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Nonadiabatic semiconductor laser rate equations for the large-signal, rapid-modulation regime
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The standard multimode rate equation for semiconductor lasers is based on the approximation that modal
field shapes~if they change at all! depend on the instantaneous value of the time-dependent dielectric function.
This is known as the adiabatic approximation. It will break down if the inverse of the modulation frequency
approaches the photon round-trip time in the cavity. In this paper, we derive a criterion for the validity of the
adiabatic approximation and find that it also involves the fractional modulation of the dielectric function, not
just the photon round-trip time and the modulation frequency. Recognizing that present laser designs are
starting to approach the limits of validity as set by our criterion, we study what can be done to get past that
limit. We obtain corrections to the equations presently used by rederiving these equations from the time-
dependent wave equationwithout discarding the time derivative of the dielectric function, an approximation
made in every other derivation we have encountered. Retaining this time derivative introduces new terms into
the usual equations. These terms correctly account for propagation delay-time effects and for nonadiabatic
couplings between the modes. Surprisingly, the new terms alter only the source of photons to each mode. The
usual rate equations are driven by a spontaneous emission termRn

sp(t), which represents the rate at which
photons are emitted spontaneously into the moden. In the rate equation derived here, the spontaneous emission
term Rn

sp(t) is augmented by a termJn(t) which counts photons that were earlier emitted spontaneously into
other modesm, accumulated and perhaps amplified there, and are now, because of the breakdown of the
adiabatic approximation, leaking into thenth mode. Although casting the equations into this form makes sense
from a physical point of view, it leads to great computational difficulties in solving the equations because
Jn(t) refers explicitly to the past history of the laser. To overcome this practical problem, we provide an
efficient and accurate algorithm for stepping the laser forward in time without having to retain history prior to
the start of the present time step. Our method allows the equations to be solved with substantially the same
computational effort as is normally expended in solving the conventional rate equations, and, moreover,
provides error estimates at each step of the way.

PACS number~s!: 42.55.Px
e-
u
t
in

v-
m
is
d-

th
on
ow
he
de
he
fo

d
t

tri
th
qu
W
fo
ed

er-

ow
cy,
the
The
, the
ere
In
a-

the
al
od

ion
c-

n-
tic

atic
ng
e

e

I. INTRODUCTION

All formulations of the rate equations and larg
modulation traveling-wave equations governing semicond
tor lasers assume thatvmax, the maximum frequency a
which the laser is modulated, is small compared to the
verse ofTp , the photon round-trip time within the laser ca
ity. ~For distributed feedback lasers, the equivalent assu
tion is that the maximum modulation frequency
appreciably less thanDv, the frequency spacing between a
jacent longitudinal modes.! Within both formulations, the
modes in which the electric field is expanded depend on
instantaneous form of a time-dependent dielectric functi
This is an adiabatic description of the field. We shall sh
that under certain well-defined conditions, ignoring t
~nonadiabatic! couplings between these adiabatic modes
stroys the validity of the governing equation. Although t
general belief is that the maximum modulation frequency
which the governing equations can be used isvmaxTp!2p or
vmax/Dv!1, we find that the criterion is more complicate
than this. Consequently, there may be, depending on
length of the laser and the fractional change in its dielec
constant during modulation, important corrections to
equations presently in use. In this paper, we derive rate e
tions that retain the nonadiabatic couplings to all orders.
also provide an accurate efficient numerical algorithm
dealing with the new rate equations which, as formulat
1050-2947/2000/61~4!/043808~13!/$15.00 61 0438
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depend on the past history of the laser. They would oth
wise be computationally prohibitive to solve.

Before proceeding further, it is useful to understand h
the interplay between the maximum modulation frequen
the fractional change in the dielectric constant, and
breakdown of the adiabatic assumption comes about.
adiabatic method uses a time-independent equation, e.g.
Helmholtz equation, to calculate the field in a system wh
the dielectric function depends parametrically on time.
terms of a Huygens’ principle description of wave propag
tion, the validity of the adiabatic method depends on
local dielectric function undergoing only a small fraction
change during the time that light leaving some neighborho
returns to that same neighborhood. Satisfying this criter
puts an upper limit on the rate at which the dielectric fun
tion can change.

To develop this idea somewhat more quantitatively, co
sider the dielectric function as a sum of two parts, a sta
and a dynamic:

«v~r ,t !5«s~r !1«d~r ,t !.

In the laser, the dynamic part is much smaller than the st
part. The characteristic time for light to return to its starti
point is Tp , the photon round-trip time in the cavity. Th
fractional change in the dielectric constant during this tim
will be
©2000 The American Physical Society08-1
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d«v

«v~r ,t !
'

1

«v
Tp

]«d

]t
'

«d

«v
vmaxTp

where we have assumed a maximum modulation freque
of vmax. Thus, the criterion for validity of the adiabatic ap
proximation is that the product of two dimensionless facto
one expressing the fractional change in dielectric cons
and the other expressing the speed of modulation, shoul
small. ‘‘How small’’ is the question we must answer. Th
quantitative answer, which is derived later in the paper
contained in the following equation:

VvmaxTp!
~2p!2

vTp
S 12

vmaxTp

2p D . ~1.1a!

The quantityV resembles the term«d /«v . Actually, it is the
ratio of an off-diagonal matrix element of«d to a diagonal
element of the group dielectric function, that is,

V[
^Emu«duEn&

^Enu«1~v/2!~]«/]v!uEn&
, mÞn. ~1.1b!

v is the laser optical frequency. The last factor on the rig
hand side of Eq.~1.1a! causes the adiabatic approximatio
as expected, to break down completely atvmaxTp52p where
the inequality can never be satisfied. What comes perhap
a surprise is the presence of the small factor (vTp)21 on the
right of Eq. ~1.1a!. This factor gives rise to the severest r
striction on the size of the dimensionless productVvmaxTp .

While the criterion ~1.1a! is easily satisfied for two-
dimensional~2D! laser simulations where the field confin
ment in thex,y plane is tight enough to makeTp small @1#, it
is only marginally satisfied for 3D lasers at present and w
be violated if we increase modulation frequency, cav
length, or strength of modulation. As an example of t
present situation, consider a laser operating at 1.5mm with a
modulation frequency of 20 GHz, a cavity length of 300mm
and a group index of 3.5. Suppose thatV is only 1023. The
left side of Eq.~1.1a! is then smaller than the right by only
factor of 4. Doubling the length of the laser makes the l
side slightly exceed the right. Doubling the modulation fr
quency instead makes the left side slightly larger than hal
the right. Thus, although the violation of the adiabatic a
proximation is not an acute concern at present, the ques
higher modulation rates and/or greater modulation dep
may make the nonadiabatic corrections essential.

To obtain the nonadiabatic corrections, we must ret
terms containing]«d /]t in our equations, terms that are un
versally dropped on the way from the time-dependent w
equation to the rate equations for the photon numberSn(t).
The photon number is defined by the role it plays in Eq.~1.3!
below, and the rate equation governing it takes the form

dSn

dt
5S Gn2

1

tn
DSn1Rn

sp. ~1.2!

Gn and 1/tn are the modal gain and the modal loss.Rn
sp is

the rate of spontaneous emission into the mode. As the l
evolves forward in time, the gain, the loss, and the spon
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neous emission into each mode have to be reevalua
These terms depend on the dielectric function which is its
changing as the laser evolves. However, evaluation of
dielectric function will not concern us here: a substant
literature@1# exists on this point and instead we shall assu
the dielectric function is known. This allows us to focu
solely on the equations that the field must satisfy.

Assume that the electric field in the laser can be expan
in the form

E~r ,t !5f~x,y!(
n

ASn~ t !e2 i *0
t dt vn~t!Zn~z,t !1c.c.

~1.3!

If f(x,y)Zn(z,t) is written as

En~r ,t ![f~x,y!Zn~z,t !5Rn~r ,t !e2 i zn~r ,t ! ~1.4!

@wherevn(t), Rn(r ,t), andzn(r ,t) are real# thenth mode in
Eq. ~1.4! will have a local frequency

vn~r ,t !5vn~ t !1
d

dt
zn~r ,t !. ~1.5!

The sum over modes in Eq.~1.3! allows one or another to
become dominant as the laser moves from one point on
gain spectrum to another. The flexibility of each individu
modeEn(z,t) allows it to respond to changes in the spat
form of the dielectric constant as the laser is modulated.

The derivation to be presented here starts by inserting
~1.3! into the time-dependent wave equation with sourc
and solving the resulting equations using the time-depend
Green’s functionG(r ,t;r 8,t8). The form of the Green’s
function is remarkably simple when the adiabatic approxim
tion is valid. An equivalent statement of the adiabatic a
proximation is that a photon, started in one time-depend
mode, remains in that same mode as the system evolves
criterion for the validity of that approximation is well know
for quantum-mechanical systems. We apply that same c
rion to the laser system to find out when we can use
simplified form of Green’s function. This is how we obtaine
Eq. ~1.1!. However, without assuming the validity of th
adiabatic approximation, we do use the full Green’s funct
to provide a solution in much the same way as Henry did
using Gv(z,z8) in the static case@2#. We then construct an
expression for the field-field correlation function and pe
form an ensemble average over the random spontan
emission events that give rise to the field. This allows us
construct a rate equation for the photon number and lead
expressions for the spectrum of emitted power. The r
equation reduces to the standard form~1.2! when the adia-
batic approximation is valid. When it is not, use of the fu
Green’s function leads to a new rate equation in which
spontaneous emission termRn

sp(t) is augmented by a term
Jn(t). Jn(t) counts photons that were emitted spontan
ously into other modesm at an earlier time, have been store
or amplified there, and are now, because of the breakdow
the adiabatic approximation, leaking into thenth mode. The
effect of this photon leakage is expected to be largest for
side modes, and to act in the direction of increasing th
8-2
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NONADIABATIC SEMICONDUCTOR LASER RATE . . . PHYSICAL REVIEW A 61 043808
amplitude relative to that of the main mode, i.e., to decre
the side-mode suppression ratio. This will come about
cause leakage into the side modes of even a small fractio
the many photons in the lasing mode will greatly enhance
source of photons to the side modes. Conversely, the
modes will not contain enough photons to act effectively a
source to the lasing mode.

There are some limitations to the formalism. It is based
a first-order dielectric function. That is, the polarization r
sponse of the medium~whose carrier distributions are a
sumed known! is taken to be proportional to the first pow
of the electric field. This precludes study of, e.g., four-wa
mixing and other nonlinear phenomena. Secondly, mod
tion rates are assumed slow on the time scale of polariza
decay. The polarization is governed by the conventional
electric response function rather than treated as a dyna
system in its own right. This precludes study of certain
trafast phenomena. Thirdly, the formalism is not well suit
to the study of noise and fluctuation effects. These are u
ally treated as small-signal responses to stochastic forces
are more appropriately studied in a formalism not spec
cally tailored to large-signal response.

This paper is arranged as follows. Section II consists
two parts. The first leads from Maxwell’s equations to t
wave equation in the time domain and is not new. It do
allow us to reiterate some ideas we use later. The second
is new. In it, we solve the time-domain wave equation
terms of adiabatic modes oscillating at adiabatic tim
dependent frequencies. We use a generalized eigenv
equation to define the modes and give a criterion for de
mining their adiabatic frequencies. The nonadiabatic tra
tion operator is defined here and the equations governing
Green’s function, including nonadiabaticity, are derive
Section III is motivated by the fact that the sources of
field, and therefore the field itself, are stochastic. There
several ways to deal with this. We choose to use the Gre
function solution to express the field-field correlations
terms of time-domain source-source correlations. This allo
us to derive a nonadiabatic rate equation that reduces to
standard rate equation at low modulation frequencies. In S
IV, we relate the time-domain source-source correlat
function to the frequency-domain source-source correla
function, a quantity that Henry@2# has already worked out
Section V presents the numerical algorithm that makes
method practical for doing calculations. A short summa
concludes the paper in Sec. VI. The adiabatic criterion~1.1!
is derived in Appendix A. Numerical results will appe
separately.

II. GREEN’S FUNCTION SOLUTION IN THE TIME
DOMAIN

A. Background

In a dielectric medium with negligible magnetic prope
ties, the constitutive equations are

D~r ,t !5E~r ,t !14p@P~r ,t !1K~r ,t !#, ~2.1a!

H~r ,t !5B~r ,t !. ~2.1b!
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P andK are components of the polarization in the dielect
medium. P is the response of the medium to the elect
field. Taking it to be isotropic, local, and causal,

P~r ,t !5E
2`

t

x~r ,t,t8!E~r ,t8!dt8. ~2.1c!

x is the first-order polarization response kernel.K repre-
sents the contribution toD arising from spontaneous fluctua
tions of the medium. This point of view was taken by La
dau and Lifshitz@3# and later served as the starting point f
Henry’s work on noise in the steady-state laser@2#.

The space and time dependence of the fields satisfy M
wells equations with charge density and current set to z
because at optical frequencies there is no appreciable a
mulation of charge or current. These equations can be c
bined in the usual way, i.e., making use of the constitut
equations~2.1! and dropping~as is always done@4#! the
¹(¹•E) term, which arises from the vector identity¹3¹
3E5¹(¹•E)2¹2E. The result is the wave equation

¹2E~r ,t !2
1

c2

]2

]t2 S E~r ,t !14pE
2`

t

x~r ,t,t8!E~r ,t8!dt8D
5

4p

c2

]2

]t2 K~r ,t !. ~2.2!

If the system were truly time-translationally invarian
then the polarization response would depend ont andt8 only
via the combinationt[t2t8. In that case, the induced po
larization could have been written as

P~r ,t !5E
0

`

x~r ,t!E~r ,t2t!dt. ~2.3!

The kernelx~t! has a limited range: polarization induced b
a pulse of electric field decays away after a short time du
collisions and dephasing. That short time is of the order
10213 seconds @5#. However, the system isnot time-
translationally invariant because the response kernel dep
on the local density of carriers in the system, and that den
can be time dependent. The shortest time scale assoc
with this dependence is set by the highest frequency at wh
the laser can be modulated. At the present time, that
quency does not exceed 40 GHz. This corresponds to a
of 2.5310211 seconds or longer. This is very slow on th
time scale of the polarization decay, and so, on the fa
time scale, the system iseffectivelytime-translationally in-
variant. None the less, there is still a secular variation inx,
and so instead of Eq.~2.3!, we must write

P~r ,t !5E
0

`

x~r ,t,t!E~r ,t2t!dt,

where thet dependence ofx arises solely through the tim
dependence of the carrier density on whichx depends.@A
similar point of view has been taken in Eq.~7! of @6#.# In
terms of the dielectric response kernel

«~r ,t,t!5d~t!14px~r ,t,t!,
8-3
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Eq. ~2.3! becomes

¹2E~r ,t !2
1

c2

]2

]t2 E
0

`

«~r ,t,t!E~r ,t2t!dt

5
4p

c2

]2

]t2 K~r ,t !. ~2.4!

The one-sided Fourier transform of«,

«v~r ,t !5E
0

`

«~r ,t,t!e1 ivtdt, ~2.5!

is the frequency-dependent dielectric function in a tim
dependent medium. It depends onr andt via the composition
and carrier density. If there is gain or loss locally, then«v

has a local negative or positive imaginary part@7#.

B. Development

Assume that the field has the form

E~r ,t !5(
n

an~ t !e2 i *0
t dt vn~t!En~r ,t !1c.c. ~2.6!

Inserting Eq.~2.6! into Eq. ~2.4! will result in equations for
the an(t). The equations depend on the choice ofvn(t) and
En(r ,t) but that choice can be left open for now. The seco
term of Eq.~2.4! becomes the integral of

]2

]t2 @Un~r ,t,t!Fn~ t2t!#5ÜnFn12U̇nḞn1UnF̈n ,

~2.7!

where

Un~r ,t,t![«~r ,t,t!an~ t2t!En~r ,t2t!, ~2.8a!

Fn~ t2t![e2 i *0
t2tvn~ t8!dt8. ~2.8b!

Note that

Ḟn52 ivn~ t2t!Fn~ t2t!,

F̈n52@ i v̇n~ t2t!1vn
2~ t2t!#Fn~ t2t!.

Un(r ,t,t) is a slowly varying function oft, oscillating at best
with a frequencyvmod, the frequency at which the laser
modulated. We shall use 50 GHz as a frequency we wo
like to reach. Fn(t), on the other hand, oscillates at th
modal frequencyvn , which for a laser with a free-spac
wavelength of 1.5mm is 4000 times larger. Thus, the term
Ü is smaller than the term inF̈ by a factor of 1027 and can
be dropped, leaving an expression we rewrite as

]2

]t2 UnFn52Fn~ t !@vn
2~ t2t!Un1 i v̇n~ t2t!Un

12ivn~ t2t!U̇n#Fn~ t2t!/Fn~ t !. ~2.9!

The last factor is
04380
-

d

ld

Fn~ t2t!/Fn~ t !5e1 i * t2t
t vn~ t8!dt8. ~2.10!

The t integration in Eq.~2.4! cuts off at values oft'tpol
'10213 seconds because of the short range of the dielec
kernel«. Take advantage of this by expandingvn(t8) in Eq.
~2.10! to first order in (t82t),

E
t2t

t

vn~ t8!dt8'E
t2t

t

@vn~ t !1~ t82t !v̇n~ t !#dt8

5tvn~ t !2 1
2 t2v̇n~ t !. ~2.11!

The largest value of each term in Eq.~2.11! is at tpol where
the integral cuts off. To estimate the size of each term,
write

vn~ t !5vn
01Dvn~ t !,

wherevn
0 is the nominal optical frequency of thenth mode

('2p3231014sec21) and Dvn is the frequency shift, or
chirp, the laser might encounter during operation. Only d
ing extreme conditions will the fractional chirpDvn /vn be-
come as large as 1022. If the laser is being modulated at
frequencyvmod, thenv̇n is of order

v̇n'vmodDvn&1022vmodvn .

On this basis, the first term in Eq.~2.11! could be of order
102 while the second is of order 1022. The appropriate
evaluation of Eq.~2.10! for use within the integrand of Eq
~2.4! is

Fn~ t2t!/Fn~ t !5e1 i tvn~ t !S 12
i

2
t2v̇n~ t ! D . ~2.12!

The second term can be dropped provided the modula
frequency satisfies a condition similar to Eq.~1.1! with the
much shorter polarization decay timet replacing the round-
trip time Tp . At higher modulation frequencies, it would b
better to treat the polarization as a dynamic system. We
also use the short range of the dielectric kernel to expand
terms within the square brackets in Eq.~2.9! in powers oft.
For the first term, the appropriate expansion terminates
first order:

vn
2~ t2t!Un~r ,t,t!

5«~r ,t,t!S vn
2~ t !an~ t !En~ t !2t

]

]t
vn~ t !2an~ t !En~ t ! D .

~2.13a!

The second and third terms in the square brackets of
~2.9! are already smaller than the first by a factor of'4000,
and so for them, the zeroth-order expansion is adequate

v̇n~ t2t!Un~r ,t,t!12vn~ t2t!U̇n~r ,t,t!

5v̇n~ t !«~r ,t,t!an~ t !En~r ,t !12vn~ t !
]

]t
~«anEn!.

~2.13b!
8-4
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As was the case for Eq.~2.12!, the higher-order terms
dropped from Eq.~2.13! can be shown to be small enough
ignore Thus, Eq.~2.9! becomes

]2

]t2 UnFn52e2 i *0
t vn~ t8!dt8F«~r ,t,t!S vn

2anEn

2t
]

]t
~vn

2anEn!1 i v̇nanEn12ivn

]

]t
anEnD

12i «̇~r ,t,t!vnanEnGe1 i tvn~ t !. ~2.14!

The onlyt-dependent quantities appearing in Eq.~2.14! are
those whoset dependence has been indicated explicitly. T
t integration in Eq.~2.4! can be carried out by using Eq
~2.5!. Three types of term appear:

E
0

`

«~r ,t,t!e1 i tvn~ t !dt5«vn~ t !~r ,t ![«n~r ,t !,

~2.15a!

E
0

`

«~r ,t,t!e1 i tvn~ t !t dt52 i
]

]vn
«n~r ,t !, ~2.15b!

E
0

`

«̇~r ,t,t!e1 i tvn~ t !dt5 «̇n~r ,t !. ~2.15c!

The overdot on«̇(r ,t,t) denotes the derivative with respe
to t. The overdot on«̇n(r ,t) denotes the time derivative o
«v(r ,t) evaluated atv5vn(t). Later, we shall need the ful
time derivative of«n(r ,t), taking into account thatvn , the
frequency of evaluation, may itself be time dependent.
this, we shall use the symbol]/]t and in that case,

]

]t
«n~r ,t ![«̇n~r ,t !1v̇n

]«n

]vn
. ~2.16!

Equation~2.4! becomes

(
n

e2 i *0
t vn~ t8!dt8F¹2anEn1kn

2anEn1 iK n
2 ]

]t
anEn

1
i

c2 S ]vn
2

]t

]«n

]vn
1v̇n«n12vn«̇nDanEnG5F~r ,t !,

~2.17!

where we have defined

kv
2 ~r ,t !5

v2

c2 «v~r ,t !, ~2.18a!

kn
25@kv

2 #v5vn~ t ! , ~2.18b!

Kn
2~r ,t !5

2vn

c2 S «n1
vn

2

]«n

]vn
D ~2.18c!
04380
e

r

5F ]

]v
kv

2 ~r ,t !G
v5vn~ t !

, ~2.18d!

F~r ,t ![
4p

c2

]2

]t2 K~r ,t !5
4p

c2

]

]t
j sp~r ,t !. ~2.18e!

Further progress in obtaining equations for thean(t) re-
quires making a choice for the modal fieldsEn(r ,t) and the
modal frequenciesvn(t). The only necessary condition i
that the fields be complete enough to expand any elec
field in the interior of the laser. The choice made here is
have the fields satisfy

@¹21kn
2~r ,t !2ln~ t !Kn

2~r ,t !#En~r ,t !50 ~2.19a!

plus outgoing-wave boundary conditions on the surface
the laser. The normalization will be taken to be

^EnKn
2En&51, ~2.19b!

where^¯& denotes integration over the volume of the las
This is a generalized eigenvalue equation withln being the
eigenvalue. The real frequencyvn(t) will be determined by
the condition thatln be purely imaginary at each instant: i.e
that

Re@ln~vn!#50. ~2.19c!

A useful consequence of Eq.~2.19a! is that, up to terms
linear in kv

2 , the modes satisfy the following orthogonalit
relation:

^Em~ t !Kn
2~ t !En~ t !&5dmn . ~2.19d!

Modal fieldsÊm(r ,t) and Ẽm(r ,t) are defined as

Êm~r ,t ![e2 i *0
t vm~ t8!dt8Em~r ,t !, ~2.20a!

Ẽm~r ,t ![e1 i *0
t vm~ t8!dt8Em~r ,t !. ~2.20b!

We multiply Eq. ~2.17! by Ẽm(r ,t) and integrate over the
laser volume. The result is

lm~ t !am~ t !1 i
d

dt
am~ t !1 i(

n
Tmn~ t !an~ t !5Fm~ t !,

~2.21!

where

Fm~ t ![^Em~ t !F~ t !&ei *0
t vm~t!dt, ~2.22a!

Tmn~ t ![tmn~ t !ei *0
t
@vm~t!2vn~t!#dt, ~2.22b!

tmn~ t ![^EmKn
2Ėn&

1
1

c2 K EmS v̇n«n12vn«̇n1
]«n

]vn

]vn
2

]t DEnL .

~2.22c!
8-5
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Not all of the terms intmn(t) are equally important. To
extract the important ones, first evaluate^EmKn

2Ėm& for the
case m5n by differentiating the normalization conditio
~2.19b! with respect tot:

^EnKn
2Ėn&52 1

2 K EnS ]

]t
Kn

2DEnL . ~2.23!

For mÞn, differentiate Eq.~2.19a! with respect tot:

~¹21kn
22lnKn

2!Ėn1S ]

]t
kn

22l̇nKn
22ln

]

]t
Kn

2DEn50.

Multiplying by Em and integrating overr gives

^Em~kn
22km

2 2lnKn
21lmKm

2 !Ėn&

1 K EmS ]

]t
kn

22ln

]

]t
Kn

2DEnL 50. ~2.24!

The orthogonality condition was based on the assump
thatkv

2 was adequately represented as being a linear func
of v over the frequency range spanned by the various
quenciesvm . To this same order of approximation, we ha

kn
22km

2 5~vn2vm!Kn
2,

Kn
22Km

2 50.

This allows us to rearrange Eq.~2.24! as

^EmKn
2Ėn&5

^Em„~]/]t !kn
22ln~]/]t !Kn

2
…En&

ṽm2ṽn
,

~2.25!

where the complex frequencies in the denominator are
fined by

ṽn~ t ![vn~ t !2ln~ t !. ~2.26!

We can now make the following order-of-magnitude es
mates:

~a! v̇n&1022vmaxvn ,

~b! «̇n&2231022vmax«n ,

~c! v]«/]v's«,

~d! Kn
2'kn

2/vn ,

~e! ^En~¯ !Em&'~¯ !/Kn
2 .

Estimate~a! was made earlier, after Eq.~2.11!. Estimate~b!
follows from the fact that, in a Fabry-Pe´rot laser of lengthL,
the quantityv2«vL2/c2 is almost invariant with respect t
frequency. Estimate~c!, in whichs is of the order 0.1–0.3, is
empirically true for semiconductor laser dielectrics in t
optical and infrared. For order-of-magnitude purposess
'1. Estimate~d! follows from the definitions~2.18!. Esti-
mate ~e! follows from the normalization condition~2.19b!.
Using these estimates, each of the three last terms in
~2.22c! is of order ,1022vmax, as is Eq.~2.23!. In Eq.
04380
n
n
-

e-

-

q.

~2.25!, the second term is of orderln /vn times the first. It
will later turn out thatiln5(Gn21/tn)/2, and so the second
term is utterly negligible compared to the first. The first te
is of ordervn /(ṽn2ṽm)'103 times larger than any of the
other terms intmn , which allows us to drop the other term
Using a notation similar to Eq.~2.16!, we transform that first
term to

]

]t
kn

25
vn

2

c2 «̇n1v̇n

]

]v
kn

25
vn

2

c2 «̇n1v̇nKn
2.

The term inKn
2 vanishes in the matrix element because

Eq. ~2.19d!. Thus, instead of Eq.~2.22c!, we have

tmn~ t !5
~vn /c!2^Emu«̇nuEn&

ṽm2ṽn
~12dmn!. ~2.27!

The operatortmn(t) is the source of nonadiabatic transition
between the modes. Its size is proportional to the rate
which the dielectric function is changing, to the shape of«̇,
via the matrix element between modes, and it is invers
proportional to the spacing between mode frequencies.

Return to Eq.~2.21! for am(t). We write the solution as

am~ t !5
1

i (
k
E

2`

t

dt8gmk~ t,t8!Fk~ t8! ~2.28!

and find that thegmk(t,t8) must satisfy the following set o
coupled equations and boundary conditions:

lm~ t !gmk~ t,t8!1 i
]

]t
gmk~ t,t8!1 i (

nÞm
Tmn~ t !gnk~ t,t8!50,

~2.29a!

gmk~ t8,t8!5dmk . ~2.29b!

The E(r ,t) field can be reconstructed using Eqs.~2.6!,
~2.28!, and~2.22a!. The result is of the form

E~r ,t !5E d3r 1E
2`

t

dt1G~r ,t,;r 1 ,t1!F~r 1 ,t1!1c.c.

~2.30!

with

G~r ,t;,r 1 ,t1!5
1

i (
mn

Êm~r ,t !gmn~ t,t1!Ẽn~r 1 ,t1!.

~2.31!

The diagonal elements of the transition matrixTmn vanish
because of Eq.~2.27!. The off-diagonal elements~2.22b! os-
cillate rapidly, with the lowest frequencyvn2vn11 being
'2p/Tp , whereTp is the photon round-trip time within the
cavity. This round-trip time is of the order of 7310212 sec-
onds, corresponding to'150 GHz, far faster than lasers no
can be modulated. The adiabatic approximation assu
that, because of the disparity of time scales, the off-diago
elements ofgnk never have a chance to build up appreciab
from their initial value of zero. Thus, in the adiabatic a
proximation,gmn is diagonal,
8-6
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gmn~ t,t8!5ei *
t8
t

lm~t!dtdmn , ~2.32a!

and the Green’s function is

G~r ,t;r 8,t8!5
1

i (
n

En~r ,t !e2 i * t
l ṽn~t!dtEn~r 8,t8!.

~2.32b!

As the inverse of the modulation frequency approac
the photon round-trip time, one expects radiation launc
into one mode to leak into other modes. To study the is
quantitatively, we note that the mathematics used in E
~2.20!–~2.22! is almost identical to that used to discuss ad
batic perturbations in quantum mechanics. In Appendix
we use the same methods to study when the approxima
~2.32a! is justified. When it is not justified, one must nume
cally integrate Eqs.~2.29a! and~2.29b! or something equiva-
lent ~see Sec. V!.

Nothing has been said about how to solve the eigenva
equation~2.19a!. This equation, or closely related ones,
routinely solved in every study of the one-dimensional~z!
laser after separating the transverse field dependence
the longitudinal. Traveling-wave methods@8–12#, transfer-
matrix methods in which uniform sections of the laser a
coupled @13–15#, spatial Green’s function technique
@16,17#, tooth-by-tooth integration schemes@18#, variational
methods@19#, and transfer-matrix tooth-by-tooth method
@20,21# are routinely used and could be used here as we

There is no need to work with the full Green’s function
the structure supports only a single transverse mode. In
case, it is sufficient to approximateEn(r ,t) by

En~r ,t !'f~x,y!Zn~z,t !, ~2.33!

which is equivalent to approximating the full Green’s fun
tion by

G~r ,t;r 8,t8!'f~x,y!G~z,t;z8,t8!f~x8,y8!. ~2.34!

The details of the equations forf(x,y,t) and Zn(z,t) are
easily worked out. In particular, the equation forZn(z,t) that
results from projecting Eq.~2.17! onto f(x,y)2 can stand
alone as the optical part of a one-dimensional~z,t! laser mod-
eling program. Because of computational efficiency~see Sec.
V! this could serve as an alternative to the traveling-wa
~z,t! description, which seems, with one exception@22#, to
have been applied only in the small-signal regime.

III. THE FIELD-FIELD CORRELATION FUNCTION
AND THE NONADIABATIC RATE EQUATION

Direct evaluation of Eq.~2.30! is not useful because of th
stochastic nature of the source termS(r ,t). Averaging the
equations over the ensemble of realizations of the sou
does not help because that average, denoted as^S(r ,t)&, van-
ishes, and hencêE(r ,t)& vanishes too. The way to procee
is to recognize that the information needed from the fi
E(r ,t) is its power spectrum. This can be obtained from
field-field correlation function, namely,̂E(r ,t1t)E(r ,t)&
@23#. The Green’s function solution~2.30! makes it possible
04380
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to evaluate the field-field correlation function in terms of t
nonvanishing source-source correlation function.

The correlation functionc(t,r ,t) from which the power
spectrum can be derived is not an instantaneous functio
the fields but is rather an average, taken over a time perioT
large enough to kill any interference between the vario
frequency components of the fields@23#. Its precise defini-
tion is

c~t,r ,t ![
1

T E
t2T/2

t1T/2

dt8E~r ,t81t/2!E~r ,t82t/2!.

~3.1a!

From the definition,c~t! is an even function oft and in what
follows, we shall considert to be non-negative. Equatio
~3.1a! can also be written as

c~t,r ,t ![
1

T E
t2T/2

t1T/2

dt8E~r ,t81t!E~r ,t8!1OS t

T
E2D .

~3.1b!

This will prove to be more convenient and, since our fin
working equations will be derived in the limitt→0, will
entail no loss of accuracy.

We insert Eq.~2.6! into Eq.~3.1! and recognize that thet8
averaging suppresses terms oscillating at optical frequen
leaving

c~t,r ,t !5
1

T E
t2T/2

t1T/2

dt8E~r ,t81t!E~r ,t8!* 1c.c.

~3.2!

Then, using the solution~2.30!,

c~t,r ,t !5
1

T E
t2T/2

t1T/2

dt8E d3r 1d3r 2E
2`

t81t
dt1E

2`

t8
dt2

3G~r ,t81t;r 1 ,t1!G~r ,t8;r 2 ,t2!*

3F~r 1 ,t1!F~r 2 ,t2!* 1c.c. ~3.3!

When the ensemble average is taken to get^c(t,r ,t)&, it is
the nonvanishing averagêF(r 1 ,t1)F(r 2 ,t2)* & that results.
We anticipate that source correlations will be short ranged
both space and time@24#, and are tempted to write

^F~r 1 ,t1!F~r 2 ,t2!* &5DFF~r 1 ,t1!d~ t12t2!d~r 12r 2!.

However, theactual time range of the correlated average
on the order oftpol'10213 seconds. Although this is shor
on the time scale over which functions likeEn andgmn vary,
it is long on the time scale on which the phase factors in
~2.20! vary. For this reason, we cannot yet go to ad(t1
2t2) time correlation function. Instead, we write

^F~r 1 ,t1!F~r 2 ,t2!* &

5d~r 12r 2!E
2`

`

dv 2Dv~r 1 , t̄ !eiv~ t22t1!,

~3.4!
8-7
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where t̄ 5(t11t2)/2. We insert Eqs.~3.4! and~2.21! into the
ensemble average of Eq.~3.3! to get

^c~t,r ,t !&5
1

T E
t2T/2

t1T/2

dt8(
mn

(
m8n8

Êm~r ,t81t!Êm8~r ,t8!*

3E
2`

`

dvE
2`

t81t
dt1E

2`

t8
dt2

3gmn~ t81t,t1! f n
v~ t1!gm8n8~ t8,t2!* f n8

v
~ t2!*

3I nn8
v

~ t1 ,t2!1c.c., ~3.5!

where

f n
v~ t ![expi E

0

t

@vn~s!2v#ds ~3.6a!

and

I nn8
v

~ t1 ,t2![E d3r 1En~r 1 ,t1!2Dv~r 1 , t̄ !En8~r 1 ,t2!* .

~3.6b!

In the t1 integration, f n
v(t1) is a phase factor that osci

lates with a frequencyv2vn(t1). If this oscillation is rapid,
this part of thet1 integrand will not contribute to the integra
The contribution to thet1 integral comes only from thos
regions oft1 for which vn(t1)'v. Similarly, contributions
to thet2 integral come only wherevn8(t2)'v. Taking these
considerations together, the contribution to thet1t2 integral
comes from those regions in thet1t2 plane for which

vn~ t1!'v'vn8~ t2!.

ut12t2u is constrained to be less thantpol . vn8(t2) can
undergo only very small changes during this time period, a
so the above could have been written

vn~ t1!'v'vn8~ t1!.

The only way to satisfyvn(t1)5vn8(t1) is to haven85n.
We therefore drop allnÞn8 terms in Eq.~3.5! to get

^c~t,r ,t !&5
1

T E
t2T/2

t1T/2

dt8 (
mm8n

Êm~r ,t81t!Êm8
~r ,t8!*

3E
2`

`

dvE
2`

t81t
dt1E

2`

t8
dt2

3gmn~ t81t,t1!gm8n~ t8,t2!* I nn
v ~ t1 ,t2!

3expi E
t2

t1
@vn~s!2v#ds1c.c. ~3.7!

The v integration can be carried out. We make use of
small change invn(s) over the time span in thes integral to
approximate
04380
d

e

E
2`

`

dv 2Dv~r 1 , t̄ !ei *
t2

t1@vn~s!2v#ds

5E
2`

`

dv 2Dv~r 1 , t̄ !ei @vn~ t1!2v#~ t2t2!

52pd~ t12t2!2Dn~r 1 ,t1!, ~3.8!

where Dn meansDv evaluated atv5vn(t1). The d(t1
2t2) is justified here because there are no longer any rap
varying terms in the integrand. Using this to carry out thet2
integration,

^c~t,r ,t !&5
1

T E
T2t/2

T1t/2

dt8 (
mm8n

Êm~r ,t81t!Êm8~r ,t8!*

3E
2`

t8
dt1gmn~ t81t,t1!gm8n~ t8t1!*

3E d3r 1I n~ t1!1c.c., ~3.9a!

where

I n~ t1![2pE d3r 12Dn~r 1 ,t1!uEn~r 1 ,t1!u2. ~3.9b!

It will turn out later thatDn is real, so thatI n is too.
The power spectrumP(v,r ,t) can be obtained from the

correlation function^c(t,r ,t)& by the Wiener-Khinchine
theorem: the two arev-t Fourier transforms of each othe
@23#:

P~v,r ,t !5
1

2p E dt^c~t,r ,t !&e2 ivt. ~3.10!

If we are interested in the short-term power spectrum~such
as would be measured by a spectrometer with very fast t
resolution!, we can discard theT averaging and replace th
function being averaged over by its value att85t. In this
case, Eq.~3.9! becomes

^c~t,r ,t !&5 (
mm8n

Êm~r ,t1t!Êm8~r ,t !*

3E
2`

t

dt1gmn~ t1t,t1!gm8n~ t,t1!* I n~ t1!1c.c.

~3.11!

Because we are not concerned with line breadth here~e.g.,
phase-fluctuation-induced spectral broadening or finite p
ton residence time in the cavity!, the Fourier transform~3.10!
can be bypassed in the following way. The total power
given by evaluating Eq.~3.11! at t50,

P~r ,t !5 1
2 (

mm8
Êm~r ,t !Êm8~r ,t !* Smm8~ t !1c.c.,

~3.12a!

where
8-8
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Smm8~ t ![(
n
E

2`

t

dt1gmn~ t,t1!gm8n~r ,t !* Rn
sp~ t1!

~3.12b!

and

Rn
sp~ t1![2I n~ t1!. ~3.12c!

We refer toSmm8(t) as the photon number matrix because,
we shall see below, its diagonal elements have the sig
cance of being proportional to the number of photons in
mth mode.

There are two spectra that might be of interest. The fi
arises from the periodic modulation of the laser. To obtain
one must evaluate the averaged correlation function~3.9!
with T being the complete modulation period, and then ta
the Fourier transform~3.10!. The second is what would b
observed in a spectrometer fast enough to follow the
quency chirp associated with any transients but not
enough to observe beating~if any! between a pair of simul-
taneously lasing modes. In that case, the timeT used for the
averaging in Eq.~3.9a! should be taken large enough th
DvT@2p. The t8 dependence ofẼmẼm8

* averages the term
away unlessm5m8. This results in a diagonal photon num
ber matrix, and the power in themth mode becomes

Pm~r ,t !5uEm~r ,t !u2Smm~ t ! ~3.13a!

where

Smm~ t ![(
n
E

2`

t

dt1ugmn~ t,t1!u2Rn
sp~ t1!. ~3.13b!

When the photon number matrix is diagonal~and only then!,
the frequency associated with themth mode is given by writ-
ing that term in Eq.~3.11! in phasor notation and taking th
t derivative of its total phase att50. That is, we write

Em~r ,t1t!5Rm~r ,t1t!e2 ifm~r ,t1t! ~3.14a!

with Rm andfm both real. Then the frequency is

vm~r ,t !5vm~ t !1
d

dt
fm~r ,t !. ~3.14b!

Although one might have expected a contribution from
t-dependent phase ofgmn(t1t,t1), we show in Appendix B
that the anticipated contribution vanishes and that Eq.~3.14!
is correct as written. It is the form of Eq.~3.13! that gives the
diagonal elements ofSmm8(t) the significance of being pho
ton numbers, although for them to actually equal the num
of photons in the cavity, a different normalization is need

We now derive the rate equation satisfied by the diago
elements of the photon number matrix, the ‘‘photon nu
bers.’’ DifferentiatingSmm with respect tot gives
04380
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d

dt
Smm~ t ![E

2`

t

dt1(
n

]

]t
ugmn~ t,t1!u2Rn

sp~ t1!

1(
n

ugmn~ t,t !u2Rn
sp~ t !. ~3.15!

Note that, from the fact thatlm is pure imaginary,

]

]t
ugmn~ t,t8!u252ilm~ t !ugmn~ t,t8!u2

22 Re(
kÞm

gmn~ t,t8!* Tmk~ t !gkn~ t,t8!,

~3.16!

while, from Eq.~2.29!,

gmn~ t,t !5dmn . ~3.17!

This reduces Eq.~3.15! to

dSmm

dt
52ilm~ t !Smm~ t !1Rm

sp~ t !1Jm~ t !, ~3.18!

whereJm(t) is defined by the integral

Jm~ t !5(
n
E

2`

t

dt1Rn
sp~ t1!T ~n,t1→m,t ! ~3.19!

and

T ~n,t1→m,t ![22 Re(
kÞm

Tmk~ t !gmn~ t,t1!* gkn~ t,t1!.

~3.20!

In the adiabatic approximation,T oscillates so rapidly tha
Jm(t) will vanish. Comparing Eq.~3.18! to Eq. ~1.2! in that
case demands that we make the identification

2ilm~ t !5Gm~ t !2
1

tm~ t !
, ~3.21!

so that Eq.~3.18! is

dSmm

dt
5S Gm2

1

tm
DSmm1Rm

sp1Jm . ~3.22!

This is the equation that replaces the standard rate e
tion ~1.1! when the adiabatic approximation starts to bre
down. It differs from it in only a single term. From the form
of Eqs.~3.19! and~3.22!, we infer thatJm(t), the additional
term, is proportional to the rate at which photons emitted i
other modesn at earlier timest1 and amplified since are now
being supplied to themth mode. As a consequence of th
enhanced supply of photons to the side modes, the side-m
amplitude will be larger than it would be without this add
tional source. Thus, one effect of the breakdown of the ad
batic approximation is to decrease the side-mode suppres
ratio.

Using Eq. ~3.22! as a numerical method to update th
photon number is exceedingly cumbersome because of
8-9
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~3.19!, an integral over past time. However, in Sec. V, w
shall present a simple and efficient numerical way to upd
Sm(t) with not much more effort than is used to solve E
~3.22! in the absence ofJm .

IV. SPONTANEOUS-EMISSION TERM

In the equilibrium time-independent system, the rate
spontaneous emission depends on the~imaginary part of! the
dielectric constant of the medium and on the amount
population inversion@2,25,26#. If these are time dependen
the rate might be an integral over their present and past
ues or might depend on other dynamic considerations.
are unaware of any theory relevant to this point and w
assume instead that the emission rate at timet depends on the
dielectric constant and inversion only at timet. The diffusion
constant needed here has been derived by Henry~@2#, Eqs. 38
and 45! and it is real:

2Dv~r ,t !5
4v4\«v9 ~r ,t !

c4 ^nv~r ,t !&, ~4.1a!

^nv~r ,t !&[@e@\v2eV~r ,t !#/kT2#21, ~4.1b!

where«v9 (r ,t) is the imaginary part of the dielectric consta
and V(r ,t) is the separation between the electron and h
quasi-Fermi-energies.

V. AN EFFICIENT NUMERICAL ALGORITHM FOR
EVALUATING Sµµ8„t…

The rate equations~3.18!–~3.20! contain a termJn(t)
which counts photons that were emitted into other mode
an earlier time, amplified there, and are now leaking into
nth mode. The evaluation ofJn(t) involves an integral over
the entire past history of the laser, which may be compu
tionally prohibitive. In this section, we provide an efficie
and accurate algorithm for stepping the laser forward in ti
without having to retain any history prior to the start of t
current time step.

Using Eq.~2.20!, the Green’s function~2.31! can be writ-
ten as

G~r ,t;,r 1 ,t1!5
1

i (
mn

Em~r ,t !Gmn~ t,t1!En~r 1 ,t1!,

~5.1!

where

Gmn~ t,t8![e2 i *0
t vm~t!dtgmn~ t,t8!ei *0

t vn~t!dt. ~5.2!

Because of Eq.~2.29!, the elementsGmn satisfy

[ ~lm~ t !2vm~ t !#Gmn~ t,t8!1 i
]

]t
Gmn~ t,t8!

1 i (
kÞm

tmk~ t !Gkn~ t,t8!50, ~5.3a!

Gmn~ t8,t8!5dmn . ~5.3b!
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We define the matrixMmn(t) by

Mmn~ t ![2 i ṽm~ t !dmn2tmn~ t ! ~5.4!

where ṽm and tmn are defined in Eqs.~2.26! and ~2.27!.
Gmn(t,t8) then satisfies the matrix differential equation a
boundary condition

]

]t
G~ t,t8!5M ~ t !G~ t,t8!, ~5.5a!

G~ t8,t8!5I . ~5.5b!

G andM arem3m matrices,m being the number of coupled
modes, andI is the identity matrix. The solution to Eq.~5.5!
is

G~ t,t8!5T S expE
t8

t

M ~t!dt D ~5.6!

whereT is the usual time-ordering operator@27#, ordering
later times to the left. From this solution, it follows that fo
t1<t2<t3 ,

G~ t3 ,t1!5G~ t3 ,t2!G~ t2 ,t1!. ~5.7!

We takeDt.0 and use this property in the form

G~ t1Dt,t8!5g~ t1Dt,t !G~ t,t8!, ~5.8!

where

g~ t1Dt,t ![T S expE
t

t1Dt

M ~t!dt D . ~5.9!

In Appendix C, we show that the time-ordered exponen
~5.9! can be written as an ordinary exponential with a c
rection term:

T S expE
t

t1Dt

M ~t!dt D 5S expE
t

t1Dt

M ~t!dt D 1E~ t,Dt !.

~5.10!

The lowest-order term in the series forE(t,Dt) is given by
an integral over a two-time commutator ofM (t):

E2~ t,Dt !5
1

2! Et

t1Dt

dt1E
t

t1
dt2@M ~t1!,M ~t2!#.

To estimate the size of the error term, we expandM (t) to
first order aboutt5t so that

@M ~t1!,M ~t2!#'~t12t2!@Ṁ ~ t !,M ~ t !#.

This gives the following error estimate and criterion:

E2~ t,Dt !'
~Dt !3

12
@Ṁ ~ t !,M ~ t !#!1. ~5.11!

To evaluate the exponential, we write
8-10
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E
t

t1Dt

M ~t!dt' 1
2 Dt@M ~ t1Dt !1M ~ t !#2 1

12 ~Dt !3M̈ .

~5.12!

The second term, which will be dropped, is regarded a
correction to the first and so the condition for accepta
accuracy is

1
12 M̈ ~ t !~Dt !2!M ~ t !. ~5.13!

When both conditions~5.11! and~5.13! are satisfied, the ex
ponential operator can be evaluated by diagonalizing,

Q21 1
2 @M ~ t1Dt !1M ~ t !#Q5D, ~5.14!

whereD is diagonal. The matrix exponential is then

expS Dt

2
@M ~ t1Dt !1M ~ t !# D5Q exp~D Dt !Q21.

~5.15!

This is the working formula for evaluatingg(t1Dt,t).
Finally, to update the photon number, we regard E

~3.12b!, the photon number matrixSmn(t1Dt), as themn
element of

S~ t1Dt !5E
2`

t1Dt

dt8G~ t1Dt,t8!R~ t8!GH~ t1Dt,t8!.

~5.16!

R(t8) is diagonal and the superscriptH denotes the Hermit-
ian conjugate matrix. We break the integral into

S~ t1Dt !5E
2`

t

dt8G~ t1D,t8!R~ t8!GH~ t1Dt,t8!

1E
t

t1Dt

dt8G~ t1Dt,t8!R~ t8!GH~ t1Dt,t8!.

~5.17!

Then using Eqs.~5.5b! and ~5.8!,

S~ t1Dt !5g~ t1Dt,t !S~ t !gH~ t1Dt,t !

1E
t

t1Dt

dt8g~ t1Dt,t8!R~ t8!gH~ t1Dt,t8!,

~5.18a!

where

g~ t1Dt,t8!5Q exp@~ t1Dt2t8!D#Q21. ~5.18b!

This is the recursive algorithm for evaluatingS(t1Dt)
using knowledge ofS(t) at the previous time step and o
R(t8) over the intervalt,t8,t1Dt. The recursive algo-
rithm ~5.18! is started at timet0 , prior to which the laser has
been in a steady state, so that

Smn~ t0!5
Rn

sp~ t0!

1/tn~ t0!2Gn~ t0!
dmn . ~5.19!
04380
a
e

.

When the time dependence of the laser is slow, the crit
~5.11! and ~5.13! allow for much larger time steps, and th
algorithm will automatically step forward rapidly, slowin
down only when rapid time dependence of the laser dema
shorter time steps.

VI. SUMMARY

In this paper, we have studied the conditions under wh
the usual multimode semiconductor laser rate equations
valid and have found a criterion for their validity. We de
rived a new rate equation to be used when the usual on
invalid, and have given a constructive algorithm for nume
cally solving it. Our analysis applies to all situations
which the laser field is expanded in ‘‘adiabatic’’ modes, th
is, eigenmodes of some time-dependent equation in wh
the dielectric constant is regarded as being parametric
dependent on the time. We showed that when a linear c
bination of such modes is used to solve the time-depend
wave equation, there do arise nonadiabatic couplings
tween these adiabatic modes. We showed that the resu
rate equation, including the nonadiabatic couplings, takes
form of coupled-mode rate equations in which the us
spontaneous emission term is augmented by a termJm(t).
Jm(t) counts photons that were emitted spontaneously
earlier times into other modes and which are now, due to
breakdown of the adiabatic approximation, leaking into t
mode of interest, providing an additional source of photo
The additional source takes the form of an integral over
earlier times. This is inconvenient computationally, and
we provided an algorithm to advance the photon num
using only information that refers to the present time st
The algorithm allows the new equation to be solved w
substantially the same effort as the usual one, and provi
moreover, error estimates at each step of the way.

The validity of the adiabatic approximation, and hence
the ordinary rate equations, was shown to depend on
product of two dimensionless factors, essentiallynmaxTp and
^D«/«&, being less than (1/n0Tp)(12nmaxTp). nmax is the
maximum frequency of modulating the laser,n0 is the opti-
cal frequency,Tp is the photon round-trip time in the lase
cavity, and^D«/«& is the spatial average of the largest fra
tional change in dielectric constant during the modulatio
Thus, there is no problem with the usual rate equation at
modulation rates, nor in the small-signal regime where
change in dielectric constant is order small, nor in the sh
optical-axis regime, such as in vertical cavity surface em
ting lasers. However, as the need for modeling moves ou
these regimes, it will become necessary to takeJm(t), or
something equivalent to it, into account.

Finally, lest it be thought thatJn(t) and the whole idea of
the breakdown of the adiabatic approximation is an artif
of our use of the eigenmode expansion for the electric fi
rather than the usual traveling-wave equations, we sho
point out that traveling-wave equations are derived assum
that the dielectric constant«v(r ) is independent of time.
When the equations are rederived allowing for a tim
dependent dielectric function, an explicit]«v /]t appears in
them too. Although we have not studied the conditions un
8-11
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which ]«v /]t can be ignored in the traveling-wave equ
tions, there is no reason to believe that the conditions are
different from those that allow us, in this paper, to igno
Jn(t).

APPENDIX A: CRITERION FOR USE OF THE
ADIABATIC APPROXIMATION

The adiabatic approximation is that off-diagonal eleme
gmn(t,t8) do not build up from their initial value of zero. A
a result, the diagonal elements are given by Eq.~2.32a!. To
establish a condition for validity of this approximatio
evaluategmn for mÞn to first order inTmn(t). We integrate
Eq. ~2.29a! from t8 to T, using the zeroth-order approxima
tion ~2.32a! in the expression for]gmn /]t. The result is

gmn~T,t8!52E
t8

T

dt Tmn~ t !ei *08ln~t!dt. ~A1!

For size estimation, we regardln , vm , and vn in Eq.
~2.22b! as being independent oft. Further, we take

tmn~ t !5tmne2 ivmaxt ~A2!

wherevmax is the maximum modulation frequency. The e
pression~A1! then becomes

gmn~T,t8!5
i t mn

vm2ṽn2vmax

3@ei ~vm2vn2vmax!Teiln~T2t8!

2ei ~vm2vn2vmax!t8#. ~A3!

Since Imln.0, each of the exponentials in the large pare
theses is at most of order unity, and their difference can
exceed 2. Putting in the value oftmn from Eq. ~2.27! and
neglecting the small imaginary part ofṽ in the denominator,
we have

gmn~T,t8!'
2~vn /c!2^Emu«̇nuEn&

~vm2vn!~vm2vn2vmax!
. ~A4!

This can be put in a form independent of the normalizat
of the wave functions by dividing by the normalizatio
~2.19b!:

gmn~T,t8!

'
2~vn /c!2^Em~ «̇n!En&

^EnKn
2En&

1

~vm2vn!~vm2vn2vmax!
.

~A5!

The first factor can also be written as

vn^Emu«̇nuEn&

^Enu«n1~vn/2!~]«n /]v!uEn&
.

The largest value of the second factor is whenn5m21, and
then vm2vm11'2p/Tp . In such case, the condition tha
gmn!1 is
04380
ny

s

-
ot

n

^Emu«duEn&

^Enu«n1~vn/2!~]«n /]v!uEn&
vmaxTp

!
~2p!2

vnTp
S 12

vmaxTp

2p D , ~A6!

where we have taken«̇n'vmax«d , with «d being the dy-
namic part of the dielectric function at frequencyvn .

APPENDIX B: THE FREQUENCY ASSOCIATED WITH
gµn„t¿t,t1…

We shall now show that Eq.~3.13! contains no frequency
attributable to thet-dependent phase ofgmn(t1t,t1). The
frequency under study is thet derivative of the phase, evalu
ated in the limitt→0. The proof consists of showing that th
phase contains no part that is linear int, and thus that the
derivative vanishes in this limit. The idea is to expressgmn in
terms of the appropriate time-ordered exponential, as
done forGmn in Sec. V. In this way, analogous to Eq.~5.8!,
we have

gmn~ t1t,t1!5(
k

FT expE
t

t1t

M̃ ~ t8!dt8G
mk

gkn~ t,t1!,

~B1!

whereT is the time-ordering operator and the matrixM̃ (t) is
defined, using Eq.~2.29!, as

M̃mk~ t !5 ilm~ t !dmk2Tmk~ t !~12dmk!. ~B2!

Working to lowest order int,

FT expE
t

t1t

M ~ t8!dt8G
mk

5@11tM̃ ~ t !#mk

5@11 i tlm~ t !#dmk2tTmk~ t !~12dmk!. ~B3!

The diagonal element is purely real becauselm(t) is pure
imaginary, so its phase is zero. The complex off-diago
elements have a ratio of real to imaginary part that does
depend ont, so their phase is alsot independent.

APPENDIX C: THE ERROR ESTIMATE E„t,Dt…

The error estimate in Eq.~5.10! is

E~ t,Dt ![T S expE
t

t1Dt

M ~t!dt D 2S expE
t

t1Dt

M ~t!dt D ,

~C1!

whereT is the time-ordering operator, ordering later times
the left. For simplicity, we putt50. The exponential and the
time-ordered exponential are both expanded as power se
8-12
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T S expE
0

Dt

M ~t!dt D 5 (
n50

1

n! E0

Dt

dt1E
0

Dt

dt2¯E
0

Dt

dtn

3T M ~t1!M ~t2!¯M ~tn!,

S expE
0

Dt

M ~t!dt D 5 (
n50

1

n! E0

Dt

dt1E
0

Dt

dt2¯E
0

Dt

dtn

3M ~t1!M ~ t2!¯M ~tn!.

As an example of how the terms will be manipulated, co
sider the third-order term. It contains an integral over a cu
of sideDt in t1 ,t2 ,t3 space. This cube can be divided in
3! parts, depending on the relative sizes oft1 , t2 , andt3 .
Each part is a separate integral. We rearrange the dum
variablest1 ,t2 ,t3 so that they stand in ‘‘standard’’ orde
t3,t2,t1 . Each of the six integrals now has the same li
its, but the three matricesM (t1), M (t2), andM (t3) appear
in an order dictated by the permutation needed to put
dummy indices in standard order. Each of the 3! permu
tions appears once. The error term now is given as the se
rt

l.

er

n

04380
-
e

y
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e
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ies

E~Dt,0!5 (
n50

1

n! E0

Dt

dt1E
0

t1
dt2¯E

0

tn21
dtn

3~T 21!( PNM ~t1!M ~t2!¯M ~tn!.

~C2!

The inner sum is over all possible permutations of thet j
indices. In Eq.~C2! the time-ordering operatorT rearranges
the matrices following it so that, no matter in what order th
are written, matrices evaluated at earlier times stand to
right of those evaluated at later times. As a result, each of
order-permuted matrices followingT is returned to ‘‘stan-
dard’’ orderM (t1)M (t2)¯M (tn). The second-order term
the first nonzero one, is

M ~t1!M ~t2!1M ~t1!M ~t2!2M ~t1!M ~t2!2M ~t2!M ~t1!

5@M ~t1!,M ~t2!#. ~C3!
n-

n-

m
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