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The standard multimode rate equation for semiconductor lasers is based on the approximation that modal
field shapegif they change at alldepend on the instantaneous value of the time-dependent dielectric function.
This is known as the adiabatic approximation. It will break down if the inverse of the modulation frequency
approaches the photon round-trip time in the cavity. In this paper, we derive a criterion for the validity of the
adiabatic approximation and find that it also involves the fractional modulation of the dielectric function, not
just the photon round-trip time and the modulation frequency. Recognizing that present laser designs are
starting to approach the limits of validity as set by our criterion, we study what can be done to get past that
limit. We obtain corrections to the equations presently used by rederiving these equations from the time-
dependent wave equatiamthout discarding the time derivative of the dielectric function, an approximation
made in every other derivation we have encountered. Retaining this time derivative introduces new terms into
the usual equations. These terms correctly account for propagation delay-time effects and for nonadiabatic
couplings between the modes. Surprisingly, the new terms alter only the source of photons to each mode. The
usual rate equations are driven by a spontaneous emissionRE(t), which represents the rate at which
photons are emitted spontaneously into the mada the rate equation derived here, the spontaneous emission
term RX(t) is augmented by a ter@& ,(t) which counts photons that were earlier emitted spontaneously into
other modesu, accumulated and perhaps amplified there, and are now, because of the breakdown of the
adiabatic approximation, leaking into tlh mode. Although casting the equations into this form makes sense
from a physical point of view, it leads to great computational difficulties in solving the equations because
B ,(t) refers explicitly to the past history of the laser. To overcome this practical problem, we provide an
efficient and accurate algorithm for stepping the laser forward in time without having to retain history prior to
the start of the present time step. Our method allows the equations to be solved with substantially the same
computational effort as is normally expended in solving the conventional rate equations, and, moreover,
provides error estimates at each step of the way.

PACS numbe(s): 42.55.Px

[. INTRODUCTION depend on the past history of the laser. They would other-
wise be computationally prohibitive to solve.

All formulations of the rate equations and large- Before proceeding further, it is useful to understand how
modulation traveling-wave equations governing semiconducthe interplay between the maximum modulation frequency,
tor lasers assume thab,,, the maximum frequency at the fractional change in the dielectric constant, and the
which the laser is modulated, is small compared to the inbreakdown of the adiabatic assumption comes about. The
verse ofT,, the photon round-trip time within the laser cav- adiabatic method uses a time-independent equation, e.g., the
ity. (For distributed feedback lasers, the equivalent assumgd€elmholtz equation, to calculate the field in a system where
tion is that the maximum modulation frequency is the dielectric function depends parametrically on time. In
appreciably less thaflw, the frequency spacing between ad- terms of a Huygens' principle description of wave propaga-
jacent longitudinal modes.Within both formulations, the tion, the validity of the adiabatic method depends on the
modes in which the electric field is expanded depend on thécal dielectric function undergoing only a small fractional
instantaneous form of a time-dependent dielectric functionchange during the time that light leaving some neighborhood
This is an adiabatic description of the field. We shall showreturns to that same neighborhood. Satisfying this criterion
that under certain well-defined conditions, ignoring theputs an upper limit on the rate at which the dielectric func-
(nonadiabatit couplings between these adiabatic modes detion can change.
stroys the validity of the governing equation. Although the To develop this idea somewhat more quantitatively, con-
general belief is that the maximum modulation frequency forsider the dielectric function as a sum of two parts, a static
which the governing equations can be useaig,T,<27 or and a dynamic:
omnalAw<1, we find that the criterion is more complicated
than this. Consequently, there may be, depending on the eu(r ) =eg(r)+eq(r,t).
length of the laser and the fractional change in its dielectric
constant during modulation, important corrections to theln the laser, the dynamic part is much smaller than the static
equations presently in use. In this paper, we derive rate equ@art. The characteristic time for light to return to its starting
tions that retain the nonadiabatic couplings to all orders. Wepoint is T,, the photon round-trip time in the cavity. The
also provide an accurate efficient numerical algorithm forfractional change in the dielectric constant during this time
dealing with the new rate equations which, as formulatedwill be
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Se,, 1 deq &4 neous emission into each mode have to be reevaluated.
m* g%w” 8_wmapr These terms depend on the dielectric function which is itself
' @ changing as the laser evolves. However, evaluation of the
where we have assumed a maximum modulation frequenc§ielectric function will not concern us here: a substantial
of wmax. Thus, the criterion for validity of the adiabatic ap- fiterature[1] exists on this point and instead we shall assume
proximation is that the product of two dimensionless factorsthe dielectric function is known. This allows us to focus
one expressing the fractional change in dielectric constariiolély on the equations that the field must satisfy.
and the other expressing the speed of modulation, should be Assume that the electric field in the laser can be expanded
small. “How small” is the question we must answer. The in the form
guantitative answer, which is derived later in the paper, is

contained in the following equation: E(r,t)=¢(X,y) >, Sv(t)efifgdwy(ﬂzv(z,t)+C_C_

2m)? T 1.3
QomaTy<" T) (1— e p). (113 19

@lp ™ If ¢(x,y)Z,(z,1) is written as

The quantity() resembles the termy /e, . Actually, it is the E (rH)=d(x.V)Z (z.t)=R.(r.t)e i&(b 1.4

ratio of an off-diagonal matrix element ef; to a diagonal AND=R(Y) 2,2 =R, 1.4

element of the group dielectric function, that is, [wherew (1), R,(r,t), andZ,(r,t) are rea) the vth mode in

Eq. (1.4) will have a local frequency
_ <E,u|8d|EV>
0= p#v. (1.1b

(E,Je +(0/2)(deldw)[E,) o1 D= () + %zv(r,t). 15
w is the laser optical frequency. The last factor on the right-
hand side of Eq(1.1a causes the adiabatic approximation, The sum over modes in Eql.3) allows one or another to
as expected, to break down completelysg, T,=27 where ~ become dominant as the laser moves from one point on the
the inequality can never be satisfied. What comes perhaps @sin spectrum to another. The flexibility of each individual
a surprise is the presence of the small factou)*1 onthe modeE,(zt) allows it to respond to changes in the spatial
right of Eq.(1.139. This factor gives rise to the severest re- form of the dielectric constant as the laser is modulated.
striction on the size of the dimensionless prodQeb T}, The derivation to be presented here starts by inserting Eq.
While the criterion (1.13 is easily satisfied for two- (1.3) into the time-dependent wave equation with sources,
dimensional(2D) laser simulations where the field confine- and solving the resulting equations using the time-dependent
ment in thex,y plane is tight enough to make, small[1],it ~ Green’s functionG(r,t;r’,t"). The form of the Green’s
is only marginally satisfied for 3D lasers at present and willfunction is remarkably simple when the adiabatic approxima-
be violated if we increase modulation frequency, cavitytion is valid. An equivalent statement of the adiabatic ap-
length, or strength of modulation. As an example of theproximation is that a photon, started in one time-dependent
present situation, consider a laser operating agdbwith a  mode, remains in that same mode as the system evolves. The
modulation frequency of 20 GHz, a cavity length of 3@  criterion for the validity of that approximation is well known
and a group index of 3.5. Suppose tiihis only 10 3. The  for quantum-mechanical systems. We apply that same crite-
left side of Eq.(1.13 is then smaller than the right by only a rion to the laser system to find out when we can use this
factor of 4. Doubling the length of the laser makes the leftsimplified form of Green’s function. This is how we obtained
side slightly exceed the right. Doubling the modulation fre-Eg. (1.1). However, without assuming the validity of the
guency instead makes the left side slightly larger than half ofidiabatic approximation, we do use the full Green’s function
the right. Thus, although the violation of the adiabatic ap-to provide a solution in much the same way as Henry did in
proximation is not an acute concern at present, the quest farsing G,(z,z') in the static cas¢2]. We then construct an
higher modulation rates and/or greater modulation depthexpression for the field-field correlation function and per-
may make the nonadiabatic corrections essential. form an ensemble average over the random spontaneous
To obtain the nonadiabatic corrections, we must retairemission events that give rise to the field. This allows us to
terms containinge 4/ 4t in our equations, terms that are uni- construct a rate equation for the photon number and leads to
versally dropped on the way from the time-dependent wavexpressions for the spectrum of emitted power. The rate
equation to the rate equations for the photon nun@)¢r).  equation reduces to the standard fo{f2) when the adia-
The photon number is defined by the role it plays in @3  batic approximation is valid. When it is not, use of the full
below, and the rate equation governing it takes the form: Green’s function leads to a new rate equation in which the
spontaneous emission terRIX(t) is augmented by a term
d_S,,_ E,(t). E,(t) counts photons that were emitted spontane-
dt ously into other modeg at an earlier time, have been stored
or amplified there, and are now, because of the breakdown of
G, and 1f, are the modal gain and the modal los&"is  the adiabatic approximation, leaking into thth mode. The
the rate of spontaneous emission into the mode. As the laseffect of this photon leakage is expected to be largest for the
evolves forward in time, the gain, the loss, and the spontaside modes, and to act in the direction of increasing their

1
(GV— T—) S,+RP. (1.2
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amplitude relative to that of the main mode, i.e., to decreas® andK are components of the polarization in the dielectric
the side-mode suppression ratio. This will come about bemedium. P is the response of the medium to the electric
cause leakage into the side modes of even a small fraction dield. Taking it to be isotropic, local, and causal,
the many photons in the lasing mode will greatly enhance the .
source of photons to the side modes. Conversely, the side _ / AP
modes will not contain enough photons to act effectively as a P(rH= fﬁmx(r,t,t JE(rthdt. .19
source to the lasing mode.

There are some limitations to the formalism. It is based orx is the first-order polarization response kernek repre-
a first-order dielectric function. That is, the polarization re-sents the contribution tD arising from spontaneous fluctua-
sponse of the mediurfwhose carrier distributions are as- tions of the medium. This point of view was taken by Lan-
sumed knowiis taken to be proportional to the first power dau and Lifshit43] and later served as the starting point for
of the electric field. This precludes study of, e.g., four-waveHenry's work on noise in the steady-state las&r
mixing and other nonlinear phenomena. Secondly, modula- The space and time dependence of the fields satisfy Max-
tion rates are assumed slow on the time scale of polarizatiowells equations with charge density and current set to zero
decay. The polarization is governed by the conventional dibecause at optical frequencies there is no appreciable accu-
electric response function rather than treated as a dynami@ulation of charge or current. These equations can be com-
system in its own right. This precludes study of certain ul-bined in the usual way, i.e., making use of the constitutive
trafast phenomena. Thirdly, the formalism is not well suitedequations(2.1) and dropping(as is always dong4]) the
to the study of noise and fluctuation effects. These are ust¥(V-E) term, which arises from the vector identifyx V
ally treated as small-signal responses to stochastic forces andE=V(V-E)— V2E. The result is the wave equation

are more appropriately studied in a formalism not specifi- ) :

cally tailored to large-signal response. V2E(r t)— — — | E(r.t)+4 f rttOE(r.t)dt!
This paper is arranged as follows. Section Il consists of (r.) c? gt? (r.O+4m %X( LUE(r)

two parts. The first leads from Maxwell's equations to the )

wave equation in the time domain and is not new. It does =27 7 Kb 2.2

allow us to reiterate some ideas we use later. The second part c? at? o '

is new. In it, we solve the time-domain wave equation in ) ] . )

terms of adiabatic modes oscillating at adiabatic time- If the system were truly time-translationally invariant,
dependent frequencies. We use a generalized eigenvallfgen the polarization response would depend andt’ only
equation to define the modes and give a criterion for detervia the combinationr=t—t’. In that case, the induced po-
mining their adiabatic frequencies. The nonadiabatic transilarization could have been written as

tion operator is defined here and the equations governing the "

Green’s function, including nonadiabaticity, are derived. p(r,t):J x(r,7)E(r,t—7)dr. (2.3
Section Il is motivated by the fact that the sources of the 0

field, and therefore the field itself, are stochastic. There are . o

several ways to deal with this. We choose to use the Green’5h kemelx(7) has a limited range: polarization induced by
function solution to express the field-field correlations in@ PulSe of electric field decays away after a short time due to
terms of time-domain source-source correlations. This allowgoﬂ'gons and dephasing. That short time is of the order of
us to derive a nonadiabatic rate equation that reduces to tH& ~ Seconds[5]. However, the system iswot time-
standard rate equation at low modulation frequencies. In Se&anslationally invariant because the response kernel depends
IV, we relate the time-domain source-source correlatiorPn the local density of carriers in the system, and that density
function to the frequency-domain source-source correlatiof@" D& time dependent. The shortest time scale associated
function, a quantity that Henrj2] has already worked out. with this dependence is set by the highest frequ_ency at which
Section V presents the numerical algorithm that makes th€ laser can be modulated. At the present time, that fre-
method practical for doing calculations. A short summarydYency do_elsl not exceed 40 GHz. This corresponds to a time
concludes the paper in Sec. VI. The adiabatic critefib) ~ ©f 2.5<10°"" seconds or longer. This is very slow on the

is derived in Appendix A. Numerical results will appear ime scale of the polarization decay, and so, on the faster
separately. time scale, the system sffectivelytime-translationally in-

variant. None the less, there is still a secular variatiory,in

and so instead of Eq2.3), we must write
II. GREEN’S FUNCTION SOLUTION IN THE TIME

DOMAIN o
P(r,t)ZJ x(r,t,n)E(r,t—7)d7,
A. Background 0

~ In a dielectric medium with negligible magnetic proper- here thet dependence of arises solely through the time
ties, the constitutive equations are dependence of the carrier density on whjgldepends[A

_ similar point of view has been taken in Ef) of [6].] In
D(r,)=E(r,)+4aP(r,)+K(r.v], (213 terms of the dielectric response kernel

H(r,t)=B(r,t). (2.1b e(r,t,7)=8(1)+4mx(r,t,7),
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Eq (23) becomes (Dv(t_ T)/q),,(t):e+if:*7'w”(t/)dt/. (21@
2 e

V2E(r,t)— Ezizf e(r,t,7)E(r,t—r)dr The 7 integration in Eq.(2.4) cuts off at values ofr~ 7,

¢ at” Jo ~10 ¥ seconds because of the short range of the dielectric
a2 kernele. Take advantage of this by expanding(t’) in Eq.
T . . r
3 WK(r’t)' (2.4  (2.10 to first order in ¢’ —t),
t t
The one-sided Fourier transform of th wy(t’)dt’~ft7 [w, (D) +(t' =) o,(t)]dt’
er0= [ Certmet o, 259 = 70,(1) =} Pio, 1), (213
0

The largest value of each term in BQ.1J) is at 7,, Where
is the frequency-dependent dielectric function in a time-the integral cuts off. To estimate the size of each term, we
dependent medium. It dependsoandt via the composition  write
and carrier density. If there is gain or loss locally, thep
has a local negative or positive imaginary paftk w,(h)=w)+ Ao, 1),

wherewg is the nominal optical frequency of theh mode
(=2mx2x10sec?) and Aw, is the frequency shift, or
Assume that the field has the form chirp, the laser might encounter during operation. Only dur-
ing extreme conditions will the fractional chitpw ,/w, be-
E(r,t)=>, av(t)e’ideva(T)Ev(r,t)+c.c. (2.6) come as large as 16. If the laser is being modulated at a
v frequencyw o4, thenw, is of order

B. Development

Inserting Eq.(2.6) into Eq. (2.4) will result in equations for 0~ Omed ©, <10 20 moqw, -
thea,(t). The equations depend on the choicewgft) and . _ _ .
E,(r,t) but that choice can be left open for now. The secondn this basis, the first term in E¢R.11) could be of order

term of Eq.(2.4) becomes the integral of 107 while the second is of order 16. The appropriate
) evaluation of Eq(2.10 for use within the integrand of Eq.
d - - - 2.4) i
—2[UL(r L@, (t-1]=0,0,+20,0,+U,b,, (24 1s
_ i
(2.7) @, (t— 1)/ (1) =e+'mv<t>< 1-3 T%V(t)) . (212
where
B The second term can be dropped provided the modulation
U,(rt,n=e(rt,na,(t—7nE,rt-7, (283 fequency satisfies a condition similar to Hd.1) with the
T gt much shorter polarization decay timeeplacing the round-
P (t—r)=e o @thdr, (2.8 trip time T,. At higher modulation frequencies, it would be
Note that better to treat the polarization as a dynamic system. We can

also use the short range of the dielectric kernel to expand the
terms within the square brackets in £g8.9) in powers ofr.

For the first term, the appropriate expansion terminates at
first order:

O, =—iw,(t—1P (t—7),

b,=—[iw,(t— 1+ w(t—7)]P (t— 7).

. . _ i wi(t=7)U,(r,t,7)
U,(r,t,7) is a slowly varying function of, oscillating at best

with a frequencyw.,q the frequency at which the laser is ) d )

modulated. We shall use 50 GHz as a frequency we would ~~&(I\tL7)| @i (Da,(DE, (D)~ 7—w,(1)7a,(DE,) |.
like to reach. @ (t), on the other hand, oscillates at the

modal frequencyw,, which for a laser with a free-space (2.13a

yygvelength of 1.fum is 4009_t|mes larger. Thus,7the termin The second and third terms in the square brackets of Eg.
U is smaller than the term i by a factor of 10° and can (2.9 are already smaller than the first by a factore£000,

be dropped, leaving an expression we rewrite as and so for them, the zeroth-order expansion is adequate:
92 . :
e U,d,=-0,()[wi(t—7)U,+ib,(t—7)U, o, (t=7)U(r,t,7)+ 20w, (t—7)U (r,t,7)
) J
+2iw,,(t—T)U,,](D,,(t—r)/q),,(t). (2.9 =w,,(t)s(r,t,r)a,,(t)E,,(r,t)—i—Zw,,(t)E(sa,,E,,).
The last factor is (2.13b
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As was the case for Eq(2.12, the higher-order terms J
dropped from Eq(2.13 can be shown to be small enough to = gkw(r 1) , (2.180

ignore Thus, Eq(2.9) becomes w=w,t)
ot tdt! 2 _477 (72 4’77 J )
e~ ifow,(t") osa,E, F(r,t)=?PK(r,t)=?Ejsp(r,t). (2.180

EZUV(I)V:_ S(r,t,’i’)

Further progress in obtaining equations for thg€t) re-
quires making a choice for the modal fielHs(r,t) and the
modal frequencieso,(t). The only necessary condition is
that the fields be complete enough to expand any electric
field in the interior of the laser. The choice made here is to
have the fields satisfy

1%
2 .« . .
— Ta(wVaVEV) tiw,a,E,+2i wVEaVE

4

etireuV), (2.14

+2ig(r,t,7)w,a,E,

The only ~dependent quantities appearing in E2.14) are
those whoser dependence has been indicated explicitly. The [VZ+K3(r,t) =\, (DK H]E,(r,t)=0 (2.193
7 integration in Eq.(2.4) can be carried out by using Eq.

(2.5). Three types of term appear: plus outgoing-wave boundary conditions on the surface of

the laser. The normalization will be taken to be

.f S(rvtaT)eJriTw”(t)dT:Sw (t)(l’,t)Eey(r,t), <EVK12/EV>:1’ (2.199
0 v

(2.158  where(---) denotes integration over the volume of the laser.
This is a generalized eigenvalue equation withbeing the
d eigenvalue. The real frequenay,(t) will be determined by
awysv(r’t)' (2.15H the condition thak , be purely imaginary at each instant: i.e.,
that

f e(r,t,re ™ Wrdr=—j
0

f g(r,t,retimddr=¢ (r,t). (2.150 R\, (w,)]=0. (2.199
0
A useful consequence of E@2.193 is that, up to terms

The overdot ore(r,t,7) denotes the derivative with respect linear in ki, the modes satisfy the following orthogonality
to t. The overdot ore,(r,t) denotes the time derivative of relation:
g,(r,t) evaluated atv= w,(t). Later, we shall need the full

time derivative ofe (r,t), taking into account thab,, the (EL(DKEDE(1)=35,,,. (2.199
frequency of evaluation, may itself be time dependent. For . . - .
this, we shall use the symbéldt and in that case, Modal fieldsg ,(r,t) andE,(r,t) are defined as
~ oot ’ !
3 ,  oe, E,(r,ty=e HoouIE (v 1), (2.20a
Esy(r,t)=sy(r,t)+w,,&wv. (2.16 3 o
E,(r,t)y=eoouIE (v 1), (2.200

Equation(2.4) becomes _
We multiply Eq.(2.17 by E,(r,t) and integrate over the
laser volume. The result is

Lot ’ ’ . (9
> e oo y2g E 4 Kk%a E,+iK2—a,E
14

Vat 14 14
.d .
a0 gs, | )\#(t)a#(t)—klaa#(t)%—lg T, (Da,()=F (1),
+Ez pr &wv+w,,s,,+2w,,s,, a,E,|=F(r,1), (2.21)
(2.17 where
where we have defined F#(t)E<Eﬂ(t)|:(t)>eif5wﬂ(r>dr, (2.223
wZ o, () —w,(n)]dr
KA1 D=z 8u(1,0), (2.183 T, (D=t, (D) Do nldr (2.220
t,.(1)=(E,K2E,
K2=TK: ], () (2.18b V= (EUMGE)
1 el e de, (7(0,2,)E
K2(r,0) zwv( 3 ﬁsy) (2.180 TR\ A g, )
rt)y=—\e,+—= .
v 2 2 o, (2.220
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Not all of the terms int,,(t) are equally important. To (2.25, the second term is of order,/w, times the first. It
extract the important ones, first evalug®,K’E ) for the Wil later turn out thaii\ ,=(G,—1/7,)/2, and so the second

case u=v by differentiating the normalization condition termis utterly negligible compared to the first. The first term
(2.19H with respect tat: is of orderwyl(c”oy—’d)ﬂ)%103 times larger than any of the

other terms irt,,,,, which allows us to drop the other terms.

. . a , Using a notation similar to Ed2.16), we transform that first
(E,KE,)=—3(E, EKV E,). 223 termto
2 2
. . ; . d . . d v. .
For u# v, differentiate Eq(2.199 with respect ta: 2= i, = o K2,
at c Jw c
(V2+K2—\ K2E,+ ﬁkz—x K2—\ ﬁKZ E,=0 2
L R T e e T e The term inK? vanishes in the matrix element because of

Eq. (2.199. Thus, instead of Eq2.229, we have
Multiplying by E,, and integrating over gives

T o @ E R IE)
(E#(kv—kﬂ—)\vKV-H\MKM)EV} wA)= D -

M v

(1-6,,). (2.27

+E _ki_M_ KIZ,)EV —0. (2.2 The operatot,,,(t) is the source of nonatﬁabatlc transitions
L\ at at between the modes. Its size is proportional to the rate at

) - _ which the dielectric function is changing, to the shape pf
The orthogonality condition was based on the assumptioRjg the matrix element between modes, and it is inversely

thatk’, was adequately represented as being a linear functioproportional to the spacing between mode frequencies.

of w over the frequency range spanned by the various fre- Return to Eq(2.2)) for a,(t). We write the solution as
quenciesw,, . To this same order of approximation, we have

1 t
K== (w,~»,)KZ, a,(t)= i—; f_wdt’gw(t,t’)FK(t’) (2.28

K2-K2=0 , _ _
v NpT Y and find that theg,,(t,t") must satisfy the following set of

This allows us to rearrange E¢@.24 as coupled equations and boundary conditions:

J
(ELKPE )= <EM((a/at)k§—)\V(a/&t)Ki)E) Aﬂ(t)gw(t,t’)Jriﬁgw(t,t’)ﬁ > T,.(1)g,.(t,t")=0,
uNpw Z’;L_Z’V , VF W 5 29
(2.25 (2293
where the complex frequencies in the denominator are de- 9un( )= (2.290
fined by The E(r,t) field can be reconstructed using E¢R.6),
D (D=, () =\, (1). (2.26 (2.28, and(2.223. The result is of the form

We can now make the following order-of-magnitude esti- E(r,t)zf d3rlft dt,G(r,t,:rq,t))F(ry,t;) +c.c.
mates: —

(2.30

(a) d)VS].O_Za)manV,

. with
(b) &,=—-2X10 2wn0e,,

~ 1 . ~

(C) 0)38/&20) 7e G(r!t;vrl!tl)zi_z E,u(r!t)g,u,v(tvtl)Ev(rlrtl)'

~ 224
(d) K=kJo,, (2.31

(& (E,(+)E)=()IK]. . y o

The diagonal elements of the transition maifix, vanish
Estimate(a) was made earlier, after E¢R.11). Estimate(b) because of Eq2.27). The off-diagonal elemen{®.22h os-
follows from the fact that, in a Fabry-Rat laser of lengti_, cillate rapidly, with the lowest frequency,— w,, ; being
the quantityw?e,L?/c? is almost invariant with respect to ~2m/T,, whereT, is the photon round-trip time within the
frequency. Estimatéc), in which o is of the order 0.1-0.3, is cavity. This round-trip time is of the order of710™ 12 sec-
empirically true for semiconductor laser dielectrics in theonds, corresponding t&150 GHz, far faster than lasers now
optical and infrared. For order-of-magnitude purposes, can be modulated. The adiabatic approximation assumes
~1. Estimate(d) follows from the definitions(2.18. Esti-  that, because of the disparity of time scales, the off-diagonal
mate (e) follows from the normalization conditiof2.19b. elements ofy,, never have a chance to build up appreciably
Using these estimates, each of the three last terms in Edrom their initial value of zero. Thus, in the adiabatic ap-
(2.229 is of order <10 2w as is EQ.(2.23. In Eq. proximation,g,,, is diagonal,
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.ot 1 _fi i i I
g V(t,t,)ze.fl,xﬂ(f)dfg y (2.323 to evalqatg the field-field correlation functlon in terms of the
s ® nonvanishing source-source correlation function.
and the Green’s function is The correlation functionj(,r,t) from which the power
spectrum can be derived is not an instantaneous function of

o1 if's (ndr L the fields but is rather an average, taken over a time pédriod
G(r.t;r',t )ZTE E,(r,t)e Ve PEE (17 t7). large enough to kill any interference between the various
: frequency components of the fielfi23]. Its precise defini-
(2.329 tion is

As the inverse of the modulation frequency approaches
the photon round-trip time, one expects radiation launched W t)EEIHTIZdt’E(r t'+ 7/2)E(r t’ — 7/2)
into one mode to leak into other modes. To study the issue v T 2 ' ’ '
guantitatively, we note that the mathematics used in Egs. (3.1a
(2.20—(2.22 is almost identical to that used to discuss adia- o ) ) ]
batic perturbations in quantum mechanics. In Appendix AFrom the definition;/(7) is an even function of and in what
we use the same methods to study when the approximatiof!lows, we shall consider to be non-negative. Equation
(2.323 is justified. When it is not justified, one must numeri- (3-18 can also be written as
cally integrate Eqs(2.299 and(2.29b or something equiva-

1 (t+T/2 T
lent (see Sec. Y. _ _ l//(T,r,t)E—f dt'E(r,t'+ 7)E(r,t')+0 —EZ).
Nothing has been said about how to solve the eigenvalue T Je-112 T
equation(2.199. This equation, or closely related ones, is (3.1b

routinely solved in every study of the one-dimensiofal i will b . d si final
laser after separating the transverse field dependence frofj!!S Will prove to be more convenient and, since our fina

the longitudinal. Traveling-wave method8—12, transfer- working equations will be derived in the limit—0, will

matrix methods in which uniform sections of the laser areenta" no loss of accgracy. .
coupled [13-19, spatial Green’s function techniques W€ insert Eq(2.6) into Eq.(3.1) and recognize that the

[16,17], tooth-by-tooth integration schemgEs], variational averaging suppresses terms oscillating at optical frequencies,

methods[19], and transfer-matrix tooth-by-tooth methods '€8ving
[20,21] are routinely used and could be used here as well. 1 (et
There is no need to work with the full Green’s function if (7,1, t)= _f dt'E(r,t’ + 7)E(r,t")* +c.c.
the structure supports only a single transverse mode. In that T2
case, it is sufficient to approximafg,(r,t) by (3.2
E,(r,t)~p(X,y)Z,(z1), (2.33 Then, using the solutiof2.30),

which is equivalent to approximating the full Green’s func- 1 (o2 t'+r t

tion by q pp g l,b( T,r,t): Tf dt J' d3r1d3r2f dtlf dtz
t—T/2 —o0 —»

G(r,t;r',t")~o(x,y)G(z,t;2",t")p(x",y"). (2.39 XG(r,t"+7,r,t)G(r,t';r,,t)*
The details of the equations fab(x,y,t) and Z,(z,t) are XF(rq,ty)F(r,,t)* +c.c. (3.3

easily worked out. In particular, the equation ®y(z,t) that ) o
results from projecting Eq(2.17) onto ¢(x,y)? can stand When the ensemble average is taken to(@étr,r.t)), it is
alone as the optical part of a one-dimensidza laser mod- ~ the nonvanishing averagé(ry,t;)F(rz,t,)*) that results.
eling program. Because of computational efficiefmge Sec. \We anticipate thqt source correlations will be short ranged in
V) this could serve as an alternative to the traveling-wave?0th space and tim4], and are tempted to write

(z,9 description, which seems, with one excepti@2], to

*\ — — —
have been applied only in the small-signal regime. (F(ri,t)F(ra,t2)") =Der(ry,ty) 8ty —t2) 8(ry—ra).
However, theactual time range of the correlated average is
IIl. THE FIELD-FIELD CORRELATION FUNCTION on the order ofr,,~10"*3 seconds. Although this is short
AND THE NONADIABATIC RATE EQUATION on the time scale over which functions liEs, andg,,, vary,

Direct evaluation of Eq(2.30 is not useful because of the it is long on the tim_e scale on which the phase factors in Eq.
stochastic nature of the source teSfr,t). Averaging the (2-20 vary. For this reason, we cannot yet go tos@;
equations over the ensemble of realizations of the source f2) time correlation function. Instead, we write
does not help because that average, denotéf(ast)), van- E(re tOE(rs to)*
ishes, and hencéE(r,t)) vanishes too. The way to proceed (F(ri,t)F(rz,t2)")
is to recognize that the information needed from the field o _
E(r,t) is its power spectrum. This can be obtained from the = 5(f1—r2)f dw 2D, (rq,t)e' 271,
field-field correlation function, namelyE(r,t+ 7)E(r,t)) o
[23]. The Green'’s function solutiof2.30 makes it possible (3.9
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wheret = (t,+1,)/2. We insert Eqs(3.4) and(2.21) into the
ensemble average of E(.3) to get

1
W=7 [ a3 S B AR

« t'+7 t’

Xt + 7,1 f0(t1)g,0 (1 1)* £7,(tp)*
(3.5

X1? ,(ty,ty)+c.c.,

where

fﬁ’(t)zexpif[wv(s)—w]ds (3.63
0

and

19 (t,t) = f d%r1E,(r1,t1)2D (11, DE, (11, t)*.
(3.6b

In the t, integration,
lates with a frequency — w,(t;). If this oscillation is rapid,

this part of thet, integrand will not contribute to the integral.
The contribution to the; integral comes only from those

regions oft; for which w,(t;)~w. Similarly, contributions
to thet, integral come only where, (t,)~ w. Taking these
considerations together, the contribution to the integral
comes from those regions in the, plane for which

wv(tl)%w%wv’(tZ)'

|ty—t,| is constrained to be less than,. w,(t;) can

f¥(t,) is a phase factor that oscil-

PHYSICAL REVIEW A61 043808

— .t
dow ZDw(rl,t)e'ft:[‘“v(s)—w]ds

= f dw2D,(r p)ellest)—elt-ty)

=2W5(t1—t2)2DV(r1,t1), (38)

where D, meansD, evaluated atw=w,(t;). The §(t;

—1,) is justified here because there are no longer any rapidly
varying terms in the integrand. Using this to carry out the
integration,

(P(7,r,1))== fﬂﬂzdt 2 E Lt +7-)E H(r,th)*

v

t/
X in dtlg,u.y(t, + Tvtl)g/.L’ V(t,tl)*

Xf d®r,l,(t;)+c.c., (3.93

where

|v(t1)5277f d® 12D ,(rq,t)|E(r1,t)]2  (3.9b

It will turn out later thatD, is real, so that, is too.

The power spectrun®(w,r,t) can be obtained from the
correlation function{(#(7,r,t)) by the Wiener-Khinchine
theorem: the two are»-7 Fourier transforms of each other
[23]:

P(w,r,t)= de(:// (7,r,t))e” lo7, (3.10

If we are interested in the short-term power spectisoch
as would be measured by a spectrometer with very fast time

undergo only very small changes during this tlme period, andesolution, we can discard th& averaging and replace the

so the above could have been written
o,(t)~o~0, ().

The only way to satisfyw,(t;)=w,(t;) is to haver'=v.
We therefore drop alb# v’ terms in Eq.(3.5) to get

t+T/2 R R .
(p(r,r,0))== f mdt 2 E.(r,t'+7E,, (r,t)

up'v
t’
X g,uv(t’ + T!tl)g,u’v(t, ,tz)* I (;)y(tl 1t2)

X expi ftl[w,,(s)—w]dSch.c. 3.7)
to

The w integration can be carried out. We make use of the

small change inv,(s) over the time span in theintegral to
approximate

function being averaged over by its valuetatt. In this
case, Eq(3.9 becomes

)= Eu(rt+nE,(r,0*

pu'v

(p(7,r,t)

t
X J’ dtyg,,,(t+ 7,t1)g,,(t,t)*1,(t) +c.c.

(3.11

Because we are not concerned with line breadth ke,
phase-fluctuation-induced spectral broadening or finite pho-
ton residence time in the cavjfythe Fourier transforni3.10

can be bypassed in the following way. The total power is
given by evaluating Eq3.11) at 7=0,

1> EL(rDE,(r0*S,, () +cc,
" (3123

P(r,t)=

where
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t d t d
Sw’(t)EZV f_mdtlgw(t,tl)g#,,,(r,t)*Rip(tl) &Sﬂﬂ(t)zﬁmdtlg E|gw(t,tl)|2Ri”(tl)
(3.12h
+ 2 19,,(LOIPRAL). (3.15
and v
R(t,)=21 (t,). (3.129 Note that, from the fact that,, is pure imaginary,

J

We refer toS, ,/(t) as the photon number matrix because, as at
we shall see below, its diagonal elements have the signifi-
cance of being proportional to the number of photons in the _ 1k /
it mode. 2Re 2, Gu(tt) T Dgaltit),

There are two spectra that might be of interest. The first
arises from the periodic modulation of the laser. To obtain it,
one must evaluate the averaged correlation funct®) while, from Eq.(2.29,
with T being the complete modulation period, and then take
the Fourier transforn{3.10. The second is what would be 9u(t,t) =6, . (3.17
observed in a spectrometer fast enough to follow the fre-_ .
quency chirp associated with any transients but not fas-{h'S reduces Eq3.19 to
enough to observe beatirif any) between a pair of simul- ds
taneously lasing modes. In that case, the timesed for the d—‘t‘“:2i)\#(t)sw(t)+ RAD+EL(, (318
averaging in Eq(3.99 should be taken large enough that

AwT=>2m. Thet’ dependence d,E7, averages the term whereE ,(t) is defined by the integral
away unlessu=u'. This results in a diagonal photon num- t
ber matrix, and the power in theth mode becomes EM(t)=E f_ AR T(rti—pt)  (3.19

19,,(8,t)[2=2iX ,(1)]g,.,(t,t")]?

(3.1

PL(rH)=[E,(r,t)[>S,,(t) (3.13a and

where .
T(V,tl—>/.L,t)E_2 Re; T,LLK(t)g,lLV(tltl) ng(titl)'
KF

(3.20

In the adiabatic approximatiory oscillates so rapidly that
Z ,(t) will vanish. Comparing Eq(3.18 to Eq.(1.2) in that
When the photon number matrix is diagoitahd only thely  case demands that we make the identification

the frequency associated with tjp¢h mode is given by writ-
ing that term in Eq(3.12) in phasor notation and taking the

t
$.u0=3 [ dtlo. (Lt PRt (313

2iN,(H)=G,(t)— (3.2

7 derivative of its total phase at=0. That is, we write T, (1)’
E (1, t+7)=R,(r,t+ e igulnttn (3.143 so that Eq.(3.18 is
B _(g,~ Lls,, +rRP+= (3.22
with R, and ¢, both real. Then the frequency is ST I R T :

d This is the equation that replaces the standard rate equa-
®,(r0)=w,(t)+ aQ',M(r,t)_ (3.14b tion (1.1 \_/vhen the a_ld!abatlc apprOX|mat|on starts to break
down. It differs from it in only a single term. From the form
of Egs.(3.19 and(3.22, we infer that= ,(t), the additional
Although one might have expected a contribution from theterm, is proportional to the rate at which photons emitted into
7-dependent phase df,,(t+ 7,t;), we show in Appendix B other modes at earlier timeg; and amplified since are now
that the anticipated contribution vanishes and that(Bd4  being supplied to thesth mode. As a consequence of the
is correct as written. Itis the form of E(B.13 that gives the  enhanced supply of photons to the side modes, the side-mode
diagonal elements d, ./ (t) the significance of being pho- amplitude will be larger than it would be without this addi-
ton numbers, although for them to actually equal the numbetional source. Thus, one effect of the breakdown of the adia-
of photons in the cavity, a different normalization is neededbatic approximation is to decrease the side-mode suppression
We now derive the rate equation satisfied by the diagonatatio.
elements of the photon number matrix, the “photon num- Using Eg.(3.22 as a numerical method to update the
bers.” DifferentiatingS,,,, with respect ta gives photon number is exceedingly cumbersome because of Eq.
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(3.19, an integral over past time. However, in Sec. V, weWe define the matriM ,,(t) by
shall present a simple and efficient numerical way to update .
S, (t) with not much more effort than is used to solve Eq. M ()=—iT®,(1)5,,—t,,(1)
o
where w, andt,, are defined in Eqs(2.26 and (2.27).

(3.22 in the absence o , .
G,.(t,t") then satisfies the matrix differential equation and
boundary condition
In the equilibrium time-independent system, the rate of

(5.9

IV. SPONTANEOUS-EMISSION TERM

spontaneous emission depends on(tlmaginary part of the j L ,

dielectric constant of the medium and on the amount of atG(t’t )=MOGE), (5.53
population inversiorj2,25,26. If these are time dependent,

the rate might be an integral over their present and past val- G(t't")=lI. (5.5b

ues or might depend on other dynamic considerations. We

are unaware of any theory relevant to this point and willG andM aremX m matricesm being the number of coupled
assume instead that the emission rate at tifepends on the modes, and is the identity matrix. The solution to E¢5.5
dielectric constant and inversion only at tim& he diffusion s

constant needed here has been derived by HgBtyEQs. 38

and 45 and it is real:

G(t,t'):T(eprtM(T)dT) (5.6)
t!

Awhe! (1 ,t)

2D,(r.H)= c? {nu(r.0), (4.13 where 7 is the usual time-ordering operatf7], ordering
later times to the left. From this solution, it follows that for
(n,(r,t))=[elhe-evruikT_1-1 4.1 tysty=ts,
wheree” (r,t) is the imaginary part of the dielectric constant G(tz,t1)=G(t3,t,)G(t,,t). (5.7
and V(r,t) is the separation between the electron and hole . )
quasi-Fermi-energies. We takeAt>0 and use this property in the form
V. AN EFFICIENT NUMERICAL ALGORITHM FOR GLHALT)=g(t+ ALHG(LY), 5.8
EVALUATING S,/ (t) where
The rate equation$3.18—(3.20 contain a term= ,(t) AL
which counts photons that were emitted into other modes at g(t+At,t)ET< expf M(r)dr). (5.9
an earlier time, amplified there, and are now leaking into the t

vth mode. The evaluation & ,(t) involves an integral over ) . )
the entire past history of the laser, which may be computal? Appendix C, we show that the time-ordered exponential
tionally prohibitive. In this section, we provide an efficient (5-9 can be written as an ordinary exponential with a cor-
and accurate algorithm for stepping the laser forward in timd€ction term:

without having to retain any history prior to the start of the

current time step.
Using Eq.(2.20), the Green'’s functioi(2.31) can be writ-
ten as

1
G(rt,r1t) =72 Eu(r)G,,(Lt)E,(rty),
mv

(5.9
where
G, (t,t)=e fowu(Mdrg (¢ t7)elfoond7  (52)
Because of Eq(2.29, the elementss,, satisfy
! 1 ﬁ !
[N (D) =0, ()]G, (t,t )+|EGW(t,t )
i 2 1, (1)G,(4,t)=0, (5.39
K# [
Gt t')=3,,. (5.3b

+E(t,At).
(5.10

The lowest-order term in the series fB(t,At) is given by
an integral over a two-time commutator BFf(7):

t+At t+At
T(expft M(7-)d7-)=(expft M(7)dr

1

t+ At T
Ez(t,At)=Eft drlft d7[M(71),M(75)].

To estimate the size of the error term, we expamfir) to
first order about=t so that

[M(71),M(75)]= (71— 7)) [M(t),M(t)].

This gives the following error estimate and criterion:

(At)3

T [M(),M(D]<1.

Ez(t,At)%

(5.11

To evaluate the exponential, we write
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t+At . L - When the time dependence of the laser is slow, the criteria
ft M(7)dr~3 At[M(t+At)+M(t)]— 1 (At)°M. (5.12) and (5.13 allow for much larger time steps, and the
(5.12 algorithm will automatically step forward rapidly, slowing
' down only when rapid time dependence of the laser demands
The second term, which will be dropped, is regarded as &horter time steps.
correction to the first and so the condition for acceptable
accuracy is VI. SUMMARY
i M(t)(At)2<M(t). (5.13 In this paper, we have studied the conditions under which
» o the usual multimode semiconductor laser rate equations are
When both condition5.11) and(5.13 are satisfied, the ex- y3iq and have found a criterion for their validity. We de-
ponential operator can be evaluated by diagonalizing, rived a new rate equation to be used when the usual one is
invalid, and have given a constructive algorithm for numeri-
cally solving it. Our analysis applies to all situations in
which the laser field is expanded in “adiabatic” modes, that
is, eigenmodes of some time-dependent equation in which
At the dielectric constant is regarded as being parametrically
exy{7[M(t+At)+ M(t)]|=QexpD At)Q L. dependent on the time. We showed that when a linear com-
bination of such modes is used to solve the time-dependent
(5.15 . . . . .
wave equation, there do arise nonadiabatic couplings be-
This is the working formula for evaluating(t+ At,t). tween these adiabatic modes. We showed that the resulting
Finally, to update the photon number, we regard EgqJrate equation, including the nonadiabatic couplings, takes the

(3.12h, the photon number matri$,,(t+At), as theur form of coupled-mode rate equations in which the usual
element of . spontaneous emission term is augmented by a Ert).

= ,(t) counts photons that were emitted spontaneously at

At earlier times into other modes and which are now, due to the
’ ’ ! H ’ ’

dUG(t+AL)R(U)GT(t+ALL). breakdown of the adiabatic approximation, leaking into the

(5.1  mode of interest, providing an additional source of photons.

The additional source takes the form of an integral over all

R(t") is diagonal and the superscridtdenotes the Hermit- earlier times. This is inconvenient computationally, and so

Q Y [M(t+At)+M(1)]Q=D, (5.14

whereD is diagonal. The matrix exponential is then

t+

— oo

S(t+At)=f

ian conjugate matrix. We break the integral into we provided an algorithm to advance the photon number
. using only information that refers to the present time step.
S(t+At)=f dt'G(t+A,t")R(t")GH(t+At,t') The algc_)rithm allows the new equation to be solved V\_/ith
—w substantially the same effort as the usual one, and provides,

moreover, error estimates at each step of the way.
+ jHAtdt’G(tJrAt tYR(E)GH(t+AL,t) The validity of the adiabatic approximation, and hence of
t ' o the ordinary rate equations, was shown to depend on the
(5.17) product of two dimensionless factors, essentiaily,T, and
' (Aele), being less than (LHTp)(1—vmaxlp).  Vmax is the

Then using Eqs(5.5b and (5.9, maximum frequency of modulating the laseg, is the opti-
cal frequency,T, is the photon round-trip time in the laser
S(t+At)=g(t+At,t)S(t)g" (t+At,t) cavity, and(Ae/e) is the spatial average of the largest frac-
At tional change in dielectric constant during the quulation.
+ f dt’g(t+At,t")R(t)g™(t+At,t), Thus, there is no problem with the usual rate equation at low
t modulation rates, nor in the small-signal regime where the

(5.183 change in dielectric constant is order small, nor in the short-
optical-axis regime, such as in vertical cavity surface emit-
where ting lasers. However, as the need for modeling moves out of

these regimes, it will become necessary to takg(t), or

g(t+Att)=Qexd(t+At—t')D]Q™*. (5.189  something equivalent to it, into account.
o . . ) Finally, lest it be thought th& ,(t) and the whole idea of

This is the recursive algorithm for evaluati®ft+At)  he preakdown of the adiabatic approximation is an artifact
using knowledge ofS(t) at the previous time step and of of oyr use of the eigenmode expansion for the electric field
R(t') over the intervalt<t’<t+At. The recursive algo- rather than the usual traveling-wave equations, we should
rithm (5.18 is started at timeéo, prior to which the laser has int out that traveling-wave equations are derived assuming

been in a steady state, so that that the dielectric constant,(r) is independent of time.
RA(to) When the equations are rederived allowing for a time-

= $ dependent dielectric function, an expliéit ,/Jt appears in
17,(to) —G,(to) them too. Although we have not studied the conditions under
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which de ,/dt can be ignored in the traveling-wave equa- <E;L|Sd|Ev>
tions, there is no reason to believe that the conditions are any (E,Je,+ (0,/2)(92,1d0)|E >wmapr
different from those that allow us, in this paper, to ignore vy g v g
E(1). (277)2 wmapr
< J—
w,Tp 1 27 )’ (AG)

APPENDIX A: CRITERION FOR USE OF THE

ADIABATIC APPROXIMATION where we have takes ,~ wy.,eq, With g4 being the dy-

The adiabatic approximation is that off-diagonal elementd'amic part of the dielectric function at frequeney .
d.,(t,t") do not build up from their initial value of zero. As
a result, the diagonal elements are given by @323. To  APPENDIX B: THE FREQUENCY ASSOCIATED WITH
establish a condition for validity of this approximation, (t+7t,)
' . . Gt 7l
evaluateg,,, for u# v to first order inT ,,(t). We integrate )
Eq. (2.293 from t’ to T, using the zeroth-order approxima-  We shall now show that Eq3.13 contains no frequency

tion (2.324 in the expression fosg,,,/dt. The result is attributable to ther-dependent phase @,,(t+7.t;). The
frequency under study is thederivative of the phase, evalu-

(T i (ndr ated in the limitr— 0. The proof consists of showing that the
9un(T 1) =~ t,dtTw(t)e o (A1) phase contains no part that is linear7snand thus that the
derivative vanishes in this limit. The idea is to exprggs in

For size estimation, we regard,, o,, and w, in Eq.  terms of the appropriate time-ordered exponential, as was

(2.22h as being independent of Further, we take done forG,,, in Sec. V. In this way, analogous to EG.8),
_ ot we have
tW(t)—tWe may (A2)
where wpay is the maximum modulation frequency. The ex- trt) = T ex f”’m tdt! tt
pression(Al) then becomes 9t 7.ta) ; Pl () Mg"”( ),
. (B1)
, it,,
9u T V)=~ .
mo v Tmax where7 is the time-ordering operator and the matixt) is
X [€l(@u~ v omad Tgir,(T=1) defined, using Eqg(2.29, as
—eleum e omadt'], (A3) M (D=, (08, T)(1-8,0. (B2

Since Im\,>0, each of the exponentials in the large paren- King to | t order i
theses is at most of order unity, and their difference cannoWOr Ing fo fowest order i,
exceed 2. Putting in the value of, from Eq. (2.27) and
neglecting the small imaginary part @fin the denominator,

we have

t+7

Texpj M(t")dt’
t

K

2(w,/c)X(E,|&,|E,) (Ad) =[1+ 7M(1)] ..

(w,u_wv)(w,u_wv_wmax) .

9T t")~
=[1+i7N,(D]6,c— 7T 1()(1=6,,). (B3)
This can be put in a form independent of the normalization

of the wave functions by dividing by the normalization The diagona| element is pure|y real becam%t) is pure

(2.19b: imaginary, so its phase is zero. The complex off-diagonal
Tt elements have a ratio of real to imaginary part that does not
9u(T.1) depend onr, so their phase is alspindependent.
_2(w,/0)XE(5,)E,) 1
(E,K°E,) (0,~0,)(0,~0,~0na) APPENDIX C: THE ERROR ESTIMATE E(t,At)
(A5) The error estimate in Eq5.10 is

The first factor can also be written as AL 4 AL
E(t,At)=T|e M(r)dr|—|e M(7)d7|,
0,E,l2JE) 0= e [ wimar] (o [

(E,|e,+ (w,/2)(de,ldw)|E,)" (CY

The largest value of the second factor is whenp—1, and  whereT is the time-ordering operator, ordering later times to
then w,—w,1~27/T,. In such case, the condition that the left. For simplicity, we put=0. The exponential and the
9., <lis time-ordered exponential are both expanded as power series:

043808-12



NONADIABATIC SEMICONDUCTOR LASER RATE.. .. PHYSICAL REVIEW A 61 043808

At At

1 (At 1 (At T The
=3 | Tdn| drye | dr E(ALO=Y — drlf 1d72---f “dr,
n=01:Jo 0 0 n=0 NI Jo 0

At
T(expf M(7)dr
0 0

CTMIM(2) M ), X(T =13 PM(7)M () M(ry).

At 1 (At At At
(expf M(T)d7'>=2 —If drlf dTZ---J dr, (C2)
0 n=0 N Jo 0

0

XM(1)M(t)- M (7). The inner sum is over all possible permutations of the

As an example of how the terms will be manipulated, con—'?]d'cest' .In Ecg.(ﬁ:Z) _the.?met-rc])rctiermg oi)tergtdf rr]e?rra:jngeti

sider the third-order term. It contains an integral over a cubdhe matrices following it so that, no matter in what order they
are written, matrices evaluated at earlier times stand to the

of sideAt in 7y, 75,73 Space. This cube can be divided into . :
31 parts, depending on the relative sizesrgf 7,, andrs. right of those evaluated at later times. As a result, each of the

Each part is a separate integral. We rearrange the dumm dg,r,-pe(;mul\t/led mlatrlce.s. Tﬂlowm@ﬂ:s returnzd tz stan-
variablesr;,7,,73 SO that they stand in “standard” order thaer firsﬁrniazérgl)oné?g (7n). The second-order term,
73<T1,< 7. Each of the six integrals now has the same lim- '

its, but the three matriced (1), M(7,), andM(73) appear

in an orgier_ d|ct§1ted by the permutation needed to put th‘?\/l(rl)M(rzHM(rl)M(rz)—M(rl)M(rz)—M(rz)M(rl)
dummy indices in standard order. Each of the 3! permuta-

tions appears once. The error term now is given as the series =[M(71),M(75)]. (C3
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