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Intensity-intensity correlations and quantum interference in a driven three-level atom
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We investigate the two-time intensity correlation functions of the fluorescence field emitted from aV-type
three-level atom. We are particularly interested in the manner in which the atom emits photons in the presence
of quantum interference. We show that under strong-field excitation quantum interference leads to anticorre-
lations of photons emitted from the atomic excited levels which can exist for extremely long times. This
indicates that the excited atomic levels are not the preferred radiative states. We find that the atom spends most
of its time in a superposition of the excited atomic levels from which it emits strongly correlated photons. The
strong correlations are present only for a nonzero splitting between the excited levels, and for degenerate levels
the correlations reduce to that of a two-level atom. Moreover, we find that the transition from the ground level
to the symmetric superposition of the excited levels does not saturate even for a strong driving field. We also
calculate the correlation functions for a weak driving field, and find that in this case the photon correlations are
not significantly affected by quantum interference, but the atom can emit a strongly correlated pair of photons
produced by a three-wave mixing process. Under appropriate conditions, with near-maximal quantum inter-
ference, it is possible to make the maximum value of the correlation function extremely large, in marked
contrast with the corresponding case with no quantum interference.

PACS number~s!: 32.80.Bx, 42.50.Gy, 42.50.Lc
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I. INTRODUCTION

One of the most interesting developments in the area
atomic and molecular spectroscopy is the possibility
modifying spontaneous emission through the mechanism
quantum interferences. The phenomenon, first predicted
Agarwal @1# in a degenerate three-levelV-type system, re-
sults from vacuum-induced coherences between two ato
transitions: the spontaneous emission from one of the tra
tions modifies the spontaneous emission of the other tra
tion. Various atomic and molecular schemes have been s
ied, and the results demonstrate that quantum interfere
can lead to many effects which could have useful appli
tions in spectroscopy and laser physics. Examples includ
quenching of spontaneous emission@2–4#, electromagneti-
cally induced transparency@5#, and amplification without
population inversion@6#. Recent studies have also shown th
quantum interference can lead to phase-dependent po
tion inversions and phase control of spontaneous emis
@7#. Keitel @8# proposed a scheme to control the intensity
very narrow spectral lines in aV-type system driven from a
single auxiliary level, which could have applications in hig
precision spectroscopy.

Here we are concerned with the effects of quantum in
ference on the intensity-intensity correlations in a three-le
V-type atom consisting of two excited levels coupled to
singlet ground level by electric dipole interactions. The at
is driven by a single-mode laser coupled to both atomic tr
sitions, as shown in Fig. 1. These correlations were inve
gated by Hegerfeldt and Plenio@9# for an incoherently driven
atom. The results show that the intensity correlation m
exhibit quantum beats despite the incoherent pumping.
case of excitation by two coherent fields was considered
Manka et al. @10#, who showed how the resonance fluore
cence and intensity-intensity correlation spectra on one t
sition can be influenced by the intensity of the driving fie
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on the other transition@11#. In particular, they demonstrate
that the decay rate of the intensity-intensity correlation sp
trum could be reduced in this way. This is the counterpar
the line narrowing observed in the fluorescence spectra@12#.
Jagatapet al. @13# and Huanget al. @14# also calculated the
intensity correlations in a three-level ladder system driven
two coherent fields, and showed that the correlations
have secondary oscillations, in addition to the Rabi osci
tions.

In this paper we concentrate on the role of quantum in
ference in the correlation of photons emitted from a coh
ently driven V-type atom. We find that in the presence
quantum interference there are extendedsimultaneousperi-
ods of darkness in the fluorescence from the two atomic tr
sitions, even for equal decay rates of the excited levels. T
is in contrast to the dark periods predicted by Cook a
Kimble @15# and Pegget al. @16# for a V-type atom with
uncorrelated transitions and significantly different dec
ratesg1 andg2. In their case the atom ‘‘prefers’’ to stay in
the transition with the larger decay rate~strong transition!,
and there is a small probability of finding the system in t
other ~weak! transition. We show that in the presence
quantum interference and a strong driving field, the at
occupies superposition states rather than the bare atomic

FIG. 1. Energy-level scheme of a three-level atom in theV
configuration driven by a single laser field coupled to both atom
transitions.
©2000 The American Physical Society10-1
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els, and emits a stream of photons exhibiting strong corr
tions. For a weak driving field, quantum interference do
not significantly affect the photon correlations, but the at
can still emit strongly correlated pairs of photons, result
from a three-wave-mixing process. Under appropriate con
tions, the maximum value of the normalized, second-or
field correlation function can be made huge~values of the
order of hundreds or thousands! under conditions of quantum
interference, whereas the corresponding maximum in the
sence of quantum interference is ‘‘normal’’~values of the
order of unity!. We are not aware of such large values be
previously reported in the literature for single atoms, b
indefinitely large correlation functions for two two-level a
oms were reported by Wiegand@17#. The origin of the effect
in this case is different to that in our situation, because
arises from the fact that, in the three-dimensional probl
with two atoms, there are positions where the field vanish

II. SECOND-ORDER CORRELATION FUNCTIONS

The aim of this paper is to calculate the normaliz
second-order two-time correlation function~intensity-
intensity correlation!

g(2)~rW,t;rW,t1t!5
G(2)~rW,t;rW,t1t!

G(1)~rW,t !G(1)~rW,t1t!
~1!

for the fluorescent field emitted from a three-levelV-type
atom driven by a coherent laser field and observed b
single detector located at a pointrW5r r̂ , where r̂ is the unit
vector in the direction of the observation. The energy-le
scheme of the atom is shown in Fig. 1. The atom consist
two nondegenerate excited levelsu1& andu2& separated from
the ground levelu0& by transition frequenciesv1 and v2,
and connected by the electric dipole momentsmW 1 and mW 2,
respectively. The transition between the excited levels is
bidden in the electric dipole approximation.

The first- and second-order correlation functions, appe
ing in Eq. ~1!, can be expressed in terms of the positive a
negative frequency parts of the electric-field operator as

G(1)~rW,t !5S r 2c

2pv0
D ^EW (1)~rW,t !EW (2)~rW,t !&, ~2!

G(2)~rW,t;rW,t1t!5S r 2c

2pv0
D 2

^EW (1)~rW,t !EW (1)~rW,t1t!

3EW (2)~rW,t1t!EW (2)~rW,t !&, ~3!

wherev05(v11v2)/2. In Eqs.~2! and ~3!, we have intro-
duced a factor (r 2c/2pv0) such thatG(1)(rW,t)dV rdt is the
probability of finding a photon inside the solid angledV r ,
around the directionrW in the time intervaldt at the timet,
and G(2)(rW,t;rW,t1t)d2V rdtdt is the probability of finding
one photon inside the solid angledV r in the time intervaldt
at the timet and another photon inside the same solid an
in the time intervaldt at the timet1t.
04341
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In the far-field zone,r @c/v0, and t.r /c, the positive
frequency part of the electric field operator is given by

EW (1)~rW,t !5EW 0
(1)~rW,t !2

1

c2 (
i 51

2
r̂ 3~ r̂ 3mW i !

r
v i

2Ai0~ t2r /c!,

~4!

where Ai05u i &^0u is the dipole operator of the transition
between the excited and ground levels.

Since the field is initially in the vacuum state, the vacuu
part EW 0

(1)(rW,t) does not contribute to the expectation valu
of the normally ordered field operators, and then we obt
the following expression for the correlation functions:

G(1)~ t ![G(1)~rW,t !

5u~rW ! (
i , j 51

2

g i j ^Ai0~ t !A0 j~ t !& ~5!

and

G(2)~ t,t![G(2)~rW,t;rW,t1t!

5u2~rW ! (
i , j ,k,l 51

2

g i l g jk^Ai0~ t !Aj 0~ t1t!

3A0k~ t1t!A0l~ t !&, ~6!

whereg i i 5g i is the spontaneous decay constant of the
cited sublevelu i & ( i 51,2) to the ground levelu0&, while

g i j 5
2Av i

3v j
3

3\c3
mW i•mW j5bAg ig j ~ iÞ j ! ~7!

arises from the cross-damping~quantum interference! be-
tween the transitionsu1&→u0& and u2&→u0&. The cross-
damping term is sensitive to the mutual orientation of t
atomic transition dipole moments, which is represented h
by the parameterb. If the dipole moments are parallel,b
51, and the cross-damping term is maximal withg12

5Ag1g2, while g1250 if the dipole moments are perpen
dicular (b50).

In Eqs. ~5! and ~6!, u(rW) is a constant such thatu2(rW)
51 for a random orientation of the atomic dipole momen
with respect to the direction of observationrW, whereas

u2~rW !5
3

8p
sin2 Q ~8!

for a fixed orientation, withQ the angle betweenrW andmW .
It is easily seen that the second-order correlation funct

@Eq. ~6!# contains various two-time atomic correlation fun
tions of the form^Ai0(t)Aj j (t1t)A0i(t)& which are propor-
tional to the probabilities of detecting two photons emitt
from the same (i 5 j ) or different (iÞ j ) atomic transitions.
For example,̂ A20(t)A11(t1t)A02(t)& is proportional to the
0-2
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INTENSITY-INTENSITY CORRELATIONS AND . . . PHYSICAL REVIEW A61 043410
probability of detecting a photon at timet1t emitted from
the transitionu1&→u0& if a photon emitted from the transi
tion u2&→u0& was detected at timet.

Function ~6! also depends, through the cross-damp
term, on correlation functions of the form̂Ai0(t)Ajk(t
1t)A0l(t)& ( iÞ l and/or j Þk), which result from correla-
tions of photons emitted from a superposition of the exci
levels. Therefore, we introduce symmetric and antisymm
ric superposition states

us&5
1

Ag11g2

~Ag1u1&1Ag2u2&), ~9!

ua&5
1

Ag11g2

~Ag2u1&2Ag1u2&), ~10!

in terms of which the correlation functions~5! and~6! can be
written as

G(1)~ t !5
u~rW !

~g11g2!
$~g1

21g2
212bg1g2!^As0~ t !A0s~ t !&

12~12b!g1g2^Aa0~ t !A0a~ t !&

1~12b!Ag1g2~g12g2!^As0~ t !A0a~ t !

1Aa0~ t !A0s~ t !&% ~11!

and

G(2)~ t,t!5
u2~rW !

~g11g2!2
$~g1

21g2
212bg1g2!^As0~ t !

3U~ t1t!A0s~ t !&1~12b!Ag1g2

3@2Ag1g2^Aa0~ t !U~ t1t!A0a~ t !&1~g12g2!

3^As0~ t !U~ t1t!A0a~ t !

1Aa0~ t !U~ t1t!A0s~ t !&#%, ~12!

where

U~ t1t!5~g1
21g2

212bg1g2!As0~ t1t!A0s~ t1t!

1~12b!Ag1g2$2Ag1g2Aa0~ t1t!A0a~ t1t!

1~g12g2!@As0~ t1t!A0a~ t1t!

1Aa0~ t1t!A0s~ t1t!#%. ~13!

Using the bases of the symmetric and antisymme
states, there are three terms contributing to the first-
second-order correlation functions. In the expression
G(1)(t), the first term arises from the transitionus&→u0&, the
second from the transitionua&→u0&, and the third from the
coupling between them. When the decay rates are equag1
5g2, then the transitions are independent regardless of
mutual orientation of the atomic transition dipole momen
04341
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In the expression forG(2)(t), the first term arises from pro
cesses in which the first transition isus&→u0&, the second
term arises from processes in which the first transition
ua&→u0&, and the third term is due to the coupling betwe
them. Moreover, for parallel dipole moments (b51) only
the transitionus&→u0& contributes to the fluorescence inte
sity and the second-order correlation function, indicating t
in this case the system reduces to a two-level system. H
ever, correlations between the emitted photons can be
nificantly different from those one would expect for a tw
level system.

To show this, we consider the two-time normalize
second-order correlation function of the fluorescence fi
emitted by the atom. According to Eqs.~5! and~6!, the two-
time correlation function is proportional to the two-time co
relation functions of the atomic operators, which we can fi
from the master equation of the system and the quan
regression theorem@18#. In the frame rotating with the lase
frequencyvL the master equation is of the form

ṙ52 i @r,H#1Lr, ~14!

where the Hamiltonian is

H5~D2v12!A111DA221@~V1A101V2A20!1H.c.#,
~15!

and the damping term is

Lr5
1

2
g1~2A01rA102A11r2rA11!

1
1

2
g2~2A02rA202A22r2rA22!

1
1

2
g12~2A01rA202A21r2rA21!

1
1

2
g12~2A02rA102A12r2rA12!. ~16!

In Eq. ~15!, D5v22vL is the detuning between the fre
quencyv2 of the u0&→u2& transition and the driving lase
frequency, 2Vk(k51,2) is the Rabi frequency of thekth
transition, andv12 is the level splitting between the excite
sublevels. Here we assume that the excited sublevels
decay to the levelu0& by spontaneous emission, whereas
rect spontaneous transitions between the excited suble
are dipole forbidden.

The master equation~14! leads to the following equation
of motion for the density matrix elements:
0-3
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ṙ105~ ṙ01!* 52 iV12F1

2
g11 i ~D2v21!Gr102

1

2
g12r20

1 iV2r121 iV1~2r111r22!,

ṙ205~ ṙ02!* 52 iV22S 1

2
g21 iD D r202

1

2
g12r101 iV1r21

1 iV2~2r221r33!,
~17!

ṙ215~ ṙ12!* 52F1

2
~g11g2!1 iv21Gr212

1

2
g12~r221r11!

1 iV1r202 iV2r01,

ṙ1152g1r112
1

2
g12~r121r21!2 iV1~r012r10!,

ṙ2252g2r222
1

2
g12~r121r21!2 iV2~r022r20!.

The set of equations~17! can be written in matrix form as

XẆ ~ t !5MXW ~ t !1 IW, ~18!

where XW (t) is a column vector composed of the densi
matrix elements,IW is a column vector composed of the inh
mogeneous terms, andM is an 838 matrix obtained from
the coefficients appearing in the equations of motion~17!.
Since we are interested in the time evolution of the dens
matrix elements, we will need explicit expressions for t
componentsXi of the vectorXW (t) in terms of their initial
values. This can be done by a direct integration of Eq.~18!.
Thus, if t0 denotes an arbitrary initial time, the integration
Eq. ~18! leads to the following formal solution forXW (t):

XW ~ t !5XW ~ t0!eMt2~12eMt!M 21IW. ~19!

Solution~19! for the density-matrix elements at timet allows
us, by using the quantum regression theorem@18#, to find the
density-matrix elements at timet1t in terms of those at
time t. In the following sections, we will use solution~19! to
calculate the two-time normalized second-order correla
function for a strong driving field as well as a weak drivin
field.

III. STRONG DRIVING FIELD

We first consider the second-order correlation function
the case of a strong driving field, and examine the effect
quantum interference on the photon correlations. We ca
late the correlation function for the field emitted from th
individual atomic transitions~distinguishable photons!, as
well as for the total emitted field~indistinguishable photons!.
04341
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A. Distinguishable photons

If the photons emitted from the excited states to t
ground state are distinguishable, e.g., by having significa
different polarizations or frequencies, then the following no
malized second-order correlation functions of the stea
state fluorescence intensity can be defined@14#:

gi j
(2)~t!5 lim

t→`

g(2)~rW,t;rW,t1t!5
P0→ j~t!

Pj
, i , j 51,2,

where

P0→ j~t!5
^Ai0Aj 0~t!A0 j~t!A0i&

^Ai0A0i&
~20!

is the probability that at timet1t the atom is in the uppe
stateu j & of the transitionu j &→u0& if it was in the lower state
u0& of the u i &→u0& transition at timet, andPi5^Ai0A0i& is
the steady-state population of the stateu i &. In particular, we
consider the following correlation functions:

g11
(2)~t!5g21

(2)~t!5
P0→1~t!

P1
, ~21!

g22
(2)~t!5g12

(2)~t!5
P0→2~t!

P2
. ~22!

In Fig. 2 we show the correlation functions~21! and~22!
for g15g2 , v1250, V15V25V55g1, andD50, and two
different values ofb: b50, corresponding to the case o
perpendicular dipole moments; andb50.99, corresponding
to almost parallel dipole moments. We have chosenb,1 to
avoid population trapping, which can appear forb51
@1,2,4#. The correlations show the characteristic Rabi os
lations, which indicate that the detection of a photon at ti

FIG. 2. Second-order correlation functionsgi j
(2)(t) ( i , j 51,2)

for the case of distinguishable photons. In this and subsequent
ures, we takeg15g25g, and measure all quantities in terms ofg.
In this figure we assumev1250, D50, andV55g, and plot graphs
for two different values ofb: b50.99 ~solid line! and b50
~dashed line!.
0-4
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t, after the detection of a photon at time 0, is impossible
t50, and is unlikely untilt increases to a value of the ord
of (2V)21p. For both values ofb the correlation function
oscillates with the Rabi frequency of the driving field a
there is little difference between the plots forb50 and 0.99.
The shape of the oscillations resembles that known fo
two-level atom, which indicates that the atomic dipole m
ments oscillate independently, regardless of the value ofb.

In Fig. 3, we show the correlation functions for the sam
parameters as in Fig. 2, but nowv1255g1 and D5v12/2.
Here the behavior of the correlation functions is qualitativ
different to the case wherev1250. For correlated dipole
moments withb50.99, the values ofg11

(2)(t) and g22
(2)(t)

remain below unity for all times. This shows that for anyt
the probability of emission of two photons from levelsu1& or
u2& is very small. We can interpret this as extendedsimulta-
neousperiods of darkness in the fluorescence from the t
atomic transitions: after detection of a photon at timet50,
detection of another photon at timet.0, emitted from levels
u1& or u2&, is very unlikely. We point out that the simulta
neous periods of darkness appear only for correlated tra
tions withbÞ0. Dark periods of fluorescence were predict
before@15,16# in a three-level atom withb50 and signifi-
cantly different transition ratesg1 andg2. However, the pre-
dicted dark periods appear on only one of the two atom
transitions, whereas the extended dark periods, predi
here for the correlated transitions, appear simultaneously
both transitions. This indicates that in the presence of qu
tum interference the atomic statesu1& and u2& are not the
preferred radiative states of the atom.

It is apparent that there are oscillations at more than
frequency present in Fig. 3. In fact, there are oscillations
the Rabi frequency 2V as well as atV. The origin of these
frequencies is discussed in Sec. IV.

B. Indistinguishable photons

We are concerned here with the situation in which
photons emitted from the two atomic transitions are not d
tinguishable. This can happen when the atomic transition
pole moments are exactly or almost parallel. Then the de

FIG. 3. Same as in Fig. 2, butv1255g andD5v12/2.
04341
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tor responds to the total field~4!, for which the correlation
functions are given by Eqs.~11! and~12!. However, even for
b'1 we can still distinguish between photons emitted fro
the us&→u0& and ua&→u0& transitions, as they can have di
ferent polarizations. It is easy to see from Eqs.~9! and ~10!

that the dipole momentsmW s and mW a of the respectiveus&
→u0& and ua&→u0& transitions are oriented in different d
rections unlessmW 15mW 2, and thenmW a50.

Therefore, we separately consider the following corre
tion functions:

gss
(2)~t!5

P0→s~t!

Ps
, ~23!

gaa
(2)~t!5

P0→a~t!

Pa
. ~24!

In essence, the correlation functiongss
(2)(t) corresponds to

that of the total fluorescence field, as the contribution fro
the asymmetric state, which is proportional to (12b), is
negligible forb'1.

In Fig. 4, we plot the correlation functions~23! and ~24!
for g15g2 , V15V25V55g1 , v1255g1 , andD5v12/2.
Again, the solid line is forb50.99 and the dashed line fo
b50. It is apparent from the graphs that with quantum
terference (b50.99), there are very strong correlations
photons on theus&→u0& transition, whereas the photons a
strongly anticorrelated on theua&→u0& transition. The corre-
lation functiongss

(2)(t) oscillates with the frequency 2A2V,
which is the Rabi frequency in the symmetric basis, a
attains a maximum value at timet5(2A2V)21p. More-
over, the correlations decay at a very low rate, and it take
time in excess of 300p/g1 beforeg(2) is close to unity. The
correlation functiongaa

(2)(t) oscillates with frequencyA2V,
and, in the presence of quantum interference, is less
unity for all times, whereas forb50 the values can excee

FIG. 4. Second-order correlation functions for the case of ind
tinguishable photons forv1255g, D5v12/2, andV55g. In the
upper plot we presentgss

(2)(t), and in the lower plotgaa
(2)(t). The

solid line is forb50.99, and the dashed line forb50. If we change
b andD to b51 andD50.4v12/2, the graphs are almost identica
0-5
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unity, with a maximum value of around 2.8. It is wort
pointing out that very large values ofgss

(2)(t) are possible for
b.1, whereas the maximum value ofgss

(2)(t) remains of the
order of unity forb50. Thus in Fig. 4 it is seen that th
maximum value is about 22.5 forb.1. Even larger values
are possible: if we reduce the value ofV to 0.5g1, leaving
other parameters unchanged, then the maximum value
creases to almost 1500.

If we reduce the value ofv12, the difference between th
b50 and 0.99 graphs forgss

(2)(t) becomes less pronounce
This is shown in Fig. 5, where we plotgss

(2)(t) for the same
parameters as in Fig. 4, butv1250.1g1. We see that indeed
for sufficiently smallv12 the correlation functions forb50
and 0.99 oscillate in a similar fashion withgss

(2)(t),2 for all
timest. The dominant frequency ingss

(2)(t) is the Rabi fre-
quency 2A2V, whereas ingaa

(2)(t) it is A2V, as we discuss
in Sec. IV.

IV. INTERPRETATION OF THE RESULTS

The effect of quantum interference on the second-or
correlation function, shown in Figs. 2–5, is very sensitive
the splittingv12 of the excited levels. For degenerate excit
levels (v1250) or small splittings (v12'0), the photon
emissions are similar to those of a two-level atom, indep
dent of quantum interference. For large splittings, the co
lation functionsgi j

(2)(t) ( i , j 51,2) andgaa
(2)(t) are smaller

than unity for all timest, while gss
(2)(t) exhibits strong cor-

relations@gss
(2)(t)@2# for t'(2A2V)21p, which decay at a

very low rate.
We can explain these features by considering the ma

equation~14! and the equations of motion~17!. For v1250
the statesu1& andu2& are equally driven by the laser, and th
coherencesr10 andr20 oscillate in phase with frequencyD.
The coherences are directly coupled by the cross-dam
term g12. However, for a strong driving field (V@g i ,g12)
the Rabi oscillations dominate over the spontaneous
change of photons, resulting in independent oscillations
the atomic dipole moments.

The situation is different whenv12Þ0 andD5v12/2. In

FIG. 5. Same as in Fig. 4, butv1250.1g.
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this case the coherences oscillate with opposite phases,
cating that there is an exchange of photons between s
u1& and u2& which prevents photons being emitted from t
atomic levels. The coherences oscillate with6v12/2, which
introduces the modulation of the Rabi oscillations seen
Fig. 3. The exchange of photons between the atomic leve
better seen in the basis of the symmetric and antisymme
states~9! and ~10!. In terms of these states, settingg15g2
5g for simplicity, the master equation~14! and the Hamil-
tonian ~15! take the form

ṙ52 i @r,H#1
1

2
g~11b!~2A0srAs02Assr2rAss!

1
1

2
g~12b!~2A0arAa02Aaar2rAaa!, ~25!

with

H5S D2
1

2
v12D ~Ass1Aaa!2

1

2
v12~Asa1Aas!

1A2V~As01A0s!, ~26!

whereV5V15V2.
We see that the laser field couples only to the symme

state, and both states decay independently to the ground
with different decay rates. Forv12Þ0 the antisymmetric
state is coupled to the symmetric state by the HamiltonianH.
This coupling introduces periodical oscillations of the pop
lation between the symmetric and antisymmetric states. T
is seen in the equations of motion for the populations

ṙss52
1

2
g~11b!rss2

1

2
iv12~rsa2ras!

2 iA2V~rs02r0s!, ~27!

ṙaa52
1

2
g~12b!raa1

1

2
iv12~rsa2ras!. ~28!

It is evident that the antisymmetric state is populated by
coupling to the symmetric state. Since the decay rate of
antisymmetric state,g(12b), is very small forb'1, the
population stays in this state for a long time. Ifv1250, the
state is decoupled from the symmetric state, andraa(t) is
zero if its initial value is zero. In the latter case the syste
reduces to a two-level atom. In the former case the tran
of the population to a slowly decaying state leaves the sy
metric state almost unpopulated even if the driving field
strong. This is shown in Fig. 6, where we plot the stead
state populationsrss, raa , and r00 as functions ofD for
V55g1 , v1255g1, andb50.99. It is evident that the sym
metric state is almost unpopulated forD5v12/2. This indi-
cates that in the presence of quantum interference, the d
ing field does not saturate the transitionu0&→us&, even for
very large Rabi frequencies. The lack of population in t
state us& increases the probability of returning the atom
this state from the ground state by the driving field. Con
0-6
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quently, gss
(2)(t) attains a very large value at timet

5(2A2V)21p corresponding to half of the Rabi cycle b
tween u0& and us&. However,gaa

(2)(t) attains a maximum a
t'(A2V)21p, i.e., at the Rabi period. This results from th
fact that the driving laser takes the population fromu0& to us&
in a time equal to half of the Rabi period. Then the popu
tion can be transferred toua& in a time equal to that in which
the population will stay inus&, i.e., a time equal to half of the
Rabi period. Therefore, the total time of transferring t
population fromu0& to ua& is equal to the Rabi period.

V. WEAK DRIVING FIELD

The previous discussion shows that in the presence
strong driving field, quantum interference significantly a
fects the second-order correlation function of the emit
fluorescence field. Here we consider the correlation functi
for a weak driving field. In Fig. 7, we plotgi j

(2)(t)( i , j

FIG. 6. The steady-state populationsrss, raa , andr00 as func-
tions of D/g for V55g, v1255g, andb50.99.

FIG. 7. Second-order correlation functionsgi j
(2)(t)( i , j 51,2) for

distinguishable photons withV50.5g, D5v12/2, and two values
of v12. In the upper plotv1250, and in the lower plotv1255g.
The solid line is forb50.99, and the dashed line forb50.
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51,2) for g15g2 , V50.5g1 , D5v12/2, and two values of
v12. All four correlation functions are identical for thes
parameter values. Forv1250 the correlation functions in-
crease monotonically witht, and there is not much differ
ence betweenb50 and 0.99. Whenv12 is different from
zero, there is a small difference between theb50 and 0.99
plots, but what is interesting that thegi j

(2)(t) show strong
correlations with a maximum greater than 2 att
5(v12/2)21p. This is in contrast to the case of the stron
driving field, shown in Fig. 3, where quantum interferen
leads to photon anticorrelation appearing for allt. Thus, for
a weak driving field, quantum interference does not sign
cantly affect the correlation functions. The strong phot
correlations, seen in Fig. 7, can be interpreted as arising f
a three-wave mixing process, which dominates when the
ser is detuned from the atomic transition frequencies.
example, the strong correlations ing22

(2)(t) result from an
absorption from the laser field of two photons of frequen
v22D and the emission of a correlated pair of photons
frequenciesvL2D andvL1D.

VI. SUMMARY

In this paper we have examined the effect of quant
interference on the two-time correlation functions of t
fluorescence field emitted by aV-type three-level atom
driven by a single-mode laser field. We have used the ma
equation of the system, and have applied the quantum reg
sion theorem to calculate various correlation functio
gi j

(2)(t). We have found that for the case of degener
atomic transitions the photon correlations are not sign
cantly affected by quantum interference. For nondegene
transitions, the photon correlations depend strongly on
intensity of the driving field. When a strong driving field
tuned to the middle of the two excited levels, the correlatio
of photons emitted from the atomic transitions exhibit an
correlations which persist for all times. Thus the excit
atomic levels are not the preferred radiative states: the a
emits strongly correlated photons from a symmetric super
sition of the excited levels. The correlations result from
coherent transfer of populations to the antisymmetric st
which leaves the symmetric state unpopulated even for v
strong driving fields. For a weak driving field, the photo
correlations are not strongly affected by quantum interf
ence, but the atom can emit strongly correlated pairs of p
tons arising from a three-wave mixing process.

We conclude with a brief discussion on the possibility
experimental detection of these unusual features. The es
tial conditions for this is that theV system should be slightly
detuned from the optimum conditions necessary for f
quantum interference. In the figures, we have achieved
by assuming the dipole moments to be slightly misalign
from parallel (b50.99), while the laser detuning is taken
be optimum for quantum interference:D5v12/2. It has been
predicted that these conditions may be realizable in a ca
system@19#. An alternative arrangement would be to utiliz
parallel dipole moments (b51) with the laser frequency de
tuned from the optimum for quantum interference. For e
ample, in Fig. 4, we have takenb50.99 andD5v12/2. We
0-7
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find that spectra — almost indistinguishable from those p
sented, at least for the first few Rabi oscillations — are
tained for the alternative parameter valuesb51 and D
50.43v12/2. A system with parallel dipole moments wa
employed in the experiments of Xiaet al. @20#. It seems that
an experimental observation of these effects is feasible.
us
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