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Ground-state solutions in a dilute gas interacting via contact and magnetic dipole-dipole forces are investi-
gated. To the best of our knowledge, it is the first example of studies of Bose-Einstein condensation in a system
with realistic long-range interactions. We find that for the magnetic moment of, e.g., chromjug),(énd a
typical value of the scattering length, all solutions are stable and only differ in size from condensates without
long-range interactions. By lowering the value of the scattering length we find a region of unstable solutions.
In the neighborhood of this region, the ground-state wave functions show internal structures that we believe
have not been seen before in condensates. Finally, we find an analytic estimate for the characteristic length
appearing in these solutions.

PACS numbsgs): 03.75.Fi, 05.30.Jp

Since the advent of Bose-Einstein condensation in diluteCan a stable condensate be formed under the influence of a
gases of alkali metalgl] and hydrogeri2], it has become dipole-dipole interaction? What is its effect on anisotropic
apparent that the interactions between the condensed ator@louds? What do the ground-state wave functions look like?
govern most of the observed phenomena. In all the experii this Rapid Communication we address these questions and
ments so far the interaction can be described by a contachoose the magnetic dipole-dipole interaction in a dilute
potential that is characterized by the scalar quargibeing  cloud of chromium atoms as an example for numerical cal-
the swave scattering length. Static properties like the con<ulations. The results, however, apply for all static dipole-
densate’s ground-state density profile, its instability in thedipole interactions.
case of negative, and the mean-field shift in spectroscopic  In general, the Gross-Pitaevskii equation with a long-
measurements as well as dynamic properties like collectiveange interaction term and for a cylindrical harmonic trap has
excitations and propagation of sound have been investigatgfie following form:

[3]. Similarly, nonlinear atom optics experiments, e.g., four-

wave mixing[4], are only possible due to the large nonlin- PG 2N 1 Amhla
earity mediated by the atom-atom interactions. The i ——={— ——+ - mw3(x?+y?+ y?z?)+ N|w|?
=0 K situation in almost all experiments can be described Jt 2m 2

very well by the Gross-Pitaevskii equatiQhl.
Any reasonably strong dipole-dipole interaction would +Nf V(r—r")|w(r)2d3" (¥, (1)
largely enrich the variety of phenomena to be observed in
dilute gases due to their long-range and vectorial character.
However, for all of the condensed atomic species the magwhereV is the mean-field condensate wave functiais the
netic momenfu was roughly Jug (Bohr magnetop and the  s-wave scattering length is the number of atoms, amd is
respective magnetic dipole-dipole interaction was negligibleehe mass of the atom. The reference frequency of thedigap
compared to the contact potential. It has been proposed thatig& chosen in thexy plane and the anisotropy of the trap is
strong electric dipole-dipole interaction in alkalie metals bedefined by they factor. In our case, the long-range potential
induced by the application of strong dc electric fiel@% takes the form characteristic of magnetic dipole-dipole inter-
Recently, it has become possible to trap atoms with highegctions:
magnetic moments at high densities. Examples are europium
(=7 wug) [7], which has been trapped magnetically by a

buffer-gas loading technique, and chromium=6ug), V(F—iry= 10 pa(r) - o) =3y (r) - Upo(r')-u
which has been loaded into a magnetic trap by a buffer-gas 47 |F_ F/|3 '
techniqug[8] and by laser cooling9]. For these species the 2

scattering lengths are not known to date, but, assuming a

normal nonresonant behavior, the cross sections of the scalar

contact potential and the magnetic dipole-dipole interactiovhereu= (r—r")/[r—r’| andu, is the magnetic permeabil-

are of comparable size. ity of the vacuum. We will assume that all the magnetic

As the dipole-dipole interaction is attractive parallel to amoments are in the same direction,= ,uz) which will be

common polarization axis, the immediate question arisesteferred to as the polarization direction. Note that, depending
on a configuration of dipoles, magnetic potential can be re-
pulsive as well as attractive. This fact is a source of a variety

*Present address: Physics Department, 5th Institute, University adf phenomena that do not appear in condensates with contact
Stuttgart, D-70550 Stuttgart, Germany. interactions only. Another peculiar feature of this long-range
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(integra) term is that for a uniform density distribution it
vanishes if integrated within a sphere, which means that in 60 I
that case a dipole placed in the middle of the sphere would
“feel” no magnetic force.

Equation(1) is now an integro-differential equation. The
integral term can be simplified because a part of it can be
calculated analytically. First of all, one should notice that
this term has a form of a convolution:

-
o

n
o

halfwidth (units of d)

10 100 1000 10* 10° 10°
number of atoms

f V(r =)W (r")2d3 = V(r)*|¥(r)|% (3) 0

The transform of the potential reads
FIG. 1. Half-width of the chromium condensate vs number of

atoms in a cigar-shaped cylindrical trap wigh=0.1 anda=ay, -
, (4 Filled circles indicate an exact solution for a section alongkthris

as compared to the corresponding result in the standard Thomas-
. . ) . Fermi limit (empty circle$. Empty squares represent an exact solu-
whereb is a distance below which atoms overlée., the tjon along thez axis in comparison with the corresponding standard
radius of the atoms that is of the order of a f(fW BOI" nadii Thomas-Fermi limit(filled squares The inset presents analogous
and e is the angle between the Fourier variabdeand . A results in a disk-shaped trapy£10) and fora=ay,. An exact
value ofb is small in comparison with a length scale in the solution for a section along the axis (filled squaresis indistin-
system(oscillator uni}, and we will not consider large val- guishable from the standard Thomas-Fermi limit.
ues ofq; therefore, it is sufficient to use the limit

cogbqg) sin(bq)

S
F(V(r))=pou?(1-3 cosa) 597 (b9

over, the wave functions possess familiar shapes: Gaussian-

. . 1 like for a small number of atoms and paraboliclike for bigger
lim F(V(r))=— §M0M2(l— 3cosa). (5 condensates.
b—0 At first, we investigated two extreme cases in cylindrical

) ) traps. Following simple intuition about an interaction of two
In order to evaluate the Fourier transform of &8}, 7(|#°) dipoles, we designed these situations so that in the first one
is calculated numericalljfast-Fourier transforntFFT)] and  {here would be a majority of repulsive forces, whereas in the
multiplied by F(V(r)), which depends solely oa. other one an attractive component would be dominant.

In order to obtain the ground-state solution for the con- |n the first situation, the trap is flattened in a plane per-
densate one has to solve the Gross-Pitaevskii equation in thgndicular to the polarization axigy plane with the asym-
form of Eqg. (1). To do it we employ a variant of the split- metry factory=(w,/w,)=10 (referred to as disk-shaped
operator method called the imaginary-time propagatiorFor this and only this case, we lower the reference frequency
method, being a now common routine of solving the Grossto w,=27 15 Hz to makew,= 10w, experimentally acces-
Pitaevskii equation. For each time step one needs to computgple (the corresponding oscillator unit és==3.6 xm). In
four FFT’s: two for the long-range term calculation and two the inset of Fig. 1, the half-width of the ground state vs the
for the evolution. number of atoms is plotted for the disk-shaped trap. It is

Now we will list parameters used in the calculations. Thecompared to a Corresponding half-width for a Thomas-Fermi
reference trap frequency,=27 150 Hz, which is an ac- solution for a condensate with contact interactions dndy
cessible and typical value in present experiments. This Cofferred to as the standard Thomas-Fermi ljmitote that the
responds to a characteristic length unit in the systestil-  Thomas-Fermi approximation is good only for large number
lator uniy d=\(A/Mmc,wg)=1.14 um. The swave of atoms; thus foN<10000 it has not been used. In the
scattering length for chromium is unknown—instead, a valuelirection, the exact solution is indistinguishable from the
for sodium is assumed tentatively as-ay,=2.75 nm. standard Thomas-Fermi limit becausés a stiff direction

One should keep in mind that all the presented solutiongind so all the interparticle interaction effects are small with
are scalable. For the Gross-Pitaevskii equation, with as wellespect to the trapping forces. On the other hand, along the
as without long-range forces, the solutions stay the same—iaxis the condensate expands with respect to the standard
scaled coordinates—as long as the prodNgfw, is kept ~ Thomas-Fermi limit as should be the case for the repulsive
constant. direction. To conclude, in the disk-shaped trap the net effect

The ratio of the contact and long-range terms in general isf interactions is repulsive and the condensate expands.
given by (u?m/a), m being the atom’s mass, and solutions  The opposite extreme case is a trap stretched along the
stay identical if it is kept constant. For the chosen example opolarization axis £ axis) with y=0.1 (referred to as cigar-
chromium we will in the second part of this Rapid Commu- shapeg—see Fig. 1. For the soft directiqalong thez axis,
nication vary the scattering length to change that ratio. being also an attractive directigrin agreement with simple

The main conclusion is that, for this set of parametgrs intuition, one observes shrinking of the condensate. The dif-
particular, the scattering length vajuell the investigated ferences with respect to the standard Thomas-Fermi limit for
solutions are stable, even in very asymmetric traps. Morea condensate without long-range interactions diminish as the
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FIG. 2. Stability diagram for a spherical trap witlg
=2m 150 Hz. The number of atoms is plotted on the horizontal
axis and the scattering lengtaxpressed as a fraction of the corre-
sponding value for sodiujmon the vertical one. Solid line is the
instability threshold—below it no stable solutions could be ob-
tained. The dashed line is the boundary between standard-shaped
and structured solutions. In the shaded area, structured stable solu-
tions are present. Error bars indicate discreteness of our parameter- x [ d] 2.5 5
space probing.

FIG. 3. Squared modulus of the ground-state wave function in
the xz plane for a spherical trap witkhy=27 150 Hz, 80 000 at-
oms, and the scattering lengétfay,=0.115. The horizontal axes
Yire in oscillator unitsl.

number of atoms grows. This is the case because irzthe
direction the wave function is very flgroughly uniform
and so the integral component almost vanishes. Surprisingl
we observe shrinking of the condensate in th@epulsive
direction as well. We argue that it is caused by the attractlor(l)nd exampleFig. 4) is a wave function for 4000000 atoms
exerted by very many dipoles concentrated along the gpft ( i o . i

o ; oo anda/ay,=0.233(again, right above the instability thresh-
direction that takes over the repulsive contribution along the

x axis. In conclusion, we observe an overall shrinking of theOId)' We have also used the geometry of the trap fo stabilize

condensate in the cigar-shaped trap. solutions unstable in a spherically symmetric potentis

As we see, long-range magnetic interactions do not quali-
tatively change the ground-state solutions of the Gross-

Pitaevskii equation, but they mainly affect a size of the con- 0.003
densate. This indicates that for the used set of parameters, an

influence of contactrepulsive interactions is still dominant. ik
However, as we do not know the scattering length for chro- 0.0015

mium, and there are several methods proposed to manipulate
this parameter by application of various external figlelg).,
see[10,11)), we decreased the assumed value and by this
means enhanced the effect of long-raqgertially attractive
forces. As a result, we were able to find a region of unstable
solutions. An even more striking discovery was the observa-
tion of the structured shapes of the wave functions acquired
by the condensates near the instability threshold. By probing
the parameter space,(N) (scattering length, number of at-
oms we found the phase diagram depicting localizations of
stable, structuredstill stable, and unstable solutions shown

in Fig. 2. For simplicity we did calculations for a spherical
trap with a frequencyo=2m 150 Hz, but a few cases cal-
culated for asymmetric traps convinced us that the qualita- x[d] 5 0

tive stability behavior would not change. The polarization

direction is stillz. For illustration purposes, we present tWwo  F|G. 4. Squared modulus of the ground-state wave function in
examples of the structured solutions. The first ¢Fig. 3)  the xz plane for a spherical trap withy=2m 150 Hz, 4 000000
was obtained for 80000 atoms witl'ay,=0.115, which  atoms and the scattering lengihay,=0.233. The horizontal axes
situates this case very near the instability threshold. The se@re in oscillator units.
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increasing the asymmetry factg) as well as to destabilize For the two structured wave functions presented here, this
ones that were stable in a spherical ttp decreasing/). It ~ value corresponds to 2izand 1.8, respectively, which, for

is remarkable that the complexity of the ground-state wavesuch an approximate analysis, is in surprisingly good agree-
function arises solely from atom-atom interactions and doegent. We note in passing that the onset of unstable pertur-
not reflect the simplicity of an external potentid repre-  bations §c—) corresponds t@c=0.3ay,, which again
sents self-organization in the ground siate roughly approximates the calculated instability threshold

For all the structured solutions there exists a characteristitsee Fig. 2 ,

length defined by a distance between adjacent maxima in the Motivated by experiments under development, all our cal-
plane perpendicular to polarization, which is roughty. 3n culations used chromium parameters. They showed that

order to explain this feature, we performed a stability analy-3round-state solutions differ in a nontrivial way from the
sis for an infinite(no trap homogeneous case. In this case ausual solutions and found a region of instability with struc-

o . ) tured solutions in its neighborhood. Reaching the interesting
proper solution iV = (1/V)exp(~igt), V being the volume region near the instability boundary for chromium seems

andg=N(4mha/mc,). By imposing a small harmonic per- ,pematic with state-of-the-art techniques. However, in the
turbation of the form V=(1\V)[1+ u(t)cos@-r)lexp  case of europiurfi7] (larger mass and magnetic momethie
(—igt) we found that the unstable perturbations are those folnstability threshold for 1 000 000 atoms is situated at 92% of

which the sodium scattering length value and still grows for larger
AN 9 dmha numbers of atomge.g., 108% for 10 000000 atomsOur

92< Cr| Mot (1-3 cofa)— m G results may also find use in the blooming area of cold mol-

v | 3h mer |’ eculeg12], some of which possess large permanent electric-

i dipole momentd13]. For a typical electric-dipole moment
wherea is the angle between the wave vector and the polarg, e of 1 D, a prefactor of the long-range term is four orders
ization direction. This result implies, surprisingly, that all the magnitude greater than the corresponding term for a mag-
perturbations parallel to polarizationa(=0) are stable, peic dipole of 1ug. One can thus conclude that the behav-

whereas for the direction perpendicular to polarization ( o of 5 polar molecular BEC will be overruled by dipole
=m/2) there is a long-wave instability. To compare this re-¢5 caq.

sult with the observed characteristic length of ®e crudely ) _
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