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We present predictions for temperature-dependent shifts and damping rates. They are obtained by applying
the dielectric formalism to set up a self-consistent model of a trapped Bose gas which can be shown to satisfy
generalized Ward identities. Within the framework of the model we use lowest-order perturbation theory to
determine the first-order correction to the results of Hartree-Fock-Bogoliubov-Popov theory for the complex
collective excitation frequencies, and present numerical results for the temperature dependence of the damping
rates and the frequency shifts. Good agreement with the experimental values measureat by [fiinys. Rev.

Lett. 77, 420(1996] are found for then=2 mode, while we find disagreements in the shiftsrfor 0. The
latter point to the necessity of a nonperturbative treatment for an explanation of the temperature dependence of
them=0 shifts.

PACS numbes): 03.75.Fi, 05.30.Jp, 67.40.Db

[. INTRODUCTION certain quantities of physical interest, which are the key
quantities in the dielectric formalism. Following and extend-
Since the discovery of Bose-Einstein condensation iring Refs[11,13, we shall base our investigation on a simple
traps, a wealth of experimental data on collective excitationgnodel for trapped weakly interacting Bose gases, which in
has appeared in the literatuffer experimental reviews, see homogeneous systents) is valid at finite temperature(p)
Refs.[1,2]) waiting for theoretical explanation. Some of the Satisfies the generalized Ward identities, aodguarantees
earliest measurements, still requiring a firm theoreticathat both the Green’s function and the density-density auto-
analysis, were performed in oscillating traps which permitteoco”elat'on spectra ex_h|b|t t_he same excitations. Ir_w addition
a selective excitation of different excitation mod-6]. the model we use, which builds on and extends a simpler one

Common features of the above experiments are that the deﬁiscussed in _dete;il in Refglg,ﬂl\,/lpan be.shodw_rrl t&be related
sity of atoms in the trap is relatively small and the '[empera-0 an approximation used by viinguzzi an b . ]'.
It is our main purpose here to evaluate, within the ap-

ture is extremely low. Consequently, from the theoretical

oint of view the atoms can be treated as a weakl interactPrOXimation defined by our choice of the model, the damping
b y ‘rates and frequency shifts and to compare the results with the

ing degen(_erate Bose gas, while the_mte_ractmn potential Iéxperimental data of Jiet al. [4]. In principle we are also
well described by theswave approximation. Due t0 the pie 46 calculate theoretical values for the MIT measurement,
presence of the trap the whole system is not translationally s in our present approach we treat the fluctuations of the
invariant, and field equations of any approximation must b&nermal density perturbatively and consider only Landau
solved in real space, nqt in momentum space. Fu.rthermorgamping' This approach is justified if the conditié@T
the excitation spectrum is discrete rather than continuous as 4 is fulfilled which is only the case for the JILA measure-
in spatially homogeneous condensates likeiHe ments. Furthermore, the high anisotropy of the MIT trap
Nevertheless, most theoretical approaches are based @hds to some numerical difficulties in the code we use so far.
the natural generalization of one or the other of the homogeFrom the theoretical side several papers have appeared in the
neous descriptions to the inhomogeneous case. The presditérature going beyond the Hartree-Fock-Bogoliubov-Popov
paper also holds to this line. It is based on the dielectridHFBP) approximation[15], which is really necessary to
formalism (see Ref[7] and further references thergidirst  take into account damping processes. Most relevant papers
introduced for spatially homogeneous systems at zero tenbeyond that approximation describe the damping process
peratureg[8—10], later used at finite temperaturgél,12, and [16-21 or calculate the shifts by including the anomalous
recently generalized to inhomogeneous systems in[R8f.  average in such a way that the resulting approximation is
The great success of the dielectric formalism lies in showingyapless[22]. The approach applied in Ref21] is the
that the order parameter correlation functitire one-particle  second-order Beliaev theory which is known to be gapless. It
Green’s function and the density-density correlation func- treats both Beliaev and Landau dampings, and also calculates
tion have the same spectra below the critical temperature. Ithe shift of elementary excitations in local density approxi-
principle the dielectric formalism is valid at all temperatures,mation along with their damping.
but still requires one to deal with infinitely many graphs to  In the present paper we wish to present a theory of the
obtain exact results. In practice, however, one resorts tshifts and widths of thdow-lying modes. Our approach is
some approximations for the proper and irreducible part obased on the dielectric formalism, and achieves its simplicity
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by a judicious selection of a subset of graphs for pheper  tures below the critical temperature. As usual, Ter T, we
part of the physical quantities of interest. The model we shallsplit off the condensate wave functidr(r),

investigate in detail in this work accounts for the Landau R R

damping, but cannot account for Beliaev damping. This sac- W(r)=dy(r)+Dd(r), (©)]
rifice for gain in simplicity is not too large because in the .

temperature region where the measurements we wish to ugrhere®(r)=(W(r)), and(- - -) denotes thermal averaging
derstand are performed, and where we calculate the shifts

and the damping rates, the Beliaev damping of the excita- . TrAe*B(H*“N)
tions is negligible. A)= Tre AA—ul) - @

The paper is organized as follows. In Sec. Il we briefly
summarize the general framework of the dielectric formalismsince we are interested in finite-temperature excitations, we
for inhomogeneous systems, and consider an extended Vgize Green'’s functions
sion of the model approximation of Refd.1,13. The con-
ditions for choosing the necessary basic building blocks for G st it 7)) = —(TID (DL ], (5
the ladder approximation and for the proper and irreducible ’ p
quantities are spelled out. Then the quantities given in ouf i field operators in Matsubara representatiﬁ?@(r,r)
formalism are related to the fluctuations of the condensate - - Y _
and the thermal density. We show that neglecting the thermar ® (7, 7) and®,(r,7)=®(r,7). The other key quantity we
density fluctuations we recover the usual Hartree-Focka'e interested in is the density autocorrelation function
Bogoliubov-Popov equationid5]. Then we derive the cor- .y ~ ~
recgt]ions of theﬁ)—|FBPqexcitation energies to first order in the x(rmr' 7= —=(TIn(r,on(r', 7)), 6)
thermal density fluctuations. To solve the closed set of equa-

tions for the damping and the shifts still requires some nu—Where n(r)=n(r)—(n(r)). The finite temperature Green's

merical work in the inhomogeneous case. We briefly discusguncnons(?f) gnd the; autocorrelation fun_ct|o(|_6) are_func-
tlons of 7,7’ via 7— 7' only and are periodic with period.

our numerical procedure in Sec. lll. Section IV contains al’hus one can expand them as Fourier series. The Matsubara
discussion of our results, and a comparison with the experi- P '

mental data measured at JILA. Section V is devoted to con'-:Ourler coefficients are given by

clusions and to some final remarks. There we also compare

h
our model approximation with other approximations given in Gy p(rr'iw,)= fﬁ dre‘“’nTGa,B(r,r’,r),
the literature, e.g., the already mentioned treatment of all the 0
Beliaev diagrams by Shi and Griffiri6] and Fedichev and (7)
Shlyapnikov[21], the kinetic equations of Ref14] and the © :2'1_77
collisionless Boltzmann equatid3,24]. " A

wheren is an integer. A corresponding expansion is made for

x(r,7;r’,7") with coefficients x(r,r’,iw,). Retarded func-
Here we summarize the dielectric formalism first appliedtions can be obtained by the usual analytic continuation

to inhomogeneous systems in REE3]. However, we shall  (iw,— w+i7, where is infinitesima).

not repeat the whole treatment, but rather concentrate on the It is useful to introduce theproper part of a quantity

II. FORMULATION

key points, and indicate further steps. which is defined ashe sum of diagrammatic contributions,
The Hamiltonian of our problem in second quantizedwhich cannot be split into two parts by cutting a single in-
form, is teraction line In the following proper parts will be denoted

by a tilde. By definition the density autocorrelation function

. - h? . and its t fulfill
_ 3 ot _nt proper part fulfi
H Jd rw (r)( 2mA%—U(r))\If(r)

1 . . o X(r,r’,w)=}(r,r’,w)+%J d3r1J d3r, x(r,ry, w)u(ry,ry)
+ Ef darlf Bro U)W (r)v(ry,r)W(r)W(ry),
Xx(ro,r' o). 8

@ X(rz ) 8

R When x(r,r’,w) has a pole inw, but its proper part is non-
whereW (r) is the Bose field operatot)(r) is the trap po- singular at the same, then there exists an eigenfunction
tential, andv(ry,r,) describes the two-body interaction. In &(r) satisfying
the following, this is chosen as

1 ~
3 én -7 | [ P e, ©
o(r—=r'), (2

4

v(r,r')=gdé(r—r")= -

This eigenfunction can be identified with the total density

wherea is thes-wave scattering length amd is the mass of  fluctuation n(r)=£(r) at the eigenfrequency given by the

the atoms. Throughout we shall restrict ourselves to tempergole. In a similar way we obtain the eigenfunctiopg and
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¢@,, corresponding to the one-particle Green’s functionsof the ladder approximation, in which we derive the proper
Ga,p, by solving the eigenproblem quantitiesA , and y(": the trivial vertex function
1 10 ’ _ A0 ’ _ e
eun =7 [ &y [ PG )%, 111z @)1 A o) =Rnr @) =@l =r),  (14)
(10 and the bubble graph

(Here and in the following we adopt the convention that .~ 1 HE HE
summation has to be taken over repeated greek inglices. X (I.1",@)=— _Z,Bﬁ; G (1 iwn)Gp o (I, 1wy — o)

GHR(r, 1" ) =GH(r' r,— w,)
(@] O/,
B e eO(r)*

i wn—ﬁ_l(e}"o—,u"'o), (19

1
= i G o G i),

with the Green’s functionGZ’FB corresponding to the Hartree-

GER(r, 1", w,) =GH2(r,1",w,) =0 Fock Hamiltonian

are the Green’s functions of the free harmonic trap with the . 2y2
corresponding harmonic oscillator excitation frequencies HHF(r)=— >m +U(r)+2gn(r). (16)
HO

€', eigenfunctionse;'(r), and chemical potentigl"©

=(h12)(wxt vyt w;), Wherew, , , are the three trap fre- The Green's function&!", satisfy the relations
quencies.>,, z are the self-energies describing the correc- ’

tions due to the interactions. The condensate density fluctua- [ho—RAHF()]1GHF(rr ) =hd(r—1") (17)
tions dn¢(r) given by perturbations of the condensate density HA ’
ne(r)=|®y(r)|?> due to excitations of single-quasiparticle GHE(r 1, @) =G F(r' .1, — w) (18)
modes can be identified with 2300 was :
cF=ciF=o. 19
one(1) = Bo(N @1(1) + 9a(1)]. (11) 12 =Cat 19

~ We have already used the Hartree-Fock Green’s functions in

Below T, the proper parfy can be further decomposed he pubble graph. We will see later that this approach turns
into irreducibile (also termed “regular) ¥ andreducible  out to be consistent.
(also termed “singulary x® parts. We call a diagrarire- In the ladder approximation the proper contributions
ducibleif it cannot be split into two parts by cutting a single- y()(r r’, w) are derived by subsequent insertions of interac-
particle line The reducible park(® is related to the exis- tion lines into the bubble diagrams. Therefoxé) (r,r', )
tence of the so-called anomalous proper verlex, which  is determined by the self-consistent equation
contains all the proper diagrams with only one outer interac- _
tion line and only one outer particle line, and which is due to X, o) =Xx0(rr", )
the presence of the condensate belw

+ %f d3r1}0(r!rl!w)}(r)(rlvr,1w)'

(20

X(r.r o) =xO(r,r" 0)+ X (r,r' »)

~“Sr et o— | 43 3, % = _
X ) f d rlf dro Aa(rry,@)Ga (M r2,0) For the proper vertex functioh , we take into account the

trivial vertex A%(r) and the first-order correction
AD(r,r, o) =gx°(r,r',w)®o(r'). In A} we replace the
Hereéa,p(r;afz,w) is the proper part 9f the Green’s func- smgle mtera(?tlon line by th& matrix which d_(ifm.es the fol-
tion satisfying Dyson’s equation with the proper partlowing equation for the proper vertex functidn, :

iaﬁ(rl,rz,w) of the self-energy only. In Refl13] it is

shown that the eigenfunctions ¢, belonging to the same
eigenvaluew are related by the anomalous vert&y con- g 5 5
taining all the proper and improper vertex contributions: + ﬁf A3 XO(r,ry, @)A (ry,r" @),

XAp(ry,1",0). (12

An(r,r w)=A%rr", o)

&= f B30y A (1,11, @) ou(ry). (19 (21)

from which it can be determined self-consistently.
So far no approximation has been made. Now we define The analogous Dyson equation for the complete vertex

approximate expressions for the building blodk$ and’x®  function given by A, o)=A(rr, )
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+(g/h) [ &3 ¥ (r,ry,w)A,(r1,r',®) can be easily ex- (o - L, )
pressed in terms of the building blocks of the ladder approxi- ong(r)= [ d°ry | d°r"x7(r,ry, @) x ~(ry,r',@)én(r’)

mation:
=f d3r1f d3r2f d3r’[}“)(r,rl,w)

g~ -
+ %Xo(r,rz,w))((s)(rz,rl,w)

A (r,r w)=R2(r,r", )

+2%J’ d3r XO(r,ry, w)A (1,1, ).

(22 X X‘l(rl,r’,w)+%5(r1—r’) on(r'), (27

We identify the thermal density fluctuatiom®(r)=an(r) ~ which reduces in the case of resonanfg (*6n=0) to the
— ong(r) by inserting Eqs(22) and(11) into Eq.(13), and  relation
using Egs(11) and(14):

5nT(r)=f d3rlj d3r’[}(r)(r,r1,w)

5nT(r,w)=2%f d3r XO(rr,w)on(ry,m). (23

+%}°(r.r’,w)}(s’(r,r’.w) %5n(r’). (28)

Another way to derive this result is to consider the possibleJsing sn= én.+ ény, the equation fown, has the form
diagrams in the linear response functign for the thermal

density wh is defined b -
ensity wnereyr Is aefine Yy 5nc(r):f d3r1f d3r’<5(r—r1)—%Xo(r,rl,w))

5nT(r)=J a3’ x(r,r", ) 8V(r'), (24 X}(s)(rl,r’,w)%én(r’). (29)

and 4V is an additional small perturbation coupling to the From Eq.(28) with Egs.(20) and(9),~it Is straightforward to
density operator. derive the final resulbn;=2(g/%) [ x°dn.

The only diagrams of our approximation fgr not con- For the purpose of calculatingn. we need to make ad-
tributing to x are those which start with the trivial vertex ditional approximations for the proper self-energies 4.
functionxg:q)o on the side coupling to the thermal density We restrict ourselves to the proper and irreducible diagrams
fluctuation: which (a) are only zero- and one-loop diagranis) are con-

nected with Landau dampingince we neglect the Beliaev
damping and (c) do not contain anomalous Green’s func-
XT(f.r',w):f dsrl[}(r,rl.w)—f d3fzf o, tions_ (Popoy approximation _ o
First we introduce those self-energlE%B appearing in
~ ~ 5 the Gross-Pitaevskii-equation for the condensate,
xAg(r-rZvw)Ga,ﬁ(r21r3!w)AB(r&rl’w)} ~
Ho®o(r)=0, (30

X : (25 whereH, is given by

5(r1—r’)+%x(r1,r’,w)
~ h?

Ho=— 5= A+ U(1) =~ u+g|Do(n)|*+2gn(r), (31)
:J d3r1[’)v((r)(r,r1,w)

(32

~ 1
23,B<r,r',w>=[g|<1>o<r>|2+ZgnT<r1>](0 1).

g _ -
+ %f dsrz)(o(r,rz:w)X(S)(errllw)

They contain the zero-loop diagraghd,(r)|? together with
the contributions from the stationary density of the noncon-

X
densed atoms:

5(r1—r’)+%x(r1,r’,w) . (26)

| . . (N =(®1(Nd(1)). (33
In the previous step we have inserted the expressior for
given by Eq.(21) into Eq.(25). If we usesV= [y 16n, we  This density can be calculated in two different ways: either
obtain in the Popov approximation as in R¢25], which is a self-
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consistent, gapless approximation, but does not satisfy the

Ward identities in the homogeneous case; or by using the nc(r)= J dgrlj dgfzh o(f)z Gop(r.ry,)Do(ry)
Hartree-Fock approximation, which neglects the quasiparti-
cle aspects of the thermal excitations but has the great virtue
of satisfying the Ward identities in the spatially homoge-
neous cas€26] and consequently in the local-density ap-
proximation to be used later on. Therefore, we choose this
second method in the following. However, it is remarkable X[on(ry)+onc(ra)]|.
that the final results for the shifts and widths we obtain are
very similar for both methods of calculatimg . Due to con-
ditions (a)—(c) we are left with only four additional self-
energy contributions which, using the samematrix ap-
proximation as before, can be written as

X| 8(ry=rz)on(r) + X1 12,)

(41)

To solve Eq.(41) is still very difficult. Instead, we follow
the procedure applied in RdfL3], where the termd/#) x("
was treated as a small perturbation and the excitation fre-
quencies were determined using first-order perturbation

(1) 1 theory. In the perturbation termg(%)x" we may replace
prr’ o) =ho(rr’ o)l ], (B4 YO by ¥° anddn, by on to first order. We then use E(R3)
to obtain
with
. ong(r)= fdsrlﬁ o(r) E G111, @) Po(ry)
a(r,r,@)=— Oo(Nx(r,r,0)do(r') . (35
f X[ ng(ry)+28n(ry)] . (42)
The corresponding Green’s functions In the next step we show that the unperturbed problem
G?,=G3,=0, (36) g 5
one(n = f Qry@o(r) 2, Coplrirs @) Po(ry) ong(ry)
Gy, 0)=G (' 1,—w) (37) (43)
satisfy is equivalent to the Hartree-Fock-Bogoliubov-Popov calcula-
tion of 5n8. By dividing Eq. (42) on both sides with the
(ho—H)Gl (1,1, 0)=hs(r—r'), (38)  condensate functioy(r), and afterwards muliplying both
sides from the left with& w —Hg) (— %o —H,) we derive an
ands Bé 4(r,r",w) is determined by equation of the form of the diagonalized HFBP equations:
_ _ o 5 5.0Nc(r) ~
s Gaﬁ(r,r’,w)=f darlf &S B (1r.0) (3~ 1201 oy = ~20Fo(ne()
ap K\ 0
an(r) _éng(r)
X 5(r1—r2)5(r2—r')+O'(rl,rz,w) (q)o(r) + q)o(r) . (44)
~ , This equivalence can be shown by performing the sum and
XQEB Gap(ra.r ""))' (39 the difference of the Hartree-Fock-Bogoliubov equations:
Inserting x¥==%,,A ,G A, in EqQ. (29) we obtain for (Ho(f)ﬂ)nc(f) gne(r) )( (j)(f))
one(r). gne(r) RO +gng(r) ) | (1)
()
o er’(n)
5nc(r)—fd3r1f dsrzj d3r3 Ao(r G2 (r,r, o) :ﬁwg)(_ 1(1) ) (45)
®3’(r)
~ g~ .
X| Ay(ry,rp,0)8n(rp) + g/\g(rl,ra,w) We obtain the following diagonalized equations fof
* QD(ZJ) .
XX (3,1, @)8n(r,) |, (40) ~ ~
e n2oLeP(r) + e (1N 1=[H§(r) +2gHe(Nne()]
which may be rewritten as X[+ (N (46)
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120P[eP(r)— P (r)]1=[F3(r)+2gn(NHo(N]
X[eP(N—eP(n]. (47

If we setSn;=0 (unperturbed casen Eq. (44), we recover

the HFBP equation wherg, corresponds to the eigenvalues

wo= 0§ and on to the corresponding eigenfunctiods?

— g(l)_q) ((P(J)_|_(P(l))

The first-order correction due to the dynamics of the therWheren(s’

PHYSICAL REVIEW A 61 043606

Xor,riwy) =2 [n(ef)—n(efM)]
1)

HF*( )

(e (n)
AR

F(Ne

Ia’n_(SiHF_

(54)

F) is the Bose factor. From the form of the de-

mal densitydny (or, in other words, due to the existence of Nominator it is clear that we treat processes leading to Lan-

%°) can be calculated by expanding

ong=ond+oni+ - -, (48)

where én} and w, are the first order corrections. Inserting
this perturbation ansatz into E4), the first-order contri-
butions must satisfy the equation

) - ang(r)
(3 +2gHo(nne(n —A*wfl g 5
an(r) Sn(r)
=2#? w100 F ) 4gH (nne(r) =—— Do(1)
(50

Multiplying this equation from the left with[¢4(r)

—@,(r)] and integrating over space, the left side of the

dau damping, but not to Beliaev damping. In calculating the

retarded functiony® via the analytic continuationw,— wg

+i7 its imaginary part contains a series of Diracpeaks

due to the discrete spectrumIdt'™. In order to obtain finite
dampingli.e., the finite imaginary part ob, in Eq. (52)],
which was measured in experiments, one needs some
smoothing over the Diraé peaks. In principle, for the shift
there is no need for smoothing, but one must use the same

procedure both for the real and imaginary party8f other-
wise they do not fulfill the Kramers-Kronig relations. The
smoothing is done by using the semiclassical or local density
approximation. First, we calculate the semiclassical Green’s
function. To do this, let us consider the representation of the
Green'’s function in the center-of-massrepresentation, de-
fined as

GTE(r,r’,w)zf

3

k

(277)3e"<<r*r IGHT(r+1")12k, ).
(59

equat|on vanishes. Due to the normalization conditionOr this representation the semiclassical Green'’s function is

T3 or(N— (N1 e1(r)+@a(r)]=1 and the relation
Ho(@1— ¢5) =hwo( @1+ ¢,), we obtain the following result
for wq:

hw1=29f d3r 8n¥ (r)dn(r) (51)

492 3 3,7 * ~0 ’ ’
=7 d r | d°r’ éng(r)x"(r,r’,wq) one(r’).
(52)

simply
GTE(SC)(R,k,iwn)=iﬁw e AR’ (56)
n
where
#2Kk?
Ek:m, M(R):M_U(R)_Zgnc(R)_ZQHT(R)-

(57)

It is easy to show that if one uses the mixed representation

This is one of the basic results used in the following forfor Y°, similarly defined as in Eq55),
the calculation of shifts and widths of collective excitations.
The consistency condition for the applicability of perturba-

tion theory is thatwy>|w4| must hold, which we shall check
below.

Next, let us concentrate on the quantﬁ9(r,r’,wo). If
one expresseS}" (r,r’ iw,) in terms of the eigenvalues and

eigenvectors of the Hartree-Fock operatdfF (HHFoH'F

HF HF
=& @ ),

r)@HF*( r)
_ HF/ﬁ

rr|n) 2%

, (53

then the standard Matsubara sum in Etp) can be easily
performed:

<0 ’ d3k ik(r—r)70 ’
xo(r,r ,w)=fwe x ((r+r")/2k,w) (58

then in the new representation E45) takes the form
d3k’

E f (2m)°

GIT(Rk+K iwy)GYY

(Rklw

(RKiwy—iwy).
(59

Performing the Matsubara sum, but now with the semiclas-
sical Green’s function56), after the analytic continuation
we arrive at
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80 T T T . -~ m2
r =
|mX (R,k,w) W
i T — | (ho—€)?
60 - _ - —
AT T H T i
. il ~ (hw+€)
S0 s S I PR
P4
[Z=)

(62)
for [(wm/fik)— (k/2)]2=max2m’ [ w(R) + % wpminl,0).

20 |
In the opposite case, due to the cutoff, we have the expres-
sion

2 —_ —_ .
% 5 10 15 20 25 ImYO(R K, w)= rr; In 1—exp(— B wmin)
o/ o, 7h kB | 1—exd — Bh(wmint )]

(63)
FIG. 1. Spectral contributions to the thermally excited atoms
(dN/dw)(w) as a function of the frequency. We compare the Tor  [(wm/fk) —(k/2)]*<max(2m# 2 u(R) + % wmin],0).
result of the local density approximatidiopen circley with the  After performing the principal value integral, the real part
histograms from the direct diagonalization for=95 nK andN, can be written as

=7500.
RexV(Rk w)=— f k' dk’ ny
NO(R K o) f d3k’ Ny — N ke (60) mhk fiV2me(Ry
L lw = 1
X 27)° w— (€ — ) hi+in <In a(k,k’,w,R)b(k,k",w,R)

, o _ c(k k', w)d(k k", @)
wheren, is the Bose factor appearing in the semiclassioal
local-density approximation: (64)

with
1
M= 7212 w2 (61) K o R)— k> kk' e(R) k'? o1
exp{ﬂ(——,u(R) } -1 alk,k’,@,R)=max 2m  m’ 52 2m @
2m -

. . . kk' k% k'? €R)
In the region where the condensate density vanishes, the con- p(k k', w,R)=min| — — =—,=—— —— | —# Lo,
dition «(R)~0 holds. As a result, in our semiclassical ap- |m 2m2m 32 |
proximation we would there obtain a logarithmic singularity
of Y°(R,k,w) atk=|k|=\2mkw leading to large contribu- ok o) = k_2+ K—ﬁ‘lw
tions from frequencies around zero, which are completely T 2 m '
artificial, since the trapped system has no levels below a
certain lowest-lying level. We therefore suppress these un- k2 KK’ .
physical logarithmically singular contributions by choosing dlkk' w)=—5 -~~~ "o

the lowest-lying energy leveb,;,=2.12w, of the Hartree-

Fock operator as a natural lower-energy cutoff in our appIi-E(R) is an abbreviation foe(R) = max u(R) + % @min0].
cation of the Hartree-Fock and local density approximation.
Here w, is the smallest trap frequency. We thus ensure that
all the contributions to frequency shifts and damping rates
come only from interactions with modes in the physical en-  |n our perturbative calculation @, we should solve first
ergy region above this lowest Hartree-Fock energy level. Inhe unperturbed problem fap, and dn(r). This step re-

Fig. 1 we plot the spectral contributions to the thermally quires solving the Gross-PitaevskBP) and the HFBP equa-
excited atoms as a function of the frequency for both thejons. We already have reported on our self-consistent algo-
local-density approximation and the histogram of energy levrithm in Ref.[25] for this problem, which solves the GPE for
els obtained by the direct diagonalization of the Hartreeq(r) and for the chemical potential using multigrid meth-
Fock Hamiltonian. The agreement above our cutoff proves tgds, while the HFBP equations are solved in a large trun-
be rather gOOd so that we can eXpeCt to obtain reliable resulﬁted basis. As a resu|t, we have all the necessary inputs]
in the local denflty apprOXimation. With this cutoff the name|y,qjo(r)' ¢1(r)+¢2(r)’ o, andn_l_(r) for performing
imaginary part ofy® becomes the second step: the use of H§2) in connection with the

Ill. NUMERICAL METHODS
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retarded density autocorrelation functiofsgs. (58) and

(60)]. _
This step is straightforward, but from a numerical point of 150 f ]

view it requires coping with six-dimensional space integrals

and three-dimensional momentum integrals. To reduce the 4
number of numerical integrations we proceed as follows. If b4
we introduceC as an intermediate quantity for — 100
2,
r r =
C(R,k)=J dre Mon*| R— 5| 6n| R+ 5|, (65 +
2 2 50
then Eq.(52) can be written as A %
g2 5 d3k ~0 ? . I ‘ . ‘
hw,=4— | d°R| =—3x (R, —K,wy)C(RKk). (66) %2 05 0.6 07 08 0.9
f (2) T
Next, let us expandn(r) =®o(r)[ ¢1(r) +¢a(r)] in some FIG. 2. Damping rates of then=0 (triangle$ and m=2
isotropic harmonic-oscillator basis as (circles modes as a function of/T.. Experimental valuesfull

symbolg with error bars are taken from Fig. 3 of Réfl]. Open

_ _ e symbols denote the theoretical predictionsdmof our model cal-
aNe(N=Po(NLer(N) +e2(N]= 2 Afi(), (67 culation using the dielectric formalism.

where the set of basis functiofigr) have the same angular ,seq in Fig. 1 of Ref{4]. From that figure we take the same
momentum quantum number and parity with respect to reT=T(T’) andNy=N,(T'), which were determined experi-
flection on thex-y plane as the unperturbed elementary ex'mentally. Also the same anisotropy,/w as in the experi-

citation in question. The next task is to find a connectionrnent was used. We present our results as a function of the
formula, which transforms any produdf' (r)fj(r') to a experimentalT’ because different experimental points be-
mixed (R,k) representation. This st_ep requires some stralghtrong to different physical conditions since neitémor Ny
forward but rather lengthy calculation, but the advantage we.,,1q pe kept fixed in the experiment.

gain is that, due to the facts that”(Rk,wo) is axially In Fig. 2 we plot the imaginary part ab; together with
symmetric inR for an axially symmetric harmonic-oscillator the measured damping rates for the=0,2 modes. For tem-
trap potential and isotropic ik we can perform the integra- perature’>0.6T, where the Landau damping arising from
tions over the azimuthal angle Eh‘and_ over the angles & e pubble graph(r,r’, ) is the dominant process, our

in Eq. (66). At the end, apart from discrete sums, we haverggyits are inside the error bars. At lower temperatures the
two spatial integrals in the radial and.m thghrechons ofR  alculated damping rates are slightly above the measured
and one momentum integral for the imaginary part and tWo,nes, The values for the damping rates due to our model

subsequent momentum integrals for the real pawafOf  c51cylation are larger with a factor of 32tcompared with
course, the remaining integrals must be performed numeri-

cally.
The form of the above mentioned connection formula ,, |
which we actually used is based on the following facts: First,

the productf? (r)f;(r') is a solution of the two-body, non- o0 | I a |
interacting harmonic-oscillator problem, which is also sepa- oy E
rable in center-of-mass and relative coordinates. Thus, ex 18 ' XEhkxT, T,

8T A

panding it in the other basis containing products of harmonic

oscillator wave-functions depending &= (r+r’)/2 andr g &
—r’, the expansion will contain only a finite number of new & e
basis functions from the energy shell+¢;. Second, the ®
Fourier transform of the harmonic-oscillator wave functions 4 | cod @ ® 2
(which we must perform with respect to the relative coordi- f
nates are basically the same as in real space. 12}

IV. RESULTS 004 05 0.6 07 0.8 0.9

. . S T/T,
We present our numerical results in a way which is di- ¢

rectly comparable with the measurempit In Figs. 2 and 3 FIG. 3. Excitation frequencies for the=0 and 2 modes as a
we put on the horizontal axe§’=T/T. where T, is the  function of T/T,. Notations for the experimental values are the
Bose-Einstein condensate transition temperature for the hagame as in Fig. 2. Open symbols denote our theoretical valyes
monically trapped ideal gas, and is also the same quantity Rew, in units of the axial trap frequency.

043606-8



SHIFTS AND WIDTHS OF COLLECTIVE EXCITATIONS . .. PHYSICAL REVIEW A 61 043606

the treatment of all Beliaev graphs to second ofdét. This  function in the homogeneous Bose ddd], where it was

is not surprising, because the neglection of the Beliaevshown that there are more, but purely damped, modes. They
damping and the use of local-density approximation is onlyremain purely overdamped aboVg in accord with a recent
justified for temperatures satisfying the conditikgT> w, experimen{27]. It can be shown that one of the overdamped
only valid for T>0.6T... The same condition is necessary to damped modes corresponds dar>én. and that it is a
neglect the quasiparticle character of the additional excite@node wheresny andén, relax out of phasg28]. In addition
particles contributing to the self-energies via scattering proit iS clear that in a harmonic trapping potential these damped
cesses. Comparing our results for the damping rates with th@odes will acquire a nonzero real part of their oscillation
values of the unperturbed, it is manifest that Imo;< wg. frequ'ency. However, t_o really Qemonstrate th!s for the_elge:n-
The real part ofw; is also much smaller thai, for all the solutions of the density-density autocorrelation function in

calculated points. Therefore, the criterium for the applicabil-th.e inhomogeneous case, and furthermore to show that in
. . S this case the missing mode can be described in this way,
ity of perturbation theory is justified. . . . ;
: . . requires further analytical and numerical studies.

In Fig. 3 we plotwy+ Rew; together with the experimen-
tally measured frequencies. For=2 we have good agree-
ment for temperatures abovie=0.6T., and slightly larger V. CONCLUSIONS AND FURTHER REMARKS
negative shifts compared to the experimental values below
T=0.6T.. The results for then=0 mode show the same
slight difference in the low-temperature region. But ap-

In this paper we have investigated the predictions of the
dielectric formalism applied to the model of a Bose gas ob-

proaching higher temperatures the experimental and the ng2ined by extending simpler models discussed in the litera-
merical results predict a different behavior for the excitationﬂure [7*1}’13' The proper and irreducible building blocks
energies. While experimentally they are increasing we found'” andA are already the result of summing up higher-order
decreasing values in our model calculation. The same qualFontributions in the form of a ladder approximation that only
tative discrepancy was also found by Hutchinstral. in sums up geometric series of the bubble graBhFrom the
Ref. [22] using a different approach to the problem. Theysecond-order Beliaev diagrams, for the irreducible self-
also reported good agreement with the measured frequenciesergies we keep only those which are supposed to give
for m=2, but disagreement fan=0. A possible explana- large contributions. Since Landau damping dominates Beli-
tion for the above discrepancies was given by Bijlsma andiev damping in the temperature regib® 0.6T . of the mea-
Stoof in Ref.[23], who used the quantum Boltzmann equa-surement at JILA, we neglect the diagrams connected with
tion in the collisionless regime and calculated low-lying ex- Beliaev damping. We reduce the amount of diagrams further
citation frequencies using a variational approach for e to only zero- and one-loop diagrams. In addition, we neglect
=0 and 2 modes. They found that there are two neanby all the self-energy diagrams containing anomalous Green'’s
=0 modes, one of them describing the in-phase oscillationfunctions. To find poles of the density-density correlation
and the other one the out-of-phase oscillations of the conderiunction, i.e., collective excitations, we used first-order per-
sate and thermal cloud. They concluded that it might be posturbation theory, where the proper and regular part of the
sible that in the experiment botm=0 modes are excited density-density correlation function played the role of the
together, and that in Ref4] only the upper one or a super- perturbing operator. We showed that the physical content of
position of both might be plotted. If there are two nearbythe unperturbed problem is equivalent to finding elementary
m=0 modes we must explain why in our calculation we excitations in the Hartree-Fock-Bogoliubov-Popov approxi-
have obtained only one of theiand furthermore not the mation. The fact that all first-order corrections to the Hartree-
experimentally measured onét is clear that by our pertur- Fock-Bogoliubov-Popov equations can be described with
bative treatment we fixed ourselves to one of them by calcupne bubble grapf® permits us to draw conclusions about
lating the corrections to the Hartree-Fock-Bogoliubov-Popovthe behavior of the quantitiesn, and sny from our numeri-
equations fordnr<én, and we followed it in changing the cal results. Due to the negative energy shifts obtained in our
temperature. Our results correspond to the branch describingimerical results, we can identify their motion to be out of
the out-of-phase motion calculated in Ref23,24. To see  phase. Since we establish our model on the basis of a dielec-
this we recall our formula for the corrections;  tric formalism, we achieve the required correspondence of
=29/ d® on%(r)én+(r), and the fact thai, is found to be  the spectra of the Green’s functions and the density autocor-
negative in our results. Therefore, the spacial average oveelation function, ensuring gapless spectra of quasiparticle
the amplitude product obn; and én. is negative, which modes and density modes in the homogeneous limit. The
means thatn; and on, are out of phase. version[Eqg. (42)] of our equation(41) agrees with the dy-

The in-phase mode can accordingly be obtained, if, imamic Hartree-Fock-Bogoliubov-Popov theory presented by
fact, there is another nearbgy=0 mode in our model ap- Minguzzi and Tos[14]. They derived Eq(42) by linearizing
proximation, if we do not use perturbation theory for solving the time-dependent Gross-Pitaevskii equation around its sta-
Eqg. (44). Instead we should consider the eigenvalues of th&ionary solutionn(r,t)=n.(r) + én.(r,t), and Eq.(23) by an
bubble graphy® corresponding to the thermal density fluc- €quivalent linearization of the Hartree-Fock equation for the
tuation ént, and calculate their perturbation due &o. . noncondensate field operator. The bubble grafShcon-
This possibility was supported by an early study of the be-nected with Eq(23) is also a product of Green’s functions in
havior of the poles of the density-density autocorrelationHartree-Fock approximation in their theory.
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Bijlsma and Stoof23] also considered E@23), and used tion, can show the existence of the missimg=0 mode re-
the dispersion relation of the Hartree-Fock operator in thequires an extended numerical study. Our future plan is to find
local-density approximation for their calculations. In contrastthe poles in a nonperturbative way, and study the decoupling
to us, they examined the collisionless Boltzmann equatiomf the single particle and the collective excitations for
for the Wigner function, and solved the equations with a—T.—0, along the lines of the calculation for homogeneous
variational approach, which cannot describe any damping afystem of Ref[11]. A further natural extension of this work
the excitations. Whereas the local-density approximation weould be to study further and more difficult, but still numeri-
(and the authors of Ref23]) use is better for large conden- cally manageable, model approximations.
sates, the approach of Fedicheval.[20] is better suited for
the opposite case of small condensates due to the assumption
of hard chaos, which can only be fulfilled for small conden-
sates. In this approach the diagrams are evaluated by inte- We would like to thank Gy. Bene and M. Fliesser for
grating along the classical trajectories. many stimulating discussions. This work was supported by a
We have found good agreement both for the shift and th@roject of the Hungarian Academy of Sciences and the Deut-
damping with the experiment fom=2, and also for the sche Forschungsgemeinschaft under Grant No. 95. R.G. and
damping rate of then=0 mode, but disagreement similar to J.R. wish to acknowledge support by the Deutsche Fors-
that of Ref.[22] in the frequency shift for then=0 mode. chungsgemeinschaft through the Sonderforschungbereich
We explained this discrepancy with observation by an arti237 “Unordnung and grof3e Fluktuationen.” Two of us
fact of our perturbative treatment, and by applying the argu{A.Cs. and P.Sz.would like to acknowledge support by the
ment of Refs[23,24], namely, by supposing another nearby Hungarian National Scientific Research Foundation under
lying m=0 mode. Grant Nos. OTKA T029552, T025866, and F020094, and by
To decide whether a nonperturbative treatment of thehe Ministry of Education of Hungary under Grant No.
problem, still within the framework of our model approxima- FKFP1059/1997.
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