavity quantum electrodynamics~QED!
that allows for the exchange of quantum states between
motion of trapped atoms and propagating light fields@15#.
By exploiting these interactions and the light source
@11,12#, we show that it should be possible to preparedeter-
ministicallya state of the form~1! for a pair of trapped atoms
located at macroscopically separated sites. Beyond con
tional ~q,p! projections as in homodyne or heterodyne me
surements, the setting of atom traps and cavity QED a
enables detection strategies for the explicit demonstratio
the nonlocal character of the resulting EPR state. Moreo
the techniques that we describe could be important resou
for the realization of quantum networks, a particular exam
being the creation of EPR states to enable the teleportatio
the center-of-mass wave function of a massive particle@16#.

II. TRAPPED ATOM COUPLED TO AN OPTICAL
CAVITY MODE

We begin with the basic setup that facilitates the motio
light coupling fundamental to our scheme@15#; this setup
was originally considered by Zeng and Lin@17#. We con-
sider a single two-level atom~or ion! confined in a harmonic
trap located inside an optical cavity. The atomic transition
frequencyva is coupled to a single mode of the cavity fie
of frequencyvc and is also assumed to be driven by
external~classical! laser field of frequencyvL . The physical
setup and excitation scheme are depicted in Fig. 1. The
ity is aligned along thex axis, while the laser field is inciden
from a direction in they-z plane~i.e., perpendicular to thex
axis!.

The Hamiltonian describing the internal and extern
atomic degrees of freedom plus the atom-cavity and ato
laser couplings takes the form~in a frame rotating at the lase
frequency for the internal-atomic and cavity operators!
©2000 The American Physical Society04-1
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Ĥ05 (
j 5x,y,z

\n j~ b̂ j
†b̂ j11/2!1\dâ†â1\Dŝ1ŝ2

1\@EL~ ŷ,ẑ,t !ŝ11EL* ~ ŷ,ẑ,t !ŝ2#

1\g0 sin~kx̂!~ â†ŝ21ŝ1â!. ~2!

Here, $nx ,ny ,nz% are the harmonic oscillation frequencie
along the principal axes of the trap,b̂ j andâ are annihilation
operators for the quantized atomic motion and cavity fie
respectively,ŝ25ug&^eu is the atomic lowering operator
andd5vc2vL andD5va2vL . The quantityEL( ŷ,ẑ,t) is
the ~possibly time-dependent! amplitude of the laser field
The single-photon atom-cavity dipole coupling strength
given byg0 , while the sine function describes the standi
wave structure of the cavity field~we assume that the cente
of the trap is located at anodeof the cavity field!, with k
52p/l the wave number of the field andx̂

5@\/(2mnx)#1/2(b̂x1b̂x
†).

In @15# a number of assumptions and approximations
made in order to simplify the model. In particular,~1! The
detunings of the light fields from the atomic transition fr
quency are assumed to be very large~i.e., D@uELu,g0 ,d,n j !,
enabling atomic spontaneous emission to be neglected
the internal atomic dynamics to be adiabatically eliminat
~2! Any forms of motional decoherence associated with
trap itself are ignored.~3! The size of the harmonic trap i
assumed to be small compared to the optical wavelen
~Lamb-Dicke regime!, enabling the approximations sin(kx̂)
.hx(b̂x1b̂x

†), wherehx(!1) is the Lamb-Dicke paramete
and EL( ŷ,ẑ,t).EL(t)e2 ifL. ~4! The cavity and laser fields
are tuned so thatd5vc2vL5nx . ~5! The trap frequencynx
and cavity field decay rateka are assumed to satisfynx
@ka@u(g0hx /D)EL(t)u. The first inequality allows a
rotating-wave approximation to be made with respect to
trap oscillation frequency, while the second inequality e
ables an adiabatic elimination of the cavity field mode.

Given these conditions one can show that the motio
mode dynamics in thex direction can be described by th
simple quantum Langevin equation

FIG. 1. Schematic of proposed experimental setup and ex
tion scheme for coupling between the motion of a trapped atom
a quantized cavity mode of the electromagnetic field, and thenc
a freely propagating external field. Note that all input and outpu
the atom-cavity system is assumed to be through just one mi
the other mirror is assumed to be perfect.
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ḃ̃x.2G~ t !b̃x1A2G~ t !ãin~ t !, ~3!

where b̃x5einxtb̂x , G(t)5@g0hxEL(t)/D#2/ka , and ãin(t),
which satisfies the commutation relation@ ãin(t),ãin

† (t8)#
5d(t2t8), is the quantum noise operator describing the
put to the cavity field~in a frame rotating at the cavity fre
quency!. In this way, the statistics of the input light field ca
be ‘‘written onto’’ the state of the oscillator. In@15# it was
shown how this effect can be used to efficiently prepar
squeezed state of the motion of the trapped atom. Here
extend that work further to the generation of entanglem
between the motional states of trapped atoms at separ
sites. In particular, our protocol transfers entanglement fr
a pair of quantum-correlated light fields to a pair of trapp
atoms in a process of quantum state exchange, or qusex

III. LIGHT SOURCE: NONDEGENERATE
PARAMETRIC AMPLIFIER

Our source of quantum-correlated light fields is taken
be a NOPA operating below threshold@11,12,14#. The light
fields may be nondegenerate in polarization or in frequen
We denote the annihilation operators for the two intracav
field modes, of frequenciesv1 and v2 , by ĉ1 and ĉ2 , and
the Hamiltonian describing the coupling between the
modes takes the form~in a rotating frame!

H I5 i\e~ ĉ1ĉ22 ĉ1
†ĉ2

†!, ~4!

wheree is the coupling strength, proportional to the nonli
ear susceptibility of the intracavity medium and to t
strength of the coherent pump field~at frequencyv11v2!.

Assuming the cavity mode amplitudes to be damped
the same ratekc , equations of motion for the mode operato
~in the rotating frame! can be derived as

ċ̂1,252kcĉ1,22e ĉ2,1
† 1A2kcĉin

~1,2!~ t !, ~5!

where ĉin
(1,2)(t) are the vacuum input fields to the NOP

cavity modes~see, e.g.,@18,19#!. The output fields from the
NOPA then follow from the boundary conditions

ĉout
~1,2!~ t !1 ĉin

~1,2!~ t !5A2kcĉ1,2~ t !. ~6!

The ~linear! equations above are readily solved in a Fouri
transformed space defined by Z(v)
5(2p)21/2*dtZ(t)e2 ivt. Defining quadrature phase ampl
tudes~‘‘positions’’ and ‘‘momenta’’! for the output fields by

Xout
~1,2!~ t !5 ĉout

~1,2!~ t !1 ĉout
~1,2!†~ t !, ~7!

Yout
~1,2!~ t !52 i @ ĉout

~1,2!~ t !2 ĉout
~1,2!†~ t !#, ~8!

the sum of theX amplitudes is derived as@14#

Xout
~1!~v!1Xout

~2!~v!5
kc2e1 iv

kc1e2 iv
@Xin

~1!~v!1Xin
~2!~v!#

→0 as e→kc and v→0, ~9!
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while the difference of theY amplitudes is

Yout
~1!~v!2Yout

~2!~v!5
kc2e1 iv

kc1e2 iv
@Yin

~1!~v!2Yin
~2!~v!#

→0 as e→kc and v→0. ~10!

So the two output fields are highly correlated and, close
v50 and for e→kc , their quadrature amplitudes exhib
precisely the properties of the original EPR state, as dem
strated explicitly by the Wigner function for the state of t
fields @12,19#.

IV. LIGHT-TO-MOTION QUANTUM-STATE EXCHANGE

As depicted in Fig. 2, the two NOPA output fields a
assumed to be incident on separate cavities, each conta
a trapped atom in the configuration described earlier. N
that the output fields from the NOPA are resonant with
respective cavity mode frequencies. We assume thatG(t)
5G, a constant, and, for simplicity, thatG is the same for
both configurations. Denoting the motional mode operat

FIG. 2. Preparation of an EPR state of the motion of two se
rated trapped atoms. The output modes from a nondegenerate
metric amplifier ~NOPA! are incident on two separated trappe
atom–cavity configurations of the type depicted in Fig. 1. Fara
isolators ~F! facilitate a unidirectional coupling between the e
tangled light source and the atom-cavity systems. Note that in p
tice the outputs from the two NOPA modes might actually
through the same mirror, but could be separated due to diffe
polarizations or frequencies.
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for the two atoms along thex axis by b̃1x and b̃2x , respec-
tively, the two systems are thus described by@20,21#

ḃ̃ jx52Gb̃ jx1A2Gãin
~ j !~ t !52Gb̃ jx1A2G c̃out

~ j !~ t2t!

~ j 51,2!, ~11!

wheret is a time delay~assumed the same for both cavities!;
provided the coupling between the NOPA and the cavitie
unidirectional, this delay can essentially be ignored@20,21#.

If the bandwidths of the input light fields from the NOP
are sufficiently broad, in particular ifkc@G @i.e., c̃ out

(1,2)(t)
can be regarded asquantum white noiseoperators in Eq.
~11!#, then one can perform an average over the input fie
and derive a master equation~see, e.g.,@18,19#! for the den-
sity operatorr of the motional modes alone,

ṙ5G~N11!~2b̃1xrb̃1x
† 2b̃1x

† b̃1xr2rb̃1x
† b̃1x!

1GN~2b̃1x
† rb̃1x2b̃1xb̃1x

† r2rb̃1xb̃1x
† !

1G~N11!~2b̃2xrb̃2x
† 2b̃2x

† b̃2xr2rb̃2x
† b̃2x!

1GN~2b̃2x
† rb̃2x2b̃2xb̃2x

† r2rb̃2xb̃2x
† !

12GM ~ b̃1xrb̃2x1b̃2xrb̃1x2b̃1xb̃2xr2rb̃1xb̃2x!

12GM ~ b̃1x
† rb̃2x

† 1b̃2x
† rb̃1x

† 2b̃1x
† b̃2x

† r2rb̃1x
† b̃2x

† !,

~12!

with the parametersN and M given, in terms of the NOPA
parameters, by

N5
4e2kc

2

~kc
22e2!2 , M52kce

kc
21e2

~kc
22e2!2 . ~13!

This master equation has a steady-state solution

rss5uc12&^c12u, ~14!

i.e., a pure state, with

uc12&5S12~r !u0&1xu0&2x

5@cosh~r !#21 (
m50

`

@2tanh~r !#mum&1xum&2x ,

~15!

where um&1x,2x are Fock states of the motional modes a
S12(r ) is the two-mode squeezing operator@19#,

S12~r !5exp@r ~ b̃1xb̃2x2b̃1x
† b̃2x

† !#. ~16!

This operator transforms the mode annihilation operators
the atomic motion as

S12
† ~r !b̃1xS12~r !5cosh~r !b̃1x2sinh~r !b̃2x

† , ~17!

S12
† ~r !b̃2xS12~r !5cosh~r !b̃2x2sinh~r !b̃1x

† , ~18!
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where cosh(r)5AN11 and sinh(r)5AN. Defining position
and momentum operators as

Qj5b̃ jx1b̃ jx
† , Pj52 i ~ b̃ jx2b̃ jx

† !, ~19!

it follows that

S12
† ~r !~Q11Q2!S12~r !5e2r~Q11Q2!, ~20!

S12
† ~r !~P12P2!S12~r !5e2r~P12P2!, ~21!

and so, in the limite→kc ~i.e., r→`!, an EPR state in the
positions and momenta of the two trapped atoms is es
lished.

The nature of the correlations inherent in the joint st
~15! of the atomic motion is most clearly expressed throu
the Wigner function for this state@12,19#:

W~q1 ,p1 ;q2 ,p2!5
4

p2 exp$2@~q11q2!21~p12p2!2#e12r%

3exp$2@~q12q2!21~p11p2!2#e22r%

~22!

;Cd~q11q2!d~p12p2! as r→`,
~23!

with C a constant. This entangled state is achieved in ste
state over a timet@G21. The coupling to the external field
from the NOPA can then be turned off by settingEL1,2 to
zero. The result is a stored EPR state for the motion of
trapped atoms that would persist for a duration set by
time scale for motional decoherence.

V. DISCUSSION

Before considering some of the interesting possibilit
offered by this system, we return briefly to some of the ma
assumptions associated with the model. First, the finite ef
of atomic spontaneous emission events on the motional s
can be estimated as in@15#. This effect can be neglecte
provided the rate of these events is much smaller than
rate G at which the motional steady state is achieved. T
condition one derives by enforcing this inequality amounts
the condition of a ‘‘one-dimensional’’ atom in cavity QED
C15g0

2/(kag)@1, whereg is the linewidth ~full width at
half maximum! of the atomic transition@22#. Note that the
recent experiments of Refs.@23–25# have achievedC1
.70, 28, and 50, respectively. With regards to the trapp
potential, harmonic frequencies on the order of tens of M
have been achieved in ion traps, with corresponding Lam
Dicke parameters on the order of 0.1 and smaller@27#. Note,
however, that large values of the entanglement paramer
imply population of large-m number states and a broad
spread of the atomic wave packet. Given that the mean
citation number for the state~15! is N5sinh2(r), a more pre-
cise form of the Lamb-Dicke assumption would b
hxAN115hx cosh(r)!1.

With trap frequencies such as those quoted above,
conditionvx@ka should be satisfied for a cavity field deca
05210
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rate of a few MHz or less; such values ofka have been
approached in the experiments of Refs.@24#, @25#, and po-
tentially could be realized with improved cavity finesse as
Ref. @26#. Assuming that this is the case, likely magnitud
for the rateG would then be tens or hundreds of kHz. F
nally, time scales for motional decoherence and heating
recent ion trap experiments are of the order of millisecon
with further improvement likely@27#; given the various rates
discussed above, these effects would not be expected to h
per the preparation of the entangled state.

As for applications of this system, further investigation
the EPR paradox would obviously be possible, with a vari
of motional state measurements able to be implemented
high efficiency on the trapped atoms@28,29#, possibly also
via the cavity field@15#. In particular, violations of a Bell
inequality for the state~15! can be obtained with measure
ments that project onto a basis of even and odd phonon n
ber ~i.e., that measure the parity operator! @7–9#, or that sim-
ply distinguish between states with no phonons (um50&)
and one or more phonons (um.0&) @9#, for each of the
trapped atoms@30#. To the extent that a ‘‘macroscopic’
number of quanta may in principle be involved, such inve
tigation could also address new viewpoints on the comp
ibility of quantum mechanics with local realism@31#.

On a somewhat more applied side is the possibility
using the EPR state~15! for quantum dense coding@32#, or
for the teleportationof the quantum state of a system wi
continuous variables@33,34#, generalizing the original
discrete-variable teleportation protocol of Bennettet al. @35#.
This elegant adaptation of the EPR paradox has in fact b
realized with light fields, again using optical parametric a
plifiers and homodyne measurements of quadrature am
tudes@36#. The scheme outlined in this paper opens the d
to teleporting an atomic center-of-mass wave function@16#,
by providing the motional state entanglement required by
continuous-variable teleportation protocol.

Such a capability is also of considerable interest in
related context of quantum computation with trapped ato
and light @37,38#. Here, we specifically have in mind proto
cols that combine quantum information processing with b
discrete and continuous variables@39#. Any implementation
of a qubit~e.g., internal atomic states or photon polarizatio!
could be linked with an external degree of freedom~e.g.,
atomic center-of-mass or complex amplitude of the elec
magnetic field!, with the complete system viewed as a com
posite unit~qubit plus qunat@39#! for protocols such as quan
tum communication between distant nodes of a quan
network @15,40–43#.

Further to this theme, note also that we need not res
ourselves to a single trapped atom at each site. For exam
if there areK atoms inside each cavity, then focusing t
coupling lasers (EL1,2) sequentially on atoms 1, 2,...,K at
each site~and neglecting any direct interaction betwe
neighboring atoms at each site! would generate a set of pair
wise EPR-entangled atoms. Alternatively, and perhaps m
interestingly, one might consider the case in which theK
atoms at each site aresimultaneouslycoupled to the cavity.
4-4
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Assuming for simplicity that they have identical couplin
strengths, then the system would again be described by
~12!, but with the replacements b̃1,2x→B̃1,2x

[K21/2S j 51
K b̃1,2x

( j ) and G→KG. Such dynamics evidently
leads to a highly entangled stateof all 2K atoms, a situation
of potentially great utility and, indeed, of considerable ge
eral interest.
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