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Shifts and widths of collective excitations in trapped Bose gases determined
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We present predictions for temperature-dependent shifts and damping rates. They are obtained by applying
the dielectric formalism to set up a self-consistent model of a trapped Bose gas which can be shown to satisfy
generalized Ward identities. Within the framework of the model we use lowest-order perturbation theory to
determine the first-order correction to the results of Hartree-Fock-Bogoliubov-Popov theory for the complex
collective excitation frequencies, and present numerical results for the temperature dependence of the damping
rates and the frequency shifts. Good agreement with the experimental values measured by Jinet al. @Phys. Rev.
Lett. 77, 420 ~1996!# are found for them52 mode, while we find disagreements in the shifts form50. The
latter point to the necessity of a nonperturbative treatment for an explanation of the temperature dependence of
the m50 shifts.

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db
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I. INTRODUCTION

Since the discovery of Bose-Einstein condensation
traps, a wealth of experimental data on collective excitati
has appeared in the literature~for experimental reviews, se
Refs.@1,2#! waiting for theoretical explanation. Some of th
earliest measurements, still requiring a firm theoreti
analysis, were performed in oscillating traps which permit
a selective excitation of different excitation modes@3–6#.
Common features of the above experiments are that the
sity of atoms in the trap is relatively small and the tempe
ture is extremely low. Consequently, from the theoreti
point of view the atoms can be treated as a weakly inter
ing degenerate Bose gas, while the interaction potentia
well described by thes-wave approximation. Due to th
presence of the trap the whole system is not translation
invariant, and field equations of any approximation must
solved in real space, not in momentum space. Furtherm
the excitation spectrum is discrete rather than continuou
in spatially homogeneous condensates like HeII.

Nevertheless, most theoretical approaches are base
the natural generalization of one or the other of the homo
neous descriptions to the inhomogeneous case. The pre
paper also holds to this line. It is based on the dielec
formalism ~see Ref.@7# and further references therein!, first
introduced for spatially homogeneous systems at zero t
perature@8–10#, later used at finite temperature@11,12#, and
recently generalized to inhomogeneous systems in Ref.@13#.
The great success of the dielectric formalism lies in show
that the order parameter correlation function~the one-particle
Green’s function! and the density-density correlation fun
tion have the same spectra below the critical temperature
principle the dielectric formalism is valid at all temperature
but still requires one to deal with infinitely many graphs
obtain exact results. In practice, however, one resorts
some approximations for the proper and irreducible par
1050-2947/2000/61~4!/043606~10!/$15.00 61 0436
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certain quantities of physical interest, which are the k
quantities in the dielectric formalism. Following and exten
ing Refs.@11,13#, we shall base our investigation on a simp
model for trapped weakly interacting Bose gases, which
homogeneous systems~a! is valid at finite temperature,~b!
satisfies the generalized Ward identities, and~c! guarantees
that both the Green’s function and the density-density au
correlation spectra exhibit the same excitations. In addit
the model we use, which builds on and extends a simpler
discussed in detail in Refs.@11,7#, can be shown to be relate
to an approximation used by Minguzzi and Tosi@14#.

It is our main purpose here to evaluate, within the a
proximation defined by our choice of the model, the damp
rates and frequency shifts and to compare the results with
experimental data of Jinet al. @4#. In principle we are also
able to calculate theoretical values for the MIT measurem
but in our present approach we treat the fluctuations of
thermal density perturbatively and consider only Land
damping. This approach is justified if the conditionkBT
@m is fulfilled which is only the case for the JILA measur
ments. Furthermore, the high anisotropy of the MIT tr
leads to some numerical difficulties in the code we use so
From the theoretical side several papers have appeared i
literature going beyond the Hartree-Fock-Bogoliubov-Pop
~HFBP! approximation@15#, which is really necessary to
take into account damping processes. Most relevant pa
beyond that approximation describe the damping proc
@16–21# or calculate the shifts by including the anomalo
average in such a way that the resulting approximation
gapless @22#. The approach applied in Ref.@21# is the
second-order Beliaev theory which is known to be gapless
treats both Beliaev and Landau dampings, and also calcu
the shift of elementary excitations in local density appro
mation along with their damping.

In the present paper we wish to present a theory of
shifts and widths of thelow-lying modes. Our approach i
based on the dielectric formalism, and achieves its simplic
©2000 The American Physical Society06-1



a
au
a
e
u

hi
it

fly
sm
v

fo
ibl
ou
a
m
ck
-
th
u

nu
us

a
e
o
a
in
th

ed

t

ed

n

er

g

we

s

bara

for

ion

,
n-
d
n

n

ity
e
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by a judicious selection of a subset of graphs for theproper
part of the physical quantities of interest. The model we sh
investigate in detail in this work accounts for the Land
damping, but cannot account for Beliaev damping. This s
rifice for gain in simplicity is not too large because in th
temperature region where the measurements we wish to
derstand are performed, and where we calculate the s
and the damping rates, the Beliaev damping of the exc
tions is negligible.

The paper is organized as follows. In Sec. II we brie
summarize the general framework of the dielectric formali
for inhomogeneous systems, and consider an extended
sion of the model approximation of Refs.@11,13#. The con-
ditions for choosing the necessary basic building blocks
the ladder approximation and for the proper and irreduc
quantities are spelled out. Then the quantities given in
formalism are related to the fluctuations of the condens
and the thermal density. We show that neglecting the ther
density fluctuations we recover the usual Hartree-Fo
Bogoliubov-Popov equations@15#. Then we derive the cor
rections of the HFBP excitation energies to first order in
thermal density fluctuations. To solve the closed set of eq
tions for the damping and the shifts still requires some
merical work in the inhomogeneous case. We briefly disc
our numerical procedure in Sec. III. Section IV contains
discussion of our results, and a comparison with the exp
mental data measured at JILA. Section V is devoted to c
clusions and to some final remarks. There we also comp
our model approximation with other approximations given
the literature, e.g., the already mentioned treatment of all
Beliaev diagrams by Shi and Griffin@16# and Fedichev and
Shlyapnikov@21#, the kinetic equations of Ref.@14# and the
collisionless Boltzmann equation@23,24#.

II. FORMULATION

Here we summarize the dielectric formalism first appli
to inhomogeneous systems in Ref.@13#. However, we shall
not repeat the whole treatment, but rather concentrate on
key points, and indicate further steps.

The Hamiltonian of our problem in second quantiz
form, is

Ĥ5E d3r Ĉ†~r!S 2
\2

2m
D1U~r! D Ĉ~r!

1
1

2E d3r 1E d3r 2 Ĉ†~r1!Ĉ†~r2!v~r1 ,r2!Ĉ~r1!Ĉ~r2!,

~1!

whereĈ(r) is the Bose field operator,U(r) is the trap po-
tential, andv(r1 ,r2) describes the two-body interaction. I
the following, this is chosen as

v~r,r8!5gd~r2r8![
4p\2a

m
d~r2r8!, ~2!

wherea is thes-wave scattering length andm is the mass of
the atoms. Throughout we shall restrict ourselves to temp
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tures below the critical temperature. As usual, forT,Tc we
split off the condensate wave functionF0(r),

Ĉ~r!5F0~r!1F̂~r!, ~3!

whereF0(r)5^Ĉ(r)&, and^•••& denotes thermal averagin

^Â&5
Tr Âe2b(Ĥ2mN̂)

Tr e2b(Ĥ2mN̂)
. ~4!

Since we are interested in finite-temperature excitations,
use Green’s functions

Ga,b~r,t;r8,t8!52^Tt@F̂a~r,t!F̂b
†~r8,t8!#&, ~5!

with field operators in Matsubara representationF̂1(r,t)

[F̂(r,t) andF̂2(r,t)[F̂†(r,t). The other key quantity we
are interested in is the density autocorrelation function

x~r,t;r8,t8!52^Tt@ ñ~r,t!ñ~r8,t8!#&, ~6!

where ñ(r)5n̂(r)2^n̂(r)&. The finite temperature Green’
functions ~5! and the autocorrelation function~6! are func-
tions oft,t8 via t2t8 only and are periodic with periodb\.
Thus one can expand them as Fourier series. The Matsu
Fourier coefficients are given by

Ga,b~r,r8,ivn!5E
0

b\

dt eivntGa,b~r,r8,t!,

~7!

vn5
2np

\b
,

wheren is an integer. A corresponding expansion is made
x(r,t;r8,t8) with coefficientsx(r,r8,ivn). Retarded func-
tions can be obtained by the usual analytic continuat
( ivn→v1 ih, whereh is infinitesimal!.

It is useful to introduce theproper part of a quantity
which is defined asthe sum of diagrammatic contributions
which cannot be split into two parts by cutting a single i
teraction line. In the following proper parts will be denote
by a tilde. By definition the density autocorrelation functio
and its proper part fulfill

x~r,r8,v!5x̃~r,r8,v!1
1

\E d3r 1E d3r 2 x̃~r,r1 ,v!v~r1 ,r2!

3x~r2 ,r8,v!. ~8!

Whenx(r,r8,v) has a pole inv, but its proper part is non-
singular at the samev, then there exists an eigenfunctio
j(r) satisfying

j~r!5
1

\E d3r 1E d3r 2 x̃~r,r1 ,v!v~r1 ,r2!j~r2!. ~9!

This eigenfunction can be identified with the total dens
fluctuationdn(r)5j(r) at the eigenfrequency given by th
pole. In a similar way we obtain the eigenfunctionsw1 and
6-2
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w2, corresponding to the one-particle Green’s functio
Ga,b , by solving the eigenproblem

wa~r!5
1

\E d3r1E d3r2Ga,g
HO~r,r1 ,v!Sg,b~r1 ,r2 ,v!wb~r2!.

~10!

~Here and in the following we adopt the convention th
summation has to be taken over repeated greek indices.!

G11
HO~r,r8,vn!5G22

HO~r8,r,2vn!

5(
j

w j
HO~r!w j

HO~r8!*

vn2\21~e j
HO2mHO!

,

G12
HO~r,r8,vn!5G21

HO~r,r8,vn!50

are the Green’s functions of the free harmonic trap with
corresponding harmonic oscillator excitation frequenc
e j

HO , eigenfunctionsw j
HO(r), and chemical potentialmHO

5(\/2)(vx1vy1vz), wherevx,y,z are the three trap fre
quencies.Sa,b are the self-energies describing the corre
tions due to the interactions. The condensate density fluc
tionsdnc(r) given by perturbations of the condensate dens
nc(r)5uF0(r)u2 due to excitations of single-quasipartic
modes can be identified with

dnc~r!5F0~r!@w1~r!1w2~r!#. ~11!

Below Tc the proper partx̃ can be further decompose
into irreducibile ~also termed ‘‘regular’’! x̃ (r ) and reducible

~also termed ‘‘singular’’! x̃ (s) parts. We call a diagramirre-
ducibleif it cannot be split into two parts by cutting a single

particle line. The reducible partx̃ (s) is related to the exis-
tence of the so-called anomalous proper vertexL̃a , which
contains all the proper diagrams with only one outer inter
tion line and only one outer particle line, and which is due
the presence of the condensate belowTc :

x̃~r,r8,v!5x̃ (r )~r,r8,v!1x̃ (s)~r,r8,v!

x̃ (s)~r,r8,v!5E d3r 1E d3r 2 L̃a~r,r1 ,v!G̃a,b~r1 ,r2 ,v!

3L̃b~r2 ,r8,v!. ~12!

Here G̃a,b(r1 ,r2 ,v) is the proper part of the Green’s func
tion satisfying Dyson’s equation with the proper pa
S̃a,b(r1 ,r2 ,v) of the self-energy only. In Ref.@13# it is
shown that the eigenfunctionsj,wa belonging to the same
eigenvaluev are related by the anomalous vertexLa con-
taining all the proper and improper vertex contributions:

j~r!5E d3r1 La~r,r1 ,v!wa~r1!. ~13!

So far no approximation has been made. Now we de
approximate expressions for the building blocksL̃a

0 and x̃0
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of the ladder approximation, in which we derive the prop
quantitiesL̃a and x̃ (r ): the trivial vertex function

L̃1
0~r,r8,v!5L̃2

0~r,r8,v!5F0~r!d~r2r8!, ~14!

and the bubble graph

x̃0~r,r8,v!52
1

2b\(
n

Ga,b
HF ~r,r8,ivn!Gb,a

HF ~r8,r,ivn2v!

52
1

b\(
n

G1,1
HF~r,r8,ivn!G1,1

HF~r8,r,ivn2v!,

~15!

with the Green’s functionGa,b
HF corresponding to the Hartree

Fock Hamiltonian

ĤHF~r!52
\2¹2

2m
1U~r!12gn~r!. ~16!

The Green’s functionsGa,b
HF satisfy the relations

@\v2ĤHF~r!#G11
HF~r,r8,v!5\d~r2r8!, ~17!

G22
HF~r,r8,v!5G11

HF~r8,r,2v!, ~18!

G12
HF5G21

HF50. ~19!

We have already used the Hartree-Fock Green’s function
the bubble graph. We will see later that this approach tu
out to be consistent.

In the ladder approximation the proper contributio
x̃ (r )(r,r8,v) are derived by subsequent insertions of inter
tion lines into the bubble diagrams. Therefore,x̃ (r )(r,r8,v)
is determined by the self-consistent equation

x̃ (r )~r,r8,v!5x̃0~r,r8,v!

1
g

\E d3r1 x̃0~r,r1 ,v!x̃ (r )~r1 ,r8,v!.

~20!

For the proper vertex functionL̃a we take into account the
trivial vertex L̃a

0(r) and the first-order correction

L̃a
(1)(r,r8,v)5gx̃0(r,r8,v)F0(r8). In L̃a

(1) we replace the
single interaction line by theT matrix which defines the fol-
lowing equation for the proper vertex functionL̃a :

L̃a~r,r8,v!5L̃a
0~r,r8,v!

1
g

\E d3r1 x̃0~r,r1 ,v!L̃a~r1 ,r8,v! ,

~21!

from which it can be determined self-consistently.
The analogous Dyson equation for the complete ver

function given by La(r,r8,v)5L̃a(r,r8,v)
6-3
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1(g/\)* d3r1 x̃ (r )(r,r1 ,v)La(r1 ,r8,v) can be easily ex-
pressed in terms of the building blocks of the ladder appro
mation:

La~r,r8,v!5L̃a
0~r,r8,v!

12
g

\E d3r1 x̃0~r,r1 ,v!La~r1 ,r8,v!.

~22!

We identify the thermal density fluctuationsdnT(r)5dn(r)
2dnc(r) by inserting Eqs.~22! and ~11! into Eq. ~13!, and
using Eqs.~11! and ~14!:

dnT~r,v!52
g

\E d3r1 x̃0~r,r1 ,v!dn~r1 ,v!. ~23!

Another way to derive this result is to consider the possi
diagrams in the linear response functionxT for the thermal
density wherexT is defined by

dnT~r!5E d3r8xT~r,r8,v!dV~r8!, ~24!

and dV is an additional small perturbation coupling to th
density operator.

The only diagrams of our approximation forx not con-
tributing to xT are those which start with the trivial verte
function L̃a

05F0 on the side coupling to the thermal dens
fluctuation:

xT~r,r8,v!5E d3r1F x̃~r,r1 ,v!2E d3r2E d3r3

3L̃a
0~r,r2 ,v!G̃a,b~r2 ,r3 ,v!L̃b~r3 ,r1 ,v!G

3Fd~r12r8!1
g

\
x~r1 ,r8,v!G , ~25!

5E d3r1F x̃ (r )~r,r1 ,v!

1
g

\E d3r2x̃0~r,r2 ,v!x̃ (s)~r2 ,r1 ,v!G
3Fd~r12r8!1

g

\
x~r1 ,r8,v!G . ~26!

In the previous step we have inserted the expression forL̃a
0

given by Eq.~21! into Eq. ~25!. If we usedV5*x21dn, we
obtain
04360
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dnT~r!5E d3r1E d3r8xT~r,r1 ,v!x21~r1 ,r8,v!dn~r8!

5E d3r1E d3r2E d3r8F x̃ (r )~r,r1 ,v!

1
g

\
x̃0~r,r2 ,v!x̃ (s)~r2 ,r1 ,v!G

3Fx21~r1 ,r8,v!1
g

\
d~r12r8!Gdn~r8!, ~27!

which reduces in the case of resonance (*x21dn50) to the
relation

dnT~r!5E d3r1E d3r8F x̃ (r )~r,r1 ,v!

1
g

\
x̃0~r,r8,v!x̃ (s)~r,r8,v!G g

\
dn~r8!. ~28!

Using dn5dnc1dnT , the equation fordnc has the form

dnc~r!5E d3r1E d3r8S d~r2r1!2
g

\
x̃0~r,r1 ,v! D

3x̃ (s)~r1 ,r8,v!
g

\
dn~r8!. ~29!

From Eq.~28! with Eqs.~20! and~9!, it is straightforward to
derive the final resultdnT52(g/\)*x̃0dn.

For the purpose of calculatingdnc we need to make ad

ditional approximations for the proper self-energiesS̃a,b .
We restrict ourselves to the proper and irreducible diagra
which ~a! are only zero- and one-loop diagrams,~b! are con-
nected with Landau damping~since we neglect the Beliae
damping! and ~c! do not contain anomalous Green’s fun
tions ~Popov approximation!.

First we introduce those self-energiesS̃a,b
0 appearing in

the Gross-Pitaevskii-equation for the condensate,

H̃0F0~r!50, ~30!

whereH̃0 is given by

H̃052
\2

2m
D1U~r!2m1guF0~r!u212gnT~r!, ~31!

S̃a,b
0 ~r,r8,v!5@guF0~r!u212gnT~r1!#S 1 0

0 1D . ~32!

They contain the zero-loop diagramguF0(r)u2 together with
the contributions from the stationary density of the nonco
densed atoms:

nT~r!5^F̂†~r!F̂~r!&. ~33!

This density can be calculated in two different ways: eith
in the Popov approximation as in Ref.@25#, which is a self-
6-4
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consistent, gapless approximation, but does not satisfy
Ward identities in the homogeneous case; or by using
Hartree-Fock approximation, which neglects the quasipa
cle aspects of the thermal excitations but has the great v
of satisfying the Ward identities in the spatially homog
neous case@26# and consequently in the local-density a
proximation to be used later on. Therefore, we choose
second method in the following. However, it is remarkab
that the final results for the shifts and widths we obtain
very similar for both methods of calculatingnT . Due to con-
ditions ~a!–~c! we are left with only four additional self
energy contributions which, using the sameT-matrix ap-
proximation as before, can be written as

S̃a,b
(1) ~r,r8,v!5\s~r,r8,v!S 1 1

1 1D , ~34!

with

s~r,r8,v!5
g2

\2
F0~r!x̃ (r )~r,r8,v!F0~r8! . ~35!

The corresponding Green’s functions

G̃1,2
0 5G̃2,1

0 50, ~36!

G̃1,1
0 ~r,r8,v!5G̃2,2

0 ~r8,r,2v! ~37!

satisfy

~\v2H̃0!G̃1,1
0 ~r,r8,v!5\d~r2r8!, ~38!

and(abG̃ab(r,r8,v) is determined by

(
ab

G̃ab~r,r8,v!5E d3r1E d3r2(
kl

G̃kl
0 ~r,r1 ,v!

3S d~r12r2!d~r22r8!1s~r1 ,r2 ,v!

3(
ab

G̃ab~r2 ,r8,v! D . ~39!

Inserting x̃ (s)5(abL̃aG̃abL̃b in Eq. ~29! we obtain for
dnc(r),

dnc~r!5E d3r1E d3r2E d3r3

g

\
L̃k

0~r!G̃kl
0 ~r,r1 ,v!

3F L̃l~r1 ,r2 ,v!dn~r2!1
g

\
L̃l

0~r1 ,r3 ,v!

3x̃ (r )~r3 ,r2 ,v!dnc~r2!G , ~40!

which may be rewritten as
04360
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dnc~r!5E d3r1E d3r2

g

\
F0~r!(

ab
G̃ab

0 ~r,r1 ,v!F0~r1!

3Fd~r12r2!dn~r2!1
g

\
x̃ (r )~r1 ,r2 ,v!

3@dn~r2!1dnc~r2!#G . ~41!

To solve Eq.~41! is still very difficult. Instead, we follow
the procedure applied in Ref.@13#, where the term (g/\)x̃ (r )

was treated as a small perturbation and the excitation
quencies were determined using first-order perturba
theory. In the perturbation term (g/\)x̃ (r ) we may replace
x̃ (r ) by x̃0 anddnc by dn to first order. We then use Eq.~23!
to obtain

dnc~r!5E d3r1

g

\
F0~r!(

ab
G̃ab

0 ~r,r1 ,v!F0~r1!

3@dnc~r1!12dnT~r1!# . ~42!

In the next step we show that the unperturbed problem

dnc
0~r!5

g

\E d3r1F0~r!(
ab

G̃ab
0 ~r,r1 ,v!F0~r1!dnc

0~r1!

~43!

is equivalent to the Hartree-Fock-Bogoliubov-Popov calcu
tion of dnc

0 . By dividing Eq. ~42! on both sides with the
condensate functionF0(r), and afterwards muliplying both
sides from the left with (\v2H̃0)(2\v2H̃0) we derive an
equation of the form of the diagonalized HFBP equations

@H̃0
2~r!2\2v2#

dnc~r!

F0~r!
522gH̃0~r!nc~r!

3S dnc~r!

F0~r!
12

dnT~r!

F0~r! D . ~44!

This equivalence can be shown by performing the sum
the difference of the Hartree-Fock-Bogoliubov equations:

S H̃0~r!1gnc~r! gnc~r!

gnc~r! H̃0~r!1gnc~r!
D S w1

( j )~r!

w2
( j )~r!

D
5\v0

( j )S w1
( j )~r!

2w2
( j )~r!

D . ~45!

We obtain the following diagonalized equations forw1
( j )

6w2
( j ) :

\2v0
( j )@w1

( j )~r!1w2
( j )~r!#5@H̃0

2~r!12gH̃0~r!nc~r!#

3@w1
( j )~r!1w2

( j )~r!# ~46!
6-5
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\2v0
( j )@w1

( j )~r!2w2
( j )~r!#5@H̃0

2~r!12gnc~r!H̃0~r!#

3@w1
( j )~r!2w2

( j )~r!#. ~47!

If we setdnT50 ~unperturbed case! in Eq. ~44!, we recover
the HFBP equation wherev0 corresponds to the eigenvalue
v05v0

( j ) and dnc
0 to the corresponding eigenfunctionsdnc

0

5j0
( j )5F0(w1

( j )1w2
( j )).

The first-order correction due to the dynamics of the th
mal densitydnT ~or, in other words, due to the existence
x̃0) can be calculated by expanding

dnc5dnc
01dnc

11•••, ~48!

v5v01v11•••, ~49!

wherednc
1 and v1 are the first order corrections. Insertin

this perturbation ansatz into Eq.~44!, the first-order contri-
butions must satisfy the equation

@H̃0
2~r!12gH̃0~r!nc~r!2\2v0

2#
dnc

1~r!

F0~r!

52\2v1v0

dnc
0~r!

F0~r!
24gH̃0~r!nc~r!

dnT~r!

F0~r!
.

~50!

Multiplying this equation from the left with @w1(r)
2w2(r)# and integrating over space, the left side of t
equation vanishes. Due to the normalization condit
*d3r@w1(r)2w2(r)#@w1(r)1w2(r)#51 and the relation
H̃0(w12w2)5\v0(w11w2), we obtain the following result
for v1:

\v152gE d3r dnc* ~r!dnT~r! ~51!

5
4g2

\ E d3r E d3r 8 dnc* ~r!x̃0~r,r8,v0!dnc~r8!.

~52!

This is one of the basic results used in the following
the calculation of shifts and widths of collective excitation
The consistency condition for the applicability of perturb
tion theory is thatv0@uv1u must hold, which we shall chec
below.

Next, let us concentrate on the quantityx̃0(r,r8,v0). If
one expressesG1,1

HF(r,r8,ivn) in terms of the eigenvalues an
eigenvectors of the Hartree-Fock operatorHHF (HHFw i

HF

5« i
HFw i

HF),

G1,1
HF~r,r8,ivn!5(

i

w i
HF~r!w i

HF* ~r8!

ivn2« i
HF/\

, ~53!

then the standard Matsubara sum in Eq.~15! can be easily
performed:
04360
-

n

r
.
-

x̃0~r,r8,ivn!5(
i , j

@n~« j
HF!2n~« i

HF!#

3
w i

HF~r!w i
HF* ~r8!w j

HF~r8!w j
HF* ~r!

ivn2~« i
HF2« j

HF!/\
,

~54!

wheren(« i
HF) is the Bose factor. From the form of the de

nominator it is clear that we treat processes leading to L
dau damping, but not to Beliaev damping. In calculating
retarded functionx̃0 via the analytic continuationivn→v0
1 ih its imaginary part contains a series of Diracd peaks
due to the discrete spectrum ofHHF. In order to obtain finite
damping@i.e., the finite imaginary part ofv1 in Eq. ~52!#,
which was measured in experiments, one needs s
smoothing over the Diracd peaks. In principle, for the shif
there is no need for smoothing, but one must use the s
procedure both for the real and imaginary part ofx̃0, other-
wise they do not fulfill the Kramers-Kronig relations. Th
smoothing is done by using the semiclassical or local den
approximation. First, we calculate the semiclassical Gree
function. To do this, let us consider the representation of
Green’s function in the center-of-mass,k representation, de
fined as

G1,1
HF~r,r8,v!5E d3k

~2p!3 eik(r2r8)G1,1
HF

„~r1r8!/2,k,v….

~55!

For this representation the semiclassical Green’s functio
simply

G1,1
HF(sc)~R,k,ivn!5

\

i\vn2@ek2m~R!#
, ~56!

where

ek5
\2k2

2m
, m~R!5m2U~R!22gnc~R!22gnT~R!.

~57!

It is easy to show that if one uses the mixed representa
for x̃0, similarly defined as in Eq.~55!,

x̃0~r,r8,v!5E d3k

~2p!3eik(r2r8)x̃0
„~r1r8!/2,k,v… ~58!

then in the new representation Eq.~15! takes the form

x̃0~R,k,ivn!52
1

b\ (
p
E d3k8

~2p!3

3G1,1
HF~R,k1k8,ivp!G1,1

HF~R,k8,ivp2 ivn!.

~59!

Performing the Matsubara sum, but now with the semicl
sical Green’s function~56!, after the analytic continuation
we arrive at
6-6
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x̃0~R,k,v!5E d3k8

~2p!3

nk82nk1k8

v2~ek1k82ek8!/\1 ih
, ~60!

wherenk is the Bose factor appearing in the semiclassical~or
local-density! approximation:

nk5
1

expFbS \2k2

2m
2m~R!D G1/2

21

. ~61!

In the region where the condensate density vanishes, the
dition m(R)'0 holds. As a result, in our semiclassical a
proximation we would there obtain a logarithmic singular
of x̃0(R,k,w) at k5uku5A2m\v leading to large contribu-
tions from frequencies around zero, which are complet
artificial, since the trapped system has no levels below
certain lowest-lying level. We therefore suppress these
physical logarithmically singular contributions by choosi
the lowest-lying energy levelvmin52.12vr of the Hartree-
Fock operator as a natural lower-energy cutoff in our ap
cation of the Hartree-Fock and local density approximati
Herevr is the smallest trap frequency. We thus ensure t
all the contributions to frequency shifts and damping ra
come only from interactions with modes in the physical e
ergy region above this lowest Hartree-Fock energy level
Fig. 1 we plot the spectral contributions to the therma
excited atoms as a function of the frequency for both
local-density approximation and the histogram of energy l
els obtained by the direct diagonalization of the Hartr
Fock Hamiltonian. The agreement above our cutoff prove
be rather good so that we can expect to obtain reliable res
in the local density approximation. With this cutoff th
imaginary part ofx̃0 becomes

FIG. 1. Spectral contributions to the thermally excited ato
(dN/dv)(v) as a function of the frequencyv. We compare the
result of the local density approximation~open circles! with the
histograms from the direct diagonalization forT595 nK andNc

57500.
04360
n-

ly
a
n-

i-
.

at
s
-
n

e
-
-

to
lts

Im x̃ (r )~R,k,v!5
m2

p\3kb

3 lnF 12expF2bS ~\v2ek!
2

4ek
2m~R! D G

12expF2bS ~\v1ek!
2

4ek
2m~R! D GG

~62!

for @(vm/\k)2(k/2)#2>max„2m\22@m(R)1\vmin#,0….
In the opposite case, due to the cutoff, we have the exp
sion

Im x̃ (r )~R,k,v!5
m2

p\3kb
lnF 12exp~2b\vmin!

12exp@2b\~vmin1v!#G
~63!

for @(vm/\k)2(k/2)#2<max„2m\22@m(R)1\vmin#,0….
After performing the principal value integral, the real pa
can be written as

Rex̃ (r )~R,k,v!5
m

p2\kE\A2me(R)
k8 dk8 nk

3 lnFa~k,k8,v,R!b~k,k8,v,R!

c~k,k8,v!d~k,k8,v!
G ,

~64!

with

a~k,k8,v,R!5maxF k2

2m
2

kk8

m
,
e~R!

\2
2

k82

2mG2\21v,

b~k,k8,v,R!5minFkk8

m
2

k2

2m
,
k82

2m
2

e~R!

\2 G2\21v,

c~k,k8,v!5
k2

2m
1

kk8

m
2\21v,

d~k,k8,v!52
k2

2m
2

kk8

m
2\21v.

e(R) is an abbreviation fore(R)5max@m(R)1\vmin,0#.

III. NUMERICAL METHODS

In our perturbative calculation ofv1 we should solve first
the unperturbed problem forv0 and dnc(r). This step re-
quires solving the Gross-Pitaevskii~GP! and the HFBP equa
tions. We already have reported on our self-consistent a
rithm in Ref.@25# for this problem, which solves the GPE fo
F0(r) and for the chemical potential using multigrid met
ods, while the HFBP equations are solved in a large tr
cated basis. As a result, we have all the necessary inp
namely,F0(r), w1(r)1w2(r), v0, andnT(r) for performing
the second step: the use of Eq.~52! in connection with the

s
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retarded density autocorrelation functions@Eqs. ~58! and
~60!#.

This step is straightforward, but from a numerical point
view it requires coping with six-dimensional space integr
and three-dimensional momentum integrals. To reduce
number of numerical integrations we proceed as follows
we introduceC as an intermediate quantity for

C~R,k!5E d3r e2 ikrdnc* S R2
r

2D dncS R1
r

2D , ~65!

then Eq.~52! can be written as

\v154
g2

\ E d3RE d3k

~2p!3 x̃0~R,2k,v0!C~R,k!. ~66!

Next, let us expanddnc(r)5F0(r)@w1(r)1w2(r)# in some
isotropic harmonic-oscillator basis as

dnc~r!5F0~r!@w1~r!1w2~r!#5( Ai f i~r!, ~67!

where the set of basis functionsf i(r) have the same angula
momentum quantum number and parity with respect to
flection on thex-y plane as the unperturbed elementary e
citation in question. The next task is to find a connect
formula, which transforms any productf i* (r) f j (r8) to a
mixed (R,k) representation. This step requires some straig
forward but rather lengthy calculation, but the advantage
gain is that, due to the facts thatx̃ (r )(R,k,v0) is axially
symmetric inR for an axially symmetric harmonic-oscillato
trap potential and isotropic ink we can perform the integra
tions over the azimuthal angle ofR and over the angles ofk
in Eq. ~66!. At the end, apart from discrete sums, we ha
two spatial integrals in the radial and in thez directions ofR
and one momentum integral for the imaginary part and t
subsequent momentum integrals for the real part ofv1. Of
course, the remaining integrals must be performed num
cally.

The form of the above mentioned connection formu
which we actually used is based on the following facts: Fi
the productf i* (r) f j (r8) is a solution of the two-body, non
interacting harmonic-oscillator problem, which is also se
rable in center-of-mass and relative coordinates. Thus,
panding it in the other basis containing products of harmo
oscillator wave-functions depending onR5(r1r8)/2 and r
2r8, the expansion will contain only a finite number of ne
basis functions from the energy shell« i1« j . Second, the
Fourier transform of the harmonic-oscillator wave functio
~which we must perform with respect to the relative coor
nates! are basically the same as in real space.

IV. RESULTS

We present our numerical results in a way which is
rectly comparable with the measurement@4#. In Figs. 2 and 3
we put on the horizontal axesT85T/Tc where Tc is the
Bose-Einstein condensate transition temperature for the
monically trapped ideal gas, and is also the same quan
04360
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used in Fig. 1 of Ref.@4#. From that figure we take the sam
T5T(T8) andN05N0(T8), which were determined experi
mentally. Also the same anisotropyvz /v0 as in the experi-
ment was used. We present our results as a function of
experimentalT8 because different experimental points b
long to different physical conditions since neitherN nor N0
could be kept fixed in the experiment.

In Fig. 2 we plot the imaginary part ofv1 together with
the measured damping rates for them50,2 modes. For tem-
peraturesT.0.6Tc , where the Landau damping arising fro
the bubble graphx̃0(r,r8,v) is the dominant process, ou
results are inside the error bars. At lower temperatures
calculated damping rates are slightly above the measu
ones. The values for the damping rates due to our mo
calculation are larger with a factor of 32/9p compared with

FIG. 2. Damping rates of them50 ~triangles! and m52
~circles! modes as a function ofT/Tc . Experimental values~full
symbols! with error bars are taken from Fig. 3 of Ref.@4#. Open
symbols denote the theoretical predictions Imv1 of our model cal-
culation using the dielectric formalism.

FIG. 3. Excitation frequencies for them50 and 2 modes as a
function of T/Tc . Notations for the experimental values are t
same as in Fig. 2. Open symbols denote our theoretical valuev0

1Rev1 in units of the axial trap frequency.
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the treatment of all Beliaev graphs to second order@16#. This
is not surprising, because the neglection of the Belia
damping and the use of local-density approximation is o
justified for temperatures satisfying the conditionkBT@m,
only valid for T@0.6Tc . The same condition is necessary
neglect the quasiparticle character of the additional exc
particles contributing to the self-energies via scattering p
cesses. Comparing our results for the damping rates with
values of the unperturbedv0 it is manifest that Imv1!v0.
The real part ofv1 is also much smaller thanv0 for all the
calculated points. Therefore, the criterium for the applica
ity of perturbation theory is justified.

In Fig. 3 we plotv01Rev1 together with the experimen
tally measured frequencies. Form52 we have good agree
ment for temperatures aboveT>0.6Tc , and slightly larger
negative shifts compared to the experimental values be
T50.6Tc . The results for them50 mode show the sam
slight difference in the low-temperature region. But a
proaching higher temperatures the experimental and the
merical results predict a different behavior for the excitat
energies. While experimentally they are increasing we fou
decreasing values in our model calculation. The same qu
tative discrepancy was also found by Hutchinsonet al. in
Ref. @22# using a different approach to the problem. Th
also reported good agreement with the measured frequen
for m52, but disagreement form50. A possible explana-
tion for the above discrepancies was given by Bijlsma a
Stoof in Ref.@23#, who used the quantum Boltzmann equ
tion in the collisionless regime and calculated low-lying e
citation frequencies using a variational approach for them
50 and 2 modes. They found that there are two nearbym
50 modes, one of them describing the in-phase oscillati
and the other one the out-of-phase oscillations of the cond
sate and thermal cloud. They concluded that it might be p
sible that in the experiment bothm50 modes are excited
together, and that in Ref.@4# only the upper one or a supe
position of both might be plotted. If there are two near
m50 modes we must explain why in our calculation w
have obtained only one of them~and furthermore not the
experimentally measured one!. It is clear that by our pertur-
bative treatment we fixed ourselves to one of them by ca
lating the corrections to the Hartree-Fock-Bogoliubov-Pop
equations fordnT!dnc , and we followed it in changing the
temperature. Our results correspond to the branch descri
the out-of-phase motion calculated in Refs.@23,24#. To see
this we recall our formula for the correctionsv1

52g*d3r dnc* (r)dnT(r), and the fact thatv1 is found to be
negative in our results. Therefore, the spacial average
the amplitude product ofdnT and dnc is negative, which
means thatdnT anddnc are out of phase.

The in-phase mode can accordingly be obtained, if,
fact, there is another nearbym50 mode in our model ap
proximation, if we do not use perturbation theory for solvi
Eq. ~44!. Instead we should consider the eigenvalues of
bubble graphx̃0 corresponding to the thermal density flu
tuation dnT , and calculate their perturbation due todnc .
This possibility was supported by an early study of the
havior of the poles of the density-density autocorrelat
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function in the homogeneous Bose gas@11#, where it was
shown that there are more, but purely damped, modes. T
remain purely overdamped aboveTc in accord with a recent
experiment@27#. It can be shown that one of the overdamp
damped modes corresponds todnT@dnc and that it is a
mode wherednT anddnc relax out of phase@28#. In addition
it is clear that in a harmonic trapping potential these dam
modes will acquire a nonzero real part of their oscillati
frequency. However, to really demonstrate this for the eig
solutions of the density-density autocorrelation function
the inhomogeneous case, and furthermore to show tha
this case the missing mode can be described in this w
requires further analytical and numerical studies.

V. CONCLUSIONS AND FURTHER REMARKS

In this paper we have investigated the predictions of
dielectric formalism applied to the model of a Bose gas o
tained by extending simpler models discussed in the lite
ture @7,11,13#. The proper and irreducible building block
x̃ (r ) andL̃ are already the result of summing up higher-ord
contributions in the form of a ladder approximation that on
sums up geometric series of the bubble graphx̃0. From the
second-order Beliaev diagrams, for the irreducible se
energies we keep only those which are supposed to
large contributions. Since Landau damping dominates B
aev damping in the temperature regionT@0.6Tc of the mea-
surement at JILA, we neglect the diagrams connected w
Beliaev damping. We reduce the amount of diagrams furt
to only zero- and one-loop diagrams. In addition, we negl
all the self-energy diagrams containing anomalous Gree
functions. To find poles of the density-density correlati
function, i.e., collective excitations, we used first-order p
turbation theory, where the proper and regular part of
density-density correlation function played the role of t
perturbing operator. We showed that the physical conten
the unperturbed problem is equivalent to finding element
excitations in the Hartree-Fock-Bogoliubov-Popov appro
mation. The fact that all first-order corrections to the Hartre
Fock-Bogoliubov-Popov equations can be described w
one bubble graphx̃0 permits us to draw conclusions abo
the behavior of the quantitiesdnc anddnT from our numeri-
cal results. Due to the negative energy shifts obtained in
numerical results, we can identify their motion to be out
phase. Since we establish our model on the basis of a die
tric formalism, we achieve the required correspondence
the spectra of the Green’s functions and the density auto
relation function, ensuring gapless spectra of quasipart
modes and density modes in the homogeneous limit.
version @Eq. ~42!# of our equation~41! agrees with the dy-
namic Hartree-Fock-Bogoliubov-Popov theory presented
Minguzzi and Tosi@14#. They derived Eq.~42! by linearizing
the time-dependent Gross-Pitaevskii equation around its
tionary solutionn(r,t)5nc(r)1dnc(r,t), and Eq.~23! by an
equivalent linearization of the Hartree-Fock equation for
noncondensate field operator. The bubble graphx̃0 con-
nected with Eq.~23! is also a product of Green’s functions i
Hartree-Fock approximation in their theory.
6-9
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Bijlsma and Stoof@23# also considered Eq.~23!, and used
the dispersion relation of the Hartree-Fock operator in
local-density approximation for their calculations. In contra
to us, they examined the collisionless Boltzmann equa
for the Wigner function, and solved the equations with
variational approach, which cannot describe any dampin
the excitations. Whereas the local-density approximation
~and the authors of Ref.@23#! use is better for large conden
sates, the approach of Fedichevet al. @20# is better suited for
the opposite case of small condensates due to the assum
of hard chaos, which can only be fulfilled for small conde
sates. In this approach the diagrams are evaluated by
grating along the classical trajectories.

We have found good agreement both for the shift and
damping with the experiment form52, and also for the
damping rate of them50 mode, but disagreement similar
that of Ref.@22# in the frequency shift for them50 mode.
We explained this discrepancy with observation by an a
fact of our perturbative treatment, and by applying the ar
ment of Refs.@23,24#, namely, by supposing another near
lying m50 mode.

To decide whether a nonperturbative treatment of
problem, still within the framework of our model approxim
int

nt,

n

n

n,

n-

04360
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tion, can show the existence of the missingm50 mode re-
quires an extended numerical study. Our future plan is to fi
the poles in a nonperturbative way, and study the decoup
of the single particle and the collective excitations forT
→Tc20, along the lines of the calculation for homogeneo
system of Ref.@11#. A further natural extension of this work
could be to study further and more difficult, but still nume
cally manageable, model approximations.
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