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Mesoscopic phenomena in Bose-Einstein systems: Persistent currents, population oscillations,
and quantal phases
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Mesoscopic phenomena—including population oscillations and persistent currents driven by quantal
phases—are explored theoretically in the context of multiply connected Bose-Einstein systems composed of
trapped alkali-metal gas atoms. These atomic phenomena are bosonic analogs of electronic persistent currents
in normal metals and Little-Parks oscillations in superconductors. Differences between oscillatory phenomena
due to quantal phases in Bose-Einstein systems and in conventional superconductors are discussed, particularly
with regard to their potential for discriminating between the standard BCS scenario and the Bose-Einstein
condensation of preformed pairs scenario for the superconducting transition in high-temperature
superconductors.
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[. INTRODUCTION cies are very small. This distinction is especially important in
the light of several proposals that the Bose condensation of
The purpose of this paper is to consider multiply Con-preformt_ed pairs Qf charge carriers plays a cent(al role in the
nected many-particle systems obeying Bose-Einstein statigt€chanism of high-temperature superconductiviif SC)
tics and, in particular, to address the sensitivity of such syst8—10: The relevance of these proposals can be tested ex-

tems to quantal phasefl]. Such considerations are of perimentally, as we shall discuss, by searching for sensitivity

relevance to two areas that are currently attractin attentior;['0 magnetic flux in HTSC materials.
y 9 " It is worth mentioning that there is a sense in which

Bose-Einstein condensates in atomic gases and BOSgygonic settings are preferable to electronic settings, if one
Einstein condensatioBEC) as a scenario for the supercon- wishes to observe implications of quantal phases in many-
ducting transition in high-temperature superconductors.  particle physics: in the fermionic case, the Pauli exclusion
Multiply connected bosonic systems are now experimenprinciple forces the occupation of many single-particle
tally achievable in the setting of alkali-metal gas atoms constates, and there are strong cancellations between the effects
fined by torus-shaped magnetic or optical trépiy. 1). In  of quantal phases on these states. By contrast, Bose-Einstein
multiply connected systems of charged fermions wave funcstatistics promote the significance of the single-particle
tions can acquire Aharonov-Boh(AB) phases, which are grourjd state. In t_his sense then, b_osonic sy_stems_tend to
electromagnetic in origin. In contrast, if the bosonic constitu-2mplify mesoscopic effects, at least in comparison with fer-
ents (e.g., alkali-metal gas atomsare electrically neutral MIONIC systems. , o
then electromagnetism, in the form of the AB phase, cannot FOr atomic BEC systems the important question is how to
provide a source of quantal phase. So, in seeking sensitivitjitroduce a nonelectromagnetic quantal phiasel the asso-
to quantal phases we are led to consider the spin degree Gted flu3. One scheme for introducing a geometric quantal
freedom of the bosons, and the consequent possibility Jphase is to have the bosons move through regions of space in

C _“Wwhich there is a spatially varying magnetic field to which the
q“ar?‘a' phases of geometric origi?]. As we shall see, geo spins of the bosons are Zeeman coupled. Then, as discussed

. . . h Ref.[11] in the context of magnetic traps, the inhomoge-
and hence populations, of the single-particle quantum state§ s magnetic fieldf sufficiently strong leads to a geo-

and lead to persistent quili_brium currents in multiply con-yatric vector potentiaA (and a corresponding geometric

nected systems, thus providing a striking example of quantg, ®) which influences the orbital motion of the bosons,

mesoscopic phenomena in the setting of bosonic systemgng does so in much the same way as the electromagnetic

Such phenomena are bosonic analogs of phenomena wehAB) vector potential(and fluy influences the motion of

known in the context of the mesoscopic physics of normalelectrically charged particles.

state electronic systemisuch as persistent equilibrium cur- Referenceq11] considered conventionahot AB-like)

rents and conductance oscillations in conducting dingsconsequences of the geometric vector potential, that is, ef-

which arise due to AB3] or geometrid4—6] quantal phases. fects associated with nonzero values of the geometric field

They are also bosonic analogs of the flux sensitivity of thestrengthQQ=V XA (i.e., the vorticity. However—and this is

superconducting transition temperature in thin-walled superthe main point of the present paper—there are striking quan-

conducting rings, known as Little-Parks oscillatiofig].  tal AB-like consequences of the geometric vector potential

(These quantum interference phenomena are mesoscopic itself (rather than the field strengthespecially in multiply

the sense that they vanish in the limit of large system ksize.connected configurations, and even wh&h=0 in the
Flux-driven phenomena in BEC systems, although similasample. These consequences include an oscillatory depen-

to flux-driven phenomena in conventional superconductorsgence on the geometric fluk of the energies of all single-

are not related to the flux-induced destruction of Coopeiparticle levels and, thus, the equilibrium populations of these

pairs, and arise even when interactions between bosonic spevels and, more generally, all equilibrium quantities. More-
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in Sec. VII we discuss possibilities for investigating flux ef-
fects in high-temperature superconductors as a probe of the
BEC-mechanism scenario for superconductivity.

Il. QUANTAL PHASES AND FLUXES
OF NONELECTROMAGNETIC ORIGIN

In this section we discuss how quantal phase and flux
effects arise in systems of electrically neutral particles of
hyperfine spinS due to their interaction with an inhomoge-

neous magnetic fieIcE(F). The appearance of geometric
phases in inhomogeneous magnetic fields has been consid-

FIG. 1. Toroidal sample of noncircular cross section. ered by several authors in mesoscopic settfdgs| and for

atomic alkali gases in Ref11]. Our aim in the present sec-
over, these single-particle energy-level oscillations lead dilion is to illustrate the requirements on magnetic field con-
rectly to the existence of equilibrium currerfts] that flow  figurations in multiply connected samples confining Bose
around the tragat generic values ob). Although, given the particles such that consequences of geometric phases can be
finite size of the system, there is no strict critical temperatur@bserved. _ o
associated with Bose-Einstein condensation, one can identify [N magnetic traps an inhomogeneous magnetic field is
the remnant of such a critical temperatwa a crossover necessarily present, with its magnitudr)| behaving as a
temperature that marks the onset of a considerable singlgotential well. The orientation of magnetic fieR{r)/|B(r)|
particle ground-state populatipnand this crossover tem- s also spatially inhomogeneous for magnetic traps. In con-
perature also oscillates with the geometric flux. Furthermoreirast, in optical traps, there is no requirement to keep par-
although there is no singularity in the specific heat, there isicles magnetically confined, and one therefore has greater
oscillatory dependence on the temperature of the peak in thigeedom in choosing what magnetic fields to apply, e.g., one
specific heat. Beingnesoscopicthese oscillatory phenom- in which the direction varies in space but the amplitude does
ena vanish in the thermodynamic limit. Therefore, despitenot,
the electrical neutrality of the atoms in BEC systems, the et us consider Bose particles of madsand hyperfine
geometric phase allows one to realize counterparts of thgpin S Zeeman coupled to an arbitrary inhomogeneous mag-
well-established collection of electromagnetic AB-phaseretic field. Then the single-particle Hamiltonian is given by
sensitive phenomena, as well as new, bosonic, phenomena
such as large oscillations in the populations of the various h? , 1 -
single-particle levels. H==5y V'~ 5#S BN, (2.9)
In order to realize geometric-phase-driven oscillations one

needs to vary the inhomogeneous magnetic field that th@herey is the appropriate magneton. In addressing the cor-
bosons inhabit. In magnetic traps the ability to make suchesponding eigenproblem it is convenient to introduce a basis

variations is ||m|t8d, as variations alter the structure of theof instantaneous eigenstates of the Spin prob|em, i'e_'
trap (i.e., the shape of the systénThe recent achievement {|m;|§>}§=,s, which satisfy

of confinement via purely optical tragd5] liberates the
magnetic field from its dual role of confining the atomnsd
causing the geometric phase, and thus enlarges the scope for

exploring the effects of geometric phases. In both magnetiq.hen’ if we express eigenstatel) of  in terms of these

and optical traps it is also feasi'ble t'o_introduce; another qUaNystantaneous eigenkets, together with the position eigen-
tal phase of nonelectromagnetic origin: the spin-orbit quanta tates{|r)}, i.e '

phase. In particular, a scheme has been proposed for observ-
ing the Aharonov-Casher effef16] in BEC systemg17], s
the origin of this effect being a radial electric field passing W)= > f drw (N[N e |m;B(r)) 2.3
through a toroidal samplel8]. This scheme had previously m=-5S
been proposed in the context of superfldide in Ref.[19]. ) ) o .

The present paper is organized as follows. In Sec. I wdwhered is the dimensionality of spagethe eigenproblem
demonstrate how geometric phaged the associated flux |V)=E[¥) becomes
arises in an inhomogeneous magnetic field in the context of

S-B|m;B)=7%m|B||m;B). (2.2

multiply connected samples. In Sec. Il we compute the de- i SRV A2 W () — Em Blw . (f
pendence of the number of particles in a model noninteract- 2M mESJ |m,m' w (1) 2 #IBIWn(r)
ing BEC system on the flux, and the consequences of this N

dependence for several physical quantities are discussed in =EW¥(r), (2.9

Sec. IV. Then, in Sec. VI, we deal with the experimental . _
issues of geometric flux effects in atomic BEC systems, andvhere the (3+1)X(2S+1) matrix valued gauge potential
in Sec. V we discuss briefly effects of interactions. Finally, A has elements given by
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i ,(F)Ei<F'm'§(F)I€ |F'm"l§(F)> (2.5 sponding diagonal termsvhich are numerically of the same
m,m v et orden. This is the adiabatic approximation: it is valid pro-
andl is the (5+1)x (2S+ 1) identity matrix. We may take Vvided that

for the instantaneous eigenstates the chéjogB)}5_ s, - .4

given by 1 LIP=Al mm
> > m#m’

|m;B)y=exp(—i ¢S, /H)exp(—i6S, /)| m;e,), (2.6) B

where{|m'é >={|m>}s are eigenstates &, and and We note that this condition is more stringent than the condi-
RGN =-S5 9 ' tion that there be no “Dirac centers” in a trdpe., points at

are, respectively, the azimuthal and polar angles param-_ . =~ - . . _ _
(ftrizing B P y P gesp which B vanishegbut is, nevertheless, readily achievable by

. . applying stronger magnetic field20].
We now address the energy eigenproblem by making anpg\g V\?e havé;just s?een, in th(ﬂe p]resence of an inhomoge-

a_\dlabatlc approximation in which transitions between (.j's'neous magnetic field the adiabatic approximation leads to a
tinct instantaneous spin states are omitted. This approxima;

i s t ina the off-di It X 2 calar potential in addition to a vector potential. In the fol-
vl/%ri]cink])?alﬁ:griec; removing the off-diagonal terms in Eq4), lowing two sections we shall ignore the consequences of this

scalar potential and focus on the effects of the vector poten-
1 tial. Our motivation for doing this is that we wish to explore
(| =AY = Ay il 2+ V(1) = 2mu| B W (1) = EW (), analogs of the AB effect that, owing to the geometrical char-

2M mm " ? " " acter of the gauge potential, are oscillat¢cy. optical inter-

(279 ference in nature. By contrast, variations of the scalar po-

s tential do not generically lead to oscillatory phenomena but
N . - > S rather to a “smearing” of them. What we mean by smearing
Vm(r):mg_sAm,m"Am”m_Am'm'Amvm' (2.7b is the following. Suppose that the inhomogeneous field is

varied in such a way that only the vector potential is varied.

The quantityV,, is a scalar potential arising from the adia- OWing to its geometric character, all Feynman paths of a

batic approximation in addition to the more familiar gaugediven winding number acquire a common phase, and that

potential,&m. Both scalar andBerry) gauge potential arise {)hhasg dqtt?pentfjs Imearlyton th;aﬂwmdlllng n.lf.rtr)lt.)er. Thus, tqpon
from the spatial variation in the orientation of the inhomoge- € addition ot one quantum offiux all équiiibrium properties

neous magnetic field through which the particles propagat ﬁéurirr;k;[gnt]ge'énoé'c)gljga][iézlu;fﬁu';g\évggjgi Ifctgﬁs\ézn?r:;msg;lar
Let us pause to mention the origin ®f,: if one directly 9 y

. . > ; potential to vary then this pure oscillatory behavior is lost
omits the off-diagonal elements &f then one does not find pacayse, even for a given winding number, distinct Feynman
the contributionVy,. On the other hand, if one makes the yaihs acquire distinct additional dynamical phases. One strat-
conventional adiabatic approximation, i.e., one omits the off-egy for avoiding the complications brought by the scalar

diagonal elements in the eigenproble(@.4), then Vi otential is to introduce and vary an independent gauge po-
emerges. It should be remarked that, despite appearances, thgia (e.g., by rotating the trapwhile keeping the scalar

gauge covariance of the eigenproblem is not lost by thiygtential constant. Then the original gauge potential will
approximation strategy, the appropriate set of gauge transfofpanfest itself through, e.g., offsets in the oscillations of

mations being the spin componeint) and position €) de-  various physical quantities. A second strategy involves de-
pendent rephasing of the instantaneous eigenstates. The lagging a setting in which dynamical phases cancel so that
term on the left hand side of E@.4) is the Zeeman energy; interference is controlled solely by the geometric phé&e.
it acts as a potential well, and must be attractive in a magexample of this strategy can be found in R&fl.) In Sec. VI
netic trap. we shall discuss such ways to isolate the effects of the vector
Let us discuss the conditions under which it is justified topotential in various experimental settings.
neglect the off-diagonal terms in E@.4). First, consider the
terms in Eq.(2.4) that are linear in the gauge potential. In
computing, say, corrections to energy eigenvalues due to
these terms, diagonal terms contribute simply additively, In order to see some explicit thermodynamic conse-
whereas those due to off-diagonal terms are smaller, beinguences of quantal phases in multiply connected mesoscopic
proportional to the square of the matrix element and dividedBose-Einstein systems we now explore a simple model in
by an energy denominator associated with the Zeeman eisome detail. To this end we consider a system of many iden-
ergy scale. Therefore, even though the diagonal and offtical charge-neutral noninterating bosonic atoms of nMss
diagonal perturbations may be numerically of the same oreonfined to a multiply connected trap. For the sake of sim-
der, their perturbation of the energy eigenvalues are not. Thelicity, we envisage the trap as having the following features.
same is true for terms in E@2.4) that are quadratic in the (i) It is toroidal and axisymmetridii) It is sufficiently nar-
gauge potential. Bearing this in mind, we see that providedow in the radial direction that, under operating conditions,
the Zeeman energy is large, it is reasonable to neglect thenly the state with the lowest radial quantum number is oc-
off-diagonal terms in Eq(2.4), while keeping the corre- cupied(i.e., the radial energy scate), is large. (iii) In the

IIl. MODEL MULTIPLY CONNECTED SYSTEM
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axial direction there is confinement by an oscillator potential.

~ o
(iv) If the trap is optical then only mild conditions need be N= Z{COW@—@)—CO'{W(‘PMP)}
obeyed if an applied inhomogeneous magnetic field is not to
change the trapping potential apprecially). If the trap is +O(exq—(2w)3’2/ﬁg2]), (3.5

magnetic then the application of an additional homogeneous
field will change the flux® but not the number of particles. \yhere we have introduced the reduced freque@¥
In the absence ob, the spectrum of single-particle energy =#0,/kT and the reduced chemical potentiais uu/keT

eigenvaluesty , is given by and, for conveniencey denotes /0 4)*2 [The form forN
) arrived at by this technique is much more rapidly convergent
Eqn=Rn+1€, 0% (3. than the original form, Eq(3.38.] Not surprisingly, how-
ever, even after omitting exponentially small terms, the tran-
where# (), is the axial oscillator energy scalt(), is the  scendental equation for(T,®,N), Eqg. (3.5, cannot, in
azimuthal energy scale, we have omitted all zero-point engeneral, be solved explicitly. Without loss of generality, let
ergy contributions, and we do not allow for radial excitation. ;s assume that<9®d<1/2. (Results for other values ab
The quantum numberg andn range, respectively, over all can be obtained via the symmetries of reflectidn — @,
integers and all non-negative integers. and translation®—®+1.) Then further simplification is

We now suppose that the toroidal system of trapped at: chievable in three case§) ®<1/2, (i) <I>>(Nﬁ¢)*l’2,

oms is subjected to a magnetic field having the property tha

the orientation of the field varies across the trap. Under con@"d (iit) |cot 2 [>NQ /. In case(i) we expand the co-

ditions of adiabaticity for the dynamics of the spins of the {@ngents on the right hand side of &§.5) in Laurent series,
atoms discussed in Sec. II, the dominant effect of the inhof€t@iNiNg two terms in each series, and solve the resulting
mogeneous magnetic field on the energy spectrum is to irequation foru, thus arriving at

troduce a spin-dependent flulk [21], so that the spectrum - - - -

(for atoms with spin projection lying parallel to the magnetic pu~Q O —{N—(7/30 )} . (3.6

field) becomes In case(ii) we instead expand the prefactor and the argu-

ments of the cotangents in E(B.5 to linear order in the
deviation of » from the (dimensionless single-particle
ground-state energfld,dﬂ. Thus, we arrive at

Eqn=hQN+5hQ,(q— D)% (3.2

(Atoms with spin projection lying antiparallel to the mag-

netic field direction are not trappe)dThe_reIationship be-_ _ ﬁ~&~)¢®2—2w’1® cot™Y(cot 277<D+7r*1<1>f2¢,'l§|
tween the vector potential and the resulting flux will be dis
cussed below in Sec. VI. As we shall see there, the value of + \/cot2w<b+(d>(~)¢N/w)2+1). (3.7

the flux is determined by the area on the unit sphere of the
magnetic field orientations that is subtended by orientationgn case(iii ), which corresponds t® close to 1/2, we have
of the field encountered by spins of particles that follow
semiclassical trajectories in a trap. ﬁ~ﬁ¢q)2_277*1q) Corl(cp’()dﬂ/w)_ (3.9
Our aim is to compute the number of particles in the
single-particle ground state as a function of the temperaturgh making our expansions of E¢3.5) for N we restrict our-
T, the geometric fluxP, and the mean total number of par- selves to the regime of quasi-BEC, i.e., we consider values

ticlesN, and to do so via the grand canonical enseriB®.  of 4 only slightly smaller than the single-particle ground-
To this end, we first compute the total number of partitles  state energy,, (i.e., ﬁQ¢q)2)_

as a function ofT, @, and the chemical potentia:
IV. PHYSICAL CONSEQUENCES OF THE GEOMETRIC

~ * FLUX
N(T,®,u)= 2 > Ngn, (339 L
g=-=n=0 To use these results for(T,®,N) to determine desired
physical quantities, such as the populatidNg, of the
Nq'nz{e(‘fq,n‘WkBT— 131, (3.3  single-particle states as functions of the variablesi,N),

we first note that in the regime of BEC we need only retain
the difference between and&y in N, but may omit it from
N (.e., in the formula forN we may replaceu by & ).
°° © Next, we observe thaN=N+N, so that by knowing
N= > Ngo, N= 2> > Ng,. (3.4  u(T,®,N) we knowu(T,®,N). This we use to eliminatg
= N from the Bose functions that determine the populatidps ,
_ which, as desired, we thus know as functions ofd®,N).
To computeN, we use a variant of the contour integration For example, to obtain the analytical result for the ground-
technique described, e.g., in Ref&3], which yields state populationNg, at |®|<1/2 we use Eq.(3.6) to

Next, we decompose this sum:=N+N, where
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FIG. 3. Oscillatory dependence of the equilibrium persistent
FIG. 2. Oscillatory dependence on the geometric flux of theParticle currentper atom on the geometric flux at a highedashed
populations of the lowest three single-particle energy levels at 4ne) and a lower(full line) temperature.
higher (dashed ling and a lower(full line) temperature. Atb=0
the state characterized loy=0 has the biggest population for each the trap.(Such equilibrium currents should, of course, be
temperature. distinguished from the nonequilibrium metastable currents
that can arise in multiply connected samples; see, e.g., Refs.

o ~ . ) [12].) The simple formula
eliminate x from Eq.(3.3b. To illustrate the oscillatory be-

havior of single-particle state populations with we show, * =
in Fig. 2, the populationdN, ,, of the three lowest-lying I= _2 Z Ng,ndEqn! P (4.1
stategi.e.,Ngo, N1, andN, o, as|®[<1/2) as functions of 4= n=0

® [24]. We have chosen for this illustration a systemNof
=10° atoms of 'Rb, sample radiuR=1 um, axial trap
frequency(),=7500 Hz, temperaturé =5 wK (for which

for the persistent particle currehtfollows from the general
relation 6F/8A=—j, whereF is the free energyA is a
T~ ,, ) - gauge potentialsuch as the geometric vector potentiaind
8002, =400,=1) or T=10uK (for which 404, | is the conjugate current density. In Fig. 3 we show the
=200,=1), where),=#,/kgT. The characteristic tem- dependence df/N on ® at the conditions and temperatures
perature of Bose condensation in these cd#es notion of  specified in the previous paragraph. Ass increased from
the critical temperature is valid only in the thermodynamiczero the sawtooth form of th& dependence is smoothed to
limit) is around 50uK. Note that atd=0 we haveN, a more sinusoidal form, but the zeros at integral and half-
=N_gn, and at®=1/2 we haveN, ,=Ng;1,. The latter integral values of the flux are preserved. As for the charac-
case illustrates the more general point that at half-integraferistic scale of the amplitude ofit is on the order oN{Q 4,
values of® the lowest single-particle energy level is degen-at least when the ground state contains most of the particles.
erate for the case of perfectly azimuthally symmetric traps. As it is Fermi rather than Bose systems that have tradi-
If, however, the azimuthal symmetry is absent then the levelionally provided settings for mesoscopic physics, we pause
crossing is avoided, and the single-particle ground state i® compare the characteristic magnitudes of persistent cur-
separated from the excited states by an energy gap at aknts in Fermi and Bose systems. In the special case of
values of®. single-channel systems the characteristic magnitudes are
The population oscillations are mesoscopic, in the senssimilar: the many bosons in théow-velocity) ground state
that they vanish in the thermodynamic lifi25]. Indeed, the  contributing roughly as much as the singlsigh-velocity
number of atoms in traps, although typically large, is not onfermion at the Fermi levelcontributions from fermions be-
the order of Avogadro’s number and, therefore, the systemkw the Fermi level essentially canceling one anothierthe
are even further from the thermodynamic limit than conven-more general case, however, in which there are many chan-
tional macroscopic and even mesoscopic samples. Nevertheels, the greater the extent of transverse excitation, the
less, although BEC is not, strictly speaking, marked by asmaller the contribution to the persistent fermion current
sharp thermodynamic phase transition, atomic condensatéswing to the reduced kinetic energy at the Fermi lgvBly
already acquire features of the thermodynamic limitNat contrast, for bosons the particle occupations are, of course,
=10* (see, e.g., Ref$26,27]). Despite this, our calculations not spread over the many current-reduced channels, and in-
reveal oscillatory phenomena Kt=10° whenever the frac- stead are concentrated on the optimal channel. Thus, for
tion of atoms in the ground state is appreciable. Thus, onbosonic systems such mesoscopic effects are amplified, rela-
has the capability of observing, simultaneously, both macrotive to the Fermi case.
scopic and mesoscopic phenomena. As a third consequence of the geometric flux, we consider
The ® dependence of the single-particle energy levelsghe oscillatory behavior of th&dimensionlessspecific heat
also leads to the phenomenon of equilibrium persistent curiper particle¢ C=JE(T,®,N)/INkgT. (We recognize tha€
rents, i.e., dissipationless particle currents that flow aroundnay be difficult to measurgFor C, a more pronounced
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042 y y effects of the interactions are weak. However, whether or not
interaction effects are indeed weak depends on the ratio of
0.415¢ the characteristic interaction enery,;=gNn, whereN is
E the number of particles in the condensate, and the kinetic
s 041 energyE,;,. It turns out that the ratid;/E,;, in torus-
by shaped samples can be very small. Indeed,
[
%0.405- c N hza N -
(93 L~ —_—
& int M /| Raja,)’ 5.2
0.4} L
whereR s the radius ofthe centerline ofthe torusa; is the
0.395; o5 ) 15 oscillator confinement length in the axial direction, ands

Geometric flux the oscillator confinement length in the radial direction. As
IIlor the kinetic energy, it can be estimated as the zero-point
motion energy.

The situation of interest for us is that described in Secs.
L and 1V, for which R>a;>a,. In this case, the kinetic
energy is the energy associated with the the largest of the
three zero-point energidse., the radial ong so that

FIG. 4. Oscillatory dependence of the specific heat per atom o
the geometric flux.

dependence arises in the case of traps that are weakly co
fining in the axial direction(i.e., 2,<Q,). In Fig. 4 we
showC(®) for the case of3Na (the reduced mass of which
also enhances the sensitivity @ compared with®'Rb) at
R=0.5um, T=40 nK, and(,=100 Hz. Upon closer in-
spection, the apparent cusp at the level crossing, which is ferefore. in our torus, with its highly noncircular cross sec-
remndanotI of the true singularity at=0, is seen to be tion, we have

rounded.

Exin~N#2/Ma3. (5.3

Eint aa,
V. ROLE OF INTERPARTICLE INTERACTIONS E_kianR_al. (5.9

The collection of many-body eigenstates of the full many-FOr 87Rb, for which the scattering lengthis 5.77 nm, and

boson system is, of course, periodic in the fibxregardless for a toroidal trap having th cameters di dins
of the interaction strength. Thus, at least qualitatively, inter-Of @ toroidal trap having the parameters discusse ec.

actions are not expected to alter the oscillatory effects thal/: the ratio Ein/Ein can be as small as-0.1. Thus, the

we have discussed. In the presence of a vector-potential gnisotropy of the traps we are considering prowdes a geo-
nonelectromagnetic origin, the Gross-Pitaevskii equatiori“etr'c parameter that enables the effects of the interactions
0

for th f ion f | q - be rendered small. Such interactions, nevertheless, are suf-
[28] for the wave function for a neutral condensgg(r) in ficient to allow equilibrationand therefore Bose condensa-
the instantaneous spin eigenbasis reads

tion). In the present context of oscillatory phenomena, the
52 effect of interactions on the chemical potential can thus be
[ =iV = A2+ U+ 9| hn(D) 2| (1) = 2 then(1), made rather smalii.e., kgT>u), and one therefore expects

2M 5.2 interactions to have only perturbative consequen2&s

VI. EXPERIMENTAL ISSUES OF GEOMETRIC FLUX

where the potential profileJ(r) is determined by the exter- EFFECTS IN ATOMIC CONDENSATES

nal potential, which can include potentials responsible for the
magnetic and/or optical confinement of atoms and the effec- A. Basic issues

tive scalar potentiaV,(r). The coupling constarg in Eq. Having described several consequences of the geometric
(5.1) is related to the scattering lengthwhich characterizes  flyx, we now discuss some issues concerning the possibility
boson-boson interactions vig=4w#°a/M. Note that Eq. of the experimental realization of these consequences. We
(51) holds in situations in which condensation occurs Onlysee three pivotal matterii) how to construct a toroidal

in a single instantaneous spin state. Otherwise, the nonlinegémme;(ii) how to detect population oscillations and persis-
term would COUp|e the condensate wave functions for Vari'tent Currents; and") how to Subject the Samp|e to a Suitab'y
ous values ofm. Now, if the interboson interactions are suf- inhomogeneous field. As fd), it should be feasible to con-
ﬁCientIy Strong, the BEC transition has a mean-field CharaCStruct toroidal Samp|es based on magnetic traps by using a
ter similar to the SUperCOﬂdUCting transition described by th%|ue_detuned laser to repe| atoms from the trap center. We
Ginzburg-Landau equation, and therefore oscillatory phehope that in purely optical tra&5] a similar method, com-
nomena in BEC systems would be similar to those inpining red- and blue-detuned lasers, could be employed to
Ginzburg-Landau superconductors. However, atomic BECgake a toroidal sample. As faiii), the phonon-imaging
are dilute systems, i.e., the mean number of particles in gchnique[29] discussed with regard to metastable currents
scattering volumena® (wheren is the average densitys in the last paragraph of Refl4] is less difficult in the
much smaller than unity, which makes it feasible that thepresent setting of equilibrium persistent currents, owing to
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the far larger magnitude of the latter. The experimental conand the scalar potential is
figuration could be as described in REf4]: a pulse of laser

light generates a local rarefaction of the condensate, which . 2lm| .
then travels as two waves, one moving clockwise, the other Vm(F)ZZM SSin’é. (6.9
counterclockwise. By a nondestructive imaging technique P

one might then observe where the two waves meet, which
would give the magnitude of the persistent current. As the
speed of sound has the same order of magnitude as the char-A gauge potential, this time topological not merely geo-
acteristic velocity of the persistent current, such an experimetric, can also be created by applying a radial electric field
ment appears feasible. As fGii), magnetic trap technology to particles in a multiply connected trap, owing to the spin-
itself is suitable for creating the necessary textured magnetigrbit interaction. This is the Aharonov-Casher settisge
fields. (As magnetic traps are currently used as a first stage iRefs. [16,17,19). In this case, the single-particle Hamil-
the loading of optical traps, creating textured fields shouldonian has the form

not impose a large additional experimental burg&ve now

elaborate on the issue of suitable magnetic field configura- %2 E2G2

. :__‘_)_ *1—)X—)2_
tions. H oM iV—c EXG|

3. Aharonov-Casher effect

VIER (6.6)

B. Magnetic field configurations - . ) .
where G is the magnetic dipole moment of the particle.

1. Quadrupole trap Therefore, besides the geometric vector potential, a term

For the sake of illustration, consider a quadrupole mag<€uadratic in the electric field is present, similar\/tg(F). As
netic trap, to which an additional static magnetic field iswe shall discuss below, the variation of the electric field

applied, so that the total ﬁe|§(() has the(Cartesiapform  leads to the variation of this term as well, and therefore to
(B’x,B'y,—2B’z+By), whereB’ characterizes gradients Smearing effects.

in the field. This field can be realized by using two coils in

an “anti-Helmholtz” configuration, i.e., with currents in C. Consequences of the vector and scalar potentials:

coils flowing in opposite directions. A Dirac center exists in Oscillations and smearing

such trap. However, if the trap is made multiply connected

\(/5h?ch tgear'zleusggln%t?riizlollaearrgwhea ;ft?clflesslvgolarl]s;rr;);;? configurations, we now turn to the consequences of the re-
) » P . sulting vector and scalar potentials. The spin vector potential
this center. For this quadrupole trap, the Cartesian compo- _ o S i

nents of the effective spin vector potentfs), are given b results in the geometri.e., Berry phasegcA-dr acquired
P P 9 y by the wave function of a particle propagating around a loop

6.1) C. The magnitude of the phase is given by the product of the
' hyperfine spin projection and the solid an@lesubtended at

where p?=x2+y2, ¢=arctanf/x), and #=arctanpB'/B,).  the origin of the sphere of orientatiom&(r)/|B(r)| by the

Having, in the previous subection, examined various field

mp~1cosé(—sin¢,cose,0),

Moreover, the scalar potentil,, is given by inhomogeneous magnetic field as the real-space @ath
traversed. The geometric flux that corresponds to this phase
. h3m| is given by
V(r)= SSIn*0(2+ 3 sirf o). (6.2
4Mp 1 S
d=— O A.dr. (6.7)
2 C

As one can see from E¢6.1), for this field configuration the

gauge potential depends on both fhandz coordinates. In those torus-shaped samples for which all paths of the same

winding number acquire approximately the same geometric

phase, the tuning of the phase leads to oscillatory variations
A second example of magnetic field configuration, whichin thermodynamic quantities, as we have seen in Secs. Il

may be useful for experiments in optical traps, is the coneand |v. Any variation in the phases acquired by particles

2. Conical magnetic field in an optical trap

shaped magnetic field for WhidE(F) has components following different paths with the same winding number has
_ the effect of smearing these oscillatiofsee the remarks
(—Bo(R/p)sing,By(R/p)cose,B,), (6.3 near the end of Sec.)llSuch smearing is similar to that of

the oscillations in the conductivity of mesoscopic rings in a
whereB; is the static uniform magnetic field along the axis homogeneoumagnetic field, which arises from the variation
of the torus, the tangential magnetic figliescribed byBy)  in the magnetic fluxes enclosed, e.g., by trajectories near the
may be created by a current-carrying on-axis wire, Rid  inner and outer edges of the ring. For BEC systems in a
the radius of theécenterline of thgtorus. For this configura-  cone-shaped magnetic field in an optical trap, it is possible to

tion, the geometric vector potentiAl, has components make this smearing small by confining the condensate to a
torus that is sufficiently thin in the radial direction, because
p tmsin#(—cos¢,—sin¢,0), (6.9 for this particular field the vector potential, E@.4), is uni-
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form along the axis. By contrast, in a quadrupolar trap, everf preformed pairs of charge carriers is currently under con-

if thin, the smearing would remain, owing to the nonunifor-
mity of the vector potential along the aXise., due to thez
dependence ob; see Eq.(6.1)]. The attempt to evade this

sideration [8—10. These preformed pairgwhich are
bosonig can have various origins, as discussed by Anderson
and co-workerd31] and Emery and Kivelsofl0]. If this

smearing by opting for stronger confinement in the axial di-Possibility of superconductivity via the BEC of preformed
rection would, in this setting, tend to make the system mord0sons is indeed realized then oscillations in the level popu-

one dimensionalthe only large direction being the tangen-
tial ong, which tends to make Bose condensation very dif-
ficult.

As for the scalar potentiaV/,(r), this also leads to the

smearing of oscillatory effects in BEC systems, because anﬁ1

tuning of the geometric phagand hence geometric fluoy
the varying of the magnetic field would lead to the simulta-

lations, equilibrium persistent currents, and perhaps specific
heat, similar to those described in the present paper, may
arise as consequences of an applied magnetic flux.

How can one distinguish between the BCS and preformed
irs scenarios for superconductivity on the basis of

e oscillatory flux dependences of various quantities?
Consider the effect of a magnetic flux threading a ring-

or cylinder-shaped sample. In the BCS case, one expects

al

Yjttle-Parks oscillationg7] in the resistance at temperatures

have the requisite periodicity. This source of smearing is alsQ|ose to critical. Oscillations in the resistance are also

predicted to manifest itself in mesoscopic physics, where i
would result in the smearing of conductivity osciilations in
rings containing, e.g., a magnetization texture due to domai

bxpected in the preformed pairs scenario. However, the
two scenarios may be distinguished by their response to
the application of an additional, uniform static magnetic

walls[6]. Note that in BEC systems that have large hyperfingfield, perpendicularto the axis of the ring or cylinder.

spins the smearing effects Wf(r) are less pronounced than
they are in the cases of oscillatory effects fspin 1/2 bal-
listic electrons, or théspin 1) settings of diffusive electrons

The reason for this is that in the BCS scenario magnetic
fields on the scale of the critical temperature tend to suppress
pairing, and hence oscillations. By contrast, in the preformed

correlated by disorder or interactions. The reason for this ipairs scenario the scale of fields necessary for suppression

that for the larger spins arising in BEC systems, a relativelycorresponds

small variation inQ2 would result in a full period of oscilla-
tions.[Quantitatively,A2scm? whereasV,,(r)=|.] Smearing
due toV,(r) is present for any magnetic texture and, in par-

instead to thdpotentially far higher

pair-formation (crossover temperature and, therefore,
fields at the scale of the superconducting critical
temperature  would barely suppress  oscillations.

ticular, for both quadrupolar magnetic traps and cone-shape@® note that in order to avoid requiring unreasonably

textures in optical trapfsee Eqs(6.2),(6.5]. One way to
avoid manifestations 0¥ ,,(r) in BEC systems is to investi-
gate quantization of circulation inotating traps (i.e., the
Hess-Fairbank effect; see, e.g., REH0]). In this case, the
geometric phase would lead to a modulation of the Hess
Fairbank effect without any variation M,(r) and therefore
without any smearing.

VIl. FLUX EFFECTS DUE TO PREFORMED BOSONS
IN SUPERCONDUCTING MATERIALS

strong magnetic fields, it is necessary to consider
superconductors havind.<20 K. Thus, the underdoped

cuprates  YBaCuO,, La, ,Sr,Cuw, and overdoped
Bi,Sr, _,La,CuQ, provide candidates, as does the
organic  superconductor (BEDIQu(NCS). [It s

worth mentioning that in low magnetic field&€ompared

to T.) a magnetoresistance due to Zeeman suppression
of superconducting fluctuations above the transition
temperature[32] arises in superconductors with the BCS
scenario only close to the superconducting transition.
In superconductors with preformed pairs this effect will
occur in a much broader temperature rahdgairthermore,
one can distinguish two scenarios of superconductivity in the

Flux effects in Bose-Einstein condensates, althougt.ittle-Parks oscillations experiment by applying the terahertz

similar to magnetic flux effects in superconductors,
nevertheless differ from them in the following respects.

ac field instead of using the Zeeman effect in uniform mag-
netic field perpendicular to the axis of the ring or cylinder.

In a superconducting state, the effect of a magnetic fieldVe also note that Kawabatet al. [33] have already at-

is to suppress the superconductivity by destroyingt

empted to measure persistent currents in X880, , and

Cooper pairing. Such suppression occurs due to effectPort observing an oscillatory signal in the magnetic field

of the magnetic field on the orbital motion of the
electrons and via the Zeeman splitting of states with th
On the other hand, the usual BEC transition is not related t
pairing, and geometriqas well as electromagnetic for
charged bosondlux effects arise due to the variation of the

single-particle energy spectrum, and the consequent varia-

tions in the thermal populations of the single-particle levels.

dependence of the magnetization abdye However, the

deported phase-breaking lengths of 4t seem unreason-
sably large. Further experiments, including that proposed in

e present paragraph, could clarify the relevance of the pre-
ormed pairs scenario.
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