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High-intensity localized structures in the degenerate optical parametric oscillator:
Comparison between the propagation and the mean-field models
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The degenerate optical parametric oscillator may generate very high-intensity two-dimensional localized
structures. A quantitative comparison of the propagation and the mean-field models is presented for different
mistunings, corresponding to monostable and bistable homogeneous solutions. In both models, we study the
circular domain walls as an example of localized structures. The peak intensities are comparable; the difference
lies mainly in their domain of existence as a function of the pump amplitude parameter.

PACS number~s!: 42.65.Sf, 42.60.Mi
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I. INTRODUCTION

The electromagnetic field-matter interaction is genera
described by a reduced Maxwell equation with a sou
obeying the Bloch equation in the case of an atomic or m
lecular system. In the case where the source behaves l
Kerr medium in a cavity operating on a single longitudin
mode, Lugiato and Lefever@1# developed the so-calle
mean-field~or uniform-field! model that reduces the origina
equations to a single partial differential equation for the el
tric field. The method relies on a perturbation expansion
suming a small transmittivity, a small field amplitude com
pared to the saturation amplitude, and a response tim
between the delay and the cavity photon lifetime. The p
dictions of the mean-field model were found to agree fa
well with the experimental observations in the case of a c
focal cavity with curvature mirrors@2#.

Later on, the mean-field model was extended to ot
nonlinear media, such asx (2) crystals@3,4#. In this case, the
mean-field model leads to two coupled partial different
equations, in the case of either second harmonic genera
or a degenerate optical parametric oscillator~DOPO!.

Within the mean-field model, it is easy to derive envelo
equations, such as the Swift-Hohenberg, Ginzburg-Land
or nonlinear Schro¨dinger equations. A description in terms
these amplitude equations is especially useful for the DO
Two approaches were proposed, in two different limits. T
first consists of an adiabatic elimination of the pump fie
leading to a nonlinear Schro¨dinger equation with damping
and parametric gain@5#. The second describes the vicinity o
the lasing threshold where the transverse effects apprea
a diffusive equation of the Swift-Hohenberg type@6#. Both
models predicted the occurrence of domain walls.

The relevance of these predictions for the DOPO has
yet been proved, but fronts and circular domain walls w
recently observed in a photorefractive oscillator@7#. The ex-
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perimental profiles and those derived from the Sw
Hohenberg equation@6# have much in common, but undoub
edly are only qualitatively similar.

The purpose of this paper is to compare quantitativ
numerical simulations of the reduced Maxwell equatio
plus the boundary conditions, or propagation model@8#, and
those of the mean-field model for the DOPO. Both mod
display domain walls@9#.

The system operates on a single longitudinal mode,
the transmittivity factor is small, varying between 1021 and
1022, in order to fulfill the basic requirements for the valid
ity of the mean-field model. Other parameters have b
chosen such that domain walls occur and the compar
between both models has focused on the circular dom
walls, where large intensity peaks can be generated. Sev
questions arise: Does the mean-field model reproduce pr
gation model results in the limit where signal and pump a
plitudes reach values close to unity? Is the agreement
tween the propagation model and the mean-field mo
improved as the transmittivity factor vanishes?

In Sec. II, the mean-field model is derived from the prop
gation model, and the scalings for the reduced mean-fi
quantities are given. This derivation is presented to disp
the successive approximations necessary to achieve
mean-field equations for the DOPO. This makes a comp
son between the two theories easier. In Sec. III, a lin
stability analysis~LSA! of the homogeneous nontrivial solu
tions for the pump and signal fields is derived within t
mean-field limit. The LSA for the propagation model cann
be completed analytically; nevertheless under some lim
expansion for the solutions of pump and signal amplitudes
was already presented and discussed with respect to the
merical results@9#. Finally in Sec. IV, a numerical compari
son is shown for two sets of mistunings for which circul
domain walls with large maxima occur. We conclude
Sec. V.
©2000 The American Physical Society06-1
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II. PROPAGATION AND MEAN-FIELD MODELS

We consider a planar cavity, driven by a coherent pla
wave field at a frequencyv0, filled with the x (2) nonlinear
medium in which parametric down-conversion takes pla
one photon with frequencyv0 is absorbed and two photon
with frequenciesv0/2 are emitted. The optical cavity can b
either a ring cavity of lengthl or a Fabry-Pe´rot cavity of
length l /2. Such a configuration settles a single longitudin
mode.

The pump and signal amplitudesa0(z,t,x,y) and
a1(z,t,x,y), respectively, associated with driving freque
cies v0 and v15v0/2, satisfy the following reduced Max
well equations when propagating inside thex (2) crystal of
length l:

]za05
i

2
¹2a01 ia1

2eiDkz, ~1!

]za15 i¹2a11 ia0a1* e2 iDkz. ~2!

The transverse Laplacian¹25(]x
21]y

2)/2k1 describes the
diffraction effect on the transverse plane (x,y) with k1
5v1 /c, z is the longitudinal coordinate along the propag
tion axis,t is the retarded time, andc is the velocity of light.
The phase mismatch between the pump and the sign
Dk52n1k12n0k0, where the mistuningsu1,0 are defined by
u1,05n1,0k1,0l 22p andn1,0 are the linear refractive indexe
corresponding, respectively, to the pump and signal fields
order to satisfy the phase-matching condition, the ratio
tween the diffraction of the two fields is fixed@10#.

The propagation equations~1! and~2! must be completed
with the boundary conditions

a0~0,x,y,t!5a0
in1R0eiu0a0~ l ,x,y,t2d!, ~3!

a1~0,x,y,t!5R1eiu1a1~ l ,x,y,t2d! ~4!

whered is the delay timel /c andR0,1 denote the reflectivity
factors for pump and signal fields, respectively.a0

in is the
amplitude of the driven field. These two sets of equatio
~1!–~4! provide what we call the propagation model, in o
position to the mean-field model@11#. The latter can be eas
ily derived from the above equations: First, the solutions
the pump and signal amplitudes at the crystal exit are
proximated from the reduced Maxwell equations as the fi
order terms of the Mac-Laurin expansion, i.e.,

a0~1,x,y,t!5a0~0,x,y,t!1
i

2
¹2a0~0,x,y,t!

1 ia1
2~0,x,y,t!, ~5!

a1~1,x,y,t!5a1~0,x,y,t!1 i¹2a1~0,x,y,t!

1 ia0~0,x,y,t!a1* ~0,x,y,t!, ~6!

with the rescalinga i , j→ la i , j . These solutions are valid in
the limit of small amplitudes
04380
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ua0,1u!1, ~7!

and for negligible terms resulting of any operator¹2n with
n.2.

The approximate solutions~5! and ~6! are introduced in
the right-hand members of Eqs.~3! and~4!. Then, assuming
that the time variation of these solutions is very slow
compared to the delayd, i.e.,

a0,1~0,x,y,t1d!5a0,1~0,x,y,t!1d]ta0,1~0,x,y,t!,
~8!

unscaled forms of the mean-field equations are

d]ta05a0
in2~12R0eiu0!a01

iR0eiu0

2
@¹2a012a1

2#, ~9!

d]ta152~12R1eiu1!a11 iR1eiu1@¹2a11a1* a0#, ~10!

with a0,15a0,1(0,x,y,t). Two further assumptions consist o
large reflectivity R0,1.1 and small detuningsu0,1!1, or
eiu0,1→(11 iu0,1). Then, rescaling the time and space va
ables and using the rescaled quantities@9#,

~A0 ,A1 ,E,D0,1!5S ia0

12R1
,

a1

12R1
,

ia0
in

~12R1!2
,

2u0,1

12R1
D ,

~11!

@t~12R1!/d,¹2#→@t,¹2/~12R1!# ~12!

gives rise to the mean-field equations for the DOPO,

]tA05E2~g1 iD0!A01
i

2
¹2A02A1

2 , ~13!

]tA152~11 iD1!A11 i¹2A11A0A1* , ~14!

with g5(12R0)/(12R1).
The scaled and unscaled partial differential equations~9!

and ~10! and ~13! and ~14!, respectively, look the same, ex
cept that the reflectivity factors do not explicitly appear
the mean-field equations in the caseR05R1. The mean-field
amplitudesA0,1 can be arbitrarily large while the unscale
ones have to be smaller than unity; the same remark h
for the scaled mistunings. For instance, Eqs.~13! and ~14!
were shown to reduce to a single nonlinear Schro¨dinger
equation with damping and parametric gain@5# in the limits
D0@1 andD0 /D1@1. This derivation was performed with
out specifying the actual values ofR1 , u0, and u1, while
small values ofu0 andu1 are required in order to derive Eqs
~13! and ~14! from the unscaled equations~9! and ~10!.

The propagation equations depend explicitly on the
flectivity factors. These factors have to be varied when co
paring the numerical simulations of the propagation mo
with those for the mean-field model, in order to learn
which domain of the reflectivity factors the two mode
agree.
6-2
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III. LINEAR STABILITY ANALYSIS

The existence of domain walls was already mentioned
being associated with the stability of the steady state s
tions @5,6,9#. Since the linear stability analysis of the prop
gation model is only feasible with approximate solutions
the pump and signal amplitudes at the crystal exit@9#, only
the LSA of the mean-field solutions is presented here.

The homogeneous steady state (]A0,1/]t5¹2A0,150) of
Eqs.~13! and ~14! is given by~i! the nonlasing statesuĀ0u2

5E2/(g21D0
2) and Ā1

250, where the overbar refers to th
homogeneous steady state, which is stable below the la
thresholdEth

2 5(g21D0
2)(11D1

2); and ~ii ! the lasing states

Ā0
2511D1

2 andE25uĀ1u412(g2D0D1)uĀ1u21Eth
2 , called

the HSS. Optical bistability occurs whenever the intensit
of the signal field,uĀ1u2, are multivalued function of the
input intensityE2, namely, ifD0D1.g @12#. It was shown in
Refs.@4,8,13,14# that homogeneous steady states of type~i!
exhibit a pattern-forming instability atE25EM

2 5(g21D0
2),

leading to periodical structures characterized by an intrin
wavelength L52p/A2D1. Thus, spontaneous patter
forming instability requiresD1,0 to haveL real. In the
following we shall focus on the linear stability analysis of
steady state of type~ii ! with respect to Turing~modulational!
and Hopf bifurcations. The LSA of the homogeneous ste
state~ii !, or HSS, with respect to a small perturbation of t
form exp(lt1ik•r ), wherer5(x,y) stands for the transvers
coordinates and the wave vectork verifies the relation (¹2

1k2)exp(lt1ik•r )50, leads to the quartic characterist
equation

l412~g11!l31 f 1l21 f 2l1 f 350, ~15!

where

f 154uĀ1u21d0
21d1

21g~41g!2D1
2 , ~16!

f 254~g11!uĀ1u212~d0
21gd1

2!12g~g2D1
2!, ~17!

f 354~g1uĀ1u22d0d1!uĀ1u21~g21d0
2!~d1

22D1
2!, ~18!

with d05D01k2/2 andd15D11k2. For the sake of sim-
plicity, we consider the ratio between detuning parame
D0,1 equal to 2 or equivalently,d152d0.

For a given value of the pump input amplitude fieldE, Eq.
~15! has four complex solutionsl(k2)5s(k2)6 iV(k2).
The stability is derived from the largest growth ratesm(k2),
and the static or dynamical nature of the instability is give
For the numerical simulations considered in Sec. IV, w
D150 and 1.5, the study of the largest growth rate sho
that the homogeneous steady state is stable for a large
main of input intensity. ForD151.5 the value ofs(k2) is
reported in Fig. 1 for two input amplitudeE57 and 20
above the thresholdEth .
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In the vicinity of the static threshold, an approxima
value of the growth rate iss(k2)52 f 3 / f 2 , as studied in
Ref. @6#. At threshold, the conditionsf 350 and] f 3 /]k50
give

kM
2 52D16AD1

2/222g214uĀ1Mu2, ~19!

where the critical intensity is given by

uĀ1Mu25~D1
214g2!2/16@4g~g11!2D1

2#. ~20!

The latter relations show that the homogeneous ste
state is stable forD1,2, in agreement with the exact solutio
of Eq. ~15!, and destabilizes through a modulational instab
ity for D1>2, as numerically observed in the propagati
model @9#.

For other values of detunings than those studied here,
homogeneous state can also exhibit a self-pulsing beha
~Hopf bifurcation@15#!. The self-pulsing threshold intensit
is given by uĀ1Hu252g(g21D0

2)@D0
21(g12)2#/@2(g

11)(D0
212D0D11g1g2)#, and the pulsation frequency b

VH52uĀ1Hu21(g21D0
2)/(11g). As we can see from the

threshold expression, the self-pulsing instability requi
2D0D1,2(g21g1D0

2) to haveuĀ1Hu2 real.

IV. STATIONARY AND TIME-PERIODIC BRIGHT
SOLITONS

Two types of domain walls forming localized structur
have been numerically observed. In the signal intensity p
tern the structures appear as~i! a dark soliton in the form of
a single stripe appearing spontaneously in the transv
plane @5,9#, or ~ii ! a bright soliton with a circular domain

FIG. 1. Linear stability curves obtained forD052D153, and
g51. We plot the growth rate of small-amplitude perturbations a
function of the square of the transverse wave number.~a! E57. ~b!
E520.
6-3
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wall @9,16#. The dark and bright solitons may coexist for th
same value of the driving field@9#, and their existences ar
not linked to a modulational instability. They are thus of
nature different from that of various LS’s predicted in th
bistable regime@17#, and in the monostable regime where th
HSS exhibits a subcritical modulational instability@18#. Ac-
tually both result from domain walls connecting two hom
geneous lasing solutions of opposite sign, but they are
phase defects, since the real and imaginary parts of the si
amplitude never vanish at the same point. Consequently
signal phase undergoes a continuous variation along a
crossing the peak, and is defined everywhere in the tra
verse plane, as discussed in Ref.@9# for the propagation
model, and as clearly visible in Fig. 2 for the mean-fie
model ~cf. also Fig. 6 of Ref.@16#, and Fig. 3 of Ref.@6#!.
The intensity is nowhere exactly equal to zero, but decrea
close to zero in the region where the solution switches fr
a positive to a negative value; therefore, one infers that
situation is close to an Ising-Bloch transition.

We consider the two regimes where the homogeneous
sponse curve exhibits a bistable behavior between the la
and the nonlasing homogeneous steady states (D052D1
53) or a monostable behavior (D05D150), with g51.
For these parameters, the above LSA shows that the HS
are stable with respect to both spatial and temporal insta
ties ~modulational and Hopf bifurcations!. In these two re-
gimes, stationary localized structures in the form of brig
solitons with high-intensity peaks may be generated, sh
ing that the existence of stable bright solitons is independ
of bistability. They consist of one peak or more in the tran
verse plane. They are homoclinic solutions@19# ~approach-
ing the same HSS far from the peak!, and their peak intensity
in both transverse signal and pump profiles are much lar
than those of the HSS. Here we consider only a numer
study of the bright solitons, an analytical approach to t
problem being far beyond the scope of the present work

We start our numerical simulations of the mean-fie

FIG. 2. The contour plot taken from Fig. 3. The solid~dotted!
line represents the contours of the vanishing real~imaginary! part of
the signal field. Parameters areD053, D151.5, E57, andg51.
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equations~13! and~14! by using the periodic boundary con
ditions in both transverse directions, and vary the injec
signal E as the control parameter. In order to capture t
bright solitons, we initially perturb the homogeneous u
stable solutions by a small random noise. If this perturbat
is randomly distributed in the transverse plane, the syst
evolves spontaneously toward the formation of random
distributed bright and dark solitons~Fig. 3!. The single bright
soliton can also be generated for a positive detuning~see Fig.
4!. An explicit Euler method, with finite differences for th
diffraction operator, has been used. The time stepDt has to
be taken to be much smaller than the one required for
stability of the scheme in order that the numerical soluti
converges. Another study has been made using a se
implicit Crank-Nicholson method both in time and transver
space@20#. The requiredDt to obtain the stationary solution
is ten times larger than the one of the Euler method. The
good agreement between the stabilized values of the fi
intensities has been found with similar values ofE. In fact,
takingDt too large captures a temporal oscillatory profile
pump and signal fields whereas the same value ofE gives
stationary states for lower values ofDt.

With the propagation equations~1!–~4!, a split and step
method has been used with a 1923192 grid in the transverse
plane and 20 steps for the axial propagation in the crys
An explicit comparison between the results obtained fro
the mean-field equations~13! and ~14! and the propagation
model equations~1! and~4! is given in Figs. 5 and 6, where
the maximum of the signal amplitudeuA1u is reported as a
function of the input pump amplitudeE . The domain of the
input amplitude for which stationary localized structures o
cur is generally smaller within the mean-field model th
within the propagation model. In this domain, a good agre

FIG. 3. Spontaneous formation of high-intensity localized stru
tures.~a! and ~b! Real parts of the pump and signal fields, respe
tively. ~c! and ~d! Imaginary parts of the pump and signal field
respectively. Parameters areD05D150, g51, andE54. The ini-
tial condition consists of a small-amplitude random noise added
the homogeneous steady state~i!. Maxima are plain white. Mesh
number for the transverse integration 1003100.
6-4
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HIGH-INTENSITY LOCALIZED STRUCTURES IN THE . . . PHYSICAL REVIEW A 61 043806
ment is displayed between both models. The agreemen
tween the two models is much better forD150 ~Fig. 5! than
for D151.5 ~Fig. 6!. The peak intensities calculated with
the propagation model very slightly vary with the transm
tivity factor, so that the agreement between both models d
not increase as the reflectivity factorR approaches unity, a
shown in Fig. 6, whereR5R0,1 is varied from 0.9 to 0.95.

The second-order Mac-Laurin expansion mapping mo
was shown@9# to very well agree with the the full propaga
tion model in a reduced domain ofE. This agreement is
illustrated in Fig. 6~c!.

FIG. 4. Single high-intensity localized structures obtained
initially perturbing the homogeneous steady state~i! by a small-
amplitude random noise.~a! and ~b! Real parts of the pump an
signal fields, respectively.~c! and ~d! Imaginary parts of the pump
and signal fields, respectively. Maxima are plain white. Parame
areD053, D151.5, E57, andg51.

FIG. 5. Comparison beween results obtained at resonanceD0

5D150 and forg51. The circles indicate the high-amplitude lo
calized structures obtained from the mean-field approximation.
triangles indicate the corresponding amplitude obtained from
propagation model.
04380
e-

es

el

We stress that the bright solitons are stationary only up
a certain value of the driving electric fieldE5ES . For each
detuning, the thresholdES depends on the models.

As the driving field is increased,E>ES , both signal and
pump profiles start to oscillate regularly in time~see Fig. 7!.
This secondary instability appears only in the ’’heart’’ of th
bright soliton, and does not affect the homogeneous ba
ground. The period of such a time oscillation isT'2.6 for
the mean-field model andT'1.8 for the propagation mode
~with R150.9), both in units of the cavity photon lifetime
and forD150. All mentioned results have been obtained

y

rs

e
e

FIG. 6. Comparison between results obtained from the me
field approximation, the propagation model, and the second-o
corrections. We plot the amplitude of the localized structures a
function of the input field amplitude. Parameters areD052D153
and g51. @~a! and ~b!#, the propagation model for the reflectivit
factorsR50.9 and 0.95, respectively.~c! The second-order Mac
Laurin expansion mapping model.~d! The mean-field model.

FIG. 7. Time evolution of the real part of the pump and sign
fields. The parameters areD05D150, g51, andE55.55.
6-5



e
ra
’s
n
en

o
d
ed

tw
ca
d
b

e
t o
kl
n

th
th

wi

l
f o
a
s

gh
im

not
the

re

is

-
-

an-
ful
ity
del
tud-

ur-
ces
th a
here
ak

ne
up-

o-
ns

AY
lts

er-

TLIDI, Le BERRE, RESSAYRE, TALLET, AND Di MENZA PHYSICAL REVIEW A61 043806
the regime where the HSS’s are linearly stable with resp
to the Hopf and modulational instabilities. These tempo
oscillations, which are not due to the instability of the HSS
arise as a secondary bifurcation from the soliton solutio
and are related to the intrinsic properties of the large int
sity bright solitons.

V. CONCLUSION

The propagation equations describing the degenerated
tical parametric oscillator completed with the cavity boun
ary conditions take the form of infinite-dimensional coupl
maps. Following the procedure used in Ref.@8#, this problem
can be reduced, under the mean-field approximation, to
coupled partial differential equations. Detailed numeri
studies of high-intensity localized structures in the two mo
els indicate their existence in the monostable and bista
homogeneous regimes, in the parameter space where th
mogeneous steady states are linearly stable. Let us poin
that localized structures may also coexist with a wea
modulated steady state, i.e., very close to its modulatio
instability threshold@9#.

The comparison between the two models reveals that
mean-field approximation is quite good as we approach
regime where both signal and pump fields are resonant
the optical cavity~zero cavity detuning!. As the detunings
increase, the agreement between the two models become
satisfying because the signal amplitude reaches value o
der unit: First the intensity peak values differ, but above
because the existence domain of the stable bright soliton
strongly shortened in the mean-field model.

In both models, as the input fields increased, the hi
intensity localized structures become unstable, and a t
-
.
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periodic regime appears. The temporal oscillations do
affect the homogeneous background, they are related to
stability properties of the high-intensity localized structu
itself.

Let us emphasize that in the DOPO the smallest time
the response timet rep of the x (2) crystal, which is much
smaller than the round trip timed. Consequently the condi
tion used in Ref.@2# for the derivation of a mean-field equa
tion, d!t rep!d/(12R), is not fulfilled, for any value of the
reflectivity. Nevertheless the above study proves that me
field model for the DOPO is a qualitatively good, very use
to make analytical investigations, even for large intens
structures. We point out that second-order mapping mo
extends the range of pump parameter where analytical s
ies are still possible.

The comparative study of these three models will be p
sued in the dynamical regime, where noticeable differen
seem to appear. For example, in the case of DOPO wi
saturable absorber, for a certain range of parameters w
the mean-field model displays waves, a self-pulsing we
spatial chaos is observed with the propagation model@21#.
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