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Quantum fluctuations in unstable dissipative systems
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~Received 1 June 1999; revised manuscript received 28 September 1999; published 13 March 2000!

We show how quantum instability is displayed in the von Neumann entropy and in the Wigner function. For
this purpose, an intracavity second-harmonic generation close to the Hopf bifurcation range is studied. We
examine the role of dissipation in unstable dynamics and the formation of the quantum states of the cavity
modes, and discuss contrast ensemble behavior with that of individual realization on the basis of a quantum-
jump simulation method. Namely, it is found that the Wigner functions for fundamental and second-harmonic
modes prepared initially in a vacuum state acquire the three-hump structure due to phase symmetry breaking
in the bifurcation range. The time evolution of coherent states leads to long-lived swing of the system between
two side humps in a phase space.

PACS number~s!: 42.50.Lc
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I. INTRODUCTION

Environment coupled to a quantum system leads to di
pation, i.e., to irreversible loss of energy and coherence,
can monitor some of the system observables. As a result
eigenstates of the system observables decohere and be
like the classical states. The coupling to the environment a
degrades the squeezed states of the radiation field and
stroys the quantum-mechanical interference effect. As a
sult, a linear superposition of macroscopically distinct qu
tum states are reduced to a statistical mixture@1–3#.
Decoherence time for macroscopic objects is typically ma
orders of magnitude shorter than any other dynamical t
scale. Therefore, the stability of quantum superposition st
requires methods for slowing down the decoherence. Sev
proposals have been given in the literature@4–7#. Namely, it
has recently been shown that couplings to the environm
with a certain symmetry can lead to slow decohere
@8–10#. Note that the experimental testing of decoheren
has been recently initiated@11#. In the context of the quan
tum to classical transition, decoherence makes the quasi
sical limit of such open systems both more realistic and s
pler in many respects than the more familiar quasiclass
limit for isolated systems. These and other properties of
sipative quantum systems are well established for the
gimes of stable time evolution but are insufficiently studi
for nonlinear systems involving bifurcations and ranges
instabilities, where the dynamics strongly depends on
possible small fluctuations of environment.

In the present paper, our purpose is to investigate the
of dissipation due to the quantum fluctuations of the elec
magnetic field in the context of quantum unstable system
the systems having instability in the classical limit. Esp
cially we wish to study the evolution of quantum noise
unstable nonlinear dynamics and adjacent questions of fo
ing the quantum states in the ranges of bifurcations on
frame of Wigner functions. These investigations are comp
mented by consideration of quantum information aspects
nonlinear dynamics with the instability.

As a nonlinear system involving instability we consid
the phenomenon of frequency doubling, i.e., seco
harmonic generation~SHG! in a cavity, because it display
rich variety of classical nonlinear dynamics and has w
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understood quantum-mechanical description. This system
characterized by Hopf bifurcation which connects a stea
state regime to a temporal periodic regime. Intracavity f
quency doubling consists in transformation, via ax (2) non-
linear crystal, of an externally driven fundamental mode w
the frequencyv1 into the second-harmonic mode with th
frequencyv252v1 (v11v1→v2). It was shown in Ref.
@12#, that the steady-state regime of SHG is realized only
relatively small intensities of the driving field. Beyond th
critical valueEcr

Ecr5~2g11g2!F2g2~g11g2!

k2 G 1/2

~1!

~whereg1 andg2 are the cavity damping rates, andk is the
coupling constant proportional to the second-order susce
bility x (2)) of the driving field and in the semiclassical a
proximation, without consideration of quantum noise, the
tensities of the fundamental and second-harmonic mo
demonstrate self-pulsing temporal behavior@13,14#. The
self-pulsing takes place even when the cavity is reson
both at the fundamental and second-harmonic modes.
Hopf bifurcations are also observed for intracavity thir
harmonic generation@15#. For detuned configuration othe
phenomena such as period doubling and chaos have
also predicted@16#. In Ref. @17#, the stability of the steady-
state solutions was analyzed for a model of a frequen
doubler laser. Recently the models of cascaded intraca
doubling involving two- and three-Hopf bifurcations we
presented in Ref.@18#. The applications of self-pulsing phe
nomena can be found in Refs.@19,20,22#.

The system of interest is dissipative because light is
through the partially transmitting mirrors of the cavity. Th
loss is modeled by coupling the cavity modes to reservoir
is known that consistent quantum theory of nonlinear int
action of radiation field modes in the cavity is based on
Fokker-Plank equation for quasiprobability distribution or
equivalent Langevin equations for stochastic amplitud
~see, e.g., Ref.@21#!. In most theoretical works, however, th
nonlinear systems are usually described within the lin
treatment of quantum fluctuations, where the common d
nition of a bifurcation as a critical point in nonlinear optic
©2000 The American Physical Society05-1
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system emerged from the analysis of semiclassical solut
and their stability regions. In this sense the semiclass
dynamics of the fundamental and second-harmonic mode
intracavity SHG is associated with the Hopf bifurcation
the phases of two modes at the critical value of driving fi
Ecr 1. Note also that for the SHG involving Hopf instability
the linear treatment can be formulated as the evolution eq
tions for the field fluctuations linearized around a perio
self-pulsing deterministic solution@22#. Clearly, linearized
theories are limited in scope and, in particular, do not
scribe the critical region, where levels of quantum noise
usually very high. At the same time finding the quasipro
ability distributions is extremely difficult and the solutions
the Fokker-Plank equation, which are exact in quantum fl
tuations, have been established only for relatively sim
systems but not for SHG~see, e.g., Ref.@23# and references
therein!. Recently, new descriptions of open systems
terms of state vector trajectories have been proposed u
quantum-state diffusion@24# or quantum-jump mode
@25,26#.

It should be noted, that quantum numerical investigatio
of SHG have been performed by a number of authors.
quantum dynamics of photon numbers for SHG in the ins
bility range using the method of numerical solutions of La
gevin’s stochastic equations was first investigated in R
@27#. More recently, in the studies of dynamics of phot
number in SHG, both the quantum-state diffusion~QSD!
method @24,28# and QSD with a moving basis@29# were
employed. The application of the quantum-jump method
SHG was performed in Ref.@30#. Most of the cited papers
are devoted to numerical studies of the dynamics of pho
numbers. The numerical investigation of the joint distrib
tions for photon numbers and phases of the interacted m
has been presented in Ref.@31# for SHG and in Ref.@32# for
third-harmonic generation.

Our analysis of intracavity SHG is based on the quantu
jump simulation method also known as the state-vec
Monte Carlo method, and is devoted to the studies of
Wigner function and the entropy of each of the modes. T
method considers not the density matrix but deals with s
vector uF (a)(t)& which is a member of an ensemble of sta
vectors.

As a measure of the entanglement and dissipation we
the von Neumann entropies of the modes which are defi
through their respective reduced density operators as

Sj52Trj~r j ln r j !, ~2!

where the subscriptj 51,2 is taken to imply the modes. Th
entropy is a sensitive operational measure of the quan
correlation, quantum information, and entanglement of b
isolated or open systems, as well as the measure of the p
of quantum state@33,34#. If the system is in pure state th
entropy@Eq. ~2!# is precisely zero.

It should be noted that in most studies, the photon
tanglement mechanism is imposed by spontaneous radi
processes, namely, on cascade transition in an atom or d
conversion in a nonlinear medium. In the system of inter
entanglement is realized between the fundamental
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second-harmonic modes involved in nonlinear dynam
with the Hopf bifurcation. We incorporate these studies
the entropy with the analysis of the Wigner functions of bo
the modes for problems of quantum instability in SHG clo
to the bifurcation range. We will discuss the contrast b
tween the ensemble behavior of the open system and in
bility dynamics of an individual realization. For this, th
quantum simulation shown below, on the basis of t
quantum-jump approach, will refer to the ensemble-avera
time evolution of the Wigner functions as well as to the tim
evolution of single realizations. We restrict ourselves to
numerical simulation of the stochastic dynamics in the qu
tum regime where the number of photons in the modes
quired to reach the Hopf bifurcations is less thann520.

The outline of this paper is as follows. In Sec. II w
describe in more detail the nonlinear system under consi
ation and show how the master equation can be studied u
a Monte Carlo quantum-jump approach. Section III co
bines the numerical results for dynamics of the entropy a
Wigner functions when the initial state of the modes is t
vacuum state. Section IV is devoted to the evolution of
coherent states. Finally, Sec. V gives a summary of the m
results.

II. QUANTUM-JUMP APPROACH FOR FREQUENCY
DOUBLING

We consider doubly resonant SHG in which two photo
with the frequencyv15v in the fundamental modea1 can
annihilate to produce a photon with the frequencyv252v in
the second-harmonic modea2. The fundamental mode is
driven by an external classical field with the amplitudeE.
This model is described by the following Hamiltonian in th
interaction picture:

Hsys5 i
\k

2
~a1

†2a22a1
2a2

†!1 i\~Ea1
†2E* a1!, ~3!

wherek is the coupling constant proportional to the secon
order susceptibilityx (2). The losses in the input-output cav
ity mirror are accounted for by means of independent res
voir interaction for each mode. If we are interested only
the subsystems of two modes we must trace over the re
voir to obtain the density matrix for the subsystemr. Taking
the trace over the reservoir in the Born-Markov approxim
tion the corresponding master equation in the Lindblad fo
is obtained

]r

]t
52

i

\
@Hsys,r#1Lr,

~4!

Lr5(
i 51

2

g i~2airai
†2rai

†ai2ai
†air!.

This equation describes the fundamental and seco
harmonic modes decaying in the cavity andg i are the cavity
damping rates.

We now briefly explain the quantum-jump simulation a
proach to the system considered using the general re
5-2
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QUANTUM FLUCTUATIONS IN UNSTABLE . . . PHYSICAL REVIEW A 61 043805
presented in Ref.@25#. The vector of the system which is on
member of an ensemble of state vectors is expressed in
Fock basis of two modes as

uFa~ t !&5(
m,n

N

amn
(a)~ t !um&1un&2 , ~5!

where the indexa indicates the realizations andum&1 and
un&2 are the Fock states of the fundamental and the sec
harmonic modes. Note, that the coefficientsamn

(a)(t) depend
on the indexes of both modes simultaneously but not on
photon number of each mode separately.

The density matrix of the system is calculated as ma
ematical expectation of the matrixes of these pure states

r~ t !5M $uFa~ t !&^Fa~ t !u%5 lim
N→`

1

N (
a

N

uFa~ t !&^Fa~ t !u,

~6!

N is the number of independent realizations.
The reduced density operators for each of the modes

constructed from the full density operatorsr by tracing over
the other mode. Thus,

r1(2)5Tr2(1)~r! ~7!

and in the Fock basis we find

r1,nm~ t !5M H(
q

N

anq
(a)~ t !amq* (a)~ t !J , ~8!

r2,nm~ t !5M H(
q

N

aqn
(a)~ t !aqm* (a)~ t !J . ~9!

The procedure adopted in the quantum-jump simulat
for the system Hamiltonian~3! consists of the following. The
evolution of the one member of the ensemble of pure st
uF (a)(t)& over a short timedt if there is no quantum jump is
governed by the non-Hermitian effective Hamiltonian

He f f5Hsys2
i\

2
~g1a1

†a11g2a2
†a2!. ~10!

The calculation at first order ofdt for the amplitudesamn(t)
gives the following formula:

amn~ t1dt !5
1

A12dp
H amn~ t !F12m

g1dt

2
2n

g2dt

2 G
1dtEAmam21,n~ t !2dtE* Am11am11,n~ t !

1
kdt

2
@Am~m21!~n11!am22,n11~ t !

2An~m11!~m12!am12,n21~ t !#J , ~11!

where
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and

dp15dtg1( nanm~ t !anm* ~ t !, ~13!

dp25dtg2( namn~ t !amn* ~ t !. ~14!

Such evolution must be completed by the possibility of qu
tum jump. This quantum jump theory, unlike the single mo
case, contains two jump operatorsa1 and a2, therefore the
jumps change the photon numbers of both the modes. In
case of the emission of a photon from the fundamental or
second-harmonic modes the state vector is jumped as

uF~ t !&→
Ag1a1uF~ t !&

Adp1 /dt
~15!

or

uF~ t !&→
Ag2a2uF~ t !&

Adp2 /dt
, ~16!

with the probabilitiesdp1 /dt and dp2 /dt. In accordance
with Eqs. ~15! and ~16! the amplitudes of photon number
are changed as

amn~ t1dt !5
am11,n~ t !Am11

F(
m,n

nanm~ t !anm* ~ t !G1/2, ~17!

or

amn~ t1dt !5
am,n11~ t !An11

F(
m,n

namn~ t !amn* ~ t !G1/2. ~18!

In the following we shall focus on two kinds of initia
states of both cavity modes. The cases of vacuum states
coherent states will be considered. We restrict ourselve
the numerical simulation of a set of state vectors at timt
using truncated Fock basis as in the cited papers@24–
26,28,30#, and in the regime of strong nonlinearity. We ha
also used the state vector Monte Carlo method to determ
Wigner functions for the quantum states of modes during
time evolution. For this goal we apply the method presen
in Ref. @10#. Generalizing this method for the case of tw
modes we express the Wigner functions for both the fun
mental and second-harmonic modes in the following form

Wi~r ,u!5(
m,n

r i ,mnWmn~r ,u!, ~19!

( i 51,2), (r ,u) are the polar coordinates in the comple
phase-space planeX5r cos(u), Y5r sin(u) and the coeffi-
5-3
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cientsW(r ,u) are Fourier transforms of matrix elements of the Wigner characteristic function

Wmn~r ,u!5

2

p
~21!nAn!

m!
ei (m2n)u~2r !m2ne22r 2

Ln
m2n~4r 2!, m>n

2

p
~21!mAm!

n!
ei (m2n)u~2r !n2me22r 2

Lm
n2m~4r 2!, n>m

~20!

with Lp
q being the Laguerre polynomials.
fly
m

ic
b

at

a

th
i
m

sin
i

n,
od
th
te

o
ta

er

o
a
rit
o
is
g
b-
n

w

ea

nic
er-
is
of

he

um-
oxi-
lin-

a
of

x-
ice
eri-
of

lar
um

of
re-

0

the
III. TIME EVOLUTION OF VACUUM MODES:
ENSEMBLE BEHAVIOR AND INDIVIDUAL

REALIZATIONS

Before discussing the quantum instability let us brie
comment on the transition of the system from stable dyna
ics to unstable. In the semiclassical approximation, wh
means ignoring the noise terms, the stability takes place
low the critical point. In this range and in the steady-st
regime (g1,2@1) the photon numbersni and phasesw i ( i
51,2), of the fundamental and second-harmonic modes
determined by the following expressions@12#:

n152
g2

k
An2, E/g15An1S 11

k

g1
An2D , ~21!

w15f, w222w15p, ~22!

where f is the phase of the pump field. BeyondEcr the
dynamics of photon numbers of the modes moves to
self-pulsing regime. The physical reason for self-pulsing
the instability of the phases of the cavity fields. This proble
has been recently analyzed quantum mechanically u
Langevin’s stochastic equation of motion. In particular,
has been shown@31# from ensemble-averaged simulatio
that the most probable values of phases in each of the m
and in a fixed moment of time has zero value below
critical range and branches into two symmetrically situa
values when a system moves through the critical range.

We shall give the results of the quantum-jump analysis
SHG using expansion of the state vectors in the Fock s
basis of the two modes~5!. For simplicity of analysis we
takeg15g25g and introduce the dimensionless paramet
as

«[E/g, g[k/g, t[gt. ~23!

In order to choose a truncated basis of two modes we c
cretize the operational regime. The usual situation in qu
tum optics is to operate in the regime of weak nonlinea
for which g!1, so that«cr@1. Then the system is able t
reach the Hopf bifurcation if the fundamental cavity mode
driven by a high intensity coherent field. This leads to lar
photon number in the modes. However, it is difficult to o
tain a single quantum trajectory in this regime, not to me
tion performing an ensemble average. In the following
consider the regime of strong nonlinearity,g50.6, and vary
the value of the external field. It means the strong nonlin
04380
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coupling between two fundamental and second-harmo
modes but not the strong coupling of cavity modes to res
voir, so that the Born-Markov approximation is valid. Th
regime is strongly quantum mechanical, as in the vicinity
Hopf bifurcation the maximum photon number in both t
modes is less than 20, if«56, for instance~see below, Fig.
1!. Note that in the regime considered the mean photon n
bers of fundamental and second-harmonic modes appr
mately equal each other. For large values of relative non
earity g the dynamics of the modes is characterized by
broad critical range of the driving field amplitude instead
the bifurcation point which is equal to«cr510, for g15g2
5g and g50.6. We note that the system with such e
tremely large nonlinearities is far to be realized in pract
and here we do not intend to give results close to an exp
mental situation but discuss the fundamental problems
quantum instability for the simplest model. Note that simi
strong nonlinearity regimes were considered by quant
simulation methods in most of the cited papers@24,28#.

At first, we chose the vacuum state as the initial state
both modes and analyzed the individual time-dependent
alizations to find the range of instability. The basis isn
520 number states for each mode for a total size of 22

FIG. 1. The time evolution of the mean photon numbers of
fundamental~a! and second-harmonic mode~b! prepared initially in
the vacuum state, ensemble averaged over 1000 realization~1! and
an individual realization~2!. The parameters areg1 /g251, g
50.6, «56.
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states. In Fig. 1 we illustrate the time evolution of the pho
numbers averaged over 1000 single trajectories. These
ures show that the mean photon numbers of both mo
~curves 1! reach the stationary values. At the same time,
the calculations show, each of the time-depended trajecto
of the photon numbers~curves 2! strongly depends on th
realization and shows oscillations which indicate the s
pulsing temporal behavior. However, the oscillations are
most reduced by averaging over the ensemble. This res
are in accordance with the analogous results of quan
simulation obtained on the basis of Langevin equatio
@27,28#. The difference is that here we study the unsta
dynamics of modes in the critical range of the system. On
whole we find more effective quenching of the self-pulsi
of individual trajectories due to their averaging over e
semble than in Ref.@27#. Nevertheless, we will clearly se
below the properties of instability in the frames of both t
entropy and the Wigner function for the same parameters
in Fig. 1.

A. Entropy and Wigner function in the vicinity of Hopf
bifurcation

In connection with the above results the following inte
esting question arises on how the self-pulsing instability
the nonlinear system under consideration is displayed
quantum ensemble theory. To answer this question we c
sider the von Neumann entropies and the Wigner functi
of the fundamental and second-harmonic modes, which
vide a large amount of information about the states of
modes and also provide a pictorial view. We calculate
evolution of the entropy by formula~2! using the results for
reduced density matrixes~8!, ~9! expressed through the en

FIG. 2. The Wigner functions of the fundamental mode p
pared initially in the vacuum state for«51 ~a! and«53 ~b! and for
t58; averaged over 150 realizations.
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sembles of trajectories. The calculations were performed
diagonalization of the matrixr1(2),nm in the Fock states ba
sis. The Wigner function is calculated by formulas~19! and
~20!.

Now we present the ensemble-averaged results wh
contain 1000 realizations by using the state vector Mo
Carlo simulation combining the studies of entropy a
Wigner function. In Fig. 2 we demonstrate moving our sy
tem within the range of stable generation to the bifurcat
range by plotting the Wigner function for two values of dri
ing field: «51 ~a! and«53 ~b! in a fixed moment of time.
On the left of bifurcation, Fig. 2~a! shows transformation o
the initial vacuum state to the state close to the pure cohe
state. When we move into the bifurcation range by incre
ing the intensity of the pump field, this state becom
squeezed, which is displayed as the squeezing of Gauss
@Fig. 2~b!#. The Wigner function is single humped and ce
tered atX51.5 andY50. We find that during the whole
time, after the transient timet>5, behavior of the states
~Fig. 2! remains without any modifications.

The simulation results of the time evolution of the entr
pies are plotted in Figs. 3 and 4 for various values of
driving field «51(a); 3(b); 6(c). We see that the entropie
of both modes reach the stationary values. We note that e
for «51, when the system is far from the bifurcation poin
the modes are not in pure states. The reason is the enta
ment of modes due to the nonlinear interaction between th
and feedback effects, as well as dissipation. We see incr
ing of the entropy with increasing the intensity of the drivin
field when the system moves to the bifurcation range.

-

FIG. 3. The time evolution of the entropy of the fundamen
mode prepared initially in the vacuum state for«51(a), over 150
realizations;«53(b), over 150 realizations;«56(c), over 1000
realizations.

FIG. 4. The time evolution of the entropy of the secon
harmonic mode prepared initially in the vacuum state for«51(a),
over 150 realizations;«53(b), over 150 realizations;«56(c),
over 1000 realizations.
5-5
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Now we present in more detail the results on the bifur
tion range. The ensemble-averaged results for the Wig
function are shown in Fig. 5. We see from these figures
also from Figs. 3~c! and 4~c! that the modes are in the pur
states for small timest&0.7, where the entropies are equ
to zero. In Fig. 5~a! the modes start att50 in the vacuum
state which is Gaussian in the phase-space plane center
X5Y50. The Wigner functions att.0.7 are situated sym
metrically in the phase-space plane and indicate that both
modes are in pure coherent states, Figs. 5~b! and 5~c!. The
further evolution of the system leads to the increasing of
entropies that means the forming of entangled states.
Wigner functions in Figs. 5~d! and 5~e! at timet.1.67 are
single humped and show the action of the squeezing
cesses in the SHG, which is displayed as the squeezin
Gaussians~see Sec. III C!. Then the time evolution of entro
pies as well as the Wigner functions becomes station
stable. We can see the formation of the entangled state
both the fundamental and the second-harmonic modes w
are represented in the Wigner functions Figs. 5~f! and 5~g! as
the appearance of two additional side humps. It is natura
connect the occurrence of the side humps with the unst
dynamics of the phases in the semiclassical limit of the
racavity SHG. As mentioned above, in quantum treatm
the Hopf instability is looked at as the splitting of both th
most probable values of phases into two symmetrically s
ated values. With increasingE we enter into the critical tran
sition domain, in the vicinity of the Hopf bifurcation, wher
a spontaneous breaking of the phase symmetry occurs.
suppose that two side humps of the Wigner functions disp
the states of each of the modes with equal intensities
opposite phases.

The time evolution of the entropies of the modes refle
the time evolution of the degree of entanglement between
modes. We note that in the vicinity of the Hopf bifurcatio
the entropy production for long timest*6 gives the rela-
tively high values. It is useful to compare these values of
entropy with those that take place for some well-kno
mixed states. As we see from Figs. 1~a! and 3~c! the entropy
production for long times givesS152.2 for the mean photon
number of the fundamental mode equal ton159. It is easy to
check that for the same value of the mean photon numbe
entropy of the one-mode thermal mixed state is equal tS
53.3, while the entropy of the phase-averaged coherent s
is equal toS52.5. This fact, if we consider the maxima
value of the entropy as lnN, whereN is the effective number
of the states of the modes, allows us to suppose that eac
the two side humps of the Wigner functions displays
mixtures of pure states which are not resolved. In this w
Figs. 5~f! and 5~g! portray the quantum interference betwe
these two components, i.e., the quantum interference
tween two groups of close states. This statement needs
cial investigation, nevertheless, the additional argument
favor of this point of view will be presented below by co
sidering the individual trajectories.

B. Peculiarities of individual realizations

In this section we address the question of how an in
vidual realization evolves in the regime of quantum instab
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ity. For this goal we plot in Figs. 6~a! and 6~b! the two
possible realizations of the Wigner function. We observe t
these realizations as well as all others are strikingly differ
from the ensemble-averaged results~Figs. 5!. As a rule the
samples obtained contain the interference fringes betw
two components. The other interesting feature is that e
realization, without exception, of the ensemble evolves to
two components~groups of states! with quantum interference
between them. This fact confirms the above statement r
tive to the quantum interference in the ensemble-avera
Wigner function. In reality, in the other case of statistic
mixtures between two components, the same realizat
with one of the components could be possible. So, the an
sis of individual realizations of the Wigner functions~Fig. 6!
shows that on the range of bifurcation the system is delo
ized in its two components due to coupling with a dissipat
environment, which is the electromagnetic reservoir.

It is useful also to present the results concerning
quadrature amplitudes. As we know the probability distrib
tion P(X,f) for any quadrature amplitude operatorXf
5@a exp(2if)1a†exp(if)#/2 can be obtained by integratin
of the Wigner function over the conjugate quadrature@35,36#

P~X,f!5E
2`

1`

dpW~X cosf2p sinf,X sinf1p cosf!.

~24!

In Figs. 5 and 6 the projections of the Wigner functions
the X and Y axes describe the marginal distributionsP(X)
5P(X,0) andP(Y)5P(X,p/2). As we clearly see in Fig. 6
P(Y) distributions for a single realization as well a
ensemble-averaged distributions in Fig. 5 are symmetr
relevant to zero. Therefore it seems that the arbitrary tim
dependent individual realization ofY5Xp/2 quadrature com-
ponent

Y(a)~ t !5E P(a)~Y,t !YdY ~25!

is equal to zero over all times. Really, it is also confirm
directly by quantum-jump simulation. It is known that th
quadrature amplitudesY1 andY2 of two modes describe the
phase properties of the system. We remind in this connec
that the phase of the pump field was taken equal to zer
our numerical analysis as well as the phase of the ini
vacuum state. Therefore, the resultY1

(a)(t)5Y2
(a)(t)50

means that the phases of the modes remain invariable du
the quantum-jump evolution. The results of evolution of t
single realizations of the orthogonal quadrature compone
X1

(a)(t) andX2
(a)(t) are shown in Fig. 7. These results of th

numerical simulations of the quadrature components are
ferent from the results obtained in Ref.@37# on degenerate
three-photon down-conversion. The mentioned system
classically stable and as shown in Ref.@37# by the quantum
trajectory simulation, the state vector well localized in pha
space. The system spends most of its time close to one o
classical solutions, with tunneling events occurring at ra
dom intervals in contrast to the time evolution depicted
Fig. 7.
5-6
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FIG. 5. The Wigner functions att50 ~the same for both the modes! ~a!; t50.7 of the fundamental mode~b! and second-harmonic mod
~c!; t51.67 of the fundamental mode~d! and second-harmonic mode~e!; t58.9 of the fundamental mode~f! and second-harmonic mod
~g! and for«56, averaged over 1000 realizations.
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C. Ensemble-averaged quadrature variances

As we noted, the Wigner functions in Figs. 2~b!, 5~d!, and
5~e! show squeezing properties of the quadrature distri
tions P1,2(X). We now verify this statement by actual calc
lations of the quadrature variances. The results for the t
evolution of the variances defined as

DX1,2~ t !5A^X1,2
2 ~ t !&2^X1,2~ t !&2, ~26!

for Xi5(ai1ai
†)/2, i 51,2 are given in Fig. 8. These resul

correspond to the parameter«53 and have been obtaine

FIG. 6. The Wigner functions of an individual realizations~a!,
~b! for the fundamental mode prepared initially in the vacuum st
and for«56.

FIG. 7. The time evolution of the orthogonal quadrature co
ponentsX1(t) ~1! andX2(t) ~2! of the modes prepared initially in
the vacuum state and for«56.
04380
-

e

with the average of 100 trajectories. In Fig. 8 we clearly s
the existence of quadrature squeezing of the fundame
mode for long time intervals in accordance with the behav
of the Wigner function@Fig. 2~b!#. The squeezing is maxima
DX1.0.32 fort.2.5. As the calculations show, the squee
ing decreases when we move into the bifurcation range.
for «56 the maximal squeezing for fundamental mo
DX1.0.42 att.1.9 and for second-harmonicDX2.0.48 at
t.0.9.

IV. ANTIPHASE QUANTUM DYNAMICS FOR
COHERENT-STATE EVOLUTION

So far we have analyzed the quantum instability in SH
assuming the initial states of both the modes as the vac
state. Such an initial condition is natural for the intracav
SHG and has been realized in most of the experiments. H
ever, the above investigation is insufficient for the full co
sideration of the fundamental problems of an instability.
particular, it is interesting to analyze in more detail the pha
properties of the self-pulsing phenomena using the quant
jump simulation. For this goal we consider in this section t
other scenario of the nonlinear dissipative evolution wh
cavity modes are initially prepared in the coherent sta
ua1& andua2&. We operate with the special case of the sta
having the same intensities, but the opposite values of ph
a15eipa25Auau2eiw.

It is found that the time evolution of ensemble-averag
quadrature amplitudes and Wigner functions have non
tionary behavior different from the case of vacuum mod
evolution. At first in Fig. 9 we show the time dependence
ensemble-averaged quadrature phase components^Y1& and
^Y2& which initially equal ^Y1(0)&522, ^Y2(0)&52. As
we see, each of the quadrature amplitudes displays osc

e

-

FIG. 8. The time evolution of the variancesDX1,2(t) for funda-
mental~curve 1! and second-harmonic modes~curve 2! and for «
53.

FIG. 9. The time evolution of ensemble-averaged quadra
componentŝ Y1& ~curve 1! and ^Y2& ~curve 2! for initial coherent
states of the modes witha1(t50)522i , a2(t50)52i , and pa-
rametersg1 /g251, g50.6, «56, over 1000 realizations.
5-8
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tions, with a phase correlation between them. Such a p
erty of nonlinear systems oscillating with a strong phase c
relation is called antiphase dynamics and was w
established for the self-pulsing state of intracavity SH
without dissipation@17#. As we have shown, on the basis
quadrature amplitudes, the dissipation leads to the dam
of oscillations during time intervals longer than the phot
lifetimes in the cavity.

Analogous nonstationary behavior is found also for
Wigner functions. In Fig. 10 we present the samples
ensemble-averaged Wigner functions of the fundame
mode at the time momentst54.9 andt58.2, which corre-
spond to the minimum and maximum of^Y1(t)&, respec-
tively. As we see for the evolution of coherent states,
peaks of the Wigner functions have different heights, unl

FIG. 10. Ensemble-averaged over 1000 realizations Wig
functions of the fundamental mode prepared initially in the coher
state with a1(t50)522i , a2(t50)52i at t54.9 ~a! and t
58.2 ~b! and«56.
s

ca

04380
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the previous case of the vacuum states evolution. Moreo
in the range of Hopf bifurcation, the system swings betwe
these two components.

V. CONCLUSIONS

In conclusion, we have demonstrated the origin of qu
tum instability in an intracavity SHG using the quantum
jump simulation method. We have analyzed the von N
mann entropy and the Wigner function of the fundamen
and second-harmonic modes in the vicinity of the Hopf
furcation. Our calculations are performed for both the sta
generation range and in the critical operational range
SHG, where quantum noise level essentially increases.
critical range emerges in the quantum treatment of the in
bility instead of the Hopf bifurcation point in the semicla
sical approach. We have found that the different time evo
tion scenario of the Wigner function is dependent on
pump field intensity and have shown that the cavity mod
exhibit remarkable quantum features due to entanglemen
tween them and dissipation. We have demonstrated the
gin of quantum instability for two different evolutions of th
cavity modes prepared initially in the vacuum state and
the coherent states. Namely, we have established the ap
ance of two additional side humps of the Wigner functions
the vicinity of the Hopf bifurcation as a reflection of th
phase spontaneous symmetry breaking for the vacu
modes. For the initial coherent states of modes we h
found the long-lived time-dependent oscillations of quad
ture amplitudes as well as the swing of Wigner function b
tween two side humps. For a better illustration of these
sults we used the large ratiok/g50.6 in our numerical
analysis. Unfortunately, we have not performed t
quantum-jump simulation when the system moves throu
the Hopf bifurcation, which is an interesting, however, co
plicated option for the future.
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