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Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime

Christopher C. Gerry
Department of Physics and Astronomy, Lehman College, The City University of New York, 250 Bedford Park Boulevard We

Bronx, New York 10468-1589
~Received 2 July 1999; published 17 March 2000!

A model of a four-wave mixer operated in a nonlinear regime, studied by Yurke and Stoler@Phys. Rev. A
35, 4846~1987!#, is reexamined. Yurke and Stoler have shown that this device, under a certain condition, acts
as an even-odd filter, switching even-photon-number states from the pump mode to the signal mode. An initial
coherent state in the pump is converted into an entanglement of even and odd coherent states with vacuum
states in the output signal and pump modes. We point out that under a different condition and with an
even-photon-number state initially in the pump and a vacuum in the signal, the device creates a maximally
entangled state between the number state and the vacuum. Using the device to replace the first beamsplitter of
a Mach-Zehnder interferometer, phase uncertainties at the Heisenberg limit (Df51/n) can be obtained. Since
number states are difficult to generate, we point out that an even coherent state obtained from the output of one
device can be used as input to a second to achieve the phase uncertaintiesDf51/ne , wherene is the average
photon number of the even coherent state.

PACS number~s!: 42.50.Dv, 42.65.2k, 42.50.Ar
on
th
tw
or
d

r

a
c
tr
vit
rs

pu
n

s
th
gl
s
a
r

po
r

e
-
t

t
ot
t o
n

-
s
e

be
ed
er-

k.

th

ner-

nly

the

a

s

lit-
arks.
um-

es
ates
-
in
ix-
te

the
s in
ac-
One of the goals in the quest for the generation of n
classical states of light is to increase the sensitivity in
measurement of the relative phase shifts between the
paths of an interferometer. This is of considerable imp
tance in attempts to measure the weak signals expecte
gravity-wave detectors@1#. In a detector involving lase
beams and beamsplitters, such as a Mach-Zehnder~MZ! in-
terferometer, the zero-point fluctuations in the laser be
and in the unused port of the input beamsplitter will produ
phase-difference fluctuations large enough to mask the
phase-difference change resulting from an incident gra
wave. In a MZ interferometer with two 50/50 beamsplitte
and with a coherent laser field injected into one of the in
ports and the vacuum into the other, the phase-differe
uncertaintyDf between the two paths varies as 1/An̄, where
n̄ is the average number of photons supplied by the la
during the time interval of the measurement. Increasing
sensitivity of the interferometer requires an increasin
powerful laser source. An attractive alternative is to u
states of light with distinctly nonclassical properties that m
produce, as a matter of principle, greater sensitivity fo
given average photon number. In Ref.@1# it was shown that
if a squeezed state is injected into the previously unused
of the beamsplitter, then the phase uncertainty can be
duced toDf5e2r /An̄, where the squeezing parameterr
.0. The limiting case for phase uncertainties, on rather g
eral grounds, isDf51/n̄ and this is known as the Heisen
berg limit @2#. A number of schemes have been proposed
approach this limit. Holland and Burnett@3# showed that
accuracies approachingDf51/n are possible if the inpu
states at the first beamsplitter are Fock states of equal ph
numbern. Yet another scheme involves the replacemen
one or both of the beamsplitters with active optical eleme
such as four-wave mixers. Hillery and Mlodinow@4# have
shown that SU~2! minimum-uncertainty states for a two
mode field can be used to achieve phase-shift uncertaintie
Df51/N, where N is the total number of photons at th
1050-2947/2000/61~4!/043811~7!/$15.00 61 0438
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input port of a MZ interferometer. Such an accuracy can
obtained with or without the first beamsplitter being replac
by a four-wave mixer. Of course, one must somehow gen
ate the SU~2! minimum-uncertainty state, a nontrivial tas
On the other hand, schemes involving an SU~1,1! interfer-
ometer, which consists of a MZ interferometer with bo
beamsplitters replaced by four-wave mixers@5#, have been
considered with minimum-uncertainty SU~1,1! states as the
inputs @6#. High accuracy, on the order ofDf;1/n̄, is pos-
sible, but again a special field state is required to be ge
ated for the input.

Most of the above-mentioned schemes actually show o
asymptotic phase uncertainty proportional to 1/n ~or 1/n̄),
with a proportionality constant greater than zero. On
other hand, Bollingeret al. @7# have pointed out that if the
state after the first ‘‘beamsplitter’’ of the interferometer is
maximally entangled state of the form

1

&
~ un&au0&b1eiqu0&aun&b), ~1!

where the subscriptsa andb stand for the two output mode
of the ‘‘beamsplitter,’’ the phase uncertainty is exactlyequal
to 1/n. The problem, of course, is that the usual beamsp
ters cannot produce such a state, hence the quotation m
In the case of the usual passive beamsplitter, an input n
ber stateun&au0&b becomes an SU~2! coherent state with the
n photons binomially distributed over the two output mod
@8#. In this paper, we present a scheme that does yield st
of the form of Eq.~1!. Our proposal involves the replace
ment of the first beamsplitter with a nonlinear medium
which two competing processes are acting—four-wave m
ing and a two-mode Kerr interaction. With an appropria
choice of relative coupling constant, and with the use of
Schwinger realization of the angular momentum operator
terms of a pair of boson operators, the model of the inter
©2000 The American Physical Society11-1
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CHRISTOPHER C. GERRY PHYSICAL REVIEW A61 043811
tion can be made identical to a model of a four-wave mi
operated in a nonlinear regime studied some years ago
Yurke and Stoler@9#. The device was shown to act, under
certain condition, as an even-odd filter with respect to pho
number. We review this below. We then point out that t
same device, under a slightly different condition, essenti
a different interaction time, withn photons at one input an
the vacuum at the other, can produce states of the form
Eq. ~1!, if n is even. Since ann-photon state for large evenn
is very hard to generate, we then suggest that it might
possible to use the output of one of the devices acting a
even-odd filter to generate from an initial coherent state
even coherent state, an example of a Schro¨dinger cat state
@10#, which is then injected into a second device set up
generate a superposition of the maximally entangled state
the form of Eq.~1!. The phase uncertainty is numerical
shown to be 1/n̄ wheren̄ is the average number of photons
the even coherent state.

The interaction Hamiltonian for a degenerate four-wa
mixer ~FWM! is given by

HFWM
I 5\

V

4
~a†2b21a2b†2!, ~2!

whereV is proportional to the nonlinear susceptibilityxFWM
(3)

of the four-wave mixing process in the medium anda andb
are the operators of the two degenerate modes. The
interaction of the medium is given by

HKerr
I 5\

K

2
a†ab†b, ~3!

where we have assumed that self-modulation terms of
form (a†a)2 and (b†b)2 can be ignored by choosing th
resonances of the medium in an appropriate way@11#. The
constantK is proportional to the Kerr susceptibilityxKerr

(3) .
We now assume that both processes are present in our
dium, which henceforth we refer to as a nonlinear four-wa
mixer ~NFWM!, and furthermore we assume that the con
tion K5V can be attained, perhaps through the enhancem
of Kerr nonlinearities using electromagnetically induc
transparency as suggested by Schmidt and I˙mamoḡlu @12#.
Then the complete interaction Hamiltonian for the mediu
takes the form

H15\
V

4
~a†2b21a2b†2!1\

V

2
a†ab†b

5\
V

4
~a†b1ab†!2. ~4!

Assuming that modesa andb are degenerate with frequenc
v, the full Hamiltonian is

H5\v~a†a1b†b!1\
V

4
~a†b1ab†!2. ~5!

We shall refer to thea andb modes as ‘‘pump’’ and ‘‘sig-
nal’’ modes, respectively.
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We now introduce the Schwinger realization of the ang
lar momentum operators@13#:

J15 1
2 ~a†b1ab†!,

J25
1

2i
~a†b2ab†!, ~6!

J35 1
2 ~a†a2b†b!,

satisfying the commutation relations

bJi ,Jj c5 i e i jkJk . ~7!

The square of the angular momentum is given by

J̄25J1
21J2

21J3
25J0~J011!, ~8!

where

J05 1
2 ~a†a1b†b! ~9!

commutes with all the operators in Eq.~3!. The Fock states
of the two modesuna&aunb&b are related to the angular mo
mentum statesuj,m&, which satisfy J3u j ,m&5mu j ,m& and
J0u j ,m&5 j u j ,m&, according to

u j ,m&5
~a†! j 1m~b†! j 2m

A~ j 1m!! ~ j 2m!!
u0&au0&b , ~10!

where j 5N/2, N5na1nb , andm5(na2nb)/2. For a par-
ticular total photon numberN, u j ,2 j &5uN/2,2N/2& corre-
sponds to the number statesu0&auN&b , whereas u j , j &
5uN/2,N/2& corresponds touN&au0&b . Henceforth we shall
drop the subscripts on the number states with the underst
ing that the ordering is pump followed by signal.

Evidently, using the identities in Eqs.~6! and ~9!, the
Hamiltonian of Eq.~5! can be written in the form~with
\51)

H52vJ01VJ1
2. ~11!

Since@J0 ,J1#50, we henceforth work in the interaction pic
ture where the dynamics is governed by the interact
HamiltonianH15VJ1

2.
We consider first the initial state containingn photons in

the pump mode with the signal mode in the vacuum:u in&
5un&u0&5u j , j & for j 5n/2 ~see Fig. 1!. The output state of
the device is then

FIG. 1. The nonlinear four-wave mixing device with a cohere
state in the input pump mode and a vacuum in the signal mo
When operated as ap device the output state will be of the form o
Eq. ~25!.
1-2
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HEISENBERG-LIMIT INTERFEROMETRY WITH FOUR- . . . PHYSICAL REVIEW A 61 043811
uout,t&5exp~2 i tVJ1
2!u in&, ~12!

where t, the interaction time, is determined by the dime
sions of the medium and the index of refraction. Followi
Yurke and Stoler@9# by using the mathematics of the rot
tion group@14#, we write

uout,t&5expS 2 i
p

2
J2Dexp~2 i tVJ3

2!expS i
p

2
J2D u j , j &

~13!

where essentially a rotation about the ‘‘2’’ axis has tran
formedJ1 into J3 :

expS i
p

2
J2D J1 expS 2 i

p

2
J2D5J3 . ~14!

Inserting appropriately a complete set of states, Eq.~13! can
be written as

uout,t&5expS i
p

2
J2D (

m52 j

j

exp~2 i tVm2!dm, j
~ j ! S p

2 D u j ,m&,

~15!

where the

dm, j
~ j ! S p

2 D5^ j ,muexpS 2 i
p

2
J2D u j , j & ~16!

are the matrix elements for a rotation ofp/2 about the ‘‘2’’
axis.

We now consider special interaction times. Ift58p/V
~or any integral multiple!, it follows that exp(2iVtm2)51
and thus the output is identical to the input. Ift52p/V ~or
an integral multiple! then exp(2iVtm2)5exp(22pim2)51
for j integer and2 i for j a half-odd integer. But ift5p/V
we have exp(2iVtm2)5exp(2ipm2)5(21)m and thus

uout,p/V&5expS i
p

2
J2D (

m52 j

j

~21!mdm, j
~ j ! S p

2 D u j ,m&.

~17!

Now for j equal to a half-odd integer~n odd! we have
(21)m5exp(2ip/4) and thus

uout,p/V&5expS 2 i
p

4 D un&u0&. ~18!

If j is integer~n even! we have, following Yurke and Stole
@9# by writing

~21!mdm, j
~ j ! S p

2 D5^ j ,muexp~2 ipJ3!expS 2 i
p

2
J2D u j , j &,

~19!

that
04381
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uout,p/V&5expS i
p

2
J2D (

m52 j

j

u j ,m&

3^ j ,muexp~2 ipJ3!expS 2 i
p

2
J2D u j , j &

5exp~ ipJ1!u j , j &. ~20!

But it can be shown that

exp~ ipJ1!u j , j &5~21! j u j ,2 j & ~21!

and thus it follows that

uout,p/V&5H i nu0&un&, n even,

expS 2 i
p

4 D un&u0&, n odd.
~22!

Evidently, at timet5p/V, the device acts as an even-od
filter, the photons exchanging modes ifn is even or not if it
is odd. A NFWM acting in this way will be referred to as
p device.

Suppose now the initial state isuc&u0&, maintaining the
previous ordering of the states, where

uc&5 (
n50

`

Cnun& ~23!

is some arbitrary single-mode pure state initially in the pu
mode. Then from the preceding results we have

uout,p/V&5exp~2 ipJ1
2!uc&u0&

5 (
n,even

Cni nu0&un&1expS 2 i
p

4 D (
n,odd

Cnun&u0&.

~24!

As a particular, and important, example, suppose thatuc& is a
coherent stateua& for which Cn5exp(2uau2/2)an/An!. Then
the output takes the form

uout,p/V&5 1
2 @ u0&a~ u ia&b1u2 ia&b)1~ ua&a2u2a&a)u0&b],

~25!

where we have restored the mode indices for emphasis.
state u ia&1u2 ia& is an even coherent state whileua&
2u2a& is an odd coherent state, examples of Schro¨dinger
cat states@10#. Of course, Eq.~25! is an entangled state
Detection of the vacuum state in the pump mode reduces
signal mode to an even coherent state, which in normali
form is given by

u ia&e5Ne~ u ia&1u2 ia&), ~26!

where the normalization factor is given by
1-3
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CHRISTOPHER C. GERRY PHYSICAL REVIEW A61 043811
Ne5
1

&
@11exp~22uau2!#21/2. ~27!

It is important to note that the vacuum state of the pu
mode is uniquely correlated with the even coherent state
the signal mode since the vacuum state is not containe
the odd coherent state of the pump mode. However,
vacuum state of the signal mode isnot uniquely correlated
with the odd coherent state of the pump mode as there
finite probability of it being correlated with the pum
vacuum state, as can be seen from Eq.~24!. That is, if C0
Þ0, there will be a contribution from the vacuum state of t
pump mode if a vacuum of the signal mode is detected.
if C0'0, as would be the case for a coherent state foruau
large, then to a high degree of accuracy, detecting a vac
in the signal mode projects the pump mode into the o
coherent state

ua&o5No~ ua&2u2a&) ~28!

where the normalization factor is

No5
1

&
@12exp~22au2!#21/2. ~29!

We now go back to Eq.~15! and consider the state at th
time t5p/2V. For n even, hencem integer, it can be shown
that

exp~2 iVtm2!5expS 2 i
p

2
m2D

5
exp~2 ip/4!1exp~ ip/4!~21!m

&
. ~30!

Then, using Eqs.~19!–~21! it follows that

uout,p/2V&5
1

&
@ un&au0&b1exp~2 iFn!u0&aun&b]

5
1

&
@ u j , j &1exp~2 iF2 j !u j ,2 j &], ~31!

whereFn5(n11)p/2 and where an overall irrelevant pha
factor has been suppressed.

Interestingly, the state in Eq.~31! is a particular version of
a maximally entangled state that has been much discu
recently in the context of Ramsey spectroscopy with tw
level trapped ions. In that case, the angular momentum s
are the Dicke states@15# and uj,j& is the product state with al
the atoms in the excited statee, i.e., u j , j &5ue1 ,e2 ,...,en&,
and the stateu j ,2 j & is the state where all the atoms are in t
ground stateg, i.e., u j ,2 j &5ug1 ,g2 ,...,gn&. Thus the atomic
state corresponding to Eq.~31! is

1

&
@ ue1 ,...,en&1exp~2 iFn!ug1 ,...,gn&]. ~32!
04381
p
of
in
e

a

ut

m
d

ed
-
tes

This is a maximally entangled state of then two-level atoms,
in fact, ann-particle Greenberger-Horne-Zeilinger state@16#.
It is also a special case of an atomic Schro¨dinger cat state
@17#. Bollinger et al. @7# and Huelgaet al. @18# have shown
that the resonant frequencyv0 between the statesue& and ug&
can be determined, using the Ramsey method, with an
certainty ofdv0;1/n, a fact that is of great importance i
the pursuit of ultrahigh-resolution frequency standards an
the improvement of atomic clocks@19#. Proposals for gener
ating such states in the context ofn trapped ions have bee
given by a number of authors@19–22#. Some of the scheme
involve addressing each of the ions individually with a we
focused laser beam, applying the interactions sequentiall
each ion@20#, while others involve global interactions wit
all the ions@19,21#. Møller and Sørensen@22# have proposed
a method that should work for hot trapped ions, and t
involves the engineering of an interaction whose Ham
tonian is proportional toJ1

2, where the operatorJ1 acts on the
collective internal states of the ions. This is, of course,
same interaction form used in the present case to mod
nonlinear four-wave mixer. In fact, their discussion esta
lishes the identity given in Eq.~30!. We shall refer to
NFWM devices that produce states of the type in Eq.~31! as
p/2 devices.

In view of the earlier remarks on interferometry, we pr
pose here a MZ interferometer with the first beamsplit
replaced by ap/2 NFWM device as illustrated in Fig. 2. Th
upper arm is taken to be the output pump beam and cont
the phase shifter represented by the operatorU(f)5exp
(2ifa†a) @4#. The beamsplitter~assumed to be 50/50! at the
output of the interferometer, in the language of the angu
momentum operators, is represented by ap/2 ‘‘rotation’’
about the ‘‘1’’ axis @5,8#: UBS5exp(2i(p/2)J1). Thus the
output state of the interferometer is given by

uout&MZ5UBSU~f!uout,p/2V&

5expS 2 i
p

2
J1D 1

&
@exp~2 ifn!un&u0&

1exp~2 iFn!u0&un&]. ~33!

In a typical MZ interferometer experiment involving onl

FIG. 2. A Mach-Zehnder interferometer with the first beamsp
ter replaced by a nonlinear four-wave mixer operating as ap/2
device. With a number state as the input of the pump mode an
vacuum in the signal, the output state is of the form of Eq.~31!.
Only one of the beams of the output beamsplitter is detected w
the result taken as the exponent of21.
1-4
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passive beamsplitters, one measures the difference in ph
numbers of the two output ports of the second beamspli
essentially the expectation value of the operatorJ35(a†a
2b†b)/2. But for states of the type given in Eq.~33!, ^J3&
50, so Bollingeret al. @7# suggested measuring the opera

O5~21!b†b5exp@ ip~J01J3!#. ~34!

As they point out, detecting the operatorO is equivalent to
measuring the number of photonsNb in the output of theb
mode of the interferometer and assigning to the measurem
the value (21)Nb. The operatorO is essentially a parity
operator. The above procedure is equivalent to having m
sured the moments of the number operatorb†b as would be
evident upon expanding the exponential in Eq.~34!. From
Eq. ~33! we have

^0&5MZ^outuexp@ ip~J01J3!#uout&MZ

5~21!n/2
MZ^outuexp~ ipJ3!uout&MZ

5~21!n/2 cos~nf2Fn!. ~35!

In deriving Eq.~35! we have used the facts that

expS i
p

2
J1D J3 expS 2 i

p

2
J1D5J2 ~36!

and that

exp~ ipJ2!u j , j &5u j ,2 j &, 2j even. ~37!

The uncertainty in the phase,Df, is given by

Df5DOY U]^O&
]f U, ~38!

where DO5(^O2&2^O&2)1/2. Since O251, DO5sin(nf
2Fn), and it follows thatDf51/n, again for evenn, which
is the Heisenberg limit.

Recall that in the scheme of Holland and Burnett@3# using
passive beamsplitters, phase uncertaintiesapproachingthe
Heisenberg limit are obtained for identical photon numb
states as inputs. Such states may be hard to generate,
cially for large n. In the present scheme, the initial state
the p/2 device is an even-number state in the pump m
and a vacuum-state signal. This is perhaps a bit easie
generate as pairs of number states are not required, but
still an experimental challenge. With this in mind, we pr
pose a scheme to obtain optimal phase uncertainties usin
input to thep/2 device an even coherent state. The ev
coherent state is obtained, via state reduction, from the
put of ap device.

The schematic for the proposed scheme is given in F
3. NFWM1 is ap device whose input is the stateua&u0& and
whose output is the state of Eq.~25!. If state reduction is
performed on the pump mode by the detection of zero p
tons ~see Fig. 3!, then the signal mode is projected into th
even coherent stateu ia&e of Eq. ~26!. This output is then
taken as the input to the pump mode in thep/2 device,
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NFWM2, its signal mode initially in the vacuum state. Th
output of the NFWM2 is the state~suppressing irrelevan
phase factors!

uout&NFWM25
1

&
Ne exp~2uau2/2! (

n50,2,4,...

`
~ ia!n

An!

3@ un&u0&1exp~2 iFn!u0&un&], ~39!

a superposition of the form of Eq.~31!. With this state, the
expectation value of the operatorO is given by

^O&5Ne
2 exp~2uau2! (

n50,2,4,...

`

~21!n/2
uau2n

n!
cos~nf2Fn!.

~40!

From this we once again calculate the phase uncertainty
cording to Eq. ~38!. However, this time no closed form
seems to exist. We have checked numerically thatDf is
independent off. Furthermore, we have numerically show
that this phase uncertainty is virtually indistinguishable fro
1/n̄e , wheren̄e5uau2 tanh(uau2) is the average photon num
ber in the even coherent state of Eq.~26! @23#. Thus with an
even coherent state entering thep/2 NFWM we may achieve
the Heisenberg limit in terms of the average photon num
of the state.

So far, we have ignored the effects arising from a
source of decoherence, such as a dissipative interaction
a heat reservoir~i.e., the environment consisting of the par
of the interferometer!. Decoherence effects will, of course
degrade the sensitivity of the phase-shift measureme
Consider the case for which there is a definite number
photonsN, where N is even. We know from the work o
Huelgaet al. @18# ~in the context of trapped ions! that in the
presence of decoherence, standard Ramsey interferomet
uncorrelated ions attains the same resolution as optimal m
surements on maximally entangled states. This result sh
apply here as well. Of course, if decoherence is minimiz
the maximally entangled state yields a higher resolution.
in the case involving a coherent state and the production
an even cat state, there is the further complication that co
result from the decoherence of the even cat state into a
tistical mixture. Decoherence has the effect of populating
odd-photon-number states and would thus further degr

FIG. 3. Schematic for a proposed method to use even cohe
states to achieve Heisenberg-limit phase uncertainty. NFWM1
p device that, with the input indicated, creates the state of Eq.~25!.
Detection of the vacuum state in the output pump mode of NFW
projects the signal mode into the even coherent state of Eq.~26!.
This state is then injected into NFWM2, ap/2 device acting just as
in Fig. 2.
1-5
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CHRISTOPHER C. GERRY PHYSICAL REVIEW A61 043811
the effectiveness of the proposed scheme. However, it m
be stressed that decoherence effects will degrade all sch
proposed to enhance interferometric measurements of p
shifts. It might therefore be necessary to make detailed c
parisons of all such schemes with the incorporation of de
herent interactions.

There is one other source of decoherence, other than
vironmental, that must be addressed. Recall that a cru
step in conditionally generating the input even coherent s
to the second NFWM is the detection of a vacuum state
the outputa mode of the first NFWM. Until now we have
unrealistically assumed that the photon detectors are
100% efficiency. In order to consider detectors of lower
ficiency we introduce the so-called positive operator meas
~POM! associated with the detection of photons in the out
of thea mode. We are interested only in whether there is
photon ~a NO ‘‘click’’ ! or any number of photons~a YES
‘‘click’’ !. To this end we follow Paris@24# and introduce the
two-valued POM

PN5 (
p50

`

~12h!pup&a a^pu, PY5I 2PN , ~41!

for the respective NO or YES detection of photons, wherh
is the quantum efficiency of the detector andI is the identity
operator. Note that as the quantum efficiency of the dete
approaches unity,PN approaches the projection operat
onto the vacuum andPY approaches the projection operat
onto the orthogonal subspace of all the nonzero-pho
number states. With the output state of the first NFWM giv
by uout,p/V& of Eq. ~25!, suppressing thep/V label, the
probability of observing a NO in the outputa mode is given
by

PN~h!5Trab~ uout&^outuPN!

5 1
2 $11exp~22uau2!12 exp~22uau2!

3sinh@ uau2~12h!#%. ~42!

The conditional output state in theb mode is then

rN,b5
1

PN
Tra~ uout&^outuPN!

5
1

PN
S 1

Ne
2 u ia&eê iau14 exp~2uau2!

3sinh@ uau2~12h!#u0&^0u

1cu0&e^ iau1c* u ia&e^0u D
b

~43!

whereu ia&e is given by Eq.~26! and where

c5exp~2uau2/2! (
n50

`
~12h!Nan

An!
@12~21!n#. ~44!
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Two things are noteworthy here. First, only even states
pear in Eq.~43!. Measurement of the output of thea mode
produces even number states~but in general nonpure! even if
the detector efficiency is less than ideal. The second poin
that even ifh is not too close to unity, for a sufficiently larg
value of uau only the first term survives in Eq.~43! and thus
to a good approximation the state entering NFWM2 is a p
even coherent state. Thus an increase in the amplitude o
initial coherent state may compensate for the detector ine
ciency.

There is one other problem that must be mentioned
regard to detector efficiency. The detector after the bea
splitter must be sensitive to photon number at the level
one photon in order to measure the operatorO of Eq. ~34!.
Ordinary photon detectors are not yet available at such re
lutions. But sinceO is just a parity operator, it might be
possible to simply use anotherp device after the beamsplit
ter in place of the photon detector, with the other input ju
the vacuum. The mere presence ofany photons in either of
the output modes of the device yields the parity according
Eq. ~22!. Indeed, Yurke and Stoler@25# have already dis-
cussed this method of performing parity measurements.

The last, but by no means the least, obstacle to overc
are the conditions required for obtaining thep andp/2 non-
linear devices. Such concerns must also be addressed i
gard to the proposals of Refs.@9# and @25#. To obtain the
conditions Vt5p,p/2 requires either long times or hig
nonlinearities. Currently available fibers have low nonli
earities and would induce severe decoherent effects at
lengths required for sufficiently long times. But as alrea
mentioned, high nonlinearities might be generated throu
the use of electromagnetically induced transparency eff
that modify the index of refraction of the medium@12#. In-
deed, such effects have already been demonstrated in
laboratory@26#. The possibility of using such effects for th
entanglement of ultraslow photons has recently been
cussed@27#.

Finally we mention that Ansariet al. @28# have previously
discussed the use of even and odd coherent states as al
tive input states to the squeezed states in gravity-wave de
tors in the form of a Michelson interferometer. Howeve
their discussion does not consider active optical element

In summary, we have shown that a four-wave mixer, o
erated in the nonlinear regime, which has previously be
shown to act as an even-odd filter@9#, can also act as a
device to generate maximally entangled states~out of even-
photon-number states!. Such states yield phase uncertainti
at the Heisenberg limit when used in interferometers. Si
even-number states are hard to generate, we showed th
even coherent state obtained from another nonlinear fo
wave mixer can be used to obtain the Heisenberg limit
terms of the average photon number of that state.

The author wishes to thank Adil Benmoussa for perfor
ing the numerical work described just after Eq.~40!. He also
thanks Richard Campos for useful discussions. This w
was supported by grants from the Research Corporation
from PSC-CUNY.
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