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Comment on “Theory of detection in the micromaser”
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In a recent pap€giR. R. McGowan and W. C. Schieve, Phys. Rev6® 778(1999 ], the authors claim that
the detection of the outcoming atoms has a back-action effect on the spectrum of the micromaser field. We
point out that this assertion is wrong. In particular, we discuss the connection between atom statistics and field
statistics, which has been stated to be the ultimate goal of the cited paper.

PACS numbdps): 42.50.Ct, 42.50.Dv

Since the statistical properties of the quantized microwavey state|A) is then given by{3] p{i\: rpaTr(Ap), Wherepy

field in a micromaser cavity cannot be directly measuredgenotes the efficiency of the detection amelim_ p(t).
information about the field has to be gained by measure- oo

ments on the outcoming atoms using state-selective detea-he multitime.state—se!ectiveoincid'ence probability densi-
tion. For this purpose different theoretical methods havéi€S OF correlation functionsrespectively, for detecting at-
been developef2—9]. The method which is applied in Ref. ©mMS in statdA) at the time instants, ,t,, ... t, are found
[1] relies on a nonlinear master equati@ for the (condi- 0 be[3.6]
tioned evolution of the density operator of the cavity field
between successive detector E:/Iiclfs. Another appr{i&,ﬂyﬂ PRty ta, o i) = (Pa) TITAV(t—tq) . ..
is based on the unconditioned linear evolution of the density XAV(t,—t1)Ap]. (2
operator of the field, making use of a linear conditioned op-
erator equation only for the calculation of waiting time dis- On the other hand, the state-selectasclusive probability
tributions between the outcoming atof®]. In this Com-  densitiesreferring to the case that exactlyatoms are de-
ment we follow the approach developed in Reff8,6,71  tected in statdA) at the time instants; ,t,, ... t, on the
combining it with the scheme for phase-sensitive detectiorzondition that no other atom is detected in this state in be-
proposed in Ref{8]. We point out that detecting the atoms tween, can be calculated by an expression which is analo-
after their interaction with the micromaser field has no influ-gous to Eq.(2) but in which the trace-conserving superop-
ence on the properties of the field, in contrast to what iseratorV is replaced by an operattty with [3]
claimed in Ref[1]. For this purpose we first give a very brief
account of the theory of detection in the micromaser. Vv A=r[(1—pa)A+B—1]VH+LV5. (3)

Due to the interaction with a single excited two-level
atom crossing the cavity in the transit time the reduced The operatoNé(t)p(O) has the meaning of eonditioned
density operatop of the radiation field in the micromaser is and non-normalized density operator for the radiation field in
changed according tp(t+7)=Mp(t). The superoperator the cavity. We note that the right-hand side of E8).can be
M ensues from the complete solution of the atom-field interinterpreted in a simplisitic way by stating that it describes the
action problem by taking the trace with respect to the atomigpecific situation where the atoms either emerge in $fste
subsystem. When the excited atoms in the beam pumping thgt escape detection due to the finite efficiency, or leave the
micromaser are uncorrelated, i.e., when they are injected intgavity in statgB). Similarly, if we would like to consider an
the micromaser cavity with the rateaccording to Poissonian exclusive probability density which is not state selective, the
injection statistics, the density operator of the cavity fieldeyolution of the field between successive detector clicks had
evolves ap(t)=V(t)p(0), where to be described by a non-normalized conditioned density op-

) eratorVy(t) p(0) with
V=r(M—-1)V+LV. (1) )
o . _ Vo=r[(1-pa)A+(1-pg)B-1]Vo+LVy. (4

As usual,L denotes the Liouvillian describing the coupling
of the radiation field to a thermal heat bath. The superopera-ere pg is the efficiency for detecting an atom in staBs.
tor M can be written a$1=A-+B with A andB arising ina  The operatol/, refers to the evolution of the field under the
natural way when the trace is performed in a basis spannecbndition that neither of the two state-selective detectors reg-
by two arbitrarily chosen orthogonal states) and|B) of isters an atom. By using a normalized density operator in-
the two-level atom, which may be the energy eigenstates atead of a non-normalized one to account for this conditioned
superpositions thereof. When an outcoming atom is found tevolution, we would arrive at the nonlinear master equation
be in state|A), the density operator of the field is reduced introduced in Ref[2].
according top— Ap (where normalization is neglectedn In order to evaluate experimental results, it is necessary to
the following we consider the stationary regime of the mi-specify the superoperato’s and B. For phase-insensitive
cromaser. The probability per unit time of detecting an atondetection when the atoms are detected in the deexcited en-
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ergy eigenstate stat®) or in the excited statgE), respec- af(t.)--.af(toa(t,)- - -a(t PO(t,, ...t
tively, we haveA=D andB=E, where, in the photon num- (a’ty)) (Tk) k( 0---alty)  Pilty o~ k)1
ber representation, (a'a) (P1)
9
(Dp)nm= Si'"'(gT\/ﬁ)S'n(gT\/E)Pnfl,mflv () wheret;<t,<-.-<t,, anda anda' are the photon annihi-

lation and creation operators of the cavity field. Equati@n
(Ep)nm=coggryn+1jcofgrym+1)pym  (6)  holds to an excellent approximation under present experi-
mental conditions since the thermal photon number is negli-
with g being the atom-field coupling constant. Foase-  giply small[6]. The steady-state normalized two-time corre-

sensitive detectignon the other hand, where the emerging|ation function of the electric field strength in the micromaser
atoms are exposed to a classiedl pulse before reaching cavity is given by

the energy-selective detectd8], we must putA=A" and

B=B’, where (a"(tya(0)) Tra'V(t)ap]
g1(t)= T = = (10
1 1 (a'a) Tr(a'ap)
A'=3(D+E-F), B'=3(D+E+F) @) whereV(t) obeys Eq(1). Under certain operating conditions
there exists an approximate equation which relates the func-
with tion g,(t) to the two-time coincidence probabilities mea-
sured in phase-sensitive detection of the atoms and which
(Fp)nm=coggryn+1)sin(grym)pnm-1 reads[8]
+sin(grynjcoggrym+1)pn 1. (8 Tr[(B'~A")V()(B'~A")p]
gi()~w(t)= , (11

Y NAY S
According to the theory of stochastic procesg&g], the TL(B"=A")"p]

state-selective statistics of the outcoming atoms with respeghere |A’) and |B’) are given by Eq.(7). As has been
to any stat¢A) is completetely described by the whole set of shown in Ref.[8], this approximation is justified when
the state-selective coincidence probability —densitiegshe steady-state photon-number distribution in the cavity
Pﬁ(tl,tz, .ot (k=1,2,. . . )referring to this state or, al- has a single narrow peak at a large mean photon
ternatively, by the whole set of exclusive probability densi-number. The micromaser spectrum is defined S{s)
ties. From these all other statistical quantities can be calcu= 7~ Re[5g,(t)e”'(“~"'dt with v being the resonance
lated applying standard methods. In particular, this procedurgequency of the cavity.
has been used in R3] for A=D to investigate the mean The main contents of the lengthy pagéi, “Theory of
value and the variance of the number of deexcited atomgetection in the micromaser,” can be summarized as fol-
emerging from the cavity in a given time interval as well asjows: Starting from the papef,8] the authors rederive a
the waiting-time distribution between deexcited atoms. Thenonlinear master equation for the density operator of the mi-
advantage of starting from the correlation functie@scon-  cromaser field which has been derived already previd@ly
sists in the fact that the detector efficiencies drop out fromand which describes the evolution of the field on the condi-
the normalized quantitieB(t;,t,, . .. t)/(P1)¥ since the  tion that neither of the two active detectors registers an atom.
evolution equatior{1) does not depend on them, in contrast They emphasize that they consider the state vector of the
to the conditioned equation®) or (4). Finally, we remark entangled system, which consists of the atom, the field, and
that the preceding results can be generalized to be applicabiee detector. In order to apply the nonlinear density operator
for calculating the statistics of detector clicks in a wide classequation the authors develop a perturbative method with re-
of micromasers pumped by a non-Poissonian beam whergpect to the detector efficiencies and they use this method to
Eq. (1) does not hold and has to be replaced by a nonealculate a function which they call the spectrum of the mi-
Markovian evolution equation. This has been done in Refcromaser. As the result of their paper they find that the de-
[7] where for sub- and super-Poissonian pumping the corretection of the outcoming atoms has a back-action effect on
lation functions and waiting-time distributions for the detec-the micromaser spectrum.
tion of deexcited atoms have been calculated as well as the First we note that superpositions between different detec-
correlation functions for the photons in the cavity field. tor states decohere infinitely fakt1] since a detector is a
The statistical properties of the radiation field in the mi- macroscopic measuring device, and that the discussion in
cromaser cavity are completely characterized by the whol®ef. [1] concerning cross terms between detector states is
set of the normally ordered multitime correlation functionstherefore without any physical relevance.
of the intensity(or the photon number, respectivelgnd of Next we comment on the usefulness of developing a per-
the electric field strength. By exploiting the properties of theturbative method for dealing with the nonlinear density op-
evolution equation(1) it can be showr{3,4,6 that in the erator equation. The authors stress that their perturbation
stationary micromaser regime at zero temperature there is aheory, which is applicable for low detector efficiencies, ef-
exact correspondence between the photon statistics of tifectively turns the nonlinear operator equation into a linear
field and the statistical distribution of the deexcited atomspne. It should be remarked, however, that the nonlinearity of
expressed by the equality the differential equation describing the evolution of the con-
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ditioned density operator is solely due to its normalization.surprisingly, the function evaluated this way depends on the
For calculating any physical quantity, on the other hand, it isdetector efficiencies since the latter enter the evolution equa-
sufficient to use the linear equatiod) describing the evolu-  tion (4). However, this function yields no information about
tion of a non-normalized conditioned density operator. Inthe true spectrum of the micromaser field and it is without
fact, this procedure is even more appropriate, since the traggnhy practical physical meaning. As for their physical reason-
of the non-normalized conditioned density operator autoing, the authors of Ref1] obviously misunderstood the pa-
matically corresponds to the probability that the conditionspers from which they took their starting equations. It is writ-
actually occur. , , _ten there that if an atom is deteced in a specific state “the
Finally, we emphasize that the micromaser spectrum ignat0n field is, in effect, changed'2] or that in the phase-
uniquely defined as the Fourier transform of Efi0) and  qopgjtive detection scheme “the quantum-mechanical reduc-
does n_ot depend in any way f_ro_m the method_applled tQion of the photon state that is associated with the registration
detect it or from the detector efficiencig®Ve note in pass- of a detector click imposes a phase on the photon stege”
ing that in Ref.[1] the function(10) is denoted as the first- thi ¢ has to k i\ mind. h or that an
order photon-photon correlation function though, in contras{n IS respect one has 1o keep In mind, NOWEver, ny
state reduction corresponds to the selection of a specific

to the expression on the left-hand side of EQ), it does not hanical sub bl dd t ch th
describe any correlations between photpfis. arrive at their quantum-mechanical subensemble and does not change the

assertion that the detection of the outcoming atoms has Broperties of the whole quantum-mechanical ensemble. In
back-action effect on the spectrum of the micromaser, th@articular, the measurements on the atoms emerging from the
authors of Ref[1] apply a procedure which is mathemati- Micromaser cavity do not cause any back-action effect on the
Ca”y equiva|ent to rep'acing the evolution opera‘tbobey_ SpeCtrum of the micromaser, or on its ||neW|dth, reSpeCtiVer.
ing Eq. (1) by the conditioned operataf, evolving accord-  Therefore the procedure of R¢l] is lacking a sound physi-

ing to Eq. (4 when calculating the spectrum. Not cal basis.
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