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Comment on ‘‘Theory of detection in the micromaser’’
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~Received 22 February 1999; published 2 March 2000!

In a recent paper@R. R. McGowan and W. C. Schieve, Phys. Rev. A59, 778~1999!#, the authors claim that
the detection of the outcoming atoms has a back-action effect on the spectrum of the micromaser field. We
point out that this assertion is wrong. In particular, we discuss the connection between atom statistics and field
statistics, which has been stated to be the ultimate goal of the cited paper.

PACS number~s!: 42.50.Ct, 42.50.Dv
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Since the statistical properties of the quantized microw
field in a micromaser cavity cannot be directly measur
information about the field has to be gained by measu
ments on the outcoming atoms using state-selective de
tion. For this purpose different theoretical methods ha
been developed@2–9#. The method which is applied in Re
@1# relies on a nonlinear master equation@2# for the ~condi-
tioned! evolution of the density operator of the cavity fie
between successive detector clicks. Another approach@3,6,7#
is based on the unconditioned linear evolution of the den
operator of the field, making use of a linear conditioned o
erator equation only for the calculation of waiting time d
tributions between the outcoming atoms@3#. In this Com-
ment we follow the approach developed in Refs.@3,6,7#
combining it with the scheme for phase-sensitive detec
proposed in Ref.@8#. We point out that detecting the atom
after their interaction with the micromaser field has no infl
ence on the properties of the field, in contrast to wha
claimed in Ref.@1#. For this purpose we first give a very brie
account of the theory of detection in the micromaser.

Due to the interaction with a single excited two-lev
atom crossing the cavity in the transit timet, the reduced
density operatorr of the radiation field in the micromaser
changed according tor(t1t)5Mr(t). The superoperato
M ensues from the complete solution of the atom-field int
action problem by taking the trace with respect to the ato
subsystem. When the excited atoms in the beam pumping
micromaser are uncorrelated, i.e., when they are injected
the micromaser cavity with the rater according to Poissonian
injection statistics, the density operator of the cavity fie
evolves asr(t)5V(t)r(0), where

V̇5r ~M21!V1LV. ~1!

As usual,L denotes the Liouvillian describing the couplin
of the radiation field to a thermal heat bath. The superop
tor M can be written asM5A1B with A andB arising in a
natural way when the trace is performed in a basis span
by two arbitrarily chosen orthogonal statesuA& and uB& of
the two-level atom, which may be the energy eigenstate
superpositions thereof. When an outcoming atom is foun
be in stateuA&, the density operator of the field is reduce
according tor→Ar ~where normalization is neglected!. In
the following we consider the stationary regime of the m
cromaser. The probability per unit time of detecting an at
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in stateuA& is then given by@3# P1
A5rpATr(Ar̄), wherepA

denotes the efficiency of the detection andr̄5 lim
t→`

r(t).

The multitime state-selectivecoincidence probability densi
ties or correlation functions, respectively, for detectingk at-
oms in stateuA& at the time instantst1 ,t2 , . . . ,tk are found
to be @3,6#

Pk
A~ t1 ,t2 , . . . ,tk!5r k~pA!kTr@AV~ tk2tk21! . . .

3AV~ t22t1!Ar̄ #. ~2!

On the other hand, the state-selectiveexclusive probability
densitiesreferring to the case that exactlyk atoms are de-
tected in stateuA& at the time instantst1 ,t2 , . . . ,tk on the
condition that no other atom is detected in this state in
tween, can be calculated by an expression which is an
gous to Eq.~2! but in which the trace-conserving supero
eratorV is replaced by an operatorV0

A with @3#

V̇ 0
A5r @~12pA!A1B21#V0

A1LV0
A . ~3!

The operatorV0
A(t)r(0) has the meaning of aconditioned

and non-normalized density operator for the radiation field
the cavity. We note that the right-hand side of Eq.~3! can be
interpreted in a simplisitic way by stating that it describes
specific situation where the atoms either emerge in stateuA&
but escape detection due to the finite efficiency, or leave
cavity in stateuB&. Similarly, if we would like to consider an
exclusive probability density which is not state selective,
evolution of the field between successive detector clicks
to be described by a non-normalized conditioned density
eratorV0(t)r(0) with

V̇05r @~12pA!A1~12pB!B21#V01LV0 . ~4!

HerepB is the efficiency for detecting an atom in stateuB&.
The operatorV0 refers to the evolution of the field under th
condition that neither of the two state-selective detectors r
isters an atom. By using a normalized density operator
stead of a non-normalized one to account for this conditio
evolution, we would arrive at the nonlinear master equat
introduced in Ref.@2#.

In order to evaluate experimental results, it is necessar
specify the superoperatorsA and B. For phase-insensitive
detection, when the atoms are detected in the deexcited
©2000 The American Physical Society01-1
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ergy eigenstate stateuD& or in the excited stateuE&, respec-
tively, we haveA[D andB[E, where, in the photon num
ber representation,

~Dr!n,m5sin~gtAn!sin~gtAm!rn21,m21 , ~5!

~Er!n,m5cos~gtAn11!cos~gtAm11!rn,m ~6!

with g being the atom-field coupling constant. Forphase-
sensitive detection, on the other hand, where the emergi
atoms are exposed to a classicalp/2 pulse before reaching
the energy-selective detectors@8#, we must putA[A8 and
B[B8, where

A85
1

2
~D1E2F !, B85

1

2
~D1E1F ! ~7!

with

~Fr!n,m5cos~gtAn11!sin~gtAm!rn,m21

1sin~gtAn!cos~gtAm11!rn21,m . ~8!

According to the theory of stochastic processes@10#, the
state-selective statistics of the outcoming atoms with res
to any stateuA& is completetely described by the whole set
the state-selective coincidence probability densit
Pk

A(t1 ,t2 , . . . ,tk) (k51,2, . . . ) referring to this state or, al
ternatively, by the whole set of exclusive probability den
ties. From these all other statistical quantities can be ca
lated applying standard methods. In particular, this proced
has been used in Ref.@3# for A[D to investigate the mean
value and the variance of the number of deexcited ato
emerging from the cavity in a given time interval as well
the waiting-time distribution between deexcited atoms. T
advantage of starting from the correlation functions~2! con-
sists in the fact that the detector efficiencies drop out fr
the normalized quantitiesPk

A(t1 ,t2 , . . . ,tk)/(P1
A)k since the

evolution equation~1! does not depend on them, in contra
to the conditioned equations~3! or ~4!. Finally, we remark
that the preceding results can be generalized to be applic
for calculating the statistics of detector clicks in a wide cla
of micromasers pumped by a non-Poissonian beam w
Eq. ~1! does not hold and has to be replaced by a n
Markovian evolution equation. This has been done in R
@7# where for sub- and super-Poissonian pumping the co
lation functions and waiting-time distributions for the dete
tion of deexcited atoms have been calculated as well as
correlation functions for the photons in the cavity field.

The statistical properties of the radiation field in the m
cromaser cavity are completely characterized by the wh
set of the normally ordered multitime correlation functio
of the intensity~or the photon number, respectively! and of
the electric field strength. By exploiting the properties of t
evolution equation~1! it can be shown@3,4,6# that in the
stationary micromaser regime at zero temperature there
exact correspondence between the photon statistics of
field and the statistical distribution of the deexcited atom
expressed by the equality
04780
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^a†~ t1!!•••a†~ tk!a~ tk!•••a~ t1!&

^a†a&k
5

Pk
D~ t1 , . . . ,tk!

~P1
D!k

,

~9!

wheret1<t2<•••<tk , anda anda† are the photon annihi-
lation and creation operators of the cavity field. Equation~9!
holds to an excellent approximation under present exp
mental conditions since the thermal photon number is ne
gibly small @6#. The steady-state normalized two-time corr
lation function of the electric field strength in the micromas
cavity is given by

g1~ t ![
^a†~ t !a~0!&

^a†a&
5

Tr@a†V~ t !ar̄ #

Tr~a†ar̄ !
, ~10!

whereV(t) obeys Eq.~1!. Under certain operating condition
there exists an approximate equation which relates the fu
tion g1(t) to the two-time coincidence probabilities me
sured in phase-sensitive detection of the atoms and w
reads@8#

g1~ t !'w~ t ![
Tr@~B82A8!V~ t !~B82A8!r̄#

Tr@~B82A8!2r̄ #
, ~11!

where uA8& and uB8& are given by Eq.~7!. As has been
shown in Ref. @8#, this approximation is justified when
the steady-state photon-number distribution in the cav
has a single narrow peak at a large mean pho
number. The micromaser spectrum is defined asS(v)
5p21 Re*0

`g1(t)e2 i (v2n)tdt with n being the resonance
frequency of the cavity.

The main contents of the lengthy paper@1#, ‘‘Theory of
detection in the micromaser,’’ can be summarized as
lows: Starting from the papers@2,8# the authors rederive a
nonlinear master equation for the density operator of the
cromaser field which has been derived already previously@2#
and which describes the evolution of the field on the con
tion that neither of the two active detectors registers an at
They emphasize that they consider the state vector of
entangled system, which consists of the atom, the field,
the detector. In order to apply the nonlinear density opera
equation the authors develop a perturbative method with
spect to the detector efficiencies and they use this metho
calculate a function which they call the spectrum of the m
cromaser. As the result of their paper they find that the
tection of the outcoming atoms has a back-action effect
the micromaser spectrum.

First we note that superpositions between different de
tor states decohere infinitely fast@11# since a detector is a
macroscopic measuring device, and that the discussio
Ref. @1# concerning cross terms between detector state
therefore without any physical relevance.

Next we comment on the usefulness of developing a p
turbative method for dealing with the nonlinear density o
erator equation. The authors stress that their perturba
theory, which is applicable for low detector efficiencies, e
fectively turns the nonlinear operator equation into a line
one. It should be remarked, however, that the nonlinearity
the differential equation describing the evolution of the co
1-2
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ditioned density operator is solely due to its normalizatio
For calculating any physical quantity, on the other hand, i
sufficient to use the linear equation~4! describing the evolu-
tion of a non-normalized conditioned density operator.
fact, this procedure is even more appropriate, since the t
of the non-normalized conditioned density operator au
matically corresponds to the probability that the conditio
actually occur.

Finally, we emphasize that the micromaser spectrum
uniquely defined as the Fourier transform of Eq.~10! and
does not depend in any way from the method applied
detect it or from the detector efficiencies.~We note in pass-
ing that in Ref.@1# the function~10! is denoted as the first
order photon-photon correlation function though, in contr
to the expression on the left-hand side of Eq.~9!, it does not
describe any correlations between photons.! To arrive at their
assertion that the detection of the outcoming atoms ha
back-action effect on the spectrum of the micromaser,
authors of Ref.@1# apply a procedure which is mathema
cally equivalent to replacing the evolution operatorV obey-
ing Eq. ~1! by the conditioned operatorV0 evolving accord-
ing to Eq. ~4! when calculating the spectrum. No
s
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surprisingly, the function evaluated this way depends on
detector efficiencies since the latter enter the evolution eq
tion ~4!. However, this function yields no information abo
the true spectrum of the micromaser field and it is witho
any practical physical meaning. As for their physical reas
ing, the authors of Ref.@1# obviously misunderstood the pa
pers from which they took their starting equations. It is wr
ten there that if an atom is deteced in a specific state ‘‘
photon field is, in effect, changed’’@2# or that in the phase-
sensitive detection scheme ‘‘the quantum-mechanical red
tion of the photon state that is associated with the registra
of a detector click imposes a phase on the photon state’’@8#.
In this respect one has to keep in mind, however, that
state reduction corresponds to the selection of a spe
quantum-mechanical subensemble and does not chang
properties of the whole quantum-mechanical ensemble
particular, the measurements on the atoms emerging from
micromaser cavity do not cause any back-action effect on
spectrum of the micromaser, or on its linewidth, respective
Therefore the procedure of Ref.@1# is lacking a sound physi-
cal basis.
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