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Bose-Einstein condensation with magnetic dipole-dipole forces
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Ground-state solutions in a dilute gas interacting via contact and magnetic dipole-dipole forces are investi-
gated. To the best of our knowledge, it is the first example of studies of Bose-Einstein condensation in a system
with realistic long-range interactions. We find that for the magnetic moment of, e.g., chromium (6mB), and a
typical value of the scattering length, all solutions are stable and only differ in size from condensates without
long-range interactions. By lowering the value of the scattering length we find a region of unstable solutions.
In the neighborhood of this region, the ground-state wave functions show internal structures that we believe
have not been seen before in condensates. Finally, we find an analytic estimate for the characteristic length
appearing in these solutions.
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Since the advent of Bose-Einstein condensation in di
gases of alkali metals@1# and hydrogen@2#, it has become
apparent that the interactions between the condensed a
govern most of the observed phenomena. In all the exp
ments so far the interaction can be described by a con
potential that is characterized by the scalar quantitya being
the s-wave scattering length. Static properties like the co
densate’s ground-state density profile, its instability in
case of negativea, and the mean-field shift in spectroscop
measurements as well as dynamic properties like collec
excitations and propagation of sound have been investig
@3#. Similarly, nonlinear atom optics experiments, e.g., fo
wave mixing@4#, are only possible due to the large nonli
earity mediated by the atom-atom interactions. TheT
50 K situation in almost all experiments can be describ
very well by the Gross-Pitaevskii equation@5#.

Any reasonably strong dipole-dipole interaction wou
largely enrich the variety of phenomena to be observed
dilute gases due to their long-range and vectorial charac
However, for all of the condensed atomic species the m
netic momentm was roughly 1mB ~Bohr magneton!, and the
respective magnetic dipole-dipole interaction was negligi
compared to the contact potential. It has been proposed t
strong electric dipole-dipole interaction in alkalie metals
induced by the application of strong dc electric fields@6#.

Recently, it has become possible to trap atoms with hig
magnetic moments at high densities. Examples are europ
(m57 mB) @7#, which has been trapped magnetically by
buffer-gas loading technique, and chromium (m56mB),
which has been loaded into a magnetic trap by a buffer-
technique@8# and by laser cooling@9#. For these species th
scattering lengths are not known to date, but, assumin
normal nonresonant behavior, the cross sections of the s
contact potential and the magnetic dipole-dipole interact
are of comparable size.

As the dipole-dipole interaction is attractive parallel to
common polarization axis, the immediate question aris

*Present address: Physics Department, 5th Institute, Universi
Stuttgart, D-70550 Stuttgart, Germany.
1050-2947/2000/61~5!/051601~4!/$15.00 61 0516
e

ms
ri-
ct

-
e

e
ed
-

d

in
r.

g-

e
t a

er
m

s

a
lar
n

s:

Can a stable condensate be formed under the influence
dipole-dipole interaction? What is its effect on anisotrop
clouds? What do the ground-state wave functions look lik
In this Rapid Communication we address these questions
choose the magnetic dipole-dipole interaction in a dilu
cloud of chromium atoms as an example for numerical c
culations. The results, however, apply for all static dipo
dipole interactions.

In general, the Gross-Pitaevskii equation with a lon
range interaction term and for a cylindrical harmonic trap h
the following form:

i\
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2~x21y21g2z2!1
4p\2a

m
NuCu2

1NE V~rW2rW8!uC~rW8!u2d3rW8J C, ~1!

whereC is the mean-field condensate wave function,a is the
s-wave scattering length,N is the number of atoms, andm is
the mass of the atom. The reference frequency of the trapv0
is chosen in thexy plane and the anisotropy of the trap
defined by theg factor. In our case, the long-range potent
takes the form characteristic of magnetic dipole-dipole int
actions:

V~rW2rW8!5
m0

4p

mW 1~rW !•mW 2~rW8!23mW 1~rW !•uW mW 2~rW8!•uW

urW2rW8u3
,

~2!

whereuW 5(rW2rW8)/urW2rW8u andm0 is the magnetic permeabil
ity of the vacuum. We will assume that all the magne
moments are in the same direction (mW 15mW 2), which will be
referred to as the polarization direction. Note that, depend
on a configuration of dipoles, magnetic potential can be
pulsive as well as attractive. This fact is a source of a vari
of phenomena that do not appear in condensates with con
interactions only. Another peculiar feature of this long-ran
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~integral! term is that for a uniform density distribution
vanishes if integrated within a sphere, which means tha
that case a dipole placed in the middle of the sphere wo
‘‘feel’’ no magnetic force.

Equation~1! is now an integro-differential equation. Th
integral term can be simplified because a part of it can
calculated analytically. First of all, one should notice th
this term has a form of a convolution:

E V~rW2rW8!uC~rW8!u2d3rW85V~rW !* uC~rW !u2. ~3!

The transform of the potential reads

F„V~rW !…5m0m2~123 cos2a!Fcos~bq!

~bq!2
2

sin~bq!

~bq!3 G , ~4!

whereb is a distance below which atoms overlap~i.e., the
radius of the atoms that is of the order of a few Bohr rad!

anda is the angle between the Fourier variablesqW andmW . A
value ofb is small in comparison with a length scale in th
system~oscillator unit!, and we will not consider large val
ues ofq; therefore, it is sufficient to use the limit

lim
b→0

F„V~rW !…52
1

3
m0m2~123 cos2a!. ~5!

In order to evaluate the Fourier transform of Eq.~3!, F(ucu2)
is calculated numerically@fast-Fourier transform~FFT!# and
multiplied by F„V(rW)…, which depends solely ona.

In order to obtain the ground-state solution for the co
densate one has to solve the Gross-Pitaevskii equation in
form of Eq. ~1!. To do it we employ a variant of the split
operator method called the imaginary-time propagat
method, being a now common routine of solving the Gro
Pitaevskii equation. For each time step one needs to com
four FFT’s: two for the long-range term calculation and tw
for the evolution.

Now we will list parameters used in the calculations. T
reference trap frequencyv052p 150 Hz, which is an ac-
cessible and typical value in present experiments. This
responds to a characteristic length unit in the system~oscil-
lator unit! d5A(\/mCrv0).1.14 mm. The s-wave
scattering length for chromium is unknown—instead, a va
for sodium is assumed tentatively asa5aNa52.75 nm.

One should keep in mind that all the presented soluti
are scalable. For the Gross-Pitaevskii equation, with as
as without long-range forces, the solutions stay the same
scaled coordinates—as long as the productNAv0 is kept
constant.

The ratio of the contact and long-range terms in genera
given by (m2m/a), m being the atom’s mass, and solutio
stay identical if it is kept constant. For the chosen example
chromium we will in the second part of this Rapid Comm
nication vary the scattering length to change that ratio.

The main conclusion is that, for this set of parameters~in
particular, the scattering length value! all the investigated
solutions are stable, even in very asymmetric traps. Mo
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over, the wave functions possess familiar shapes: Gauss
like for a small number of atoms and paraboliclike for bigg
condensates.

At first, we investigated two extreme cases in cylindric
traps. Following simple intuition about an interaction of tw
dipoles, we designed these situations so that in the first
there would be a majority of repulsive forces, whereas in
other one an attractive component would be dominant.

In the first situation, the trap is flattened in a plane p
pendicular to the polarization axis (xy plane! with the asym-
metry factorg5(vz /v0)510 ~referred to as disk-shaped!.
For this and only this case, we lower the reference freque
to v052p 15 Hz to makevz510v0 experimentally acces
sible ~the corresponding oscillator unit isd5.3.6 mm). In
the inset of Fig. 1, the half-width of the ground state vs t
number of atoms is plotted for the disk-shaped trap. It
compared to a corresponding half-width for a Thomas-Fe
solution for a condensate with contact interactions only~re-
ferred to as the standard Thomas-Fermi limit!. Note that the
Thomas-Fermi approximation is good only for large numb
of atoms; thus forN,10 000 it has not been used. In thez
direction, the exact solution is indistinguishable from t
standard Thomas-Fermi limit becausez is a stiff direction
and so all the interparticle interaction effects are small w
respect to the trapping forces. On the other hand, along tx
axis the condensate expands with respect to the stan
Thomas-Fermi limit as should be the case for the repuls
direction. To conclude, in the disk-shaped trap the net ef
of interactions is repulsive and the condensate expands.

The opposite extreme case is a trap stretched along
polarization axis (z axis! with g50.1 ~referred to as cigar-
shaped!—see Fig. 1. For the soft direction~along thez axis,
being also an attractive direction!, in agreement with simple
intuition, one observes shrinking of the condensate. The
ferences with respect to the standard Thomas-Fermi limit
a condensate without long-range interactions diminish as

FIG. 1. Half-width of the chromium condensate vs number
atoms in a cigar-shaped cylindrical trap withg50.1 anda5aNa .
Filled circles indicate an exact solution for a section along thex axis
as compared to the corresponding result in the standard Tho
Fermi limit ~empty circles!. Empty squares represent an exact so
tion along thez axis in comparison with the corresponding standa
Thomas-Fermi limit~filled squares!. The inset presents analogou
results in a disk-shaped trap (g510) and fora5aNa . An exact
solution for a section along thez axis ~filled squares! is indistin-
guishable from the standard Thomas-Fermi limit.
1-2
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number of atoms grows. This is the case because in tz
direction the wave function is very flat~roughly uniform!
and so the integral component almost vanishes. Surprisin
we observe shrinking of the condensate in thex ~repulsive!
direction as well. We argue that it is caused by the attrac
exerted by very many dipoles concentrated along the softz)
direction that takes over the repulsive contribution along
x axis. In conclusion, we observe an overall shrinking of
condensate in the cigar-shaped trap.

As we see, long-range magnetic interactions do not qu
tatively change the ground-state solutions of the Gro
Pitaevskii equation, but they mainly affect a size of the co
densate. This indicates that for the used set of parameter
influence of contact~repulsive! interactions is still dominant
However, as we do not know the scattering length for ch
mium, and there are several methods proposed to manip
this parameter by application of various external fields~e.g.,
see @10,11#!, we decreased the assumed value and by
means enhanced the effect of long-range~partially attractive!
forces. As a result, we were able to find a region of unsta
solutions. An even more striking discovery was the obser
tion of the structured shapes of the wave functions acqu
by the condensates near the instability threshold. By prob
the parameter space (a,N) ~scattering length, number of a
oms! we found the phase diagram depicting localizations
stable, structured~still stable!, and unstable solutions show
in Fig. 2. For simplicity we did calculations for a spheric
trap with a frequencyv052p 150 Hz, but a few cases ca
culated for asymmetric traps convinced us that the qua
tive stability behavior would not change. The polarizati
direction is stillz. For illustration purposes, we present tw
examples of the structured solutions. The first one~Fig. 3!
was obtained for 80 000 atoms witha/aNa50.115, which
situates this case very near the instability threshold. The

FIG. 2. Stability diagram for a spherical trap withv0

52p 150 Hz. The number of atoms is plotted on the horizon
axis and the scattering length~expressed as a fraction of the corr
sponding value for sodium! on the vertical one. Solid line is the
instability threshold—below it no stable solutions could be o
tained. The dashed line is the boundary between standard-sh
and structured solutions. In the shaded area, structured stable
tions are present. Error bars indicate discreteness of our param
space probing.
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ond example~Fig. 4! is a wave function for 4 000 000 atom
anda/aNa50.233 ~again, right above the instability thresh
old!. We have also used the geometry of the trap to stabi
solutions unstable in a spherically symmetric potential~by
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FIG. 3. Squared modulus of the ground-state wave function
the xz plane for a spherical trap withv052p 150 Hz, 80 000 at-
oms, and the scattering lengtha/aNa50.115. The horizontal axes
are in oscillator unitsd.

FIG. 4. Squared modulus of the ground-state wave function
the xz plane for a spherical trap withv052p 150 Hz, 4 000 000
atoms and the scattering lengtha/aNa50.233. The horizontal axes
are in oscillator unitsd.
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increasing the asymmetry factorg) as well as to destabilize
ones that were stable in a spherical trap~by decreasingg). It
is remarkable that the complexity of the ground-state w
function arises solely from atom-atom interactions and d
not reflect the simplicity of an external potential~it repre-
sents self-organization in the ground state!.

For all the structured solutions there exists a character
length defined by a distance between adjacent maxima in
plane perpendicular to polarization, which is roughly 3d. In
order to explain this feature, we performed a stability ana
sis for an infinite~no trap! homogeneous case. In this case
proper solution isC5(1/AV)exp(2igt), V being the volume
andg5N(4p\a/mCr). By imposing a small harmonic per
turbation of the form C5(1/AV)@11u(t)cos(qW•rW)#exp
(2igt) we found that the unstable perturbations are those
which

q2,
4NmCr

\V Fm0m2

3\
~123 cos2a!2

4p\a

mCr
G , ~6!

wherea is the angle between the wave vector and the po
ization direction. This result implies, surprisingly, that all th
perturbations parallel to polarization (a850) are stable,
whereas for the direction perpendicular to polarizationa
5p/2) there is a long-wave instability. To compare this r
sult with the observed characteristic length of 3d we crudely
approximated the volume of our condensates byV
5 4

3 pRTF
3 , whereRTF is the Thomas-Fermi radius for a con

densate without long-range interactions. This yields the c
cal wavelength

lC
2 5

4p3\

3N2/5mCr

~15a!3/5d12/5

Fm0m2

3\
2

4p\a

mCr
G . ~7!
e
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For the two structured wave functions presented here,
value corresponds to 2.2d and 1.8d, respectively, which, for
such an approximate analysis, is in surprisingly good agr
ment. We note in passing that the onset of unstable per
bations (lC→`) corresponds toaC.0.3aNa , which again
roughly approximates the calculated instability thresh
~see Fig. 2!.

Motivated by experiments under development, all our c
culations used chromium parameters. They showed
ground-state solutions differ in a nontrivial way from th
usual solutions and found a region of instability with stru
tured solutions in its neighborhood. Reaching the interes
region near the instability boundary for chromium see
problematic with state-of-the-art techniques. However, in
case of europium@7# ~larger mass and magnetic moment! the
instability threshold for 1 000 000 atoms is situated at 92%
the sodium scattering length value and still grows for larg
numbers of atoms~e.g., 108% for 10 000 000 atoms!. Our
results may also find use in the blooming area of cold m
ecules@12#, some of which possess large permanent elect
dipole moments@13#. For a typical electric-dipole momen
value of 1 D, a prefactor of the long-range term is four ord
of magnitude greater than the corresponding term for a m
netic dipole of 1mB. One can thus conclude that the beha
ior of a polar molecular BEC will be overruled by dipol
forces.
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