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Quantum fluctuations in unstable dissipative systems
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We show how quantum instability is displayed in the von Neumann entropy and in the Wigner function. For
this purpose, an intracavity second-harmonic generation close to the Hopf bifurcation range is studied. We
examine the role of dissipation in unstable dynamics and the formation of the quantum states of the cavity
modes, and discuss contrast ensemble behavior with that of individual realization on the basis of a quantum-
jump simulation method. Namely, it is found that the Wigner functions for fundamental and second-harmonic
modes prepared initially in a vacuum state acquire the three-hump structure due to phase symmetry breaking
in the bifurcation range. The time evolution of coherent states leads to long-lived swing of the system between
two side humps in a phase space.

PACS numbsd(s): 42.50.Lc

[. INTRODUCTION understood quantum-mechanical description. This system is
characterized by Hopf bifurcation which connects a steady-
Environment coupled to a quantum system leads to dissistate regime to a temporal periodic regime. Intracavity fre-
pation, i.e., to irreversible loss of energy and coherence, anguency doubling consists in transformation, vig@ non-
can monitor some of the system observables. As a result, tH#ear crystal, of an externally driven fundamental mode with
eigenstates of the system observables decohere and behdhe frequencyw, into the second-harmonic mode with the
like the classical states. The coupling to the environment alsf€quencyw,=2w; (w;+w;—w,). It was shown in Ref.
degrades the squeezed states of the radiation field and dél2], that the steady-state regime of SHG is realized only for
stroys the quantum-mechanical interference effect. As a reelatively small intensities of the driving field. Beyond the
sult, a linear superposition of macroscopically distinct quan<fitical valueE,
tum states are reduced to a statistical mixtdifie-3].
Decoherence time for macroscopic objects is typically many
orders of magnitude shorter than any other dynamical time Eor=(2y1+ v2)
scale. Therefore, the stability of quantum superposition states
requires methods for slowing down the decoherence. Several
proposals have been given in the literati#e 7). Namely, it  (wherey; and y, are the cavity damping rates, akds the
has recently been shown that couplings to the environmerntoupling constant proportional to the second-order suscepti-
with a certain symmetry can lead to slow decoherenceility x(?)) of the driving field and in the semiclassical ap-
[8-10Q. Note that the experimental testing of decoherencegproximation, without consideration of quantum noise, the in-
has been recently initiatdd 1]. In the context of the quan- tensities of the fundamental and second-harmonic modes
tum to classical transition, decoherence makes the quasiclademonstrate self-pulsing temporal behavid3,14. The
sical limit of such open systems both more realistic and simself-pulsing takes place even when the cavity is resonant
pler in many respects than the more familiar quasiclassicaboth at the fundamental and second-harmonic modes. The
limit for isolated systems. These and other properties of disHopf bifurcations are also observed for intracavity third-
sipative quantum systems are well established for the reharmonic generatiofil5]. For detuned configuration other
gimes of stable time evolution but are insufficiently studiedphenomena such as period doubling and chaos have been
for nonlinear systems involving bifurcations and ranges ofalso predicted16]. In Ref.[17], the stability of the steady-
instabilities, where the dynamics strongly depends on angtate solutions was analyzed for a model of a frequency-
possible small fluctuations of environment. doubler laser. Recently the models of cascaded intracavity
In the present paper, our purpose is to investigate the roldoubling involving two- and three-Hopf bifurcations were
of dissipation due to the quantum fluctuations of the electropresented in Ref.18]. The applications of self-pulsing phe-
magnetic field in the context of quantum unstable systems—naomena can be found in Refd.9,20,22.
the systems having instability in the classical limit. Espe- The system of interest is dissipative because light is lost
cially we wish to study the evolution of quantum noise in through the partially transmitting mirrors of the cavity. This
unstable nonlinear dynamics and adjacent questions of forntess is modeled by coupling the cavity modes to reservoir. It
ing the quantum states in the ranges of bifurcations on thés known that consistent quantum theory of nonlinear inter-
frame of Wigner functions. These investigations are compleaction of radiation field modes in the cavity is based on the
mented by consideration of quantum information aspects ofokker-Plank equation for quasiprobability distribution or on
nonlinear dynamics with the instability. equivalent Langevin equations for stochastic amplitudes
As a nonlinear system involving instability we consider (see, e.g., Ref21]). In most theoretical works, however, the
the phenomenon of frequency doubling, i.e., secondnonlinear systems are usually described within the linear
harmonic generatiofSHG) in a cavity, because it displays treatment of quantum fluctuations, where the common defi-
rich variety of classical nonlinear dynamics and has wellnition of a bifurcation as a critical point in nonlinear optical
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system emerged from the analysis of semiclassical solutionsecond-harmonic modes involved in nonlinear dynamics
and their stability regions. In this sense the semiclassicalith the Hopf bifurcation. We incorporate these studies of
dynamics of the fundamental and second-harmonic modes ithe entropy with the analysis of the Wigner functions of both
intracavity SHG is associated with the Hopf bifurcation of the modes for problems of quantum instability in SHG close
the phases of two modes at the critical value of driving fieldto the bifurcation range. We will discuss the contrast be-
E., 1. Note also that for the SHG involving Hopf instability, tween the ensemble behavior of the open system and insta-
the linear treatment can be formulated as the evolution equdility dynamics of an individual realization. For this, the
tions for the field fluctuations linearized around a periodicquantum simulation shown below, on the basis of the
self-pulsing deterministic solutiof22]. Clearly, linearized quantum-jump approach, will refer to the ensemble-averaged
theories are limited in scope and, in particular, do not detime evolution of the Wigner functions as well as to the time
scribe the critical region, where levels of quantum noise arevolution of single realizations. We restrict ourselves to the
usually very high. At the same time finding the quasiprob-numerical simulation of the stochastic dynamics in the quan-
ability distributions is extremely difficult and the solutions of tum regime where the number of photons in the modes re-
the Fokker-Plank equation, which are exact in quantum flucquired to reach the Hopf bifurcations is less thremn 20.
tuations, have been established only for relatively simple The outline of this paper is as follows. In Sec. Il we
systems but not for SHGsee, e.g., Ref.23] and references describe in more detail the nonlinear system under consider-
therein. Recently, new descriptions of open systems ination and show how the master equation can be studied using
terms of state vector trajectories have been proposed usireg Monte Carlo quantum-jump approach. Section Il com-
guantum-state diffusion[24] or quantum-jump model bines the numerical results for dynamics of the entropy and
[25,26]. Wigner functions when the initial state of the modes is the
It should be noted, that quantum numerical investigationvacuum state. Section IV is devoted to the evolution of the
of SHG have been performed by a number of authors. Theoherent states. Finally, Sec. V gives a summary of the main
guantum dynamics of photon numbers for SHG in the instaresults.
bility range using the method of numerical solutions of Lan-

gevin's stochastic equations was first investigated in Ref. || QUANTUM-JUMP APPROACH FOR FREQUENCY

[27]. More recently, in the studies of dynamics of photon DOUBLING
number in SHG, both the quantum-state diffusi@@SD) _ _ _
method[24,28 and QSD with a moving basif29] were We consider doubly resonant SHG in which two photons

employed. The application of the quantum-jump method taVith the frequencyw; = w in the fundamental moda; can

SHG was performed in Ref30]. Most of the cited papers annihilate to produce a photon with the frequengy=2w in

are devoted to numerical studies of the dynamics of photoithe second-harmonic mod®,. The fundamental mode is

numbers. The numerical investigation of the joint distribu-driven by an external classical field with the amplitule

tions for photon numbers and phases of the interacted moddglis model is described by the following Hamiltonian in the

has been presented in RE31] for SHG and in Ref[32] for ~ Interaction picture:

third-harmonic generation.

_ Our z_analys_is of intracavity SHG is based on the quantum- Heys=1 ﬁ(aizaz— afag)Jriﬁ(EaI— E*a,), 3)

jump simulation method also known as the state-vector 2

Monte Carlo method, and is devoted to the studies of the ] . ]

Wigner function and the entropy of each of the modes. Thigvherek is the coupling constant proportional to the second-

method considers not the density matrix but deals with statrder susceptibilityy(>). The losses in the input-output cav-

vector|<I>(")(t)> which is a member of an ensemble of stateity mirror are accounted for by means of independent reser-

vectors. vair interaction for each mode. If we are interested only in
As a measure of the entanglement and dissipation we ugge subsystems of two modes we must trace over the reser-

the von Neumann entropies of the modes which are define¥oir to obtain the density matrix for the subsystgmraking

through their respective reduced density operators as the trace over the reservoir in the Born-Markov approxima-
tion the corresponding master equation in the Lindblad form
S;=—Tri(p;Inp)), 2) s obtained
ap

where the subscrigt=1,2 is taken to imply the modes. This —
entropy is a sensitive operational measure of the quantum Jt
correlation, quantum information, and entanglement of both (4)
isolated or open systems, as well as the measure of the purity . R SN

of quantum stat¢33,34). If the system is in pure state the '—P—izzl vi(2aipaj —paja;—aja;p).

entropy[Eq. (2)] is precisely zero.

It should be noted that in most studies, the photon enThis equation describes the fundamental and second-
tanglement mechanism is imposed by spontaneous radiativearmonic modes decaying in the cavity apdare the cavity
processes, namely, on cascade transition in an atom or dowdamping rates.
conversion in a nonlinear medium. In the system of interest, We now briefly explain the quantum-jump simulation ap-
entanglement is realized between the fundamental androach to the system considered using the general results

i
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presented in Ref25]. The vector of the system which is one Sp=8p,+ p,, (12
member of an ensemble of state vectors is expressed in the
Fock basis of two modes as and
N
|De(t)) =2, ald(t)|m)|n),, (5) 8p1=0ty, X, Nagm(t)ai(t), (13
m,n

where the indexa indicates the realizations and), and

[n), are the Fock states of the fundamental and the second-

harmonic modes. Note, that the coefficieaf&)(t) depend _ o

on the indexes of both modes simultaneously but not on th&uch evolution must be completed by the possibility of quan-

photon number of each mode separately. tum jump. This quantum jump theory, unlike the single mode
The density matrix of the system is calculated as math€ase, contains two jump operatas and a,, therefore the

ematical expectation of the matrixes of these pure states JUmps change the photon numbers of both the modes. In the
case of the emission of a photon from the fundamental or the

second-harmonic modes the state vector is jumped as

8p2= Sty 2, Nama(t)ak(b). (14)

1 N
p(O=M{ @)@ (D[} = lim T > [0 (O} (DD,

N— o \/—
y1a,| (1)
(6) |q>(t)>ﬂﬁ (15
1
N is the number of independent realizations.
The reduced density operators for each of the modes am@r
constructed from the full density operatgrdy tracing over
the other mode. Thus, Vyza,| (1))
|D(t))— o (16)
p12)= Tra1)(p) (7) Vop2
and in the Fock basis we find with the probabilitiesép, /ot and dp,/dt. In accordance
with Egs. (15 and (16) the amplitudes of photon numbers
N are changed as
pran(t)= M[E aaz)(t>a;g“><t>], (8)
d Ams1n(t) ym+1
N Amp(t+6t) = 172 (17)
n t)ya* (t
ponm(D=M{ > ag?a)a;muj. © [mE Bom(t)2an( )}
q
or
The procedure adopted in the quantum-jump simulation
for the system Hamiltonia(B8) consists of the following. The a (t) ntl
evolution of the one member of the ensemble of pure states amn(t+ot)= mn+1 . (18)

|®((t)) over a short timet if there is no quantum jump is

n tyak (t
governed by the non-Hermitian effective Hamiltonian 2 Nand(Dan(t)

m,n

i% + + In the following we shall focus on two kinds of initial
Heri=Hsys™ 5 (71121 728287). (100 states of both cavity modes. The cases of vacuum states and
coherent states will be considered. We restrict ourselves to
The calculation at first order aft for the amplitudes,,,(t) the numerical simulation of a set of state vectors at time
gives the following formula: using truncated Fock basis as in the cited pag@#—
26,28,30Q, and in the regime of strong nonlinearity. We have

1 y16t yo 0t also used the state vector Monte Carlo method to determine
aAmn(t+ot)= —*( amn(t)[ l-m——-n-—"— Wigner functions for the quantum states of modes during the
1-dp time evolution. For this goal we apply the method presented
1 StE - StE* Jmr 1 in Ref. [10]. Generalizing _th|s metho_d for the case of two
SUE VM ap—1.0(t) = StE* YN+ 1am. 1,(1) modes we express the Wigner functions for both the funda-
kot mental and second-harmonic modes in the following form:
+7[ \/m(m_ 1)(n+ 1)am—2,n+1(t)
Wi(r,0)= 2, pi maWenr(T ), (19
- Vn(m+l)(m+2)am+2,nl(t)])v (11) ’
(i=1,2), (r,6) are the polar coordinates in the complex
where phase-space plané=r cos@), Y=r sin(d) and the coeffi-
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cientsW(r, ) are Fourier transforms of matrix elements of the Wigner characteristic function

2 /nl
;( _ 1)n Hel(m—n)H(Zr)m—ne—Zranm—n(4r2), m=n

Wmn(l',@)zz m (20)
;( _ :I_)m1 /n_l'ei(mfn)(}(zr)nfmefzranmfm(‘]_rZ), n=m
with Lg being the Laguerre polynomials.
|
ll. TIME EVOLUTION OF VACUUM MODES: coupling between two fundamental and second-harmonic
ENSEMBLE BEHAVIOR AND INDIVIDUAL modes but not the strong coupling of cavity modes to reser-
REALIZATIONS voir, so that the Born-Markov approximation is valid. This

. . . o . . regime is strongly quantum mechanical, as in the vicinity of

Before discussing Fhe quantum instability let us b”eﬂyHopf bifurcation the maximum photon number in both the
comment on the transition of the system from stable dynamfnodes is less than 20, #f=6, for instancasee below, Fig
ICS to unstable. In the semiclassical approximation, Wh'Chl). Note that in the reg;me considered the mean pho,ton num-
means ignoring the noise terms, the stability takes place be‘b'ers of fundamental and second-harmonic modes approxi-
lOW. the critical point. In this range and in the Steady'.Statemately equal each other. For large values of relative nonlin-
regime (y; >1) the photon numbers; and phasesp; (i

- ) earity g the dynamics of the modes is characterized by a
Je%ézr?fﬁig;éhke,yﬂ:r?g?;“(e)c\}?nlgaggpf:;;g?g?rmonIC modes 8road critical range of the driving field amplitude instead of
: the bifurcation point which is equal teo,, =10, for y;= 1y,

- K =y and g=0.6. We note that the system with such ex-

n1=2?\/n—, Ely,=n,| 1+ —\/n—z) (21)  tremely large nonlinearities is far to be realized in practice

71 and here we do not intend to give results close to an experi-

mental situation but discuss the fundamental problems of

P1=¢,  @am2¢1=, (22) quantum instability for the simplest model. Note that similar

. . strong nonlinearity regimes were considered by quantum
where ¢ is the phase of the pump field. Beyorid, the simulation methods in most of the cited papg24,29.

dynam|c§ . photon numbers_ of the modes moves .to the At first, we chose the vacuum state as the initial state of
self—_pulsm_g regime. The physical reason for self_-pulsmg Shoth modes and analyzed the individual time-dependent re-
the instability of the phases of the cavity fields. This problem lizations to find the range of instability. The basisris

has been recently analyzed quantum mechanically usin .
Langevin’s stochastic equation of motion. In particular, it_20 number states for each mode for a total size df 20

has been showh31] from ensemble-averaged simulation,
that the most probable values of phases in each of the modes
and in a fixed moment of time has zero value below the
critical range and branches into two symmetrically situated
values when a system moves through the critical range.

We shall give the results of the quantum-jump analysis of
SHG using expansion of the state vectors in the Fock state
basis of the two mode&5). For simplicity of analysis we
take y, = y,= 7y and introduce the dimensionless parameters
as

2
o

@

Photon number
N
o N
N

S

(=)

e=Ely, g=kly, 71=nyt. (23

In order to choose a truncated basis of two modes we con-
cretize the operational regime. The usual situation in quan-
tum optics is to operate in the regime of weak nonlinearity
for which g<1, so thate.,>1. Then the system is able to
reach the Hopf bifurcation if the fundamental cavity mode is 0 I R e—T
driven by a high intensity coherent field. This leads to large

photon number in the modes. However, it is difficult to ob-  FiG. 1. The time evolution of the mean photon numbers of the
tain a single quantum trajectory in this regime, not to menfyndamentala) and second-harmonic mode) prepared initially in
tion performing an ensemble average. In the following wethe vacuum state, ensemble averaged over 1000 realizafi@md
consider the regime of strong nonlinearigy=0.6, and vary  an individual realization(2). The parameters are;/y,=1, @
the value of the external field. It means the strong nonlineak0.6,s=6.

Photon number

2

T
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FIG. 3. The time evolution of the entropy of the fundamental
mode prepared initially in the vacuum state for 1(a), over 150
realizations;e =3(b), over 150 realizations¢ =6(c), over 1000
realizations.

sembles of trajectories. The calculations were performed by
diagonalization of the matriy, ;) nm in the Fock states ba-
sis. The Wigner function is calculated by formuld®) and
(20).

Now we present the ensemble-averaged results which
contain 1000 realizations by using the state vector Monte
Carlo simulation combining the studies of entropy and
Wigner function. In Fig. 2 we demonstrate moving our sys-

FIG. 2. The Wigner functions of the fundamental mode pre-t€m Within the range of stable generation to the bifurcation
pared initially in the vacuum state fer=1 (a) ande =3 (b) and for ~ ange by plotting the Wigner function for two values of driv-
7=8; averaged over 150 realizations. ing field: e=1 (@) ande=3 (b) in a fixed moment of time.

On the left of bifurcation, Fig. @ shows transformation of
states. In Fig. 1 we illustrate the time evolution of the photorthe initial vacuum state to the state close to the pure coherent
numbers averaged over 1000 single trajectories. These figtate. When we move into the bifurcation range by increas-
ures show that the mean photon numbers of both mode®g the intensity of the pump field, this state becomes
(curves 1 reach the stationary values. At the same time, agsqueezed, which is displayed as the squeezing of Gaussians
the calculations show, each of the time-depended trajectorid&ig. 2(b)]. The Wigner function is single humped and cen-
of the photon number&urves 2 strongly depends on the tered atX=1.5 andY=0. We find that during the whole
realization and shows oscillations which indicate the selftime, after the transient time=5, behavior of the states
pulsing temporal behavior. However, the oscillations are al{Fig. 2) remains without any modifications.
most reduced by averaging over the ensemble. This results The simulation results of the time evolution of the entro-
are in accordance with the analogous results of quanturies are plotted in Figs. 3 and 4 for various values of the
simulation obtained on the basis of Langevin equationglriving fielde=1(a); 3(b); 6(c). We see that the entropies
[27,28. The difference is that here we study the unstableof both modes reach the stationary values. We note that even
dynamics of modes in the critical range of the system. On théor e =1, when the system is far from the bifurcation point,
whole we find more effective quenching of the self-pulsingthe modes are not in pure states. The reason is the entangle-
of individual trajectories due to their averaging over en-ment of modes due to the nonlinear interaction between them
semble than in Refl27]. Nevertheless, we will clearly see and feedback effects, as well as dissipation. We see increas-
below the properties of instability in the frames of both theing of the entropy with increasing the intensity of the driving
entropy and the Wigner function for the same parameters, déeld when the system moves to the bifurcation range.
in Fig. 1.

25,
A. Entropy and Wigner function in the vicinity of Hopf 20| ©
bifurcation
. . N 15
In connection with the above results the following inter- ] ©
esting question arises on how the self-pulsing instability in e 10
the nonlinear system under consideration is displayed in 05 @
guantum ensemble theory. To answer this question we con- 0
sider the von Neumann entropies and the Wigner functions ' 2 4 8 8 0 1

of the fundamental and second-harmonic modes, which pro- T

vide a large amount of information about the states of the F|G. 4. The time evolution of the entropy of the second-
modes and also provide a pictorial view. We calculate theéharmonic mode prepared initially in the vacuum statesferl (a),
evolution of the entropy by formulé) using the results for over 150 realizationsg =3(b), over 150 realizationsg=6(c),
reduced density matrixe@®), (9) expressed through the en- over 1000 realizations.
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Now we present in more detail the results on the bifurcadity. For this goal we plot in Figs. & and &b) the two
tion range. The ensemble-averaged results for the Wigngsossible realizations of the Wigner function. We observe that
function are shown in Fig. 5. We see from these figures anehese realizations as well as all others are strikingly different
also from Figs. &) and 4c) that the modes are in the pure from the ensemble-averaged resufgs. 5. As a rule the
states for small times=0.7, where the entropies are equal samples obtained contain the interference fringes between
to zero. In Fig. %a) the modes start at=0 in the vacuum  two components. The other interesting feature is that each
state which is Gaussian in the phase-space plane centeredrghization, without exception, of the ensemble evolves to the
X=Y=0. The Wigner functions at=0.7 are situated sym- o componentggroups of statéswith quantum interference
metrically in the phase-space plane and indicate that both thgatween them. This fact confirms the above statement rela-
modes are in pure coherent states, Figb) &nd 3c). The  {jye 1o the quantum interference in the ensemble-averaged
further evolution of the system leads to the increasing of thQNigner function. In reality, in the other case of statistical
entropies that means the forming of entangled states. Th@jxiyres between two components, the same realizations
Wigner functions in Figs. @) and Je) at time 7=1.67 are  ith one of the components could be possible. So, the analy-
single humped and show the action of the squeezing prasjs of individual realizations of the Wigner functioffsg. 6)
cesses in the SHG, which is displayed as the squeezing Qhows that on the range of bifurcation the system is delocal-
Gaussiangsee Sec. Il ¢ Then the time evolution of entro- ;a4 in its two components due to coupling with a dissipative

pies as well as the Wigner functions becomes stationargnyironment, which is the electromagnetic reservoir.
stable. We can see the formation of the entangled states of 1 is yseful also to present the results concerning the

both the fundamental and the second-harmonic modes which,adrature amplitudes. As we know the probability distribu-

are represented in the Wigner functions Fig$) &nd3g)as  ign P(X,$) for any quadrature amplitude operatdt,
the appearance of two additional side humps. It is natural Q13 exp(—i¢)+alexp(¢)]/2 can be obtained by integrating

connect the occurrence of the side humps with the unstablgs ihe Wigner function over the conjugate quadraf@s,36
dynamics of the phases in the semiclassical limit of the int- '

racavity SHG. As mentioned above, in quantum treatment +oo . ]

the Hopf instability is looked at as the splitting of both the P(X,#)= fﬁx dpW(X cos¢—psine,Xsing+pcose).
most probable values of phases into two symmetrically situ- (24)
ated values. With increasirgwe enter into the critical tran-

sition domain, in the \_/icinity of the Hopf bifurcation, where |, Figs. 5 and 6 the projections of the Wigner functions on
a spontaneous breaking of the phase symmetry occurs. Wge X and Y axes describe the marginal distributioR€X)
suppose that two side humps of the ngner funcnong @spla;g P(X,0) andP(Y)=P(X,n/2). As we clearly see in Fig. 6,
the states of each of the modes with equal intensities ang(Y) distributions for a single realization as well as

opposite phases. ensemble-averaged distributions in Fig. 5 are symmetrical

The time evolution of the entropies of the modes reflect§g|eyant to zero. Therefore it seems that the arbitrary time-
the time evolution of th_e degre.elof entanglement b.etwee.n th&ependent individual realization &= X, quadrature com-
modes. We note that in the vicinity of the Hopf bifurcation ponent

the entropy production for long times=6 gives the rela-
tively high values. It is useful to compare these values of the

entropy with those that take place for some well-known Y(“)(t)=f P (Y t)YdY (25)
mixed states. As we see from Figgajland 3c) the entropy
production for long times giveS; = 2.2 for the mean photon
number of the fundamental mode equahte=9. It is easy to
check that for the same value of the mean photon number t
entropy of the one-mode thermal mixed state is equéb to

is equal to zero over all times. Really, it is also confirmed

directly by quantum-jump simulation. It is known that the
adrature amplitudeg; andY, of two modes describe the

_ . hase properties of the system. We remind in this connection

—3.3, while the entropy of the phase-averaged coherent Stafﬁat the phase of the pump field was taken equal to zero in

is lequafl LOSZZ'S' Thism:‘actr,] if we ccr)]nsi(:fer the maxit;'nal our numerical analysis as well as the phase of the initial
value of the entropy as N, whereN is the effective number o, um " state. Therefore, the resaif™(t)=Y4(t)=0

of the states of the modes, allows us to suppose that each I . .
the two side humps of the Wigner functions displays the eans that the phases of the modes remain invariable during

mixtures of pure states which are not resolved. In this athe guantum-jump evolution. The results of evolution of the
IIXtu pu Wh . ved. IS W ysingle realizations of the orthogonal quadrature components
Figs. 5f) and §g) portray the quantum interference between, (o) (@) g
) . X3%(t) and X3 (t) are shown in Fig. 7. These results of the
these two components, i.e., the quantum interference be_umerical simulations of the quadrature components are dif-
tween two groups of close states. This statement needs s q P

cial investigation, nevertheless, the additional arguments i&erent from the results obta|_ned in R¢87] on degenerate .
three-photon down-conversion. The mentioned system is

fs?(\j/grrir?g; tt?]'es i[:\?ilir\l/z dC:jaYlﬁ\;\g evzltll)rti)gsf)resented below by con- cla_ssically _stable_and as shown in R7] by the quantum
trajectory simulation, the state vector well localized in phase
space. The system spends most of its time close to one of the
classical solutions, with tunneling events occurring at ran-
In this section we address the question of how an indi-dom intervals in contrast to the time evolution depicted on
vidual realization evolves in the regime of quantum instabil-Fig. 7.

B. Peculiarities of individual realizations
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FIG. 5. The Wigner functions d@t=0 (the same for both the mode®); r=0.7 of the fundamental mode) and second-harmonic mode
(c); 7=1.67 of the fundamental mode) and second-harmonic mode); 7= 8.9 of the fundamental mod¢) and second-harmonic mode
(g) and fore =6, averaged over 1000 realizations.
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FIG. 8. The time evolution of the variancas{, ,(t) for funda-
mental(curve 1 and second-harmonic modésurve 2 and fore
=3.

with the average of 100 trajectories. In Fig. 8 we clearly see
the existence of quadrature squeezing of the fundamental
mode for long time intervals in accordance with the behavior
of the Wigner functiorifFig. 2(b)]. The squeezing is maximal
AX;,=0.32 forr=2.5. As the calculations show, the squeez-
ing decreases when we move into the bifurcation range. So,
for e=6 the maximal squeezing for fundamental mode
AX;,=0.42 atr=1.9 and for second-harmonicX,=0.48 at
7=0.9.

IV. ANTIPHASE QUANTUM DYNAMICS FOR
COHERENT-STATE EVOLUTION

So far we have analyzed the quantum instability in SHG
assuming the initial states of both the modes as the vacuum
state. Such an initial condition is natural for the intracavity
SHG and has been realized in most of the experiments. How-
ever, the above investigation is insufficient for the full con-
sideration of the fundamental problems of an instability. In

articular, it is interesting to analyze in more detail the phase
properties of the self-pulsing phenomena using the quantum-
jump simulation. For this goal we consider in this section the
other scenario of the nonlinear dissipative evolution when
) ) o cavity modes are initially prepared in the coherent states

As we noted, the Wigner functions in FiggbZ, 5(d), and |4,y and|a,). We operate with the special case of the states
5(e) show squeezing properties of the quadrature distribupaying the same intensities, but the opposite values of phases
tions P o(X). We now verify this statement by actual calcu-  _ e, = \/—ze.(p
lations of the quadrature variances. The results for the t|me ” is found that the time evolution of ensemble-averaged

evolution of the variances defined as quadrature amplitudes and Wigner functions have nonsta-
_ 2 — 5 tionary behavior different from the case of vacuum modes
AXq A1) = V(XTA1)) = (X1 o1))?, (20 ayolution. At first in Fig. 9 we show the time dependence of
. . - ensemble-averaged quadrature phase compo¥hisand
for Xi=(ai+ar)/2, i=1,2 are given in Fig. 8. These re§ults (Y) which initiaglly e%ual <Y1(0)>p= iy <Y2(pO)'<>]=l; A
correspond to the parameter=3 and have been obtained we see, each of the quadrature amplitudes displays oscilla-

FIG. 6. The Wigner functions of an individual realizatiofss,
(b) for the fundamental mode prepared initially in the vacuum stat
and fore=6.

C. Ensemble-averaged quadrature variances

X120

& b b o s o

0 2z 4 6 8 10 12

0 0 ®» B 0 H
FIG. 9. The time evolution of ensemble-averaged quadrature
FIG. 7. The time evolution of the orthogonal quadrature com-componentsgY,) (curve 3 and(Y,) (curve 2 for initial coherent
ponentsX;(t) (1) andX,(t) (2) of the modes prepared initially in  states of the modes with;(t=0)= —2i, a,(t=0)=2i, and pa-
the vacuum state and fer=6. rametersy,/y,=1, g=0.6,e=6, over 1000 realizations.
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the previous case of the vacuum states evolution. Moreover,
in the range of Hopf bifurcation, the system swings between
these two components.

V. CONCLUSIONS

In conclusion, we have demonstrated the origin of quan-
tum instability in an intracavity SHG using the quantum-
jump simulation method. We have analyzed the von Neu-
mann entropy and the Wigner function of the fundamental
and second-harmonic modes in the vicinity of the Hopf bi-
furcation. Our calculations are performed for both the stable
generation range and in the critical operational range of
SHG, where quantum noise level essentially increases. This
critical range emerges in the quantum treatment of the insta-
bility instead of the Hopf bifurcation point in the semiclas-
sical approach. We have found that the different time evolu-
tion scenario of the Wigner function is dependent on the
pump field intensity and have shown that the cavity modes
exhibit remarkable quantum features due to entanglement be-
tween them and dissipation. We have demonstrated the ori-
gin of quantum instability for two different evolutions of the
cavity modes prepared initially in the vacuum state and in
the coherent states. Namely, we have established the appear-
ance of two additional side humps of the Wigner functions in
the vicinity of the Hopf bifurcation as a reflection of the
phase spontaneous symmetry breaking for the vacuum

FIG. 10. Ensemble-averaged over 1000 realizations WignanOdeS- For the initial coherent states of modes we have

functions of the fundamental mode prepared initially in the coherenfound the long-lived time-dependent oscillations of quadra-
state with ay(t=0)=—2i, a,(t=0)=2i at 7=4.9 (@ and r ture amplitudes as well as the swing of Wigner function be-

=8.2(b) ande=6. tween two side humps. For a better illustration of these re-
sults we used the large ratik/y=0.6 in our numerical
tions, with a phase correlation between them. Such a propanalysis. Unfortunately, we have not performed the
erty of nonlinear systems oscillating with a strong phase corguantum-jump simulation when the system moves through
relation is called antiphase dynamics and was welthe Hopf bifurcation, which is an interesting, however, com-
established for the self-pulsing state of intracavity SHGplicated option for the future.
without dissipatiorf17]. As we have shown, on the basis of
quadrature amplitudes, the dissipation leads to the damping
of oscillations during time intervals longer than the photon
lifetimes in the cavity. One of us(S.T.G) wishes to acknowledge Professor A.
Analogous nonstationary behavior is found also for theGraham for useful questions and interesting comments dur-
Wigner functions. In Fig. 10 we present the samples ofing the investigation of quantum dynamics of unstable sys-
ensemble-averaged Wigner functions of the fundamentakems. One of u$G.Yu.K.) acknowledges helpful discussions
mode at the time moments=4.9 andr= 8.2, which corre- with G. Alber, H. Carmichael, S. Fauve, I. Jex, W. Schleich,
spond to the minimum and maximum ¢¥,(t)), respec- and K. Vogel. This work was supported in part by INTAS
tively. As we see for the evolution of coherent states, theGrant No. 97-1672, and by the Armenian Science Founda-
peaks of the Wigner functions have different heights, unliketion Grant Nos. 96-771 and No. 98-838.
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