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High-intensity localized structures in the degenerate optical parametric oscillator:
Comparison between the propagation and the mean-field models
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The degenerate optical parametric oscillator may generate very high-intensity two-dimensional localized
structures. A quantitative comparison of the propagation and the mean-field models is presented for different
mistunings, corresponding to monostable and bistable homogeneous solutions. In both models, we study the
circular domain walls as an example of localized structures. The peak intensities are comparable; the difference
lies mainly in their domain of existence as a function of the pump amplitude parameter.

PACS numbg(s): 42.65.5f, 42.60.Mi

[. INTRODUCTION perimental profiles and those derived from the Swift-
Hohenberg equatiof6] have much in common, but undoubt-
The electromagnetic field-matter interaction is generallyedly are only qualitatively similar.
described by a reduced Maxwell equation with a source The purpose of this paper is to compare quantitatively
obeying the Bloch equation in the case of an atomic or monumerical simulations of the reduced Maxwell equations
lecular system. In the case where the source behaves likepdus the boundary conditions, or propagation md@&gl and
Kerr medium in a cavity operating on a single longitudinal those of the mean-field model for the DOPO. Both models
mode, Lugiato and Lefevefl] developed the so-called display domain wall§9].
mean-field(or uniform-field model that reduces the original The system operates on a single longitudinal mode, and
equations to a single partial differential equation for the electhe transmittivity factor is small, varying between 1 0and
tric field. The method relies on a perturbation expansion asi0 2, in order to fulfill the basic requirements for the valid-
suming a small transmittivity, a small field amplitude com-ity of the mean-field model. Other parameters have been
pared to the saturation amplitude, and a response time ichosen such that domain walls occur and the comparison
between the delay and the cavity photon lifetime. The prebetween both models has focused on the circular domain
dictions of the mean-field model were found to agree fairlywalls, where large intensity peaks can be generated. Several
well with the experimental observations in the case of a conguestions arise: Does the mean-field model reproduce propa-
focal cavity with curvature mirrorg2]. gation model results in the limit where signal and pump am-
Later on, the mean-field model was extended to otheplitudes reach values close to unity? Is the agreement be-
nonlinear media, such ag? crystals[3,4]. In this case, the tween the propagation model and the mean-field model
mean-field model leads to two coupled partial differentialimproved as the transmittivity factor vanishes?
equations, in the case of either second harmonic generation In Sec. Il, the mean-field model is derived from the propa-
or a degenerate optical parametric oscillgOPO). gation model, and the scalings for the reduced mean-field
Within the mean-field model, it is easy to derive envelopequantities are given. This derivation is presented to display
equations, such as the Swift-Hohenberg, Ginzburg-Landauhe successive approximations necessary to achieve the
or nonlinear Schidinger equations. A description in terms of mean-field equations for the DOPO. This makes a compari-
these amplitude equations is especially useful for the DOPGson between the two theories easier. In Sec. lll, a linear
Two approaches were proposed, in two different limits. Thestability analysigLSA) of the homogeneous nontrivial solu-
first consists of an adiabatic elimination of the pump fieldtions for the pump and signal fields is derived within the
leading to a nonlinear Schidinger equation with damping mean-field limit. The LSA for the propagation model cannot
and parametric gaifb]. The second describes the vicinity of be completed analytically; nevertheless under some limited
the lasing threshold where the transverse effects apprear vexpansion for the solutions of pump and signal amplitudes, it
a diffusive equation of the Swift-Hohenberg typ@. Both  was already presented and discussed with respect to the nu-
models predicted the occurrence of domain walls. merical result§9]. Finally in Sec. IV, a numerical compari-
The relevance of these predictions for the DOPO has nason is shown for two sets of mistunings for which circular
yet been proved, but fronts and circular domain walls weredomain walls with large maxima occur. We conclude in
recently observed in a photorefractive oscilldtéf. The ex-  Sec. V.
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IIl. PROPAGATION AND MEAN-FIELD MODELS |ag 4 <1, 7

We consider a planar cavity, driven by a coherent plane- . _ noo
wave field at a frequency,, filled with the x(® nonlinear ~@nd for negligible terms resulting of any opera®f" with

medium in which parametric down-conversion takes placen>2'

one photon with frequency, is absorbed and two photons 1€ approximate solution) and (6) are introduced in
with frequencies,/2 are emitted. The optical cavity can be e right-hand members of E¢S) and(4). Then, assuming
either a ring cavity of length or a Fabry-Peot cavity of that the time variation of these solutions is very slow as

length1/2. Such a configuration settles a single longitudinalcompared to the delag, i.e.,

mode.
The pump and signal amplitudes,(z, 7,x,y) and a0 10Xy, 7+d)=ags(0X,y,7) +dd;ao 10Xy, 7), .
a4(z,7,X,y), respectively, associated with driving frequen- (8)

cies wg and w,= wp/2, satisfy the following reduced Max-
well equations when propagating inside th€) crystal of
lengthl: . i 0o

. _ Roe
d(?,.aozalon—(l—Roe'HO)a'o-i- 02

unscaled forms of the mean-field equations are

[V2ag+2a3], (9)

[ _
&ZaOZEVZaO-i—iaie'Akz, (1)
d67a1= - (1_ Rlel 91)041"’ i Rlel 01[V2a1+ a’{ Ct’o], (10)
9,01=1V2a+iagate 2K (2) ) ) )
with ag 1= @ 1(0.X,y, 7). Two further assumptions consist of
The transverse Laplaciai2=(d;+d;)/,k;, describes the Ia:(r}ge reflectivity Roﬁzl and is.mallhdetunlngyg,ﬁl, or
diffraction effect on the transverse planeg,y) with k; ebl 'l_’(ldﬂgp:])';— en, relscdalng t .e@tlme and space varl-
=wq/c, zis the longitudinal coordinate along the propaga-a es and using the rescaled quantifiél
tion axis, 7 is the retarded time, anglis the velocity of light.

The phase mismatch between the pump and the signal is (Ag. AL EAg )= i ag @y fag — o1
Ak=2n;k; —ngko, where the mistuning8, o are defined by 07 =20, 1-R;"1-Ry " (1-Ry)2'1-Ry )’
010=n1 K10l =27 andn, o are the linear refractive indexes (12)
corresponding, respectively, to the pump and signal fields. In

order to satisfy the phase-matching condition, the ratio be- [7(1—Ry)/d, V2] —=[r,V2/(1-Ry)] (12)

tween the diffraction of the two fields is fixddO0].
The propagation equatiort$) and(2) must be completed  giyes rise to the mean-field equations for the DOPO,
with the boundary conditions

_ _ i
ag(0X,y,7)= af + Roe' arg(l,x,y, 7—d), 3) 9 Ag=E—(y+iAg)Ay+ EVZAO—Ai, (13)

P it _

l0xy. I =RieRall ey 7= d) @ 0 A= —(LHIADA+IVIA T AAS,  (14)
whered is the delay timé/c andR, ; denote the reflectivity
factors for pump and signal fields, respectively is the ~ With y=(1-Ro)/(1—Ry). o . .
amplitude of the driven field. These two sets of equations The scaled and unscaled partial differential equati®hs
(1)—(4) provide what we call the propagation model, in op-and(10) and(13) and(14), respectively, look the same, ex-
position to the mean-field modEL1]. The latter can be eas- Cept that the reflectivity factors do not explicitly appear in
ily derived from the above equations: First, the solutions forthe mean-field equations in the cd8g=R;. The mean-field
the pump and signal amplitudes at the crystal exit are apamplitudesAq; can be arbitrarily large while the unscaled
proximated from the reduced Maxwell equations as the firstones have to be smaller than unity; the same remark holds

order terms of the Mac-Laurin expansion, i.e., for the scaled mistunings. For instance, E(3) and (14)
were shown to reduce to a single nonlinear Sdhrger

equation with damping and parametric géj in the limits

i
ao(1,X,y,7)=ag(0x,y, )+ EVzao(O,X,y,T) Ao>1 andAy/A;>1. This derivation was performed with-
out specifying the actual values &;, 6y, and 6,, while
+i af(o,x,y,r), (5) small values ofy and 6, are required in order to derive Egs.
(13) and(14) from the unscaled equatiori8) and (10).
a1(1,Xy,7)=a1(0X,y,7)+iV2a;(0X,y,7) The propagation equations depend explicitly on the re-
flectivity factors. These factors have to be varied when com-
+iag(0X,y,7)af (0X,Y,7), (6)  paring the numerical simulations of the propagation model

with those for the mean-field model, in order to learn in
with the rescalinga; j—1a; ;. These solutions are valid in which domain of the reflectivity factors the two models
the limit of small amplitudes agree.
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Ill. LINEAR STABILITY ANALYSIS

The existence of domain walls was already mentioned as
being associated with the stability of the steady state solu-

tions[5,6,9. Since the linear stability analysis of the propa-
gation model is only feasible with approximate solutions of
the pump and signal amplitudes at the crystal £jt only
the LSA of the mean-field solutions is presented here.

The homogeneous steady St&ﬂ@&vllﬁT:VZAO’lz 0) of
Egs.(13) and(14) is given by(i) the nonlasing state#\,|?
=E?/(y*+ AS) andKizO, where the overbar refers to the

homogeneous steady state, which is stable below the lasin

thresholdEZ = (y?+ A2)(1+A%); and (i) the lasing states
A2=1+A2 andE?=|A|*+2(y—AoA;)|A|2+E2 , called

the HSS. Optical bistability occurs whenever the intensities

of the signal field,|A;|?, are multivalued function of the
input intensityE?, namely, ifAoA ;> vy [12]. It was shown in
Refs.[4,8,13,14 that homogeneous steady states of t{ipe
exhibit a pattern-forming instability &= EZ, = (y?+AJ),
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FIG. 1. Linear stability curves obtained fdry,=2A,=3, and
v=1. We plot the growth rate of small-amplitude perturbations as a

leading to periodical structures characterized by an intrinsidunction of the square of the transverse wave numi@iE=7. (b)

wavelength A=2#/\—A,. Thus, spontaneous pattern-
forming instability requiresA;<0 to haveA real. In the
following we shall focus on the linear stability analysis of a
steady state of typ@i) with respect to Turingmodulationa)
and Hopf bifurcations. The LSA of the homogeneous stead
state(ii), or HSS, with respect to a small perturbation of the

E=20.

In the vicinity of the static threshold, an approximate
alue of the growth rate igr(x?)=—"f3/f,, as studied in
ef.[6]. At threshold, the conditionf;=0 anddf;/dxk=0

form exp@t-+ik-r), wherer =(x,y) stands for the transverse v

coordinates and the wave vectorverifies the relation Y2
+k?)exp(\t+ik-r)=0, leads to the quartic characteristic
equation

AN+ 2(y+ N3+ N2+ N+ 53=0, (15

where
fy=4|A)|2+ 85+ 85+ y(4+ y)— A%, (16)
fo=a(y+1)|Ag2+2( 85+ y67) +2y(y—A), (17)

fa=4(y+|AL2— 8001) | A2+ (V?+ 83) (82— A2), (18

with §o=Ao+ «2/2 and §;=A;+ k2. For the sake of sim-

k2 =— A+ \AZ2— 292+ 4| Apyl?, (19)
where the critical intensity is given by
[Al®=(a1+49)%1184y(y+ 1) - AT (20

The latter relations show that the homogeneous steady
state is stable foA;<<2, in agreement with the exact solution
of Eq. (15), and destabilizes through a modulational instabil-
ity for A;=2, as numerically observed in the propagation
model[9].

For other values of detunings than those studied here, the
homogeneous state can also exhibit a self-pulsing behavior
(Hopf bifurcation[15]). The self-pulsing threshold intensity
is given by [Ay|?=—y(y*+APIAG+(v+2)2V[2(y
+ 1)(A§+ 2A0A;+ v+ y?)], and the pulsation frequency by
Qp=2|A|?+ (¥*+A2)/(1+y). As we can see from the

plicity, we consider the ratio between detuning parameterghreshold expression, the self-pulsing instability requires

Ay, equal to 2 or equivalentlyg; =2 5.

For a given value of the pump input amplitude fi&ldEq.
(15) has four complex solutions («?)=o(k?)*=iQ(x?).
The stability is derived from the largest growth ratg(«2),
and the static or dynamical nature of the instability is given

2A0A1< —(y?+ y+A2) to have|A|? real.

IV. STATIONARY AND TIME-PERIODIC BRIGHT
; SOLITONS

For the numerical simulations considered in Sec. IV, with
A;=0 and 1.5, the study of the largest growth rate shows Two types of domain walls forming localized structures
that the homogeneous steady state is stable for a large dhave been numerically observed. In the signal intensity pat-

main of input intensity. ForA;=1.5 the value ofo(«?) is
reported in Fig. 1 for two input amplitude=7 and 20
above the threshol#;,, .

tern the structures appear @sa dark soliton in the form of
a single stripe appearing spontaneously in the transverse
plane[5,9], or (ii) a bright soliton with a circular domain
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FIG. 2. The contour plot taken from Fig. 3. The solitbtted FIG. 3. Spontaneous formation of high-intensity localized struc-

line represents the contours of the vanishing (@aaginary part of  tures.(a) and(b) Real parts of the pump and signal fields, respec-
the signal field. Parameters akg=3, A;=1.5,E=7, andy=1. tively. (c) and (d) Imaginary parts of the pump and signal fields,
respectively. Parameters akg=A,=0, y=1, andE=4. The ini-

. . . tial condition consists of a small-amplitude random noise added to
wall [9,16]. The dark ‘fmd br_lght solitons may C_OeX'St for thethe homogeneous steady stéte Maxima are plain white. Mesh
same value of the driving fielfB], and their existences are ,ymper for the transverse integration X0000.

not linked to a modulational instability. They are thus of a
nature different from that of various LS’s predicted in the
bistable regim¢17], and in the monostable regime where theequationg13) and(14) by using the periodic boundary con-
HSS exhibits a subcritical modulational instabilii8]. Ac-  ditions in both transverse directions, and vary the injected
tually both result from domain walls connecting two homo- signal E as the control parameter. In order to capture the
geneous lasing solutions of opposite sign, but they are ndiright solitons, we initially perturb the homogeneous un-
phase defects, since the real and imaginary parts of the signsilable solutions by a small random noise. If this perturbation
amplitude never vanish at the same point. Consequently this randomly distributed in the transverse plane, the system
signal phase undergoes a continuous variation along a linevolves spontaneously toward the formation of randomly
crossing the peak, and is defined everywhere in the translistributed bright and dark solitorisig. 3). The single bright
verse plane, as discussed in REd] for the propagation soliton can also be generated for a positive detu($eg Fig.
model, and as clearly visible in Fig. 2 for the mean-field4). An explicit Euler method, with finite differences for the
model (cf. also Fig. 6 of Ref[16], and Fig. 3 of Ref[6]). diffraction operator, has been used. The time stephas to
The intensity is nowhere exactly equal to zero, but decreasdse taken to be much smaller than the one required for the
close to zero in the region where the solution switches fronstability of the scheme in order that the numerical solution
a positive to a negative value; therefore, one infers that theonverges. Another study has been made using a semi-
situation is close to an Ising-Bloch transition. implicit Crank-Nicholson method both in time and transverse
We consider the two regimes where the homogeneous respacd20]. The required\ 7 to obtain the stationary solutions
sponse curve exhibits a bistable behavior between the lasirig ten times larger than the one of the Euler method. Then a
and the nonlasing homogeneous steady stateg=@A;  good agreement between the stabilized values of the field
=3) or a monostable behavionf=A;=0), with y=1. intensities has been found with similar valueskofin fact,
For these parameters, the above LSA shows that the HSStaking A 7 too large captures a temporal oscillatory profile of
are stable with respect to both spatial and temporal instabilipump and signal fields whereas the same valu& gives
ties (modulational and Hopf bifurcationsIn these two re- stationary states for lower values Afr.
gimes, stationary localized structures in the form of bright With the propagation equatior(4)—(4), a split and step
solitons with high-intensity peaks may be generated, showmethod has been used with a 20292 grid in the transverse
ing that the existence of stable bright solitons is independenglane and 20 steps for the axial propagation in the crystal.
of bistability. They consist of one peak or more in the trans-An explicit comparison between the results obtained from
verse plane. They are homoclinic solutidi®] (approach- the mean-field equationd3) and (14) and the propagation
ing the same HSS far from the pgalind their peak intensity model equation$l) and(4) is given in Figs. 5 and 6, where
in both transverse signal and pump profiles are much largehe maximum of the signal amplitudé\,| is reported as a
than those of the HSS. Here we consider only a numericaunction of the input pump amplitudé . The domain of the
study of the bright solitons, an analytical approach to thisnput amplitude for which stationary localized structures oc-
problem being far beyond the scope of the present work. cur is generally smaller within the mean-field model than
We start our numerical simulations of the mean-fieldwithin the propagation model. In this domain, a good agree-
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FIG. 4. Single high-intensity localized structures obtained by ~FIG. 6. Comparison between results obtained from the mean-
initially perturbing the homogeneous steady stdieby a small- field approximation, the propagation model, and the second-order
amplitude random noisda) and (b) Real parts of the pump and corrections. We plot the amplitude of the localized structures as a
signal fields, respectivelyc) and(d) Imaginary parts of the pump function of the input field amplitude. Parameters Arg=2A,=3

and signal fields, respectively. Maxima are plain white. Parameter@nd y=1. [(a) and (b)], the propagation model for the reflectivity
areAy=3,A;=15E=7, andy=1. factorsR=0.9 and 0.95, respectivelyc) The second-order Mac-

Laurin expansion mapping modét) The mean-field model.

ment is displayed between both models. The agreement be-
tween the two models is much better foy=0 (Fig. 5 than We stress that the bright solitons are stationary only up to
for A;=1.5 (Fig. 6). The peak intensities calculated within a certain value of the driving electric fieEl=Eg. For each
the propagation model very slightly vary with the transmit- detuning, the thresholBg depends on the models.
tivity factor, so that the agreement between both models does As the driving field is increase&=Eg, both signal and
not increase as the reflectivity factBrapproaches unity, as pump profiles start to oscillate regularly in tineee Fig. 7.
shown in Fig. 6, wher®=R, , is varied from 0.9 to 0.95.  This secondary instability appears only in the "heart” of the
The second-order Mac-Laurin expansion mapping modebright soliton, and does not affect the homogeneous back-
was showr{9] to very well agree with the the full propaga- ground. The period of such a time oscillationTis=2.6 for
tion model in a reduced domain & This agreement is the mean-field model anfi~1.8 for the propagation model
illustrated in Fig. &c). (with R;=0.9), both in units of the cavity photon lifetime,
and forA;=0. All mentioned results have been obtained in

1Al

E

FIG. 5. Comparison beween results obtained at resonAgce
=A,=0 and fory=1. The circles indicate the high-amplitude lo- Time
calized structures obtained from the mean-field approximation. The
triangles indicate the corresponding amplitude obtained from the FIG. 7. Time evolution of the real part of the pump and signal
propagation model. fields. The parameters atgy=A,=0, y=1, andE=5.55.
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the regime where the HSS’s are linearly stable with respegberiodic regime appears. The temporal oscillations do not

to the Hopf and modulational instabilities. These temporalaffect the homogeneous background, they are related to the

oscillations, which are not due to the instability of the HSS’s,stability properties of the high-intensity localized structure

arise as a secondary bifurcation from the soliton solutionsitself.

and are related to the intrinsic properties of the large inten- Let us emphasize that in the DOPO the smallest time is

sity bright solitons. the response timey,, of the x? crystal, which is much
smaller than the round trip timé Consequently the condi-
tion used in Ref[2] for the derivation of a mean-field equa-

V. CONCLUSION tion, d< 7¢p<d/(1—R), is not fulfilled, for any value of the
reflectivity. Nevertheless the above study proves that mean-
Reld model for the DOPO is a qualitatively good, very useful
to make analytical investigations, even for large intensity
structures. We point out that second-order mapping model
extends the range of pump parameter where analytical stud-

The propagation equations describing the degenerated o
tical parametric oscillator completed with the cavity bound-
ary conditions take the form of infinite-dimensional coupled
maps. Following the procedure used in Réf, this problem
can be reduced, under the mean-field approximation, to twi

led tial diff tal i Detailed . IPes are still possible.
ctoudp N fpﬁ.r 'ﬁ. tl ertenlla lequo? |?ns.t ctai ej[h ntumencg The comparative study of these three models will be pur-
studies of igh-intensity locaized Structures in th€ two mod-g, o i the dynamical regime, where noticeable differences
els indicate their existence in the monostable and bistabl

_ : eem to appear. For example, in the case of DOPO with a
homogeneous regimes, in the parameter space where the hg-

X X turable absorber, for a certain range of parameters where
mogeneous steady states are linearly stable. L.et us point olffs " nean-field model displays waves, a self-pulsing weak
that localized structures may also coexist _Wlth a Wef"‘kly?patial chaos is observed with the propagation meiel
modulated steady state, i.e., very close to its modulational
instability threshold 9].

The comparison between the two models reveals that the
mean-field approximation is quite good as we approach the
regime where both signal and pump fields are resonant with Stimulating discussions with Paul Mandel and Rene
the optical cavity(zero cavity detuning As the detunings LeFever are gratefully acknowledged. This research was sup-
increase, the agreement between the two models become lgssrted in part by the Inter-University Attraction Pole pro-
satisfying because the signal amplitude reaches value of ogram of the Belgian government. The numerical simulations
der unit: First the intensity peak values differ, but above allof the propagation equations were realized with the CRAY
because the existence domain of the stable bright solitons 890 of the IDRIS CNRS computer center, and their results
strongly shortened in the mean-field model. were treated at the CRI of the UniversiRaris-Sud. The

In both models, as the input fields increased, the highiDRIS center and the CRI are acknowledged for their ser-
intensity localized structures become unstable, and a timeices.
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