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Spontaneous emission from a V-type three-level atom in a photonic crystal is investigated. Quantum inter-
ference between the two atomic transitions affects the constructor of dressed states, and leads to an interesting
behavior of the populations in the two upper levels: antitrapping, periodic oscillation, and no population
inversion. Those properties depend strongly on the relative position of the upper levels from the forbidden gap
and the initial state of the atom, and differ from that of a two-level atom in a photonic crystal. The emitted
field, which is composed of localized madeand propagating mod®, is also studied. Quantum interference
can enhance or reduce the energy of the localized field.

PACS numbe(s): 42.50.Ct, 42.65.Sf, 42.50.Dv

[. INTRODUCTION [8]. However, only a special case was considered in which
the position of the cutoff frequency of the band edge is at the
Quantum interference is one of the basic features of quarcenter of the two upper levels. We will show that atomic
tum mechanics. In a multilevel atomic system, quantum inpopulations on the upper levels are constants or display a
terference can lead to many unexpected effects, for examplegriodic oscillation as time goes to infinity depending on the
absorption reduction and cancellation and spontaneous emigelative position of cutoff to the two upper levels. There is a
sion reduction and cancellatigti—3]. special position at which the populations are from constant to
In recent years, there has been increasing interest in thescillation.
spontaneous emission from an excited atom embedded in In the present paper, we investigate spontaneous emission
photonic crystal§4—8|. A photonic crystal is a manmade from a three-level atom, which has two upper levels coupled
periodic dielectric structure designed to influence the propaby the same modes to a lower level and is embedded in a
gation of electromagnetic wavg¢9—11]. Periodic dielectric photonic crystal, and we study how quantum interference
structures can exhibit on@r more than onefull photonic  affects the spontaneous emission process. The dependences
band gap(frequency regionin which propagating electro- of the interference on the relative position of the upper levels
magnetic waves are forbidden in all directidi®s-11]. The  the band gap and initial conditions of the atom are discussed.
deformations of the dispersion characteristics of waves travbue to quantum interference between the two atomic transi-
eling in a photonic crystal and the mode density of the elections, the two upper levels split into dressed states in a com-
tromagnetic field could lead to a number of distinctive quan-bining fashion. The emitted field has been calculated in de-
tum electrodynamics effects, which can be incorporated intdail, and the emitted field is composed of two parts: a
designs of optoelectronic devicgE2]. An excited atom in a localized field and a traveling field. The localization distance
photonic crystal can form a photon-atom bound dressed stat#f the localized field, the energy velocity, and the phase ve-
when the atomic resonant frequency lies near the photonilocity of the propagating field are given. It is found that
band gap, which results in a fractional steady-state populaguantum interference can enhance or reduce the energy of
tion in the excited state. Spontaneous emission from théhe localized field. The populations trapped in the two upper
atom displays quasioscillatory behavior instead of a simpldevels display some interesting behaviof¥} Antitrapping
exponential decay if the atom is in a vacuum. The spontaneFhe quantum interference between the two decay processes
ous emission from & three-level system was investigated may transfer all the energy of the localized field into the
by John and Quang in Reff5], and the emission spectrum propagating field, and the population in the ground level can-
for an E three-level atomic system was studied by Bay andnot jump back to the two upper levels without a localized
Lambropoulos in Ref[7]. In these studies, the authors as-field. (2) Periodic oscillation The quantum interference be-
sumed one transition to be near the band edge and the othveen two localized modes may lead to population exchange
to be near a flat background of radiation modes., the between the two upper levels, and the populations display a
vacuun). In Ref.[6], coherent control of spontaneous emis- periodic oscillatory behavior(3) No population inversion
sion from aA or V three-level system was discussed. ThereDue to the quantum interference, the population in the lower
one transition frequency was assumed to be far inside thkevel may come back to both upper levels by absorbing the
band gap, so that the related spontaneous emission was igmitted photon. As the frequency of the localized field is
nored. Recently, a V three-level atomic system with two up-closer to the second upper level, more population jumps back
per levels emitting photons into the same continuum wago this level, and inversion cannot occur.
discussed8]. The effect of quantum interference between This paper is organized as follows: In Sec. Il, the basic
two transitions leads to quasiperiodic oscillations of thetheory to investigate the spontaneous emission is given. In
population between two upper levels with large amplitudesSec. Ill, the quantum interference effects on the atomic split-
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where the state vectollg;)|0); and|a,)|0); describe the
atom in its excited stateg;) and |a,), with no photons
present in any vacuum mode, and the state veetghf1,);
describes the atom in its ground state and a single photon in
@, the kth mode with frequencyw,. We assume the atom is
initially in the upper levels, i.eA;(0)|2+|A,(0)|?=1 and
B (0)=0. In a photonic crystal, the dispersion characteris-
tics of radiation waves are deformgd,5]. Near the band
edge, they may be expressed approximately by

o= 0+ A(k—ko)?, ()

e - e e r e et e, — - - -

et — — e m e m e — - ————— = ]

la,> where A is constant coefficienty= w./k3. From the Schro
dinger equation, we can obtain the following first-order dif-

FIG. 1. A three-level atom. ferential equations for the amplitudes:

ting are studied. In Sec. IV, we pay attention to the radiated J _
field of the excited atom. The populations in the upper levels EALz(t) =— E g(kl'z)Bk(t)e"(‘”k“"L?)t, (4a)
are studied in Sec. V. K

Jd . :
Il. BASIC THEORY S BO=gNA (et gBA, (el (oo,
We consider a three-level atom as shown in Fig. 1. It is

placed in a photonic crystal, and has two upper leyaj; )
and|a,) which are coupled by the same vacuum rygc?es toW'th the help of _the Laplace transform, we cazr)1 solve the
the lower levellas). The resonant transition frequencies be-above two equations. The Laplace transforAf$?(s) for

; (1,2) .
tween levels|a,), |a,), and|as) are w; and w,, and are the amplitudesA™=(t) are found:
assumed to be near the edge of a band. There is, therefore, a

(4b)

A1(0)(s—iwiotTy) —Ay(0)I,

strong quantum interference between two transitions from Ay(s)= (5a)
each upper level to the lower level. The Hamiltonian of the ! (s+T 1) (s—iwt+T o) —(T'1)? ’
system decrying the spontaneous emission of the excited
atom can be written as
) Ay(0)(s+T'1)—A(0)T
A2(5_|(1)12)= 2( ( 11) 1( 12 (5b)

(s+T 1) (sS—iwypt T o) = (T'10)?

Here Tmp=Z (00" 9")/[s—i(w1—0))]), (Mmn=1,2)
_ + and wq,= w;— w,. Using the dispersion relation, and con-
Ho_h“’1|a1><a1|+ﬁw2|a2><32|+§k: hodbde, (1) verting the mode sum over transverse plane waves into an
integral and performing the integral, we have

H:H0+H|,

3/2

H.=iﬁ2k [9i"bilas) (@l + giPbllas)(azl — gl byl as) [ 1 (63)
iV Sis— g
X (33| - gibilaz) (a1
3/2

Here, b, and bl are the annihilation and creation operators FZZZNﬁ’ (6b)
for the kth vacuum mode with frequenay, . g{* are the te
coupling constants between thé¢h vacuum mode and the p 3/4
atomic transitions froma,) and|a,) to |as), and are as- (BiB2)™ (paralle)
sumed to be reab(" = (w;d; /%) (h/2eqw V) V%6, U; . K rep- iV—is— i
resents both the momentum and polarization of the vacuum o=+ (B1B2)% (60)

mode.u; are the unit vectors of the atomic dipole moments. NS (antiparalle]
The energy of the lower level has been set to zero. The state INTIST 01
vector of the system at timemay be written as L 0 (orthogonal,
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10

@ (,312/[3 FIG. 2. The region for these
roots and atomic splitting(a) the
parallel case;(b) the orthogonal

10
case.

(b) (012/5

where 8¥?=[(w;d;)%/6mesh] (kY w3?) (j=1,2), wic=w;,  butfor the orthogonal case the quantum interference between
—w., and w,.=w,— o, (see Appendix A Note that the the two transjtions does not exist.
phase angle ofy—is—w;. in T, has been defined  The amplitudesA,(t) and Ay(t) can be calculated by

— ml2<arg(y—is— wqo) <m/2. means of the inverse Laplace transforms
In the following discussior_l,_ we assume that the atomic L N
dipole moments of two transitions, »— |a3) are parallel oo
topeach other, and{"’=g{®=g, fcrjr sli'r2r>1plil:it?§/>. So V\F/)e have A= TmL,im Aq(s)eds, (7a)
B1=B,=B andI'{;=T",,=1"1,=T". If the two dipole mo-
ments are antiparallel to each other, the corresponding for- e 1012 o
mulas are similar to changing,(0) to —A,(0), and the Ay(t)= o L . Ay(s—iwq,)esds, (7b)

same results will be obtained. If they are orthogonal to each
other, the three-level system is a simple combination of two
two-level systemd5]. In the parallel or antiparallel cases whereo is a real constant that exceeds the real part of all the
there is quantum interference between the two transitionssingularities ofA(s).
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In Appendix B, we show that the poles of the complexpure imaginary roots exist. In region Il, one complex root
integral functiond Eq. (7)] are important in the calculations and two pure imaginary roots exist. In region lll, there is one
of A; J(t) andBy(t), and are directly related to the popula- complex root and one pure imaginary root. One pure imagi-
tions of two upper levels and the emitted field. So we need tmary root and two complex roots exist in region IV.
discuss the poles. How many poles do the functions have? After having A; «(t), the populations on the two excited
What are their values? What are the effects of these poles tates can be obtained by
the emitted field? According to Appendix B, the poles we

consider arg1) the roots of the equation Pi=]A (1)1 |2=]A. (1), (103
(25— wy) B2 Po=|Ax(t)e 2 |2=|Ay(1)|2. (10b)

S(s—iwqp) + ————=0 (8a) . .
iV—iS—wqc By (t) can be also obtained from Eqgl) and (7). Certainly,

. _ such calculations are complicated, and detailed steps and the
in the region(Im(s) > w, or Re(s)>0); and(2) the roots of  results are given in Appendix B.

the equation The amplitude of the radiated field at a particular space
pointr is [13]
(i + B0 (8b) dysingy (=By(t)
s(s—i —_——= siny (= _
w7 ’—is+wlc E(r.t)= w1, nfo k kef'(“’kt’kr)dk, (11)

8m2eyri Ok

in the region(Im(s)<w;., and Re§)<0).

With the help of numerical calculations, we have foundwhere » is the angle between the atomic dipole vector and
there are at least two roots, and at most three roots. Thosher vector. Equatior(11) is valid in the far field. It can be
roots can be classified into two type§) pure imaginary seen that in the far-zone approximation, the radiated field is
roots, which are the roots of E¢8a) with their imaginary  polarized in thex direction.
parts larger tham,., which correspond to localized modes
in the emitted field 8]; and(ii) complex roots, which are the . ATOMIC SPLITTING
roots of Eq.(8b) with a negative real part and an imaginary
part smaller thanw,. which correspond to a propagating  With the help of residues at poles of a complex function
mode in the emitted fielfs,8]. The number of the roots and (see Appendix B the amplitude can be rewritten as
their values depend on the relative position of the atomic

upper levels from the band edge{; andw,.). For the pure f,(x! fa(xY) D)y bt fo(x(?)
imaginary roots of Eq(8a), it has been proven analytically A(t)= Z G’ (x (1) +Z m
that we can have one pure imaginary root or two pure imagi- . ]
nary roots. Ifw.=w,,/2, we have one and only one pure s e@@+ib@)t
. . . o e —Rq(1), 12
imaginary I’OOth(ll), which is in the range : : 1V (123
(1)
bg_l)> ma)(wlc,wlz). (9a) Az(t):e—iwlzt fs(xl ) ibgl)t
G’ (x{")

If w.<w14/2, there are two pure imaginary roats{") and

ib{Y, which are in the ranges f4(x(?) .
g T @@ b R (1), (12b)

- 1(w(2)
b{M> w,, (9b) ;HGT)

w1 where xj(l)=ib]-(1) represents the pure imaginary root, and
1
7>b(2 )>max0,0;,). 90 x@=a®+ib{* is the complex root with a negative real
part. The functions;(x), G'(x), andH’(x) are defined in
According to the numbers and the values of the roots, we caAppendix B, and the function$;(x) are related to both
have four cases, as shown in FigaR In region |, only two  A;(0) andA,(0). ThefunctionsR(t) are defined as follows:

€' 91! 832 e \X(X =1 w0) [A1(0) (X~ i 0) + Ap(0) (X—iw1c)]
R(t)= & dx,
i Jo X(X—iw10)A(X— i o) 2= [ 2X— i (w1 + woe) ]26°

gl g2 1o \x X(x—w10)[A1(0) (X~ Twae) + Ax(0) (x—iwig)] -

mi Jox(x—iw1)H(x—iwye) 2= i[2Xx—i(w1c+ wac)] 243°
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R;(t) andR,(t) come from the integration along the cut of IV. EMITTED FIELD
the single-valued branches, and they decay to zero for targe
From Egs.(129 and (12b), we can see that the upper
levels |a;) and |a,) split into dressed state&lue to the
strong interaction between the atom and its own radiation E(r,t)=E(ll)+E(21)+E(12)+E(22)+E(°). (14)
field [5,8]) in a combinating fashion due to the interference
between the two transitions from two upper levels to theE(l) (J :1’2) comes from the pure imaginary roots. If there
lower level. It is very clear that each dressed state is a cOMg o second pure imaginary rocﬁ(zl) will be zero:E(? (j
bination of both upper levels; see the inset schemes in Fig_ 1,2) comes from the complex roots. If these comé)lex roots

2. . do not exist, the relevari? will vanish. E( is some inte-
thelfz;rzf)littwugeilpcﬂﬁ lr)neO[:na?Qltja?erg g)r/thogonal to each Otherg_ration; the exact result cannot be foun_d. From their expres-
sion formulas in Appendixes B and C, it can be proven that
e @) Eq decays to zero as time goes to infinity. _ .
n € Rt (j=12 In regmp I (1)f Fig. Z?), therle are only two pure imaginary
Gls™)  HI(s®) ' rootsx{¥=ib{" andx{Y=ib§" (no complex rodt and the
(13 amplitude of the emitted field can be expressedeés,t)
=EM+EWM+E°, whereE(Y andESY come from the pure
where functionsG[(s), H/(s), andR] are defined as imaginary rootsib{® andib{", respectively. According to
Appendix C,E{" can be written as

From Appendixes B and C, the radiated field can be writ-
ten as

Af(1)=A;(0)

312
B

+ i 1)y 2
2(N—is—wjc)? E}l)(r,t):_ wydssing f5(x™) ko
8megr G’(xj(l)) ¢

T iB3/2
Hi(s)=1- ——— e\ |
i) 2(\is+ ch)3 x( ﬁ_,_l)el(wlbfl))tﬂkor
We— (w1 — ]
B fw Vse o [0~ (01—b[)
it Jos(—stiwe)2—ip? xexp —kor we

(,()C_((,l)l_bjl) kor)

G/(s)=1

sV is the pure imaginary root of the equatios
+(B¥i\—-is—w;c)=0 in the range(Im(s)>w;.) and al-
ways exists.s!?) is the complex root of the equatios _ _
+(B%¥ ’_]_is+ch):0 in the region(im(s) <w;; and Re) where®(x) is the step function:
<0), and exists only whew;.>—0.79373 [5]. From Egs. 0. x<0
(4) and(13) we know that the upper levels;) (j=1,2) will G)(x):{ ’
also split into two dressed states whep,)—0.79373, but 1, x=0.
there is no mixing of the two upper levels. The details of the_ ;) . . .
splitting are plotted in Fig. @). E;” (j=1,2) is localized nea}r the atom, and do not_travel

Comparing Eq€123 and(12b) with Eq. (13), we can find  away from the atom. Th&{"'s represent two localized
that A;(t) is related to bothA;(0) andA,(0), butAJ-T(t) is mode?i)wmch form(lt)he Iogallzed field. Thglr frequencies are
related only toA,(0). Thedistinction comes from the quan- @1~ Pi "3‘_nd“’l_b21 , which both are within the band gap.
tum interference between the two transitions. For the parallel he amplitude ofEf(r,t) (j=1 or 2 does not decay in
dipoles, the population in one upper level can decay to théme, and is proportional to
lower level, and then jump to the either upper level by ab-
sorbing the photon emitted in the previous decay process; siny g L
however, for the case of orthogonal dipole moments, it can r we— (@ _b(l)) e
only jump back to the level where it originates. ¢ 1A

The quantum interference between the two transitiong,, drops exponentially @s ''i, wherel is the localization
strongly affects the atomic splittingormation of the dressed jistance:
state$. The effects on the splitting are plotted in Fig$a)2

X0

(15

e 2w,

and 2b) (see the insets for the parallel and orthogonal cases, 1 ©
respectively. Without interference(orthogonal case the lj=1— —Cl
splitting is separated. As contrasted with the case of parallel Ko V we— (01— bj( ))

dipole moments, each dressed state consists only of one of

the two upper levels. In the parallel case, both upper level¥he two pure imaginary roots can be written ibg") and
make contributions to each dressed state due to the interfeib$" , with b{">bS" | and consequently the localization dis-
ence. tanced ; andl, satisfyl,<I,.
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In region Il, there are two pure imaginary root§"
=ib{Y and xV=ib{", and one complex roox{?=a{?
+ib{?). The field E(r,t) can be rewritten a&(r,t)=E{Y
+EM+EP+E®, EXM andESY come from the two pure

PHYSICAL REVIEW A 61 043809

the interference. This influence can be observed by examin-
ing the populations in the two upper levels, which &g
=|A(t)|? (j=1,2) for the parallel case ar®}=|A](t)|? for

the orthogonal case.

imaginary roots, and do not decay in time. They are two Letus analyze the roles of the quantum interference in the

localized modes of the localized field, and take the form ofSteady-state atomic populatioRg, and Py in upper levels
Eq. (15). E$? comes from the complex root, and can be With various initial states and with different relative positions

written as _of _th_e upper Ieve_ls from the_ forbidden gap. As time goes to
infinity, only the first terms in Eq9.128 and (12b) contrib-

wdysing fs(x?) k2 ute to the populations, and other terms can be neglected.

E(®) = -
8meol  H'(x{?) @¢

1=

(1|2 W1y 2

f1(x{M)e% fa(x{M)e%

Pio= —_—, = —_— .

O 10 j=12 G’(Xj(l)) 20 ‘ j=1.2 G’(X}l))

X 5 —+1 (17
01— bP— oot 8

Using the relation

X exp( —i(w1—b{P)t+iker +al?t

w—bP—w.+ia?
+i|<0r\/1 L R

We

(2xP—iw
] 12) :0

. . l 1
|\/—|x} ) —wi,

xP(xP—jwy) +

w0 -bP— 6 +ia® Ky we can write the function$; andf; as
X0 (Im+Re)\/ L e 0 )
e 2w, e Ciwy,
16 )= (A0 (XY @) + Ax(0)x{ V],
2XJ( )_|(,L)12
The frequency ofE{®)(r,t) is w;—b{?, which is within (18)
transmitting band, and it represents a propagating mode, and
travels away from the atom in the form of traveling pulse. x(1)
In region IIl, we have one pure imaginary raa{" and fa(x(P) = m[Al(O)(x}l)—iw12)+A2(0)x](1)].
j T lwap

one complex rooa{?)+ib{?), andE(r,t) can be obtained as
E(r,t)=E+EP+E©, one localized mod&{", and one
propagating mod&{?) . In region 1V, there are two complex

(19

There are two types of interferendd.) the interference be-

roots and one pure imaginary root. That is to say we hav
two propagating modes and one localized mode.

If the imaginary part of a root i, the frequency of the
field emitted by the atom i&;—b [see Eqs(15) and(16)].
For the pure imaginary rodbj(l), the emitted field is a lo-
calized mode with frequency,; —b{Y<w, in the gap. For
the complex rooa{® +ib{?, the emitted field is a propagat-
ing mode with a frequency; —b{®> w in the band.

Thus the radiated field may be characterized by three
components: the localized field, the propagating field, and a
decaying field. There are two modes localized in the local- i is well known for a two-level system that some popu-
ized field asw;c<—wyc, and one mode localized a8, |ation is trapped in the upper level due to the existence of a
=~ wyc . In the propagating field, there are two propagating|ocalized field emitted by the two-level systef]. In the
modes for region 1V, one mode for regions Il and IIl, and N0 yresent three-level system, the localized field can be en-
propagating mode for region I. If we change the relativehanced or reduced by the interference. The energy in the
position of the upper levels of the atom and the forbiddenq ajized field depends on the interference. The populations
gap from region | to regions Il and Ill, and then region IV, ;, the two upper levels are proportional 1@\1(0)(b(11)
we can switch the emission from no traveling pulse to one_w12)+A2(0)b(11)|2 for w.=—w,. [see Eqs.(17)—(19):

traveling pulse and then two traveling pulses. Such a prop-(l):ib(ll) is the pure imaginary robtBecause of the first

erty may be used to design active optoelectronic switches. X1 : ; .
type of interference, a complete interference can result in

|A1(0) (0} = w19) +A,(0)bf]?=0 as [A1(0)/A,(0)]=
—[b{M7(b{Y— w;,)]. In this case, the populations in the two

The spontaneous decay from the two upper levels and thepper levels can both be equal to zero, which means a com-
evolution of the atom population are greatly influenced byplete decay of the upper levelsee Fig. 3.

fween two upper levels, which is proportional to
A1(0)A(0)* x{P* (x(M—iwyy) [see Eqs(18) and(19)], and

(2) the interferences between two dressed states, which are
proportional tofl(x(ll))ex(ll)t andf’l‘(x(zl))ex(zl)*t when there

are two dressed stat¢see EQ.(17)]. These two types of
interference could lead to some new phenomena which are
different from what we have obtained in a two-level system.

A. Complete decay of populations

V. POPULATIONS IN THE TWO UPPER LEVELS
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FIG. 3. The time evolution of the upper-level populatidhgt) FIG. 4. The Fime evolution of the upper-level populations for the
and P,(t), With wy,=f, wi=0.98, and |W(0))=0.8693a,) Parallel case withoy,=p, 1.=0.88, and|[¥(0))=lay) .
—0.4942%a,). P,(t) and P,(t) in the parallel casglong-short-

dashed curve and long-short-short-dashed curve, respegtiaely pT A,(0) GT(S(l)) 2
P,(t) and P,(t) in the orthogonal caséshort-dotted curve and _o_ el T2
dotted curve, respectively P;O A,(0) GI(S(ll))

A Inofact:)t(,lghe energK Og"iﬁ"j‘)"ied f'ellg 'S 1also\5>\/roport|onal to For any relative positiomw,. or w,., we can always obtain
|A1(0) (b” = w12) +Ay(0)by~|* [see Eq(15)]. We can see, o final population inversion between the two upper levels

when the initial phase difference is in the regior [, through initial population inversioffor example,A;=1 or

— ¢y <ml2[A1(0)=|A1(0)|e'?1,Ax(0)=|A,(0)|e'?2], that A,(0)=0].

the quantum interference enhances the energy of the local- For the parallel case, the quantum interference affects the
ized fleld, when the initial phase difference is in the regionpopu|ations in the upper |eve|’ and leads to no final popu|a_
m2<|¢p,— ¢o|<m, the quantum interference reduces thetion inversion between the two upper levels. Whep.=
energy of the localized field. WherA;(0)/Ay(0)]=  —w,., the ratio of the final populations in the upper levels is
—[b7(bM— w1,)], the interference will transfer all energy independent of the initial condition, and can be obtained
of the localized field into the propagating field. When thefrom Egs.(17)—(19),
populations in the upper levels have decayed to a lower

level, the atom cannot jump back to the upper levels without

a localized field. When the energy of the localized field is Pio
reduced to zero by quantum interference, the population will P_zo_
stay in the lower level forever. Therefore, there is no popu-

lation in the upper levels in the steady state.

Obviously, such a result is significantly different from the From range(9a) of b{®), we know thatP;y/P,o<1. That is
orthogonal caséor two-level casg where quantum interfer- to say, the population inversion does not exist in the case of
ence between two transitions does not exist. There is always,.= — w,., even when the initial conditions ar&;(0)

a localized field for each upper level. Thus the population in=1 andA,(0)=0 (see Fig. 4.

one upper level can decay to a lower level, and then can This is due to the quantum interference. Due to the exis-
jump back to the same upper level due to the localized fieldtence of the localized field, the population in the lower level
From Eq.(13), we can obtain the populatioR|, for the  can jump back to the upper level. Due to quantum interfer-
orthogonal case; that iSE’J-To= |[A]-(O)/G]-T(sj(l))]|2. AL(0) ence, the population in t_he lower Ieyel can come back to both
andA,(2) are not equal to zero at the same time, so there ardPPer 1evels by absorbing the emitted photon. The popula-

fractionalized steady-state atomic population in the excitedIon In On€ upper level decays to the Iowgr level, and then
states(shown in Fig. 3. Jumps in part back to the upper leviel;) and in part back to

the upper levela,). As the frequency level of the localized
field is closer to levela,) than to levella,), the localized
field leads to more population to the upper leja)). Con-

For the orthogonal case, the ratio of the final populationsequently, the final population im,) is always larger than
in the upper levels is that in|a;).

2
b(ll)_ w312

b{t)

B. No population inversion

043809-7
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1.0 - population exchange between the upper levels is not present.
The fractional steady-state atomic populations are trapped in
the two upper states.

From the above discussion, we can also see that the popu-
lations on the upper levels for large time are constants if
w1:=—wye, and display a periodic oscillation i<
—wy.. Therefore, the position corresponding ;.=
— wy IS the critical position from constant to oscillation.

0.8

0.6

VI. CONCLUSION

Y T FE FE P ; We studied spontaneous emission fronVdype three-
R T A T A A level atom in a photonic crystal. If the dipole moments of the
T U ooy Voo two transitions are parallel, we have strong quantum interfer-
\,, L L \ ence between the two transitions. The dependence of the
0.0 S e — atomic population on the interference has been discussed.
t We found that the complete decay of the upper-level popu-
B lation, the impossibility of population inversion for the atom,
FIG. 5. The time evolution of the upper-level populations for the@nd the periodic oscillation of the population are clearly
parallel case withwy,= 8, wi=—8, and |W(0))=(1/y2)(la,)  Proof of quantum interference effects. We also calculated the
+lay)). radiation field emitted by the atom. There is surely one lo-
calized modédpossibly twg. The radiation field may contain
C. Periodic oscillation zero or one or two traveling pul&® depending on the rela-
tive position between the upper levels and the band edge.

When < —wy, there are two dressed states with NOTpis might be used to design an active microsized optical
decay. The quantum interference between the two dressegiich.

states leads to periodic oscillatory behaviors of the popula-
tion trapping in the upper two levels for large timeThe
amplitudes of the periodic oscillations do not decrease in ACKNOWLEDGMENTS

time (shown in Fig. 5. From Egs.(17)—(19), we obtain the )
following results:(1) The period of the oscillations for both _ This research was supported by FRG from Hong Kong
populations is z/(b{—b{). (2) The amplitudesk, (for Baptist University, and the Chinese National Natural Science

Foundation.

|a;)) andK, (for |a,)) of the two periodic oscillations de-
pend on the initial state. But the ratio of the amplitudes is

independent of the initial state, that is APPENDIX A: CALCULATION OF T
" m,n
Ky _ (b~ w1) (w1~ b§Y) 1 The coupling constanigi(j =1,2) may be written in the
Ka b{HpsH ' form
(3) The phase difference of the two periodic oscillationsjs () — w;d, h va_o AL
and the phase angle of the total population in the excited 9= 260w,V € Ujs (A1)

states is the same as that of the upper lgagl. The periodic

oscillation and phase-difference property mean that popula- . . o

tion exchange between the two upper levels always exists.Whereu; are the unit vectors of the atomic dipole moments,
Actually, such a period oscillation of the populations is @nd€,=¢€ , are the two transverse unit vectors.

due to the existence of two different population exchanges We first calculatd’, ;:

between two upper levels, which are caused by the quantum

interferences and two localized field. When < — w,, g(l)g(l)

two pure imaginary rootgb{? andib{" exist. In the above = — =%

discussion we know that the population exchange, which is K sTi(w1— oo

caused by the localized field relatedits{®) leads to more (k-G (K-G0

population trapping in the upper levigl,). But the popula- gl.gl_;

tion exchange, which is caused by the localized field related _(w1d1)2 k?

to ib(zl), will lead to more population trapping in the upper a 2¢ghV € ws—i(w—wy)]

level |a;). The influence between two population exchanges

results in the periodic oscillation. R R
When the two dipole moments are orthogonal, there is nAssuming k= (k sinfcosg,ksindsin ¢,kcosh), U

guantum interference between the two transitions, and the-(0,0,1), we obtain

(A2)

043809-8
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_(w1d1)2 S||']20
" 26tV T ofs—i(w—wy)]

_(wydp)? (= k2dk

6eghi o ol S—i(w1—w)]

(A3)

Here we have replaced the sum by an integral ¥ia—[V/(27)%]fd%k. Using the dispersion characteristias,= w,
+ (wc/k3) (k—ko)?, we can obtain

_(wldl)z o k2dk
" 6eghim? o (k—ko)?\[  (k—ko)?
wctwc——— || S—i(o1~ ) Tiog——7—
kO kO
(w,d1)2 K& (= dk
660ﬁ’7T2 wC — k2

s—i(wi—we) tiwc—
0

312
B1

iV is— (01w (Ad)

whereB3?=[ (w,d;)%/6meyhi ] (k3 02, and the phase angle 0,dw,d, (8- Uy) (8- Uy)

is defined as— 7/2<argy—is—(w;— wg) < /2. [= —
Similarly, ', can be worked out: 26tV T o smi(wrm o]

wldledZJ J fZszsmzacosacos(bdkdadqb

3/2 =
16m3eoh o s—i(w1~wy)]
I'5o=- Pz , (A5) o “ v
V=is— (w1~ ) =0. (A8)
where,83’2—[(w2d2)2/67reoﬁ]k3/w3’2 Hencel ,,,, can be written as follows:
When the two dipole moments of the two transitions are 3
parallel to each other, i.el; = U,: Ty= By
iV—is—(w;—w)
(1)(2)
Ok "9k 32
o=, —————
23 it R/ S (A9)
e s s iV=is— (w1~ o)
_ w1d;w,dy (€ Up)(€-Up)
 2€hV s—i(w,— ( 3/4
€o K ofs—i(w;—wy] - Fﬁlﬂ2) (paralle)
(B1B2)*" iV=is— (w1~ )
T (A6) =1 (B1B2) ™
@17 @e - 172 (antiparalle)
iV—is—(w;— w)
When the two dipole moments are antiparallel to each other, L O (orthogonal.
i.e., Gl: - Gz:
APPENDIX B: CALCULATION OF A®(T), A®@(T),
o (B1B2)*" a7 AND B(T)
12 iv—is— (w1~ w¢) ' We now define some functions as follows:
3/2
When the two dipole moments are orthogonal to each other, f1(x)=A1(0)(X—iwyp) + (A1(0) ~A2(0))8
) N Z ) 1 1 1 )
i.e.,,u;=(0,0,1) andu,=(1,0,0)I';, will be zero: IN=iX— o

043809-9
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Im
|

|

FIG. 6. The integration contours for E(B1).

(A1(0)—A,(0))8%2

\iX+wlc ’

f2(x)=A1(0)(x—iwg) +

(A5(0)—A(0))8%"?
iVoiXx—we

f3(x)=Ax(0)x+

(A2(0)—A(0))B%?

\/iX+(l)lc ’

f4(X)=A(0)x+

PHYSICAL REVIEW A 61 043809

Im

FIG. 7. The integration contours for E(B2).

1 o+iw

Al(t):ﬁ .

B 1 <r+ioof1(x)
a 2_'77'iJ0'—i°c G(X)

A;(s)es'ds

e*ldx

)
f1(x™) et

ST o)

1 w1ci—0 —©i+0
+
—%i—0 w1l +0

2w

fa(x)
me th, (Bl)

wherex{") are the roots of the equatig®(x)=0, the real

f5(X)=(A1(0) + Ax(0))x~iA1(0) w1,,

numbero is chosen so that= o lies to the right of all the

singularityxj(l). The integration contours are shown in Fig.

6:

o 3/2
G(X)=X(X—liwqp) + M

iV—IX—wqg

(2x—iwyy) B¥?

\/iX+w1c

H(X)=X(X—iwqy) +

For G(x),H(x), we have

G,( ) ) . . 2B3/2 (2X_iw12)B3/2

X)=2Xx—iw ,
i Tix— o 2(V—ix—wy)®
H'(X)=2X— 1w+ 2'83/2 _(2x—iw12)iﬂ3’2
Y fixtor  2(Jixtw)?

Using the inverse Laplace transform, we obtain

043809-10
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1 J“”lc' Ofl(X) Xtd
2mi ] w0 G(X)
f0g) AL(0) VX(X—iwpe) + (AL(0) —Ap(O)NiB¥*
—2 : e *dx. (B2)
G'(x I f (x—lwlc><x—|w20>+[2x—u(wlc+w20>]ﬁﬁ”
Note that herex{!) are the roots of3(x)=0 in the region ImK)<w;. and Rek)<0. The second integration contours are

""lct

shown in Fig. 7,

1 [=i+0fy(x) o o1 f==if(x)
ﬁfwlci+oe(x) S 2t ) 0 © O
__2 Z(X( )) (2)t eia)lct
a H' (X(Z)) 2i
o i _ _ i 0312
A1(0) VX(X—iwy0) = (A1(0) — Ay (0)\i B - @3

0 VX(X—iwc) (X—iwae) —[2X— i (w1 F woe) Vi B2

wherex{? are the roots oH(x)=0, and satisfy Im¥{”)) <w,. and Re{”))<0. The integration contours are shown in Fig

8.
Substituting Egs(B2) and (B3) into Eq.(B1), we have
f.$Y) ) fa(x{?) e
A(t)= e+ t
072 5om P (x?)
_eludp fwf (X~ 102 [AL(0) (X —iwa0) +A(0)(X—Tw1c)] ®

0 X(X_lwlc) (X_leC) _l[zx_l(w1c+w2c)] B

mi

In Eq. (B4), x{¥) are the roots of5(x)=0 in the region Im)(<( N>w,, or Re(x(l))>0 X(Z) are the roots oH(x)=0 in the

>J) < w3, and Rek!?) <0.

region Im(x
Slmllarly A,(t) takes the foIIowmg form:
, (X ) 4(X )) o
A —e o S 13 t+ t

elvadt g32 w&(x— i 010)[A1(0)(X—iwye) +An(0)(X—iwye)] e Xty (B5)

mi S0 X(X—iw10)A(X— i o) 2= [ 2X—i (w1 + woe) 283

From Egs.(4), (B4), and(B5), we can obtain

5(X(1)) el (o= opt+x{Mt_ ¢ S(X(Z)) el (o= ot+xPt_ ¢
B(t)= ng @ D gkz B &
G'(x] ) (o= w1) +X] H(x) (0= w1) +X]
giBY2 =€ 0t X1 X[ AL(0)(X— i @p0) + Ax(0) (X~ 1) 12X~ i (@10 + @50)] g &6
X.
X(X—iw1) (X~ i wae) >~ [ 2X— i (w1c+ wpe) 1283

mi Jo i(o—wg)—x
APPENDIX C: CALCULATION OF THE RADIATED FIELD

The amplitude of the radiated field at a particular space ;foiet

> > ﬁwk i il -
_ —i(wt—K-T)
E(r,t) ; \/ZEOVe Bi(t)ex
d; (= .By(t) . 27 w -~ Kk(k-u
- 91 f k2 k()e"“’k‘ko d¢f singeiT| - KW de,
0 0 k2

- 1673€qJ0 Ok

043809-11
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ke '(et=kNdk,  (C1)

where we have replaced the sum by an integral Xja w1d;siny [#By(t)
—(V27%) [d3k. We assume that the electric dipole is in the E(r,t)= f

x-z plane, and is parallel to thez axis. The vector& andu o
can be defined in polar coordinates by

877260”

From Eq.(B6), we can see thaB,(t) is composed of the

K=K(sin 8 cose, sin sing,cosh), contributions of these poles and an integral,

: (C2

U= (sin»,0,cosn), Bk(t)zgk(; BJ(l)Jf; B{*)+ B

where# is the angle that the dipole makes with theector.

. > . where
We consider the three componentskgfand obtain
(1)) aior—o)t+xPt_
E wldlsmnrk inkre-ioe 2K s of 2 Bf")= fS(Xl< >) L ()1
= sinkre™ 'Ykt —— —1, 1o (DN i _ 1) *
* am2egr Jo Ok r G(G™) o o) +x
E, =0, f5(X,-(2)) el (oot ¢

B(2)= ,
POH () (g wp) +x?)

1
E,~0| 5.

In the far-field region, the terms proportional @(1/r?)
can be neglected. Therefore, theand z components of the
electric field vanish, while the component remains. Ignor- In these above formulag(™ are the pure imaginary roots,
ing the incoming wave contribution, we have andx{®) are the complex roots, and

3 1 ocei(wkfouc)tfxt_
Bi*/=— f - K(x)dx.
! 77\/i— 0 I{wg—w)—X (x)

VX[AL(0) (X =T w0) + An(0)(X—i w1c) 12X — i (w1 + wpc) 182
X(X—i010) A(X—iw30) 2= [2X— i (w10 F wp) 12B° '

K(x)=

(1) For the pure imaginary root?=ib®), we havew; —b®<w,:

_wldlsm,'7 fs(x(l)) © @ i(wy—b )t+|kr_e iwyt+ikr

8mler G'(xM)Jo w— (w,—bW)

E®M dk
_ wldlsinr] f5(X(l))

1) _ @)
8mleor G’(x(l))(Ea mo) 9

mke—i(wl—b(l))tﬂkr
1
E(a )— f

—  dk
0 w—(w;—b™M)

k2 /
_ 0 We b
Wc wc—(wl—b(l))

_ _ w1
exp( —i(wy—bM)t+ikor —kor \/%lb)), (C4)

c

kgl’ ) 2\,.2
Kt ko | @ i(we kDK
:efiwct+ik0r+i(k(2)r2/4wct)foo 20t dk
2, \2
~ko— (K3rl20¢t) @ kgr
< +we—(w;—b®
kg 2wt 0o~ (01 )
. . C2
_ e’""cH'kOH'(kOrZM‘”Ct)(Egll)-i- E®), (CH

043809-12
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2
k+

+k —‘ wC/k)

Zwt

0

EW— f

L) - (20 @ k2r
— | kt5—
k3 2wt

k2 \/w— k2r? -t
= —_— i (o —(w—bM))— _ @~ (0w —0)
@We ( wc_(wl_b(l))+l X I(wc ((01 b ))t 4wct kor )

c

5 dk
+a)c—(wl—b(1))

2

o et e(37-r/4)i( pelma 4 2|<(Zrt kg o (0 kD)%t
0 c 1™ * c
x Y - ,
® 2(1)ct [OF ) fo a)c( (3 /4)| k2r 2 ( b(l)) dp
e —| tw.—(w—
k(z) p cht C 1
2
K+ 2k of +ko o i(wc /KKt
o w
E{y= J 2° > dk
F +2wt +w.— (w;—b')
0 C
2
e(w/4)i<pe(w/4)i+ 5 t+k0 e~ (o /kYpt
:f 2.\ 2 dp.
0 (O

( pe (71'/4)|

— +w.—(w;— b))
I(0

c

From Egs.(C3)—(C5), we can obtain

w3

C
[, (wl—b( ) k0r> wydising fs(xM) k2r2

. . . M0 .
exg —iwt+ikgr +i———
8mer G'(x) p[ <0

1 2 1
E(1)= w1d15|n77 f ( ( )) I(0 We +i e_i(wl_b(l))t+ik0rex —Ker [wc_(wl_b )
8megr  G'(xV) wc V w.—(w;—b®) 0 »

T
i
20t dot 4
2
(3ml4)i | — (g /K2 p2t — (wl4)i Kor — (oK) p2t
pe t+k0e c’®o/P - pe +2wt+k0e c/®o/P
dp+ i dp|, (C6)
Owc (3T | 2+w (@~ bD) ’ 0 e ef(w/4)i+k_ér2+w_(w — b ’
p 2% t c 1 k(z) p 20t c 1

where® (x) is the step function fok=0,0(x) =1 andx<0,0(x)=0. The first term represents a localized field at frequency
w,—bW. The size of the localized photon mode(lg\[ w.— (w;—b™)/w.]) . The second term will be zero as time
—00,

(2) For the complex roox®=a(®+ib®, we havea®<0, w;—b®>w

) wydising  f5(x?) wkexp(—i[(wl—b<2>)t—kr]+a<2)t)—e—i<wkt—ik”
8m2er  H'(x?)Jo

dk
wg—(w—b®)—ja®

(Uldlsin n f5(X(2))

8wt H'(x(?)

(EQP—ER), €2
043809-13
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, [“kexp(—i[(w—b®)t—kr]+a®t)
0 wg—(w;—b®)—ja®

(k+ko)e'

PHYSICAL REVIEW A 61 043809

=g (@1~ b@)t+aPriker J'w

dk

w
we—(w;—bP)—ia@+ K2

0
i k2 w w;—b¥— . +ia®@
0 \/ A 1 ex;{—i(wl—b(z))t+a(2)t+ik0r—ik0r\/ ! : , (C8
e wl—b(z)—wc+la(2) @e
» ke*iwk’[+ikr
-
0 wk_(wl_b( ))_la( )
2 2
2 R A
. ) . Ko * “e
=exp —iwt+ikor+i )j dk
p( ¢ O 4wt —ko= (K3 l2wct) @y kor |2 b2 _ia®@
_< +w.—(w;— -
@ | o) TeeTleamb T
kar?
:exr<—iwct+ik0r+i4z) t)(Eﬁfﬁ E2). (€9
C
2
Kt 0 ko e—i(wc/kg)kzt
2 0 2wt
Eor= —kg— (K2r2ot) @ kar \? o
0 lJJC c .
@c +w.— (w0 —b@)—ia®
ké( 2wt T (TP
i k2 ® ikar2 w;—b@—w +ia®
= : \/ : 1 eXF{_i(wl—b(z)—wc+ia(2))t_ o —ikor - :
we w,—b®—w +ia® 4ot @e
2
IREL ( peBmai kl +ko o (wc/kg)p’t
B 0 2wct dp
2.\ 2 '
0w amayi, KO @) —ia®@
2 pe to,q) Tee (0—b¥)—ia
0 Cc
2
] k+20 t+k° efi(wc/kg)kzt
E<2):J e dk
b2 2.\ 2
Owc( N kol’ n ( b(z)) ia(2)
— — we—(w1— —la
kS 2wt

We

i k2 \/ ik2r2 w1 -bP—w ria?®
=- +1]expg —i(w—b®—w +ia@)t— +ikor <
wc( 01— bD— g t+ia® )¢ (017D we a5 5 +iko

X0

w,—b@—w +ia®
(Im+Re)

kgr
— ()i ~(mla)i 4 0
= € (pe 2w

c We

2
o (wc/kg)p?t

+
tk0

c

We

Kor
)
Zth Owc

kS

From Egs.(C7)—(C9), we can obtain
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E2)_ wqdqsiny f5(x'<) Ik_o \/ w¢ 1
8megr  H'(x(?) ¢ w;—b®—w +ia®

_ w;—b@—w +ia® 01—b@—w+ia® ko
+ikor (Im+Re

exp( —i(w;—b@)t+ikor +a®t

)

e [OR 2wt
w,d;singy f5(x?) kar? 3
- T 5T o] —iwet+ikor +i g+
8m2eor H'(x() dot 4
kar K
) (pe(377/4)i+ 5ot Ko e (we kgt ) ( pe (Mt 22 i e~ (0c/kQp™
Cc Cc
. fow K2r |2 dp+f0w 2r\2 do -
—2°<pe<377/4>'+% +we— (w,—bM)—ia® —;<pe—<”’4>'+% +we— (0, —bM)—ia®
kO c 0 c
(C10
In the above equation, the second term decays to zero and can be neglectedtasdimEhe first term is a pulse.
(3) Similarly, we can obtain the contribution &©:
. w - i(wg—w)t—xBt _
E(O): wldlSInnJ dk _ k . e*iwkt+ika dX K(X) e ¢ 1
8m2epri Jo i 0 (= wc) —XB
. 1202
w1d;Siny ] . ikgre 3w, J'w N 2
=——————exp —iot+ikor+ ————i L (wctkop 11
877'36()“ \/I‘e th 0 4(1)Ct 4 0 (P)e dp1 (C )
where
kar Kar
@mid)iy O ~(mla)iy O
L(p):dex K(X) " TR ” TR
0 Dol o@ma)iy kor 2+- Dol o (mia)i kor 2+-
2\ e D) TIXP 2\ Pe Pgt) TIXB

The modulus of the functioh(p) is a limiting value, scE(®) decays to zero as time—».
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