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Spontaneous-emission enhancement and population oscillation in photonic crystals
via quantum interference
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Spontaneous emission from a V-type three-level atom in a photonic crystal is investigated. Quantum inter-
ference between the two atomic transitions affects the constructor of dressed states, and leads to an interesting
behavior of the populations in the two upper levels: antitrapping, periodic oscillation, and no population
inversion. Those properties depend strongly on the relative position of the upper levels from the forbidden gap
and the initial state of the atom, and differ from that of a two-level atom in a photonic crystal. The emitted
field, which is composed of localized mode~s! and propagating mode~s!, is also studied. Quantum interference
can enhance or reduce the energy of the localized field.

PACS number~s!: 42.50.Ct, 42.65.Sf, 42.50.Dv
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I. INTRODUCTION

Quantum interference is one of the basic features of qu
tum mechanics. In a multilevel atomic system, quantum
terference can lead to many unexpected effects, for exam
absorption reduction and cancellation and spontaneous e
sion reduction and cancellation@1–3#.

In recent years, there has been increasing interest in
spontaneous emission from an excited atom embedde
photonic crystals@4–8#. A photonic crystal is a manmad
periodic dielectric structure designed to influence the pro
gation of electromagnetic waves@9–11#. Periodic dielectric
structures can exhibit one~or more than one! full photonic
band gap~frequency region! in which propagating electro
magnetic waves are forbidden in all directions@9–11#. The
deformations of the dispersion characteristics of waves t
eling in a photonic crystal and the mode density of the el
tromagnetic field could lead to a number of distinctive qua
tum electrodynamics effects, which can be incorporated
designs of optoelectronic devices@12#. An excited atom in a
photonic crystal can form a photon-atom bound dressed s
when the atomic resonant frequency lies near the phot
band gap, which results in a fractional steady-state pop
tion in the excited state. Spontaneous emission from
atom displays quasioscillatory behavior instead of a sim
exponential decay if the atom is in a vacuum. The sponta
ous emission from aL three-level system was investigate
by John and Quang in Ref.@5#, and the emission spectrum
for an J three-level atomic system was studied by Bay a
Lambropoulos in Ref.@7#. In these studies, the authors a
sumed one transition to be near the band edge and the
to be near a flat background of radiation modes~i.e., the
vacuum!. In Ref. @6#, coherent control of spontaneous em
sion from aL or V three-level system was discussed. The
one transition frequency was assumed to be far inside
band gap, so that the related spontaneous emission wa
nored. Recently, a V three-level atomic system with two u
per levels emitting photons into the same continuum w
discussed@8#. The effect of quantum interference betwe
two transitions leads to quasiperiodic oscillations of t
population between two upper levels with large amplitud
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@8#. However, only a special case was considered in wh
the position of the cutoff frequency of the band edge is at
center of the two upper levels. We will show that atom
populations on the upper levels are constants or displa
periodic oscillation as time goes to infinity depending on t
relative position of cutoff to the two upper levels. There is
special position at which the populations are from constan
oscillation.

In the present paper, we investigate spontaneous emis
from a three-level atom, which has two upper levels coup
by the same modes to a lower level and is embedded
photonic crystal, and we study how quantum interferen
affects the spontaneous emission process. The depende
of the interference on the relative position of the upper lev
the band gap and initial conditions of the atom are discuss
Due to quantum interference between the two atomic tra
tions, the two upper levels split into dressed states in a c
bining fashion. The emitted field has been calculated in
tail, and the emitted field is composed of two parts:
localized field and a traveling field. The localization distan
of the localized field, the energy velocity, and the phase
locity of the propagating field are given. It is found th
quantum interference can enhance or reduce the energ
the localized field. The populations trapped in the two up
levels display some interesting behaviors:~1! Antitrapping.
The quantum interference between the two decay proce
may transfer all the energy of the localized field into t
propagating field, and the population in the ground level c
not jump back to the two upper levels without a localiz
field. ~2! Periodic oscillation. The quantum interference be
tween two localized modes may lead to population excha
between the two upper levels, and the populations displa
periodic oscillatory behavior.~3! No population inversion.
Due to the quantum interference, the population in the low
level may come back to both upper levels by absorbing
emitted photon. As the frequency of the localized field
closer to the second upper level, more population jumps b
to this level, and inversion cannot occur.

This paper is organized as follows: In Sec. II, the ba
theory to investigate the spontaneous emission is given
Sec. III, the quantum interference effects on the atomic sp
©2000 The American Physical Society09-1
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YAPING YANG AND SHI-YAO ZHU PHYSICAL REVIEW A 61 043809
ting are studied. In Sec. IV, we pay attention to the radia
field of the excited atom. The populations in the upper lev
are studied in Sec. V.

II. BASIC THEORY

We consider a three-level atom as shown in Fig. 1. I
placed in a photonic crystal, and has two upper levelsua1&
and ua2& which are coupled by the same vacuum modes
the lower levelua3&. The resonant transition frequencies b
tween levelsua1&, ua2&, and ua3& are v1 and v2, and are
assumed to be near the edge of a band. There is, therefo
strong quantum interference between two transitions fr
each upper level to the lower level. The Hamiltonian of t
system decrying the spontaneous emission of the exc
atom can be written as

Ĥ5H01HI ,

H05\v1ua1&^a1u1\v2ua2&^a2u1(
k

\vkbk
†bk , ~1!

HI5 i\(
k

@gk
(1)bk

†ua3&^a1u1gk
(2)bk

†ua3&^a2u2gk
(1)bkua1&

3^a3u2gk
(2)bkua2&^a3u#.

Here,bk and bk
† are the annihilation and creation operato

for the kth vacuum mode with frequencyvk . gk
(1,2) are the

coupling constants between thekth vacuum mode and th
atomic transitions fromua1& and ua2& to ua3&, and are as-
sumed to be real:gk

( i )5(v idi /\)(\/2e0vkV)1/2eW k•uW i . k rep-
resents both the momentum and polarization of the vacu
mode.uW i are the unit vectors of the atomic dipole momen
The energy of the lower level has been set to zero. The s
vector of the system at timet may be written as

FIG. 1. A three-level atom.
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uc~ t !&5@A1~ t !e2 iv1tua1&1A2~ t !e2 iv2tua2&] u0& f

1(
k

Bk~ t !e2 ivktua3&u1k& f , ~2!

where the state vectorsua1&u0& f and ua2&u0& f describe the
atom in its excited statesua1& and ua2&, with no photons
present in any vacuum mode, and the state vectorua3&u1k& f
describes the atom in its ground state and a single photo
the kth mode with frequencyvk . We assume the atom i
initially in the upper levels, i.e.,uA1(0)u21uA2(0)u251 and
Bk(0)50. In a photonic crystal, the dispersion character
tics of radiation waves are deformed@4,5#. Near the band
edge, they may be expressed approximately by

vk5vc1A~k2k0!2, ~3!

where A is constant coefficient,A5vc /k0
2. From the Schro¨-

dinger equation, we can obtain the following first-order d
ferential equations for the amplitudes:

]

]t
A1,2~ t !52(

k
gk

(1,2)Bk~ t !e2 i (vk2v1,2)t, ~4a!

]

]t
Bk~ t !5gk

(1)A1~ t !ei (vk2v1)t1gk
(2)A2~ t !ei (vk2v2)t.

~4b!

With the help of the Laplace transform, we can solve t
above two equations. The Laplace transformsA(1,2)(s) for
the amplitudesA(1,2)(t) are found:

A1~s!5
A1~0!~s2 iv121G22!2A2~0!G12

~s1G11!~s2 iv121G22!2~G12!
2

, ~5a!

A2~s2 iv12!5
A2~0!~s1G11!2A1~0!G12

~s1G11!~s2 iv121G22!2~G12!
2

. ~5b!

Here Gmn5(k„(gk
(m)gk

(n))/@s2 i (v12vk)#…, (m,n51,2)
and v125v12v2. Using the dispersion relation, and co
verting the mode sum over transverse plane waves into
integral and performing the integral, we have

G115
b1

3/2

iA2 is2v1c

, ~6a!

G225
b2

3/2

iA2 is2v1c

, ~6b!

G1255
~b1b2!3/4

iA2 is2v1c

~parallel!

2
~b1b2!3/4

iA2 is2v1c

~antiparallel!

0 ~orthogonal!,

~6c!
9-2
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FIG. 2. The region for these
roots and atomic splitting;~a! the
parallel case;~b! the orthogonal
case.
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where b j
3/25@(v jdj )

2/6pe0\#(k0
3/vc

3/2) ( j 51,2), v1c5v1

2vc , and v2c5v22vc ~see Appendix A!. Note that the
phase angle ofA2 is2v1c in Gm,n has been defined
2p/2,arg(A2 is2v1c),p/2.

In the following discussion, we assume that the atom
dipole moments of two transitionsua1,2&→ua3& are parallel
to each other, andgk

(1)5gk
(2)5gk for simplicity. So we have

b15b25b and G115G225G125G. If the two dipole mo-
ments are antiparallel to each other, the corresponding
mulas are similar to changingA2(0) to 2A2(0), and the
same results will be obtained. If they are orthogonal to e
other, the three-level system is a simple combination of t
two-level systems@5#. In the parallel or antiparallel case
there is quantum interference between the two transitio
04380
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but for the orthogonal case the quantum interference betw
the two transitions does not exist.

The amplitudesA1(t) and A2(t) can be calculated by
means of the inverse Laplace transforms

A1~ t !5
1

2p i Es2 i`

s1 i`

A1~s!estds, ~7a!

A2~ t !5
e2 iv12t

2p i E
s2 i`

s1 i`

A2~s2 iv12!e
stds, ~7b!

wheres is a real constant that exceeds the real part of all
singularities ofA(s).
9-3



ex
s
a-
d
v
s
e

nd
o

s

ry
g
d

i

y
g

re

ca

ot
ne
gi-

d

the

ce

nd

d is

on

nd

l

:

YAPING YANG AND SHI-YAO ZHU PHYSICAL REVIEW A 61 043809
In Appendix B, we show that the poles of the compl
integral functions@Eq. ~7!# are important in the calculation
of A1,2(t) andBk(t), and are directly related to the popul
tions of two upper levels and the emitted field. So we nee
discuss the poles. How many poles do the functions ha
What are their values? What are the effects of these pole
the emitted field? According to Appendix B, the poles w
consider are~1! the roots of the equation

s~s2 iv12!1
~2s2 iv12!b

3/2

iA2 is2v1c

50 ~8a!

in the region„Im(s).v1c or Re(s).0…; and~2! the roots of
the equation

s~s2 iv12!1
~2s2 iv12!b

3/2

Ais1v1c

50 ~8b!

in the region„Im(s),v1c , and Re(s),0….
With the help of numerical calculations, we have fou

there are at least two roots, and at most three roots. Th
roots can be classified into two types:~i! pure imaginary
roots, which are the roots of Eq.~8a! with their imaginary
parts larger thanv1c , which correspond to localized mode
in the emitted field@8#; and~ii ! complex roots, which are the
roots of Eq.~8b! with a negative real part and an imagina
part smaller thanv1c which correspond to a propagatin
mode in the emitted field@5,8#. The number of the roots an
their values depend on the relative position of the atom
upper levels from the band edge (v1c andv2c). For the pure
imaginary roots of Eq.~8a!, it has been proven analyticall
that we can have one pure imaginary root or two pure ima
nary roots. Ifv1c>v12/2, we have one and only one pu
imaginary rootib1

(1) , which is in the range

b1
(1).max~v1c ,v12!. ~9a!

If v1c,v12/2, there are two pure imaginary rootsib1
(1) and

ib2
(1) , which are in the ranges

b1
(1).v12 ~9b!

v12

2
.b2

(1).max~0,v1c!. ~9c!

According to the numbers and the values of the roots, we
have four cases, as shown in Fig. 2~a!. In region I, only two
04380
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pure imaginary roots exist. In region II, one complex ro
and two pure imaginary roots exist. In region III, there is o
complex root and one pure imaginary root. One pure ima
nary root and two complex roots exist in region IV.

After having A1,2(t), the populations on the two excite
states can be obtained by

P15uA1~ t !eiv1tu25uA1~ t !u2, ~10a!

P25uA2~ t !e2 iv2tu25uA2~ t !u2. ~10b!

Bk(t) can be also obtained from Eqs.~4! and ~7!. Certainly,
such calculations are complicated, and detailed steps and
results are given in Appendix B.

The amplitude of the radiated field at a particular spa
point r is @13#

E~r ,t !5
v1d1sinh

8p2e0ri
E

0

`Bk~ t !

gk
ke2 i (vkt2kr)dk, ~11!

whereh is the angle between the atomic dipole vector a
the rW vector. Equation~11! is valid in the far field. It can be
seen that in the far-zone approximation, the radiated fiel
polarized in thex direction.

III. ATOMIC SPLITTING

With the help of residues at poles of a complex functi
~see Appendix B!, the amplitude can be rewritten as

A1~ t !5(
j

f 1~xj
(1)!

G8~xj
(1)!

eib j
(1)t1(

j

f 2~xj
(2)!

H8~xj
(2)!

3e(aj
(2)

1 ib j
(2))t2R1~ t !, ~12a!

A2~ t !5e2 iv12tF(
j

f 3~xj
(1)!

G8~xj
(1)!

eib j
(1)t

1(
j

f 4~xj
(2)!

H8~xj
(2)!

e(aj
(2)

1 ib j
(2))tG2R2~ t !, ~12b!

where xj
(1)5 ib j

(1) represents the pure imaginary root, a

xj
(2)5aj

(2)1 ib j
(2) is the complex root with a negative rea

part. The functionsf j (x), G8(x), andH8(x) are defined in
Appendix B, and the functionsf j (x) are related to both
A1(0) andA2(0). ThefunctionsR(t) are defined as follows
R1~ t !5
eiv1ctb3/2

pAi
E

0

`Ax~x2 iv2c!@A1~0!~x2 iv2c!1A2~0!~x2 iv1c!#

x~x2 iv1c!
2~x2 iv2c!

22 i @2x2 i ~v1c1v2c!#
2b3

e2xtdx,

R2~ t !5
eiv2ctb3/2

pAi
E

0

`Ax~x2 iv1c!@A1~0!~x2 iv2c!1A2~0!~x2 iv1c!#

x~x2 iv1c!
2~x2 iv2c!

22 i @2x2 i ~v1c1v2c!#
2b3

e2xtdx.
9-4
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R1(t) andR2(t) come from the integration along the cut
the single-valued branches, and they decay to zero for lart.

From Eqs.~12a! and ~12b!, we can see that the uppe
levels ua1& and ua2& split into dressed states~due to the
strong interaction between the atom and its own radia
field @5,8#! in a combinating fashion due to the interferen
between the two transitions from two upper levels to
lower level. It is very clear that each dressed state is a c
bination of both upper levels; see the inset schemes in
2~a!.

If the two dipole moments are orthogonal to each oth
the amplitudes can be calculated by

Aj
T~ t !5Aj~0!H esj

(1)t

Gj
T~sj

(1)!
1

esj
(2)t

H j
T~sj

(2)!
2Rj

TJ ~ j 51,2!

~13!

where functionsGj
T(s), H j

T(s), andRj
T are defined as

Gj
T~s!511

b3/2

2~A2 is2v jc!3
,

H j
T~s!512

ib3/2

2~Ais1v jc!3
,

Rj
T5

b3/2e2 iv jct

p i 1/2 E
0

` Ase2st

s~2s1 iv jc!22 ib3/2
ds.

sj
(1) is the pure imaginary root of the equations

1(b3/2/ iA2 is2v jc)50 in the range„Im(s).v jc… and al-
ways exists.sj

(2) is the complex root of the equations
1(b3/2/Ais1v jc)50 in the region„Im(s),v jc and Re(s)
,0…, and exists only whenv jc.20.7937b @5#. From Eqs.
~4! and~13! we know that the upper levelsuaj& ( j 51,2) will
also split into two dressed states whenv jc&20.7937b, but
there is no mixing of the two upper levels. The details of t
splitting are plotted in Fig. 2~b!.

Comparing Eqs~12a! and~12b! with Eq. ~13!, we can find
that Aj (t) is related to bothA1(0) andA2(0), but Aj

T(t) is
related only toAj (0). Thedistinction comes from the quan
tum interference between the two transitions. For the para
dipoles, the population in one upper level can decay to
lower level, and then jump to the either upper level by a
sorbing the photon emitted in the previous decay proc
however, for the case of orthogonal dipole moments, it
only jump back to the level where it originates.

The quantum interference between the two transiti
strongly affects the atomic splitting~formation of the dressed
states!. The effects on the splitting are plotted in Figs. 2~a!
and 2~b! ~see the insets for the parallel and orthogonal ca
respectively!. Without interference~orthogonal case! the
splitting is separated. As contrasted with the case of para
dipole moments, each dressed state consists only of on
the two upper levels. In the parallel case, both upper lev
make contributions to each dressed state due to the inte
ence.
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IV. EMITTED FIELD

From Appendixes B and C, the radiated field can be w
ten as

E~r ,t !5E1
(1)1E2

(1)1E1
(2)1E2

(2)1E(0). ~14!

Ej
(1) ( j 51,2) comes from the pure imaginary roots. If the

is no second pure imaginary root,E2
(1) will be zero;Ej

(2) ( j
51,2) comes from the complex roots. If these complex ro
do not exist, the relevantEj

(2) will vanish. E(0) is some inte-
gration; the exact result cannot be found. From their expr
sion formulas in Appendixes B and C, it can be proven t
E0 decays to zero as time goes to infinity.

In region I of Fig. 2~a!, there are only two pure imaginar
rootsx1

(1)5 ib1
(1) andx2

(1)5 ib2
(1) ~no complex root!, and the

amplitude of the emitted field can be expressed asE(r ,t)
5E1

(1)1E2
(1)1E0, whereE1

(1) andE2
(1) come from the pure

imaginary rootsib1
(1) and ib2

(1) , respectively. According to
Appendix C,Ej

(1) can be written as

Ej
(1)~r ,t !52

v1d1sinh

8pe0r

f 5~xj
(1)!

G8~xj
(1)!

k0
2

vc

3SA vc

vc2~v12bj
(1)!

1 i D e2 i (v12bj
(1))t1 ik0r

3expS 2k0rAvc2~v12bj
(1)!

vc
D

3QSAvc2~v12bj
(1)!

vc
t2

k0r

2vc
D , ~15!

whereQ(x) is the step function:

Q~x!5H 0, x,0

1, x>0.

Ej
(1) ( j 51,2) is localized near the atom, and do not trav

away from the atom. TheEj
(1)’s represent two localized

modes, which form the localized field. Their frequencies
v12b1

(1) andv12b2
(1) , which both are within the band gap

The amplitude ofEj
(1)(r ,t) ( j 51 or 2! does not decay in

time, and is proportional to

sinh

r SA vc

vc2~v12bj
(1)!

1 i D ,

and drops exponentially ase2r / l j , wherel j is the localization
distance:

l j5
1

k0
A vc

vc2~v12bj
(1)!

.

The two pure imaginary roots can be written asib1
(1) and

ib2
(1) , with b1

(1).b2
(1) , and consequently the localization di

tancesl 1 and l 2 satisfy l 1, l 2.
9-5
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In region II, there are two pure imaginary rootsx1
(1)

5 ib1
(1) and x2

(1)5 ib2
(1) , and one complex rootx1

(2)5a1
(2)

1 ib1
(2) . The field E(r ,t) can be rewritten asE(r ,t)5E1

(1)

1E2
(1)1E1

(2)1E(0). E1
(1) and E2

(1) come from the two pure
imaginary roots, and do not decay in time. They are t
localized modes of the localized field, and take the form
Eq. ~15!. E1

(2) comes from the complex root, and can
written as

E1
(2)52

v1d1sinh

8pe0r

f 5~x1
(2)!

H8~x1
(2)!

ik0
2

vc

3SA vc

v12b1
(2)2vc1 ia1

(2)
11D

3expS 2 i ~v12b1
(2)!t1 ik0r 1a1

(2)t

1 ik0rAv12b1
(2)2vc1 ia1

(2)

vc
D

3QS ~ Im1Re!Av12b1
(2)2vc1 ia1

(2)

vc
t2

k0r

2vc
D .

~16!

The frequency ofE1
(2)(r ,t) is v12b1

(2) , which is within
transmitting band, and it represents a propagating mode,
travels away from the atom in the form of traveling pulse

In region III, we have one pure imaginary rootib1
(1) and

one complex roota1
(2)1 ib1

(2) , andE(r ,t) can be obtained a
E(r ,t)5E1

(1)1E1
(2)1E(0), one localized modeE1

(1) , and one
propagating modeE1

(2) . In region IV, there are two comple
roots and one pure imaginary root. That is to say we h
two propagating modes and one localized mode.

If the imaginary part of a root isb, the frequency of the
field emitted by the atom isv12b @see Eqs.~15! and ~16!#.
For the pure imaginary rootib j

(1) , the emitted field is a lo-
calized mode with frequencyv12bj

(1),vc in the gap. For
the complex rootaj

(2)1 ib j
(2) , the emitted field is a propaga

ing mode with a frequencyv12bj
(2).vc in the band.

Thus the radiated field may be characterized by th
components: the localized field, the propagating field, an
decaying field. There are two modes localized in the loc
ized field asv1c,2v2c , and one mode localized asv1c
>2v2c . In the propagating field, there are two propagat
modes for region IV, one mode for regions II and III, and
propagating mode for region I. If we change the relat
position of the upper levels of the atom and the forbidd
gap from region I to regions II and III, and then region IV
we can switch the emission from no traveling pulse to o
traveling pulse and then two traveling pulses. Such a pr
erty may be used to design active optoelectronic switche

V. POPULATIONS IN THE TWO UPPER LEVELS

The spontaneous decay from the two upper levels and
evolution of the atom population are greatly influenced
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the interference. This influence can be observed by exam
ing the populations in the two upper levels, which arePj

5uAj (t)u2 ( j 51,2) for the parallel case andPj5uAj
T(t)u2 for

the orthogonal case.
Let us analyze the roles of the quantum interference in

steady-state atomic populationsP10 and P20 in upper levels
with various initial states and with different relative positio
of the upper levels from the forbidden gap. As time goes
infinity, only the first terms in Eqs.~12a! and ~12b! contrib-
ute to the populations, and other terms can be neglected

P105U (
j 51,2

f 1~xj
(1)!exj

(1)t

G8~xj
(1)!

U2

, P205U (
j 51,2

f 3~xj
(1)!exj

(1)t

G8~xj
(1)!

U2

.

~17!

Using the relation

xj
(1)~xj

(1)2 iv12!1
~2xj

(1)2 iv12!

iA2 ix j
(1)2v1c

50,

we can write the functionsf 1 and f 3 as

f 1~xj
(1)!5

xj
(1)2 iv12

2xj
(1)2 iv12

@A1~0!~xj
(1)2 iv12!1A2~0!xj

(1)#,

~18!

f 3~xj
(1)!5

xj
(1)

2xj
(1)2 iv12

@A1~0!~xj
(1)2 iv12!1A2~0!xj

(1)#.

~19!

There are two types of interference:~1! the interference be-
tween two upper levels, which is proportional
A1(0)A2(0)* x1

(1)* (x1
(1)2 iv12) @see Eqs.~18! and~19!#, and

~2! the interferences between two dressed states, which

proportional tof 1(x1
(1))ex1

(1)t and f 1* (x2
(1))ex2

(1)* t when there
are two dressed states@see Eq.~17!#. These two types of
interference could lead to some new phenomena which
different from what we have obtained in a two-level syste

A. Complete decay of populations

It is well known for a two-level system that some pop
lation is trapped in the upper level due to the existence o
localized field emitted by the two-level system@5#. In the
present three-level system, the localized field can be
hanced or reduced by the interference. The energy in
localized field depends on the interference. The populati
in the two upper levels are proportional touA1(0)(b1

(1)

2v12)1A2(0)b1
(1)u2 for v1c>2v2c @see Eqs.~17!–~19!;

x1
(1)5 ib1

(1) is the pure imaginary root#. Because of the first
type of interference, a complete interference can resul
uA1(0)(b1

(1)2v12)1A2(0)b1
(1)u250 as @A1(0)/A2(0)#5

2@b1
(1)/(b1

(1)2v12)#. In this case, the populations in the tw
upper levels can both be equal to zero, which means a c
plete decay of the upper levels~see Fig. 3!.
9-6
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In fact, the energy of localized field is also proportional
uA1(0)(b1

(1)2v12)1A2(0)b1
(1)u2 @see Eq.~15!#. We can see,

when the initial phase difference is in the region 0<uf1

2f2u,p/2 @A1(0)5uA1(0)ueif1,A2(0)5uA2(0)ueif2#, that
the quantum interference enhances the energy of the lo
ized field; when the initial phase difference is in the regi
p/2,uf12f2u<p, the quantum interference reduces t
energy of the localized field. When@A1(0)/A2(0)#5

2@b1
(1)/(b1

(1)2v12)#, the interference will transfer all energ
of the localized field into the propagating field. When t
populations in the upper levels have decayed to a lo
level, the atom cannot jump back to the upper levels with
a localized field. When the energy of the localized field
reduced to zero by quantum interference, the population
stay in the lower level forever. Therefore, there is no po
lation in the upper levels in the steady state.

Obviously, such a result is significantly different from th
orthogonal case~or two-level case!, where quantum interfer
ence between two transitions does not exist. There is alw
a localized field for each upper level. Thus the population
one upper level can decay to a lower level, and then
jump back to the same upper level due to the localized fi
From Eq. ~13!, we can obtain the populationPj 0

T for the
orthogonal case; that is,Pj 0

T 5u@Aj (0)/Gj
T(sj

(1))#u2. A1(0)
andA2(2) are not equal to zero at the same time, so there
fractionalized steady-state atomic population in the exc
states~shown in Fig. 3!.

B. No population inversion

For the orthogonal case, the ratio of the final populatio
in the upper levels is

FIG. 3. The time evolution of the upper-level populationsP1(t)
and P2(t), with v125b, v1c50.9b, and uC(0)&50.8693ua1&
20.4942ua2&. P1(t) and P2(t) in the parallel case~long-short-
dashed curve and long-short-short-dashed curve, respectively!, and
P1(t) and P2(t) in the orthogonal case~short-dotted curve and
dotted curve, respectively!.
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P10
T

P20
T

5UA1~0!

A2~0!

G2
T~s2

(1)!

G1
T~s1

(1)!
U2

.

For any relative positionv1c or v2c , we can always obtain
the final population inversion between the two upper lev
through initial population inversion@for example,A151 or
A2(0)50#.

For the parallel case, the quantum interference affects
populations in the upper level, and leads to no final popu
tion inversion between the two upper levels. Whenv1c>
2v2c , the ratio of the final populations in the upper levels
independent of the initial condition, and can be obtain
from Eqs.~17!–~19!,

P10

P20
5Ub1

(1)2v12

b1
(1) U2

.

From range~9a! of b1
(1) , we know thatP10/P20,1. That is

to say, the population inversion does not exist in the cas
v1c>2v2c , even when the initial conditions areA1(0)
51 andA2(0)50 ~see Fig. 4!.

This is due to the quantum interference. Due to the ex
tence of the localized field, the population in the lower lev
can jump back to the upper level. Due to quantum interf
ence, the population in the lower level can come back to b
upper levels by absorbing the emitted photon. The popu
tion in one upper level decays to the lower level, and th
jumps in part back to the upper levelua1& and in part back to
the upper levelua2&. As the frequency level of the localize
field is closer to levelua2& than to levelua1&, the localized
field leads to more population to the upper levelua2&. Con-
sequently, the final population inua2& is always larger than
that in ua1&.

FIG. 4. The time evolution of the upper-level populations for t
parallel case withv125b, v1c50.8b, anduC(0)&5ua1& .
9-7
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C. Periodic oscillation

When v1c,2v2c , there are two dressed states with
decay. The quantum interference between the two dre
states leads to periodic oscillatory behaviors of the pop
tion trapping in the upper two levels for large timet. The
amplitudes of the periodic oscillations do not decrease
time ~shown in Fig. 5!. From Eqs.~17!–~19!, we obtain the
following results:~1! The period of the oscillations for bot
populations is 2p/(b1

(1)2b2
(1)). ~2! The amplitudesK1 ~for

ua1&) andK2 ~for ua2&) of the two periodic oscillations de
pend on the initial state. But the ratio of the amplitudes
independent of the initial state, that is

K1

K2
5

~b1
(1)2v12!~v122b2

(1)!

b1
(1)b2

(1)
,1.

~3! The phase difference of the two periodic oscillations isp,
and the phase angle of the total population in the exc
states is the same as that of the upper levelua2&. The periodic
oscillation and phase-difference property mean that pop
tion exchange between the two upper levels always exis

Actually, such a period oscillation of the populations
due to the existence of two different population exchan
between two upper levels, which are caused by the quan
interferences and two localized field. Whenv1c,2v2c ,
two pure imaginary rootsib1

(1) and ib2
(1) exist. In the above

discussion we know that the population exchange, whic
caused by the localized field related toib1

(1) leads to more
population trapping in the upper levelua2&. But the popula-
tion exchange, which is caused by the localized field rela
to ib2

(1) , will lead to more population trapping in the upp
level ua1&. The influence between two population exchang
results in the periodic oscillation.

When the two dipole moments are orthogonal, there is
quantum interference between the two transitions, and

FIG. 5. The time evolution of the upper-level populations for t
parallel case withv125b, v1c52b, and uC(0)&5(1/A2)(ua1&
1ua2&).
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population exchange between the upper levels is not pres
The fractional steady-state atomic populations are trappe
the two upper states.

From the above discussion, we can also see that the p
lations on the upper levels for large time are constant
v1c>2v2c , and display a periodic oscillation ifv1c,
2v2c . Therefore, the position corresponding tov1c5
2v2c is the critical position from constant to oscillation.

VI. CONCLUSION

We studied spontaneous emission from aV-type three-
level atom in a photonic crystal. If the dipole moments of t
two transitions are parallel, we have strong quantum inter
ence between the two transitions. The dependence of
atomic population on the interference has been discus
We found that the complete decay of the upper-level po
lation, the impossibility of population inversion for the atom
and the periodic oscillation of the population are clea
proof of quantum interference effects. We also calculated
radiation field emitted by the atom. There is surely one
calized mode~possibly two!. The radiation field may contain
zero or one or two traveling pulse~s! depending on the rela
tive position between the upper levels and the band ed
This might be used to design an active microsized opt
switch.
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APPENDIX A: CALCULATION OF Gm,n

The coupling constantsgk
( j )( j 51,2) may be written in the

form

g( j )5
v jdj

\ S \

2e0vkV
D 1/2

eW k•uW j , ~A1!

whereuW j are the unit vectors of the atomic dipole momen
andeW k[eW k,s are the two transverse unit vectors.

We first calculateG1,1:

G115(
k

gk
(1)gk

(1)

s2 i ~v12vk!

5
~v1d1!2

2e0\V (
k

uW 1•uW 12
~kW•uW 1!~kW•uW 1!

k2

vk@s2 i ~v12vk!#
. ~A2!

Assuming kW5(k sinu cosf,ksinu sinf,kcosu), uW 1
5(0,0,1), we obtain
9-8
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G115
~v1d1!2

2e0\V (
k

sin2u

vk@s2 i ~v12vk!#

5
~v1d1!2

6e0\p2E0

` k2dk

vk@s2 i ~v12vk!#
. ~A3!

Here we have replaced the sum by an integral via(k→@V/(2p)3#*d3k. Using the dispersion characteristicsvk5vc

1(vc /k0
2)(k2k0)2, we can obtain

G115
~v1d1!2

6e0\p2E0

` k2dk

S vc1vc

~k2k0!2

k0
2 D F s2 i ~v12vc!1 ivc

~k2k0!2

k0
2 G

.
~v1d1!2

6e0\p2

k0
2

vc
E

2`

` dk

s2 i ~v12vc!1 ivc

k2

k0
2

5
b1

3/2

iA2 is2~v12vc!
, ~A4!
e

r

he

he
whereb1
3/25@(v1d1)2/6pe0\#(k0

3/vc
3/2), and the phase angl

is defined as2p/2,argA2 is2(v12vc),p/2.
Similarly, G22 can be worked out:

G225
b2

3/2

iA2 is2~v12vc!
, ~A5!

whereb2
3/25@(v2d2)2/6pe0\#k0

3/vc
3/2.

When the two dipole moments of the two transitions a
parallel to each other, i.e.,uW 15uW 2:

G125(
k

gk
(1)gk

(2)

s2 i ~v12vk!

5
v1d1v2d2

2e0\V (
k

~eW k•uW 1!~eW k•uW 2!

vk@s2 i ~v12vk!#

5
~b1b2!3/4

iA2 is2~v12vc!
. ~A6!

When the two dipole moments are antiparallel to each ot
i.e., uW 152uW 2:

G1252
~b1b2!3/4

iA2 is2~v12vc!
. ~A7!

When the two dipole moments are orthogonal to each ot
i.e., uW 15(0,0,1) anduW 25(1,0,0),G12 will be zero:
04380
e

r,

r,

G125
v1d1v2d2

2e0\V (
k

~eW k•uW 1!~eW k•uW 2!

vk@s2 i ~v12vk!#

52
v1d1v2d2

16p3e0\
E

0

`E
0

pE
0

2pk2sin2u cosu cosf dk du df

vk@s2 i ~v12vk!#

50. ~A8!

HenceGmn can be written as follows:

G115
b1

3/2

iA2 is2~v12vc!
,

G225
b2

3/2

iA2 is2~v12vc!
, ~A9!

G1255
~b1b2!3/4

iA2 is2~v12vc!
~parallel!

2
~b1b2!3/4

iA2 is2~v12vc!
~antiparallel!

0 ~orthogonal!.

APPENDIX B: CALCULATION OF A „1…
„T…, A „2…

„T…,
AND Bk„T…

We now define some functions as follows:

f 1~x!5A1~0!~x2 iv12!1
„A1~0!2A2~0!…b3/2

iA2 ix2v1c

,

9-9
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f 2~x!5A1~0!~x2 iv12!1
„A1~0!2A2~0!…b3/2

Aix1v1c

,

f 3~x!5A2~0!x1
„A2~0!2A1~0!…b3/2

iA2 ix2v1c

,

f 4~x!5A2~0!x1
„A2~0!2A1~0!…b3/2

Aix1v1c

,

f 5~x!5„A1~0!1A2~0!…x2 iA1~0!v12,

G~x!5x~x2 iv12!1
~2x2 iv12!b

3/2

iA2 ix2v1c

,

H~x!5x~x2 iv12!1
~2x2 iv12!b

3/2

Aix1v1c

.

For G(x),H(x), we have

G8~x!52x2 iv121
2b3/2

iA2 ix2v1c

1
~2x2 iv12!b

3/2

2~A2 ix2v1c!
3

,

H8~x!52x2 iv121
2b3/2

Aix1v1c

2
~2x2 iv12!ib

3/2

2~Aix1v1c!
3

.

Using the inverse Laplace transform, we obtain

FIG. 6. The integration contours for Eq.~B1!.
04380
A1~ t !5
1

2p i Es2 i`

s1 i`

A1~s!estds

5
1

2p i Es2 i`

s1 i` f 1~x!

G~x!
extdx

5(
j

f 1~xj
(1)!

G8~xj
(1)!

exj
(1)t

2
1

2p i F E2` i 20

v1ci 20

1E
v1ci 10

2` i 10G f 1~x!

G~x!
extdx, ~B1!

wherexj
(1) are the roots of the equationG(x)50, the real

numbers is chosen so thatx5s lies to the right of all the
singularityxj

(1) . The integration contours are shown in Fi
6:

FIG. 7. The integration contours for Eq.~B2!.

FIG. 8. The integration contours for Eq.~B3!.
9-10



re

g.

SPONTANEOUS-EMISSION ENHANCEMENT AND . . . PHYSICAL REVIEW A61 043809
1

2p i E2` i 20

v1ci 20 f 1~x!

G~x!
extdx

5(
j

f 1~xj
(1)!

G8~xj
(1)!

exj
(1)t2

eiv1ct

2p i E0

` A1~0!Ax~x2 iv2c!1„A1~0!2A2~0!…Aib3/2

Ax~x2 iv1c!~x2 iv2c!1@2x2 i ~v1c1v2c!#Aib3/2
e2xtdx. ~B2!

Note that herexj
(1) are the roots ofG(x)50 in the region Im(x),v1c and Re(x),0. The second integration contours a

shown in Fig. 7,

1

2p i Ev1ci 10

2` i 10 f 1~x!

G~x!
extdx5

1

2p i Ev1ci

2` i f 2~x!

H~x!
extdx

52(
j

f 2~xj
(2)!

H8~xj
(2)!

exj
(2)t1

eiv1ct

2p i

3E
0

` A1~0!Ax~x2 iv2c!2„A1~0!2A2~0!…Aib3/2

Ax~x2 iv1c!~x2 iv2c!2@2x2 i ~v1c1v2c!#Aib3/2
e2xtdx, ~B3!

wherexj
(2) are the roots ofH(x)50, and satisfy Im(xj

(2)),v1c and Re(xj
(2)),0. The integration contours are shown in Fi

8.
Substituting Eqs.~B2! and ~B3! into Eq. ~B1!, we have

A1~ t !5(
j

f 1~xj
(1)!

G8~xj
(1)!

exj
(1)t1(

j

f 2~xj
(2)!

H8~xj
(2)!

exj
(2)t

2
eiv1ctb3/2

pAi
E

0

`Ax~x2 iv2c!@A1~0!~x2 iv2c!1A2~0!~x2 iv1c!#

x~x2 iv1c!
2~x2 iv2c!

22 i @2x2 i ~v1c1v2c!#
2b3

e2xtdx. ~B4!

In Eq. ~B4!, xj
(1) are the roots ofG(x)50 in the region Im(xj

(1)).v1c or Re(xj
(1)).0; xj

(2) are the roots ofH(x)50 in the
region Im(xj

(2)),v1c and Re(xj
(2)),0.

Similarly, A2(t) takes the following form:

A2~ t !5e2 iv12tF(
j

f 3~xj
(1)!

G8~xj
(1)!

exj
(1)t1(

j

f 4~xj
(2)!

H8~xj
(2)!

exj
(2)tG

2
eiv2ctb3/2

pAi
E

0

`Ax~x2 iv1c!@A1~0!~x2 iv2c!1A2~0!~x2 iv1c!#

x~x2 iv1c!
2~x2 iv2c!

22 i @2x2 i ~v1c1v2c!#
2b3

e2xtdx. ~B5!

From Eqs.~4!, ~B4!, and~B5!, we can obtain

Bk~ t !5gk(
j

S f 5~xj
(1)!

G8~xj
(1)!

•

ei (vk2v1)t1xj
(1)t21

i ~vk2v1!1xj
(1) D 1gk(

j
S f 5~xj

(2)!

H8~xj
(2)!

•

ei (vk2v1)t1xj
(2)t21

i ~vk2v1!1xj
(2) D

2
gkb

3/2

pAi
E

0

`ei (vk2vc)t2xt21

i ~vk2vc!2x

Ax@A1~0!~x2 iv2c!1A2~0!~x2 iv1c!#@2x2 i ~v1c1v2c!#

x~x2 iv1c!
2~x2 iv2c!

22 i @2x2 i ~v1c1v2c!#
2b3

dx. ~B6!

APPENDIX C: CALCULATION OF THE RADIATED FIELD

The amplitude of the radiated field at a particular space pointrW is

EW ~rW,t !5(
k
A \vk

2e0V
e2 i (vkt2kW•rW)Bk~ t !eW k

5
v1d1

16p3e0
E

0

`

k2
Bk~ t !

gk
e2 ivktdkE

0

2p

dfE
0

p

sinueikW•rWS uW 2
kW~kW•uW !

k2 D du,
043809-11
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where we have replaced the sum by an integral via(k
→(V/2p3)*d3k. We assume that the electric dipole is in t
x-z plane, andrW is parallel to thez axis. The vectorskW anduW
can be defined in polar coordinates by

kW5k~sinu cosf,sinu sinf,cosu!,

uW 5~sinh,0,cosh!,

whereh is the angle that the dipole makes with therW vector.
We consider the three components ofEW , and obtain

Ex5
v1d1sinh

4p2e0r
E

0

`

k sinkre2 ivkt
Bk~ t !

gk
dk1OS 1

r 2D ,

Ey50,

Ez;OS 1

r 2D .

In the far-field region, the terms proportional toO(1/r 2)
can be neglected. Therefore, they andz components of the
electric field vanish, while thex component remains. Ignor
ing the incoming wave contribution, we have
04380
E~r ,t !5
v1d1sinh

8p2e0ri
E

0

`Bk~ t !

gk
ke2 i (vkt2kr)dk. ~C1!

From Eq. ~B6!, we can see thatBk(t) is composed of the
contributions of these poles and an integral,

Bk~ t !5gkS (
j

Bj
(1)1(

j
Bj

(2)1B0
(0)D , ~C2!

where

Bj
(1)5

f 5~xj
(1)!

G8~xj
(1)!

ei (vk2v1)t1xj
(1)t21

i ~vk2v1!1xj
(1)

,

Bj
(2)5

f 5~xj
(2)!

H8~xj
(2)!

ei (vk2v1)t1xj
(2)t21

i ~vk2v1!1xj
(2)

,

Bj
(3)52

1

pAi
E

0

`ei (vk2vc)t2xt21

i ~vk2vc!2x
K~x!dx.

In these above formulas,xj
(1) are the pure imaginary roots

andxj
(2) are the complex roots, and
K~x!5
Ax@A1~0!~x2 iv2c!1A2~0!~x2 iv1c!#@2x2 i ~v1c1v2c!#b

3/2

x~x2 iv1c!
2~x2 iv2c!

22 i @2x2 i ~v1c1v2c!#
2b3

.

~1! For the pure imaginary rootx(1)5 ib (1), we havev12b(1),vc :

E(1)5
v1d1sinh

8p2e0r

f 5~x(1)!

G8~x(1)!
E

0

`

k
e2 i (v12b(1))t1 ikr2e2 ivkt1 ikr

vk2~v12b(1)!
dk

52
v1d1sinh

8p2e0r

f 5~x(1)!

G8~x(1)!
~Ea

(1)2Eb
(1)!, ~C3!

Ea
(1)5E

0

`ke2 i (v12b(1))t1 ikr

vk2~v12b(1)!
dk

.
pk0

2

vc
SA vc

vc2~v12b(1)!
1 i D expS 2 i ~v12b(1)!t1 ik0r 2k0rAvc2~v12b(1)!

vc
D , ~C4!

Eb
(1)5E

0

` ke2 ivkt1 ikr

vk2~v12b(1)!
dk

5e2 ivct1 ik0r 1 i (k0
2r 2/4vct)E

2k02(k0
2r /2vct)

` S k1
k0

2r

2vct
1k0De2 i (vc /k0

2)k2t

vc

k0
2 S k1

k0
2r

2vct
D 2

1vc2~v12b(1)!

dk

5e2 ivct1 ik0r 1 i (k0
2r 2/4vct)~Eb1

(1)1Eb2
(2)!, ~C5!
9-12
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Eb1
(1)5E

2k02(k0
2r /2vct)

0 S k1
k0

2r

2vct
1k0De2 i ~vc/k0

2
!k2t

vc

k0
2 S k1

k0
2r

2vct
D 2

1vc2~v12b(1)!

dk

5
pk0

2

vc
SA vc

vc2~v12b(1)!
1 i D expS i „vc2~v12b(1)!…t2

ik0
2r 2

4vct
2k0rAvc2~v12b(1)!

vc
D

3QS k0r

2vct
2Avc2~v12b(1)!

vc
D 2E

0

`
e(3p/4)i S re(3p/4)i1

k0
2r

2vct
1k0De2(vc /k0

2)r2t

vc

k0
2 S re(3p/4)i1

k0
2r

2vct
D 2

1vc2~v12b(1)!

dr,

Eb2
(1)5E

0

` S k1
k0

2r

2vct
1k0De2 i (vc /k0

2)k2t

vc

k0
2 S k1

k0
2r

2vct
D 2

1vc2~v12b(1)!

dk

5E
0

`
e2(p/4)i S re2(p/4)i1

k0
2r

2vct
1k0De2(vk /k0

2)r2t

vc

k0
2 S re2(p/4)i1

k0
2r

2vct
D 2

1vc2~v12b(1)!

dr.

From Eqs.~C3!–~C5!, we can obtain

E(1)52
v1d1sinh

8pe0r

f 5~x(1)!

G8~x(1)!

k0
2

vc
SA vc

vc2~v12b(1)!
1 i D e2 i (v12b(1))t1 ik0rexpS 2k0rAvc2~v12b(1)!

vc
D

3QSAvc2~v12b(1)!

vc
2

k0r

2vct
D 1

v1d1sinh

8p2e0r

f 5~x(1)!

G8~x(1)!
expF2 ivct1 ik0r 1 i

k0
2r 2

4vct
2

p

4
i G

3F E0

` S re(3p/4)i1
k0

2r

2vct
1k0De2(vc /k0

2)r2t

vc

k0
2 S re(3p/4)i1

k0
2r

2vct
D 2

1vc2~v12b(1)!

dr1E
0

` S re2(p/4)i1
k0

2r

2vct
1k0De2(vc /k0

2)r2t

vc

k0
2 S re2(p/4)i1

k0
2r

2vct
D 2

1vc2~v12b(1)!

drG , ~C6!

whereQ(x) is the step function forx>0,Q(x)51 andx,0,Q(x)50. The first term represents a localized field at frequen
v12b(1). The size of the localized photon mode is„k0A@vc2(v12b(1))/vc#…

21. The second term will be zero as timet
→`.

~2! For the complex rootx(2)5a(2)1 ib (2), we havea(2),0, v12b(2).vc :

E(2)52
v1d1sinh

8p2e0r
•

f 5~x(2)!

H8~x(2)!
E

0

`

k
exp„2 i @~v12b(2)!t2kr#1a(2)t…2e2 i (vkt2 ikr )

vk2~v12b(2)!2 ia (2)
dk

52
v1d1sinh

8p2e0r

f 5~x(2)!

H8~x(2)!
~Ea

(2)2Eb
(2)!, ~C7!
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Ea
(2)5E

0

`k exp„2 i @~v12b(2)!t2kr#1a(2)t…

vk2~v12b(2)!2 ia (2)
dk

5e2 i (v12b(2))t1a(2)t1 ik0rE
2k0

` ~k1k0!eikr

vc2~v12b(2)!2 ia (2)1
vc

k0
2

k2

dk

.2
ipk0

2

vc
SA vc

v12b(2)2vc1 ia (2)
21D expS 2 i ~v12b(2)!t1a(2)t1 ik0r 2 ik0rAv12b(2)2vc1 ia (2)

vc
D , ~C8!

Eb
(2)5E

0

` ke2 ivkt1 ikr

vk2~v12b(2)!2 ia (2)
dk

5expS 2 ivct1 ik0r 1 i
k0

2r 2

4vct
D E

2k02(k0
2r /2vct)

` S k1
k0

2r

2vct
1k0De2 i ~vc /k0

2)k2t

vc

k0
2 S k1

k0
2r

2vct
D 2

1vc2~v12b(2)!2 ia (2)

dk

5expS 2 ivct1 ik0r 1 i
k0

2r 2

4vct
D ~Eb1

(2)1Eb2
(2)!, ~C9!

Eb1
(2)5E

2k02(k0
2r /2vct)

0 S k1
k0

2r

2vct
1k0De2 i (vc /k0

2)k2t

vc

k0
2 S k1

k0
2r

2vct
D 2

1vc2~v12b(2)!2 ia (2)

dk

.2
ipk0

2

vc
SA vc

v12b(2)2vc1 ia (2)
21D expS 2 i ~v12b(2)2vc1 ia (2)!t2

ik0
2r 2

4vct
2 ik0rAv12b(2)2vc1 ia (2)

vc
D

2E
0

`
e(3p/4)i S re(3p/4)i1

k0
2r

2vct
1k0De2~vc /k0

2
!r2t

vc

k0
2 S re(3p/4)i1

k0
2r

2vct
D 2

1vc2~v12b(2)!2 ia (2)

dr,

Eb2
(2)5E

0

` S k1
k0

2r

2vct
1k0De2 i (vc /k0

2)k2t

vc

k0
2 S k1

k0
2r

2vct
D 2

1vc2~v12b(2)!2 ia (2)

dk

52
ipk0

2

vc
SA vc

v12b(2)2vc1 ia (2)
11D expS 2 i ~v12b(2)2vc1 ia (2)!t2

ik0
2r 2

4vct
1 ik0rAv12b(2)2vc1 ia (2)

vc
D

3QS ~ Im1Re!Av12b(2)2vc1 ia (2)

vc
2

k0r

2vct
D 1E

0

`
e2(p/4)i S re2(p/4)i1

k0
2r

2vct
1k0De2(vc /k0

2)r2t

vc

k0
2 S re2(p/4)i1

k0
2r

2vct
D 2

1vc2~v12b(2)!2 ia (2)

dr.

From Eqs.~C7!–~C9!, we can obtain
043809-14
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E(2)52
v1d1sinh

8pe0r

f 5~x(2)!

H8~x(2)!

ik0
2

vc
SA vc

v12b(2)2vc1 ia (2)
11D expS 2 i ~v12b(2)!t1 ik0r 1a(2)t

1 ik0rAv12b(2)2vc1 ia (2)

vc
DQS ~ Im1Re!Av12b(2)2vc1 ia (2)

vc
2

k0r

2vct
D

2
v1d1sinh

8p2e0r

f 5~x(2)!

H8~x(2)!
expS 2 ivct1 ik0r 1 i

k0
2r 2

4vct
1

3p

4
i D

3F E0

` S re~3p/4!i 1
k0

2r

2vct
1k0De2(vc /k0

2)r2t

vc

k0
2 S re(3p/4)i1

k0
2r

2vct
D 2

1vc2~v12b(1)!2 ia (2)

dr1E
0

` S re2(p/4)i1
k0

2r

2vct
1k0De2(vc /k0

2)r2t

vc

k0
2 S re2(p/4)i1

k0
2r

2vct
D 2

1vc2~v12b(1)!2 ia (2)

drG .

~C10!

In the above equation, the second term decays to zero and can be neglected as timet→`. The first term is a pulse.
~3! Similarly, we can obtain the contribution ofB(0):

E(0)5
v1d1sinh

8p2e0ri
E

0

`

dkS 2
k

pAi
D e2 ivkt1 ikrE

0

`

dx K~x!
ei (vk2vc)t2xbt21

i ~vk2vc!2xb

52
v1d1sinh

8p3e0ri Ai
expS 2 ivct1 ik0r 1

ik0
2r 2

4vct
2

3p

4
i D E

0

`

L~r!e2(vct/k0r2
dr, ~C11!

where

L~r!5E
0

`

dx K~x!F re(3p/4)i1
k0

2r

2vct
1k0

vc

k0
2 S re(3p/4)i1

k0
2r

2vct
D 2

1 ixb

1

re2(p/4)i1
k0

2r

2vct
1k0

vc

k0
2 S re2(p/4)i1

k0
2r

2vct
D 2

1 ixb
G .

The modulus of the functionL(r) is a limiting value, soE(0) decays to zero as timet→`.
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