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Mesoscopic phenomena in Bose-Einstein systems: Persistent currents, population oscillations
and quantal phases
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Mesoscopic phenomena—including population oscillations and persistent currents driven by quantal
phases—are explored theoretically in the context of multiply connected Bose-Einstein systems composed of
trapped alkali-metal gas atoms. These atomic phenomena are bosonic analogs of electronic persistent currents
in normal metals and Little-Parks oscillations in superconductors. Differences between oscillatory phenomena
due to quantal phases in Bose-Einstein systems and in conventional superconductors are discussed, particularly
with regard to their potential for discriminating between the standard BCS scenario and the Bose-Einstein
condensation of preformed pairs scenario for the superconducting transition in high-temperature
superconductors.

PACS number~s!: 03.75.Fi, 03.65.Bz, 73.23.Ra, 74.25.Bt
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I. INTRODUCTION

The purpose of this paper is to consider multiply co
nected many-particle systems obeying Bose-Einstein st
tics and, in particular, to address the sensitivity of such s
tems to quantal phases@1#. Such considerations are o
relevance to two areas that are currently attracting attent
Bose-Einstein condensates in atomic gases and B
Einstein condensation~BEC! as a scenario for the superco
ducting transition in high-temperature superconductors.

Multiply connected bosonic systems are now experim
tally achievable in the setting of alkali-metal gas atoms c
fined by torus-shaped magnetic or optical traps~Fig. 1!. In
multiply connected systems of charged fermions wave fu
tions can acquire Aharonov-Bohm~AB! phases, which are
electromagnetic in origin. In contrast, if the bosonic consti
ents ~e.g., alkali-metal gas atoms! are electrically neutra
then electromagnetism, in the form of the AB phase, can
provide a source of quantal phase. So, in seeking sensit
to quantal phases we are led to consider the spin degre
freedom of the bosons, and the consequent possibility
quantal phases of geometric origin@2#. As we shall see, geo
metric quantal phases can readily affect the energy lev
and hence populations, of the single-particle quantum sta
and lead to persistent equilibrium currents in multiply co
nected systems, thus providing a striking example of qua
mesoscopic phenomena in the setting of bosonic syste
Such phenomena are bosonic analogs of phenomena
known in the context of the mesoscopic physics of norm
state electronic systems~such as persistent equilibrium cu
rents and conductance oscillations in conducting rin!
which arise due to AB@3# or geometric@4–6# quantal phases
They are also bosonic analogs of the flux sensitivity of
superconducting transition temperature in thin-walled sup
conducting rings, known as Little-Parks oscillations@7#.
~These quantum interference phenomena are mesoscop
the sense that they vanish in the limit of large system siz!

Flux-driven phenomena in BEC systems, although sim
to flux-driven phenomena in conventional superconduct
are not related to the flux-induced destruction of Coo
pairs, and arise even when interactions between bosonic
1050-2947/2000/61~4!/043609~9!/$15.00 61 0436
-
is-
s-

n:
e-

-
-

-

-

ot
ity
of

of

ls,
s,

-
al
s.
ell
l-

e
r-

in
.
r
s,
r

pe-

cies are very small. This distinction is especially important
the light of several proposals that the Bose condensatio
preformed pairs of charge carriers plays a central role in
mechanism of high-temperature superconductivity~HTSC!
@8–10#. The relevance of these proposals can be tested
perimentally, as we shall discuss, by searching for sensiti
to magnetic flux in HTSC materials.

It is worth mentioning that there is a sense in whi
bosonic settings are preferable to electronic settings, if
wishes to observe implications of quantal phases in ma
particle physics: in the fermionic case, the Pauli exclus
principle forces the occupation of many single-partic
states, and there are strong cancellations between the ef
of quantal phases on these states. By contrast, Bose-Ein
statistics promote the significance of the single-parti
ground state. In this sense then, bosonic systems ten
amplify mesoscopic effects, at least in comparison with f
mionic systems.

For atomic BEC systems the important question is how
introduce a nonelectromagnetic quantal phase~and the asso-
ciated flux!. One scheme for introducing a geometric quan
phase is to have the bosons move through regions of spa
which there is a spatially varying magnetic field to which t
spins of the bosons are Zeeman coupled. Then, as discu
in Ref. @11# in the context of magnetic traps, the inhomog
neous magnetic field~if sufficiently strong! leads to a geo-
metric vector potentialA ~and a corresponding geometr
flux F) which influences the orbital motion of the boson
and does so in much the same way as the electromag
~AB! vector potential~and flux! influences the motion of
electrically charged particles.

References@11# considered conventional~not AB-like!
consequences of the geometric vector potential, that is,
fects associated with nonzero values of the geometric fi
strengthV[“3A ~i.e., the vorticity!. However—and this is
the main point of the present paper—there are striking qu
tal AB-like consequences of the geometric vector poten
itself ~rather than the field strength!, especially in multiply
connected configurations, and even whenV50 in the
sample. These consequences include an oscillatory de
dence on the geometric fluxF of the energies of all single
particle levels and, thus, the equilibrium populations of the
levels and, more generally, all equilibrium quantities. Mor
©2000 The American Physical Society09-1
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over, these single-particle energy-level oscillations lead
rectly to the existence of equilibrium currents@12# that flow
around the trap~at generic values ofF). Although, given the
finite size of the system, there is no strict critical temperat
associated with Bose-Einstein condensation, one can ide
the remnant of such a critical temperature~via a crossover
temperature that marks the onset of a considerable sin
particle ground-state population!, and this crossover tem
perature also oscillates with the geometric flux. Furthermo
although there is no singularity in the specific heat, there
oscillatory dependence on the temperature of the peak in
specific heat. Beingmesoscopic, these oscillatory phenom
ena vanish in the thermodynamic limit. Therefore, desp
the electrical neutrality of the atoms in BEC systems,
geometric phase allows one to realize counterparts of
well-established collection of electromagnetic AB-pha
sensitive phenomena, as well as new, bosonic, phenom
such as large oscillations in the populations of the vari
single-particle levels.

In order to realize geometric-phase-driven oscillations o
needs to vary the inhomogeneous magnetic field that
bosons inhabit. In magnetic traps the ability to make su
variations is limited, as variations alter the structure of
trap ~i.e., the shape of the system!. The recent achievemen
of confinement via purely optical traps@15# liberates the
magnetic field from its dual role of confining the atomsand
causing the geometric phase, and thus enlarges the scop
exploring the effects of geometric phases. In both magn
and optical traps it is also feasible to introduce another qu
tal phase of nonelectromagnetic origin: the spin-orbit qua
phase. In particular, a scheme has been proposed for ob
ing the Aharonov-Casher effect@16# in BEC systems@17#,
the origin of this effect being a radial electric field passi
through a toroidal sample@18#. This scheme had previousl
been proposed in the context of superfluid3He in Ref.@19#.

The present paper is organized as follows. In Sec. II
demonstrate how geometric phase~and the associated flux!
arises in an inhomogeneous magnetic field in the contex
multiply connected samples. In Sec. III we compute the
pendence of the number of particles in a model noninter
ing BEC system on the flux, and the consequences of
dependence for several physical quantities are discusse
Sec. IV. Then, in Sec. VI, we deal with the experimen
issues of geometric flux effects in atomic BEC systems,
in Sec. V we discuss briefly effects of interactions. Final

FIG. 1. Toroidal sample of noncircular cross section.
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in Sec. VII we discuss possibilities for investigating flux e
fects in high-temperature superconductors as a probe of
BEC-mechanism scenario for superconductivity.

II. QUANTAL PHASES AND FLUXES
OF NONELECTROMAGNETIC ORIGIN

In this section we discuss how quantal phase and
effects arise in systems of electrically neutral particles
hyperfine spinS due to their interaction with an inhomoge
neous magnetic fieldBW (rW). The appearance of geometr
phases in inhomogeneous magnetic fields has been co
ered by several authors in mesoscopic settings@4–6# and for
atomic alkali gases in Ref.@11#. Our aim in the present sec
tion is to illustrate the requirements on magnetic field co
figurations in multiply connected samples confining Bo
particles such that consequences of geometric phases ca
observed.

In magnetic traps an inhomogeneous magnetic field
necessarily present, with its magnitudeuBW (rW)u behaving as a
potential well. The orientation of magnetic fieldBW (rW)/uBW (rW)u
is also spatially inhomogeneous for magnetic traps. In c
trast, in optical traps, there is no requirement to keep p
ticles magnetically confined, and one therefore has gre
freedom in choosing what magnetic fields to apply, e.g., o
in which the direction varies in space but the amplitude d
not.

Let us consider Bose particles of massM and hyperfine
spin S Zeeman coupled to an arbitrary inhomogeneous m
netic field. Then the single-particle Hamiltonian is given b

H52
\2

2M
¹22

1

2
mSW •BW ~rW !, ~2.1!

wherem is the appropriate magneton. In addressing the c
responding eigenproblem it is convenient to introduce a b
of instantaneous eigenstates of the spin problem,

$um;BW &%m52S
S , which satisfy

SW •BW um;BW &5\muBW uum;BW &. ~2.2!

Then, if we express eigenstatesuC& of H in terms of these
instantaneous eigenkets, together with the position eig
states$ur &%, i.e.,

uC&5 (
m52S

S E ddrCm~rW !urW& ^ um;BW ~rW !& ~2.3!

~whered is the dimensionality of space!, the eigenproblem
HuC&5EuC& becomes

1

2M (
m852SS

u2 i\I¹W 2A¢ um,m8
2 Cm8~rW !2

1

2
mmuBW uCm~rW !

5ECm~rW !, ~2.4!

where the (2S11)3(2S11) matrix valued gauge potentia
A¢ has elements given by
9-2
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AW m,m8~rW ![ i ^rW;m;BW ~rW !u¹W r urW;m8;BW ~rW !& ~2.5!

andI is the (2S11)3(2S11) identity matrix. We may take
for the instantaneous eigenstates the choice$um;BW &%m52S

S ,
given by

um;BW &5exp~2 ifSz /\!exp~2 iuSy /\!um;eW z&, ~2.6!

where$um;eW z&[$um&%m52S
S are eigenstates ofSz , andu and

f are, respectively, the azimuthal and polar angles par
etrizing BW .

We now address the energy eigenproblem by making
adiabatic approximation in which transitions between d
tinct instantaneous spin states are omitted. This approxi
tion amounts to removing the off-diagonal terms in Eq.~2.4!,
which becomes

1

2M
~ u2 i\¹W 2AW m,mu21Vm~rW !2 1

2 mmuBW u!Cm~rW !5ECm~rW !,

~2.7a!

Vm~rW ![ (
m852S

S

AW m,m8•AW m8,m2AW m,m•AW m,m. ~2.7b!

The quantityVm is a scalar potential arising from the adi
batic approximation in addition to the more familiar gau
potentialAW m . Both scalar and~Berry! gauge potential arise
from the spatial variation in the orientation of the inhomog
neous magnetic field through which the particles propag
Let us pause to mention the origin ofVm : if one directly
omits the off-diagonal elements ofAW then one does not find
the contributionVm . On the other hand, if one makes th
conventional adiabatic approximation, i.e., one omits the
diagonal elements in the eigenproblem~2.4!, then Vm
emerges. It should be remarked that, despite appearance
gauge covariance of the eigenproblem is not lost by
approximation strategy, the appropriate set of gauge trans
mations being the spin component~m! and position (rW) de-
pendent rephasing of the instantaneous eigenstates. Th
term on the left hand side of Eq.~2.4! is the Zeeman energy
it acts as a potential well, and must be attractive in a m
netic trap.

Let us discuss the conditions under which it is justified
neglect the off-diagonal terms in Eq.~2.4!. First, consider the
terms in Eq.~2.4! that are linear in the gauge potential.
computing, say, corrections to energy eigenvalues due
these terms, diagonal terms contribute simply additive
whereas those due to off-diagonal terms are smaller, b
proportional to the square of the matrix element and divid
by an energy denominator associated with the Zeeman
ergy scale. Therefore, even though the diagonal and
diagonal perturbations may be numerically of the same
der, their perturbation of the energy eigenvalues are not.
same is true for terms in Eq.~2.4! that are quadratic in the
gauge potential. Bearing this in mind, we see that provid
the Zeeman energy is large, it is reasonable to neglect
off-diagonal terms in Eq.~2.4!, while keeping the corre-
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order!. This is the adiabatic approximation: it is valid pro
vided that

1

2M
uIpW 2AW um,m

2 @S 1

2M D 2
uIpW 2AW u m,m8

mÞm8

4

muBW u
. ~2.8!

We note that this condition is more stringent than the con
tion that there be no ‘‘Dirac centers’’ in a trap~i.e., points at
which BW vanishes! but is, nevertheless, readily achievable
applying stronger magnetic fields@20#.

As we have just seen, in the presence of an inhomo
neous magnetic field the adiabatic approximation leads
scalar potential in addition to a vector potential. In the fo
lowing two sections we shall ignore the consequences of
scalar potential and focus on the effects of the vector po
tial. Our motivation for doing this is that we wish to explor
analogs of the AB effect that, owing to the geometrical ch
acter of the gauge potential, are oscillatory~cf. optical inter-
ference! in nature. By contrast, variations of the scalar p
tential do not generically lead to oscillatory phenomena
rather to a ‘‘smearing’’ of them. What we mean by smeari
is the following. Suppose that the inhomogeneous field
varied in such a way that only the vector potential is varie
Owing to its geometric character, all Feynman paths o
given winding number acquire a common phase, and
phase depends linearly on the winding number. Thus, u
the addition of one quantum of flux all equilibrium properti
return to their original values. However, if the variation
the inhomogeneous field simultaneously causes the sc
potential to vary then this pure oscillatory behavior is lo
because, even for a given winding number, distinct Feynm
paths acquire distinct additional dynamical phases. One s
egy for avoiding the complications brought by the sca
potential is to introduce and vary an independent gauge
tential ~e.g., by rotating the trap! while keeping the scala
potential constant. Then the original gauge potential w
manifest itself through, e.g., offsets in the oscillations
various physical quantities. A second strategy involves
vising a setting in which dynamical phases cancel so t
interference is controlled solely by the geometric phase.~An
example of this strategy can be found in Ref.@5#.! In Sec. VI
we shall discuss such ways to isolate the effects of the ve
potential in various experimental settings.

III. MODEL MULTIPLY CONNECTED SYSTEM

In order to see some explicit thermodynamic con
quences of quantal phases in multiply connected mesosc
Bose-Einstein systems we now explore a simple mode
some detail. To this end we consider a system of many id
tical charge-neutral noninterating bosonic atoms of massM,
confined to a multiply connected trap. For the sake of s
plicity, we envisage the trap as having the following featur
~i! It is toroidal and axisymmetric.~ii ! It is sufficiently nar-
row in the radial direction that, under operating condition
only the state with the lowest radial quantum number is
cupied~i.e., the radial energy scale\V r is large!. ~iii ! In the
9-3
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YULI LYANDA-GELLER AND PAUL M. GOLDBART PHYSICAL REVIEW A 61 043609
axial direction there is confinement by an oscillator potent
~iv! If the trap is optical then only mild conditions need b
obeyed if an applied inhomogeneous magnetic field is no
change the trapping potential appreciably.~v! If the trap is
magnetic then the application of an additional homogene
field will change the fluxF but not the number of particles
In the absence ofF, the spectrum of single-particle energ
eigenvaluesEq,n

0 is given by

Eq,n
0 5\Vz n1\Vf q2, ~3.1!

where\Vz is the axial oscillator energy scale,\Vf is the
azimuthal energy scale, we have omitted all zero-point
ergy contributions, and we do not allow for radial excitatio
The quantum numbersq andn range, respectively, over a
integers and all non-negative integers.

We now suppose that the toroidal system of trapped
oms is subjected to a magnetic field having the property
the orientation of the field varies across the trap. Under c
ditions of adiabaticity for the dynamics of the spins of t
atoms discussed in Sec. II, the dominant effect of the in
mogeneous magnetic field on the energy spectrum is to
troduce a spin-dependent fluxF @21#, so that the spectrum
~for atoms with spin projection lying parallel to the magne
field! becomes

Eq,n5\Vz n1\Vf~q2F!2. ~3.2!

~Atoms with spin projection lying antiparallel to the ma
netic field direction are not trapped.! The relationship be-
tween the vector potential and the resulting flux will be d
cussed below in Sec. VI. As we shall see there, the valu
the flux is determined by the area on the unit sphere of
magnetic field orientations that is subtended by orientati
of the field encountered by spins of particles that follo
semiclassical trajectories in a trap.

Our aim is to compute the number of particles in t
single-particle ground state as a function of the tempera
T, the geometric fluxF, and the mean total number of pa
ticlesN, and to do so via the grand canonical ensemble@22#.
To this end, we first compute the total number of particlesN
as a function ofT, F, and the chemical potentialm:

N~T,F,m!5 (
q52`

`

(
n50

`

Nq,n , ~3.3a!

Nq,n[$e(Eq,n2m)/kBT21%21. ~3.3b!

Next, we decompose this sum:N5Ñ1N̂, where

Ñ[ (
q52`

`

Nq,0 , N̂[ (
q52`

`

(
n51

`

Nq,n . ~3.4!

To computeÑ, we use a variant of the contour integratio
technique described, e.g., in Refs.@23#, which yields
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2w
$cotp~F2w!2cotp~F1w!%

1O„exp@2~2p!3/2/Ṽf
1/2#…, ~3.5!

where we have introduced the reduced frequencyṼf

[\Vf /kBT and the reduced chemical potentialm̃[m/kBT

and, for convenience,w denotes (m̃/Ṽf)1/2. @The form forÑ
arrived at by this technique is much more rapidly converg
than the original form, Eq.~3.3a!.# Not surprisingly, how-
ever, even after omitting exponentially small terms, the tr
scendental equation form̃(T,F,Ñ), Eq. ~3.5!, cannot, in
general, be solved explicitly. Without loss of generality,
us assume that 0<F<1/2. ~Results for other values ofF
can be obtained via the symmetries of reflection,F→2F,
and translation,F→F11.) Then further simplification is
achievable in three cases:~i! F!1/2, ~ii ! F@(ÑṼf)21/2,
and ~iii ! ucot 2pFu@ÑṼfF/p. In case~i! we expand the co-
tangents on the right hand side of Eq.~3.5! in Laurent series,
retaining two terms in each series, and solve the resul
equation form̃, thus arriving at

m̃'ṼfF22$Ñ2~p/3Ṽf!%21. ~3.6!

In case~ii ! we instead expand the prefactor and the ar
ments of the cotangents in Eq.~3.5! to linear order in the
deviation of m̃ from the ~dimensionless! single-particle
ground-state energyṼfF2. Thus, we arrive at

m̃'ṼfF222p21F cot21~cot 2pF1p21FṼfÑ

1Acot2pF1~FṼfÑ/p!211!. ~3.7!

In case~iii !, which corresponds toF close to 1/2, we have

m̃'ṼfF222p21F cot21~FṼfÑ/p!. ~3.8!

In making our expansions of Eq.~3.5! for Ñ we restrict our-
selves to the regime of quasi-BEC, i.e., we consider val
of m only slightly smaller than the single-particle groun
state energyE0,0 ~i.e., \VfF2).

IV. PHYSICAL CONSEQUENCES OF THE GEOMETRIC
FLUX

To use these results form̃(T,F,Ñ) to determine desired
physical quantities, such as the populationsNq,n of the
single-particle states as functions of the variables (T,F,N),
we first note that in the regime of BEC we need only reta
the difference betweenm andE0,0 in Ñ, but may omit it from
N̂ ~i.e., in the formula forN̂ we may replacem by E0,0).
Next, we observe thatN[Ñ1N̂, so that by knowing
m̃(T,F,Ñ) we knowm̃(T,F,N). This we use to eliminatem
from the Bose functions that determine the populationsNq,n ,
which, as desired, we thus know as functions of (T,F,N).
For example, to obtain the analytical result for the groun
state populationN0,0 at uFu!1/2 we use Eq.~3.6! to
9-4
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eliminatem̃ from Eq. ~3.3b!. To illustrate the oscillatory be
havior of single-particle state populations withF we show,
in Fig. 2, the populationsNq,m of the three lowest-lying
states~i.e.,N0,0, N1,0, andN2,0, asuFu<1/2) as functions of
F @24#. We have chosen for this illustration a system ofN
5105 atoms of 87Rb, sample radiusR51 mm, axial trap
frequencyVz57500 Hz, temperatureT55 mK ~for which
800Ṽf540Ṽz51) or T510 mK ~for which 400Ṽf

520Ṽz51), whereṼz[\Vz /kBT. The characteristic tem
perature of Bose condensation in these cases~the notion of
the critical temperature is valid only in the thermodynam
limit ! is around 50mK. Note that atF50 we haveNq,n
5N2qn , and atF51/2 we haveNq,n5Nq11,n . The latter
case illustrates the more general point that at half-inte
values ofF the lowest single-particle energy level is dege
erate for the case of perfectly azimuthally symmetric tra
If, however, the azimuthal symmetry is absent then the le
crossing is avoided, and the single-particle ground stat
separated from the excited states by an energy gap a
values ofF.

The population oscillations are mesoscopic, in the se
that they vanish in the thermodynamic limit@25#. Indeed, the
number of atoms in traps, although typically large, is not
the order of Avogadro’s number and, therefore, the syste
are even further from the thermodynamic limit than conve
tional macroscopic and even mesoscopic samples. Neve
less, although BEC is not, strictly speaking, marked by
sharp thermodynamic phase transition, atomic condens
already acquire features of the thermodynamic limit atN
5104 ~see, e.g., Refs.@26,27#!. Despite this, our calculation
reveal oscillatory phenomena atN5105 whenever the frac-
tion of atoms in the ground state is appreciable. Thus,
has the capability of observing, simultaneously, both mac
scopic and mesoscopic phenomena.

The F dependence of the single-particle energy lev
also leads to the phenomenon of equilibrium persistent
rents, i.e., dissipationless particle currents that flow aro

FIG. 2. Oscillatory dependence on the geometric flux of
populations of the lowest three single-particle energy levels a
higher ~dashed line! and a lower~full line! temperature. AtF50
the state characterized byq50 has the biggest population for eac
temperature.
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the trap. ~Such equilibrium currents should, of course,
distinguished from the nonequilibrium metastable curre
that can arise in multiply connected samples; see, e.g., R
@12#.! The simple formula

I 5 (
q52`

`

(
n50

`

Nq,n]Eq,n /]F ~4.1!

for the persistent particle currentI follows from the general
relation dF/dA52 j , where F is the free energy,A is a
gauge potential~such as the geometric vector potential!, and
j is the conjugate current density. In Fig. 3 we show t
dependence ofI /N on F at the conditions and temperature
specified in the previous paragraph. AsT is increased from
zero the sawtooth form of theF dependence is smoothed
a more sinusoidal form, but the zeros at integral and h
integral values of the flux are preserved. As for the char
teristic scale of the amplitude ofI, it is on the order ofNVf ,
at least when the ground state contains most of the partic

As it is Fermi rather than Bose systems that have tra
tionally provided settings for mesoscopic physics, we pa
to compare the characteristic magnitudes of persistent
rents in Fermi and Bose systems. In the special case
single-channel systems the characteristic magnitudes
similar: the many bosons in the~low-velocity! ground state
contributing roughly as much as the single~high-velocity!
fermion at the Fermi level~contributions from fermions be
low the Fermi level essentially canceling one another!. In the
more general case, however, in which there are many ch
nels, the greater the extent of transverse excitation,
smaller the contribution to the persistent fermion curre
~owing to the reduced kinetic energy at the Fermi level!. By
contrast, for bosons the particle occupations are, of cou
not spread over the many current-reduced channels, an
stead are concentrated on the optimal channel. Thus,
bosonic systems such mesoscopic effects are amplified,
tive to the Fermi case.

As a third consequence of the geometric flux, we consi
the oscillatory behavior of the~dimensionless! specific heat
~per particle! C[]E(T,F,N)/]NkBT. ~We recognize thatC
may be difficult to measure.! For C, a more pronouncedF

e
a

FIG. 3. Oscillatory dependence of the equilibrium persist
particle current~per atom! on the geometric flux at a higher~dashed
line! and a lower~full line! temperature.
9-5
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dependence arises in the case of traps that are weakly
fining in the axial direction~i.e., Vz!Vf). In Fig. 4 we
showC(F) for the case of23Na ~the reduced mass of whic
also enhances the sensitivity toF compared with87Rb) at
R50.5 mm, T540 nK, andVz5100 Hz. Upon closer in-
spection, the apparent cusp at the level crossing, which
remnant of the true singularity atT50, is seen to be
rounded.

V. ROLE OF INTERPARTICLE INTERACTIONS

The collection of many-body eigenstates of the full man
boson system is, of course, periodic in the fluxF, regardless
of the interaction strength. Thus, at least qualitatively, int
actions are not expected to alter the oscillatory effects
we have discussed. In the presence of a vector-potentia
nonelectromagnetic origin, the Gross-Pitaevskii equat
@28# for the wave function for a neutral condensatecm(rW) in
the instantaneous spin eigenbasis reads

S \2

2M
u2 i¹W 2AW mu21U~rW !1gucm~rW !u2Dcm~rW !5m cm~rW !,

~5.1!

where the potential profileU(rW) is determined by the exter
nal potential, which can include potentials responsible for
magnetic and/or optical confinement of atoms and the ef
tive scalar potentialVm(rW). The coupling constantg in Eq.
~5.1! is related to the scattering lengtha, which characterizes
boson-boson interactions viag54p\2a/M . Note that Eq.
~5.1! holds in situations in which condensation occurs o
in a single instantaneous spin state. Otherwise, the nonli
term would couple the condensate wave functions for v
ous values ofm. Now, if the interboson interactions are su
ficiently strong, the BEC transition has a mean-field char
ter similar to the superconducting transition described by
Ginzburg-Landau equation, and therefore oscillatory p
nomena in BEC systems would be similar to those
Ginzburg-Landau superconductors. However, atomic BE
are dilute systems, i.e., the mean number of particles
scattering volumen̄a3 ~where n̄ is the average density! is
much smaller than unity, which makes it feasible that

FIG. 4. Oscillatory dependence of the specific heat per atom
the geometric flux.
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effects of the interactions are weak. However, whether or
interaction effects are indeed weak depends on the rati
the characteristic interaction energyEint[gNn̄, whereN is
the number of particles in the condensate, and the kin
energyEkin . It turns out that the ratioEint /Ekin in torus-
shaped samples can be very small. Indeed,

Eint;NS \2a

M D S N

Ra1a2
D , ~5.2!

whereR is the radius of~the centerline of! the torus,a1 is the
oscillator confinement length in the axial direction, anda2 is
the oscillator confinement length in the radial direction.
for the kinetic energy, it can be estimated as the zero-p
motion energy.

The situation of interest for us is that described in Se
III and IV, for which R@a1@a2. In this case, the kinetic
energy is the energy associated with the the largest of
three zero-point energies~i.e., the radial one!, so that

Ekin;N\2/Ma2
2 . ~5.3!

Therefore, in our torus, with its highly noncircular cross se
tion, we have

Eint

Ekin
;N

aa2

Ra1
. ~5.4!

For 87Rb, for which the scattering lengtha is 5.77 nm, and
for a toroidal trap having the parameters discussed in S
IV, the ratio Eint /Ekin can be as small as;0.1. Thus, the
anisotropy of the traps we are considering provides a g
metric parameter that enables the effects of the interact
to be rendered small. Such interactions, nevertheless, are
ficient to allow equilibration~and therefore Bose condens
tion!. In the present context of oscillatory phenomena,
effect of interactions on the chemical potential can thus
made rather small~i.e., kBT@m), and one therefore expect
interactions to have only perturbative consequences@27#.

VI. EXPERIMENTAL ISSUES OF GEOMETRIC FLUX
EFFECTS IN ATOMIC CONDENSATES

A. Basic issues

Having described several consequences of the geom
flux, we now discuss some issues concerning the possib
of the experimental realization of these consequences.
see three pivotal matters:~i! how to construct a toroida
sample;~ii ! how to detect population oscillations and pers
tent currents; and~iii ! how to subject the sample to a suitab
inhomogeneous field. As for~i!, it should be feasible to con
struct toroidal samples based on magnetic traps by usin
blue-detuned laser to repel atoms from the trap center.
hope that in purely optical traps@15# a similar method, com-
bining red- and blue-detuned lasers, could be employed
make a toroidal sample. As for~ii !, the phonon-imaging
technique@29# discussed with regard to metastable curre
in the last paragraph of Ref.@14# is less difficult in the
present setting of equilibrium persistent currents, owing

n

9-6
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the far larger magnitude of the latter. The experimental c
figuration could be as described in Ref.@14#: a pulse of laser
light generates a local rarefaction of the condensate, wh
then travels as two waves, one moving clockwise, the o
counterclockwise. By a nondestructive imaging techniq
one might then observe where the two waves meet, wh
would give the magnitude of the persistent current. As
speed of sound has the same order of magnitude as the
acteristic velocity of the persistent current, such an exp
ment appears feasible. As for~iii !, magnetic trap technology
itself is suitable for creating the necessary textured magn
fields.~As magnetic traps are currently used as a first stag
the loading of optical traps, creating textured fields sho
not impose a large additional experimental burden.! We now
elaborate on the issue of suitable magnetic field configu
tions.

B. Magnetic field configurations

1. Quadrupole trap

For the sake of illustration, consider a quadrupole m
netic trap, to which an additional static magnetic field
applied, so that the total fieldBW (rW) has the~Cartesian! form
(B8x,B8y,22B8z1B0), where B8 characterizes gradient
in the field. This field can be realized by using two coils
an ‘‘anti-Helmholtz’’ configuration, i.e., with currents in
coils flowing in opposite directions. A Dirac center exists
such trap. However, if the trap is made multiply connec
~e.g., by ‘‘plugging the hole’’ with a repulsive laser bea
which creates a potential barrier! the particles do not reac
this center. For this quadrupole trap, the Cartesian com
nents of the effective spin vector potentialAW m are given by

mr21cosu~2sinf,cosf,0!, ~6.1!

where r2[x21y2, f[arctan(y/x), and u[arctan(rB8/Bz).
Moreover, the scalar potentialVm is given by

Vm~rW !5
\2umu

4Mr2
sin2u~213 sin2u!. ~6.2!

As one can see from Eq.~6.1!, for this field configuration the
gauge potential depends on both ther andz coordinates.

2. Conical magnetic field in an optical trap

A second example of magnetic field configuration, whi
may be useful for experiments in optical traps, is the co
shaped magnetic field for whichBW (rW) has components

„2B0~R/r!sinf,B0~R/r!cosf,Bz…, ~6.3!

whereBz is the static uniform magnetic field along the ax
of the torus, the tangential magnetic field~described byB0)
may be created by a current-carrying on-axis wire, andR is
the radius of the~centerline of the! torus. For this configura-
tion, the geometric vector potentialAW m has components

r21m sinu~2cosf,2sinf,0!, ~6.4!
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and the scalar potential is

Vm
o ~rW !5

\2umu

2Mr2
sin2u. ~6.5!

3. Aharonov-Casher effect

A gauge potential, this time topological not merely ge
metric, can also be created by applying a radial electric fi
to particles in a multiply connected trap, owing to the sp
orbit interaction. This is the Aharonov-Casher setting~see
Refs. @16,17,19#!. In this case, the single-particle Hami
tonian has the form

H5
\2

2M
u2 i¹W 2c21EW 3GW u22

E2G2

Mc2
, ~6.6!

where GW is the magnetic dipole moment of the particl
Therefore, besides the geometric vector potential, a t
quadratic in the electric field is present, similar toVm(rW). As
we shall discuss below, the variation of the electric fie
leads to the variation of this term as well, and therefore
smearing effects.

C. Consequences of the vector and scalar potentials:
Oscillations and smearing

Having, in the previous subection, examined various fi
configurations, we now turn to the consequences of the
sulting vector and scalar potentials. The spin vector poten
results in the geometric~i.e., Berry! phaserCAW •drW acquired
by the wave function of a particle propagating around a lo
C. The magnitude of the phase is given by the product of
hyperfine spin projection and the solid angleV subtended at
the origin of the sphere of orientationsBW (rW)/uBW (rW)u by the
inhomogeneous magnetic field as the real-space pathC is
traversed. The geometric flux that corresponds to this ph
is given by

F5
1

2p R
C
AW •drW. ~6.7!

In those torus-shaped samples for which all paths of the s
winding number acquire approximately the same geome
phase, the tuning of the phase leads to oscillatory variati
in thermodynamic quantities, as we have seen in Secs
and IV. Any variation in the phases acquired by partic
following different paths with the same winding number h
the effect of smearing these oscillations~see the remarks
near the end of Sec. II!. Such smearing is similar to that o
the oscillations in the conductivity of mesoscopic rings in
homogeneousmagnetic field, which arises from the variatio
in the magnetic fluxes enclosed, e.g., by trajectories near
inner and outer edges of the ring. For BEC systems i
cone-shaped magnetic field in an optical trap, it is possibl
make this smearing small by confining the condensate
torus that is sufficiently thin in the radial direction, becau
for this particular field the vector potential, Eq.~6.4!, is uni-
9-7
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form along the axis. By contrast, in a quadrupolar trap, e
if thin, the smearing would remain, owing to the nonunifo
mity of the vector potential along the axis@i.e., due to thez
dependence ofu; see Eq.~6.1!#. The attempt to evade thi
smearing by opting for stronger confinement in the axial
rection would, in this setting, tend to make the system m
one dimensional~the only large direction being the tange
tial one!, which tends to make Bose condensation very d
ficult.

As for the scalar potentialVl(rW), this also leads to the
smearing of oscillatory effects in BEC systems, because
tuning of the geometric phase~and hence geometric flux! by
the varying of the magnetic field would lead to the simul
neous variation of the effective scalar potential that does
have the requisite periodicity. This source of smearing is a
predicted to manifest itself in mesoscopic physics, wher
would result in the smearing of conductivity osciilations
rings containing, e.g., a magnetization texture due to dom
walls @6#. Note that in BEC systems that have large hyperfi
spins the smearing effects ofVl(rW) are less pronounced tha
they are in the cases of oscillatory effects for~spin 1/2! bal-
listic electrons, or the~spin 1! settings of diffusive electrons
correlated by disorder or interactions. The reason for thi
that for the larger spins arising in BEC systems, a relativ
small variation inV would result in a full period of oscilla-
tions. @Quantitatively,A2}m2 whereasVm(rW)} l .] Smearing
due toVl(rW) is present for any magnetic texture and, in p
ticular, for both quadrupolar magnetic traps and cone-sha
textures in optical traps@see Eqs.~6.2!,~6.5!#. One way to
avoid manifestations ofVm(rW) in BEC systems is to investi
gate quantization of circulation inrotating traps ~i.e., the
Hess-Fairbank effect; see, e.g., Ref.@30#!. In this case, the
geometric phase would lead to a modulation of the He
Fairbank effect without any variation inVm(rW) and therefore
without any smearing.

VII. FLUX EFFECTS DUE TO PREFORMED BOSONS
IN SUPERCONDUCTING MATERIALS

Flux effects in Bose-Einstein condensates, althou
similar to magnetic flux effects in superconducto
nevertheless differ from them in the following respec
In a superconducting state, the effect of a magnetic fi
is to suppress the superconductivity by destroy
Cooper pairing. Such suppression occurs due to eff
of the magnetic field on the orbital motion of th
electrons and via the Zeeman splitting of states with
same spatial wave functions but opposite spin projectio
On the other hand, the usual BEC transition is not relate
pairing, and geometric~as well as electromagnetic fo
charged bosons! flux effects arise due to the variation of th
single-particle energy spectrum, and the consequent va
tions in the thermal populations of the single-particle leve
In particular, as we have seen, oscillatory effects in B
systems can arise, even when interactions between
bosons are very small.

In the context of high-temperature superconductivity,
possibility that the transition is due to the BE condensat
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of preformed pairs of charge carriers is currently under c
sideration @8–10#. These preformed pairs~which are
bosonic! can have various origins, as discussed by Ander
and co-workers@31# and Emery and Kivelson@10#. If this
possibility of superconductivity via the BEC of preforme
bosons is indeed realized then oscillations in the level po
lations, equilibrium persistent currents, and perhaps spe
heat, similar to those described in the present paper,
arise as consequences of an applied magnetic flux.

How can one distinguish between the BCS and preform
pairs scenarios for superconductivity on the basis
the oscillatory flux dependences of various quantitie
Consider the effect of a magnetic flux threading a rin
or cylinder-shaped sample. In the BCS case, one exp
Little-Parks oscillations@7# in the resistance at temperatur
close to critical. Oscillations in the resistance are a
expected in the preformed pairs scenario. However,
two scenarios may be distinguished by their response
the application of an additional, uniform static magne
field, perpendicular to the axis of the ring or cylinder
The reason for this is that in the BCS scenario magn
fields on the scale of the critical temperature tend to supp
pairing, and hence oscillations. By contrast, in the preform
pairs scenario the scale of fields necessary for suppres
corresponds instead to the~potentially far higher!
pair-formation ~crossover! temperature and, therefore
fields at the scale of the superconducting critic
temperature would barely suppress oscillatio
We note that in order to avoid requiring unreasona
strong magnetic fields, it is necessary to consid
superconductors havingTc&20 K. Thus, the underdope
cuprates YBa2Cu3Oy , La22xSrxCu4, and overdoped
Bi2Sr22xLaxCuOy provide candidates, as does th
organic superconductor (BEDT)2Cu(NCS)2. @It is
worth mentioning that in low magnetic fields~compared
to Tc) a magnetoresistance due to Zeeman suppres
of superconducting fluctuations above the transit
temperature@32# arises in superconductors with the BC
scenario only close to the superconducting transiti
In superconductors with preformed pairs this effect w
occur in a much broader temperature range.# Furthermore,
one can distinguish two scenarios of superconductivity in
Little-Parks oscillations experiment by applying the terahe
ac field instead of using the Zeeman effect in uniform ma
netic field perpendicular to the axis of the ring or cylinde
We also note that Kawabataet al. @33# have already at-
tempted to measure persistent currents in YBa2Cu3Oy , and
report observing an oscillatory signal in the magnetic fie
dependence of the magnetization aboveTc . However, the
reported phase-breaking lengths of 40mm seem unreason
ably large. Further experiments, including that proposed
the present paragraph, could clarify the relevance of the
formed pairs scenario.
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