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Coherent properties of a tripod system coupled via a continuum

R. G. Unanyan,1,* N. V. Vitanov,2 B. W. Shore,1,† and K. Bergmann1
1Fachbereich Physik der Universita¨t, 67653 Kaiserslautern, Germany

2Helsinki Institute of Physics, PL 9, 00014 Helsingin yliopisto, Finland
~Received 17 September 1999; published 9 March 2000!

We present results from a study of the coherence properties of a system involving three discrete states
coupled to each other by two-photon processes via a common continuum. This tripod linkage is an extension
of the standard laser-induced continuum structure~LICS!, which involves two discrete states and two lasers.
We show that in the tripod scheme, there exist two population trapping conditions; in some cases these
conditions are easier to satisfy than the single trapping condition in a two-state LICS. Depending on the pulse
timing, various effects can be observed. We derive some basic properties of the tripod scheme, such as the
solution for coincident pulses, the behavior of the system in the adiabatic limit for delayed pulses, the condi-
tions for no ionization and for maximal ionization, and the optimal conditions for population transfer between
the discrete states via the continuum. In the case when one of the discrete states is strongly coupled to the
continuum, the population dynamics reduces to a standard two-state LICS problem~involving the other two
states! with modified parameters; this provides the opportunity to customize the parameters of a given two-state
LICS system.

PACS number~s!: 42.50.Hz, 32.80.Fb, 32.80.Qk, 32.80.Dz
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I. INTRODUCTION

Coherent interaction between discrete quantum states
a continuum is an intriguing process. Although the co
tinuum is traditionally seen as an incoherent medium,~par-
tial! transfer of coherence can nevertheless occur throug
In particular, much theoretical and experimental attent
has been devoted to the laser-induced continuum struc
~LICS! @1–19#, where the interaction between a discrete st
c2 and a structureless, flat continuum creates a structur
the continuum which significantly affects the interaction
another discrete statec1 with this continuum. For example
the ionization probability for statec1, when plotted as a
function of the frequency of the ionizing laser, exhibits t
so-called Fano profile@1#. The physical nature of the LICS i
closely related to autoionizing states@1,20–26#.

It was suggested by Carroll and Hioe a few years a
@27,28# that a continuum can serve as an intermediary
population transfer between two discrete states in an atom
a molecule by using a sequence of two counterintuitiv
ordered delayed laser pulses. This scheme is an intere
variation of the process of stimulated Raman adiabatic p
sage~see Refs.@29–32# and references therein! where a dis-
crete intermediate state is used. The Carroll-Hioe anal
model, which involves an infinite quasicontinuum of equid
tant discrete states, equally strongly coupled to the
bound states, suggests that complete population transf
possible, the ionization being suppressed. Later, Nakaj
et al., @33# demonstrated that this result derives from the v
stringent restrictions of the model which are unlikely to
met in a realistic physical system with a real continuum,
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particular with a nonzero Fano parameterq. It has subse-
quently been recognized that although complete popula
transfer is unrealistic, significant partial transfer may still
feasible@34–39#. It has been shown that, at least in princip
the detrimental effect of the nonzero Fano parameter
Stark shifts can be overcome by using Stark shifts indu
by a third ~nonionizing! laser@36# or by using appropriately
chirped laser pulses@37,38#. It has been concluded@36,37#
that the main difficulty in achieving efficient populatio
transfer is related to the incoherent ionization channels
which at least one is always present and leads to inevita
irreversible population losses. It has been suggested@35,36#
that these losses can be reduced~although not eliminated! by
choosing an appropriate region in the continuum where
ionization probability is minimal. Later, it was shown th
incoherent ionization can be suppressed very effectively
using a Fano-like resonance induced by an additional la
from a third statec3, resulting in a considerable increase
the transfer efficiency@40#.

In the present paper, we investigate the coherence p
erties of a scheme comprisingthree discrete states couple
via a common continuum. This tripod linkage can be view
as an extension of the standard LICS, involving two discr
states and two lasers, with the inclusion of an extra state
using a third laser. Such a scheme can also appear in a
dard two-state LICS when the two lasers are tuned nea
autoionizing state; the latter is strongly coupled to the c
tinuum by configuration interaction. The present scheme
also be viewed as a variation of the tripod scheme comp
ing three discrete states coupled via a~common! fourth dis-
crete state@41,42#. In contrast to the three-state scheme
Ref. @40#, in which the additional laser used to suppress
coherent ionization was tuned in the continuum much ab
the region where the main lasers are tuned~thus reducing the
coupled three-state dynamics to a pair of two-state LICS s
tems!; here the additional laser is tuned in the same region
the two main lasers, which means that we have to deal w

an

y,
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UNANYAN, VITANOV, SHORE, AND BERGMANN PHYSICAL REVIEW A 61 043408
generally irreducible three-state dynamics. Some prope
of this tripod scheme have been studied in Ref.@43# in the
particular case when the Fano parameters are equal an
additional state is a strongly coupled autoionizing state
the present paper we establish the basic properties of
system in the general case of arbitrary Fano parameters
arbitrary strong ionization rates. We derive the populat
trapping conditions, which are now two, in contrast to t
single trapping condition in a two-state LICS. Furthermo
we obtain the solution for coincident pulses and the beha
of the system in the adiabatic limit for delayed pulses,
cluding the optimal conditions for population transfer b
tween the discrete states via the continuum.

This paper is organized as follows. In Sec. II, we intr
duce the tripod-continuum system, present the basic e
tions and definitions, and derive the trapping conditions.
Sec. III, we consider the case when all laser fields have
same time dependence. In Sec. IV, we examine the cas
delayed laser pulses with a special attention to popula
transfer in the near-adiabatic regime. In Sec. V, we expl
the case when the third statec3 is strongly coupled to the
continuum, and eliminate it adiabatically to simplify the d
namics and gain insight into the tripod-continuum intera
tion. Finally, in Sec. VI we summarize the conclusions.

II. TRIPOD-CONTINUUM SYSTEM

A. System

We shall ignore any continuum-continuum transition
such as above threshold ionization@44#, which become im-
portant only for very high laser intensities. We also negl
spontaneous emission from the bound states, which is ju
fied when these states are ground or metastable or whe
interaction time is short compared to the atomic relaxat
times. Finally, we ignore incoherent ionization chann
@36,37,40#, i.e., we assume that each laser drives only o
transition between a bound state and the continuum.

The total wave function can be written as a linear sup
position of the three discrete states and the continuum.
then substitute this expansion into the time-dependent Sc¨-
dinger equation and eliminate the continuum using
rotating-wave and Markov approximations@3#. The probabil-
ity amplitudes of the three bound states are then found
obey the equation (\51)

i
d

dt
C~ t !5H~ t !C~ t !, ~1!

where C(t)5@C1(t),C2(t),C3(t)#T. The time-dependen
Hamiltonian describing the system separates into real
imaginary parts,

H~ t !5A~ t !1 iB~ t !, ~2a!

A52
1

2F 22D1 AG1G2q12 AG1G3q13

AG1G2q12 22D2 AG2G3q23

AG1G3q13 AG2G3q23 0
G , ~2b!
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B52
1

2F G1 AG1G2 AG1G3

AG1G2 G2 AG2G3

AG1G3 AG2G3 G3

G . ~2c!

~For typographic simplicity, here and subsequently we of
omit the explicit time argument!. Here

D1~ t !5d11S1~ t !2S3~ t !, ~3a!

D2~ t !5d21S2~ t !2S3~ t !, ~3b!

with dk(k51,2) being the static two-photon laser detuni
between stateck and statec3,

dk5Ek1vk2E32v3 , ~4!

where Ek is the energy of stateck and vk is the carrier
frequency of the laser that couples this state to the c
tinuum. As evident from Eq.~2b! and as shown in Fig. 1, we
have chosen the Stark-shifted energy of statec3 as the zero
energy level.

The quantity Gk(t)(k51,2,3) is the ionization rate o
state ck , which is proportional to the generally time
dependent~e.g., pulse-shaped! intensity of the corresponding
laser,

Gk~ t !52puVke~ t !ue5Ek1vk

2 , ~5!

whereVke(t)(k51,2,3) is the interaction operator matrix e
ement between stateck and the continuum state with energ
e. Sk(t) (k51,2,3) is the total laser-induced dynamic Sta
shift for stateck , which is a sum of the Stark shifts, induce
by each laser. For each laser the Stark shift is proportiona
the corresponding laser intensity, and has the form

FIG. 1. Sketch of the tripod scheme involving three discr
statesc1 , c2, andc3 coupled via a common continuum by thre
lasers. The ionization ratesGk(t) are proportional to the corre
sponding laser intensities, and are generally time dependent.
8-2
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COHERENT PROPERTIES OF A TRIPOD SYSTEM . . . PHYSICAL REVIEW A61 043408
Sk~ t !5PX
e

uVke~ t !u2

e2Ek2vk
, ~6!

whereP is the principal value and the above expression
volves summation over all participating bound states and
tegration over the continuum states.

The dimensionless constantsq12, q13, and q23 in Eq.
~2b! are the Fano asymmetry parameters@1–3,45#, which
characterize the transitions between the corresponding p
of states via the continuum and depend on the atomic st
ture. They are defined by the ratio

qkl5

PX
e

Vke~ t !Vl e* ~ t !

e2Ek2vk

pVke~ t !Vl e* ~ t !
. ~7!

With the exception of the Fano parameters, all variables
volved in Eqs.~2! can be controlled externally by the las
fields and are generally time dependent.

We shall assume that the system is initially in statec1,

C1~2`!51, C2~2`!5C3~2`!50, ~8!

and the quantities of interest are the populations of the
crete states att→1`, Pk5uCk(1`)u2 (k51,2,3), and
the ionization probabilityPi512P12P22P3. Because we
choose the initial conditions~8! and we intend to explore
how the additional statec3 affects the interaction betwee
statesc1 andc2, we shall refer toG1(t), G2(t), andG3(t)
as ionization rates induced by the pump, Stokes, and con
lasers, respectively.

B. Eigenvalues and trapping conditions

It was shown in Ref.@46# that if the matricesA(t) and
B(t) commute,

A~ t !B~ t !5B~ t !A~ t !, ~9!

then the eigenvalues ofH(t) read as

lk~ t !5lk
A~ t !1 ilk

B~ t ! ~k51,2,3!, ~10!

where lk
A(t) and lk

B(t) are eigenvalues ofA(t) and B(t),
respectively. The importance of relation~10! derives from
the fact that the eigenvalues ofB(t) are given by

l1
B~ t !5l2

B~ t !50, l3
B~ t !52

1

2
G~ t !, ~11!

where

G~ t !5G1~ t !1G2~ t !1G3~ t !, ~12!

i.e.,B(t) has two zero eigenvalues which correspond tonon-
decayingeigenstates ofH(t). The fulfillment of relation~9!
requires that
04340
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D1~ t !5
1

2
q13@G3~ t !2G1~ t !#1

1

2
~q122q23!G2~ t !,

~13a!

D2~ t !5
1

2
q23@G3~ t !2G2~ t !#1

1

2
~q122q13!G1~ t !.

~13b!

Equations~13! will be referred to asthe population trapping
conditions. Hence there are two such conditions imposed
the interaction parameters, rather than just one as in a t
state LICS. It is easily verified that forG350, Eqs. ~13!
reduce to the well-known trapping condition in a LICS@3#:

D1~ t !2D2~ t !5
1

2
q12@G2~ t !2G1~ t !#. ~14!

Given Eqs.~13!, the eigenvalues ofA(t) are

l1
A~ t !5a~ t !1Aa2~ t !1b~ t !, ~15a!

l2
A~ t !5a~ t !2Aa2~ t !1b~ t !, ~15b!

l3
A~ t !52

1

2
@q13G1~ t !1q23G2~ t !#, ~15c!

with

a5
1

4
@q13~G32G1!1q23~G32G2!1q12~G11G2!#,

b5
1

4
G3@q13~q132q12!G11q23~q232q12!G22q13q23G3#.

C. Eigenstates and adiabatic basis

Important information of the interaction dynamics is co
tained in the instantaneous eigenstates ofH(t)—the adia-
batic states. They are derived readily when the trapping co
ditions ~13! are fulfilled, which we shall assume.

Because of the degeneracy of the two zero eigenvalue
B(t), there is an ambiguity in the corresponding two eige
states ofB(t), since any linear combination of them wou
be a zero-eigenvalue eigenstate ofB(t) too. This implies, in
particular, that despite the commutation relation~9!, the
zero-eigenvalue eigenstates ofB(t) are not necessarily
eigenstates ofA(t). Any eigenstate ofA(t), however, is an
eigenstate ofB(t), and hence ofH(t) too. The common
~time-dependent! eigenstates ofA(t), B(t), and H(t) are
given by

w15F cosu cosx2sinu sinf sinx

2sinu cosx2cosu sinf sinx

cosf sinx
G , ~16a!

w25F cosu sinx1sinu sinf cosx

2sinu sinx1cosu sinf cosx

2cosf cosx
G , ~16b!
8-3
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UNANYAN, VITANOV, SHORE, AND BERGMANN PHYSICAL REVIEW A 61 043408
w35F sinu cosf

cosu cosf

sinf
G , ~16c!

where the time-dependent anglesu(t), f(t), andx(t) are
defined by

tanu5AG1

G2
, ~17a!

tanf5A G3

G11G2
, ~17b!

cot 2x5
~G12G2!~G11G212G3!

4AG1G2G3~G11G21G3!

1
~G11G2!2~q131q2322q12!

4AG1G2G3~G11G21G3!~q132q23!
.

~17c!

The use of adiabatic states is appropriate in two cases
the near-adiabatic regime and for coincident pulses—bec
then the couplings between the adiabatic states vanish a
is possible to derive analytic estimates for the populat
dynamics. We shall do this in Secs. III and IV.

D. Basis ofw18„t…, w28„t…, and w3„t…

In some cases it is convenient to employ an alterna
time-dependent basis composed of statesw18(t), w28(t), and
w3(t), where

w185F cosu

2sinu

0
G , w285F sinu sinf

cosu sinf

2cosf
G , ~18!

and w3(t) is the adiabatic state@Eq. ~16c!#. Obviously, the
adiabatic statesw1(t) andw2(t) are linear superpositions o
statesw18(t) andw28(t):

w15w18cosx2w28sinx, ~19a!

w25w18sinx1w28cosx. ~19b!

Like statesw1(t) and w2(t), statesw18(t) and w28(t) do not
decay; the only decaying state in the (w18 ,w28 ,w3) basis is
w3(t). Statesw18(t) and w28(t) are ~zero-eigenvalue! eigen-
states ofB(t), but not generally ofA(t) and H(t). It can
easily be shown that they become eigenstates ofA(t) and
H(t) only whenq135q23.

The transformation from the bare-state basis~1! to the
(w18 ,w28 ,w3) basis,C(t)5R(t)C8(t), is carried out by the
time-dependent rotation matrix
04340
in
se
it

n

e

R5F cosu sinu sinf sinu cosf

2sinu cosu sinf cosu cosf

0 2cosf sinf
G . ~20!

The Schro¨dinger equation in the new basis reads

i
d

dt
C8~ t !5H8~ t !C8~ t !, ~21!

with C8(t)5@C18(t),C28(t),C3(t)#T and~an overdot meaning
a time derivative!

H85R21HR2 iR21Ṙ

5F D18 V82 i u̇ sinf 2 i u̇ cosf

V81 i u̇ sinf D28 i ḟ

i u̇ cosf 2 i ḟ D382
1

2
iG

G ,

~22!

whereG is given by Eq.~12!, and

D185
1

2~G11G2!
@G3~q23G11q13G2!1q12~G11G2!2

2~G11G2!~q13G11q23G2!#, ~23a!

D285
G3~q13G11q23G2!

2~G11G2!
, ~23b!

D3852
1

2
~q13G11q23G2!, ~23c!

V85
q132q23

2~G11G2!
AG1G2G3~G11G21G3!. ~23d!

Note that cot 2x5(D282D18)/2V8.

III. COINCIDENT PULSES

A. Case of equal Fano parameters

The above theory allows us to derive analytic formu
for the bound-state populations and the ionization probab
in the case when all ionization rates have the same t
dependence:

Gk~ t !5gkf ~ t ! ~k51,2,3!. ~24!

Then the mixing anglesu, f, andx are constant, and the
nonadiabatic couplings~which are proportional to deriva
tives of these angles! vanish identically. The solution can b
found by an appropriate change of the independent varia
~time!, and transformation to the adiabatic basis where
nonadiabatic couplings vanish and the Hamiltonian is dia
nal. Let us also assume for simplicity that all Fano para
eters are equal:q125q135q23[q. If the population is ini-
8-4
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COHERENT PROPERTIES OF A TRIPOD SYSTEM . . . PHYSICAL REVIEW A61 043408
tially in statec1, the populations of the bound states and
ionization after the interaction are easily found to be

P15
1

g2 F ~g21g3!21g1
2e2A12g1~g21g3!e2A/2cos

1

2
qAG ,
~25a!

P25
g1g3

g2 S 11e2A22e2A/2cos
1

2
qAD , ~25b!

P35
g1g2

g2 S 11e2A22e2A/2cos
1

2
qAD , ~25c!

Pi5
g1

g
~12e2A!, ~25d!

whereg5g11g21g3 and

A5E
2`

`

G~ t !dt. ~26!

The results are similar when the system is initially in statec2
or c3; then the initial-state population is given by Eq.~25a!,
the populations of the other two states by Eqs.~25b! and
~25c!, and the ionization by Eq.~25d! ~with an appropriate
permutation of the labels!. Obviously, a similar population
trapping phenomenon as for a two-state LICS takes pla
limiting the maximum possible ionization probability to13
for equal ionization rates (g15g25g3), compared to1

2 for
two-state LICS.

In Fig. 2, populations~25! are plotted against the puls
areaA for the case of equal ionization rates. As the pu
area increases, the populations tend to their adiabatic li
P1→ 4

9 , P25P3→ 1
9 , andPi→ 1

3 .

FIG. 2. The populations of the bound states and the ioniza
probability ~25! in the case of coincident pulses@Eq. ~24!# plotted
against the~dimensionless! pulse areaA. All Fano parameters are
equal, q125q135q2355, and all ionization rates are also equ
(g15g25g3).
04340
e
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B. General case

In the general case of unequal Fano parameters one
still find an analytic solution, but the resulting formulas a
too cumbersome to be presented here. The qualitative be
ior of the populations remains essentially the same. A sim
estimate exists for the maximum possible ionization pro
ability ~achieved in the limit of strong ionization rates!,
which is equal to the initial population of the only decayin
adiabatic statew3(t) @Eq. ~16c!#:

Pi ,max5sin2u cos2f5
g1

g11g21g3
. ~27!

Hence, the stronger the Stokes and control pulsesG2 andG3,
the smaller the ionization.

IV. DELAYED PULSES

A. Minimal and maximal ionization

1. No ionization

It is easily seen from Eq.~16c! that whenu(2`)50
and/orf(2`)5 1

2 p, the only decaying adiabatic statew3(t)
is not populated initially. As Eqs.~17a! and~17b! show, this
happens when

lim
t→2`

G1~ t !

G1~ t !1G2~ t !1G3~ t !
50. ~28!

In the adiabatic limit statew3(t) remains unpopulated an
hence, the ionization probability is zero throughout the int
action, Pi(t)50. In other words, in the adiabatic limit th
ionization probability is zero when the pump pulse is delay
with respect to the Stokes pulse and/or the control pulse.
pulse ordering~28! generalizes the counterintuitive pulse o
der in the two-state LICS and provides the most appropr
conditions for coherent processes via the continuum, suc
population transfer between the bound states, which we s
discuss in Sec. IV B.

2. Complete ionization

As follows from Eq. ~16c!, when u(2`)5 1
2 p and

f(2`)50, the decaying statew3(t) is the only adiabatic
state populated initially. According to Eqs.~17a! and ~17b!,
this happens when the pump pulseG1(t) arrives before both
the control and Stokes pulses, i.e.,

lim
t→2`

G2~ t !

G1~ t !
5 lim

t→2`

G3~ t !

G1~ t !
50. ~29!

In the adiabatic regime no population is transferred to
other adiabatic states, and the ionization probability is giv
by Pi512uw3(1`)u2. Since the decay rate of statew3(t) is
1
2 G(t) @see Eq.~11!#, we find that

Pi512e2A, ~30!

whereA is given by Eq.~26!, i.e., Pi can approach unity for
strong ionization rates, even though the trapping conditi

n

8-5
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UNANYAN, VITANOV, SHORE, AND BERGMANN PHYSICAL REVIEW A 61 043408
~13! are satisfied. The pulse order~29! generalizes the intui-
tive pulse order in the two-state LICS.

B. Population transfer via continuum

1. Adiabatic limit

An intriguing process based on a LICS is populati
transfer between two bound states via a common continu
which has received considerable attention recen
@27,28,33–40#. We will show that the tripod system enable
the same process, providing at the same time a greater
ibility.

Let us consider the pulse timing when the control pu
G3(t) arrives first and disappears last, i.e.,

lim
t→6`

G1~ t !

G3~ t !
5 lim

t→6`

G2~ t !

G3~ t !
50. ~31a!

As we have shown above~Sec. IV A 1!, the ionization prob-
ability in this case is zero,Pi(t)50, because the only decay
ing adiabatic statew3(t) is not populated initially. Hence the
population is distributed among the bound states through
the interaction. Suppose also that the Stokes pulse prec
the pump pulse~counterintuitive order!, i.e.,

lim
t→2`

G1~ t !

G2~ t !
50, lim

t→1`

G2~ t !

G1~ t !
50. ~31b!

It follows from Eqs.~17! that

u~2`!50, u~1`!5
1

2
p, ~32a!

f~2`!5
1

2
p, f~1`!5

1

2
p. ~32b!

The initial and final values ofx, however, depend on th
Fano parameters.

For q135q23Þq12, we havex(6`)50. Hence

w1~2`!5c1 , w1~1`!52c2 , ~33a!

w2~2`!5c2 , w2~1`!5c1 , ~33b!

w3~2`!5c3 , w3~1`!5c3 . ~33c!

Thus, in the adiabatic limit, the population is transferr
from statec1 to statec2 via the adiabatic statew1(t).

For q13Þq23, we havex(2`)5 1
2 p and x(1`)50.

Hence

w1~6`!52c2 , ~34a!

w2~6`!5c1 , ~34b!

w3~6`!5c3 . ~34c!

Thus, in the adiabatic limit, the population returns to t
initial state c1, staying all the time in the adiabatic sta
w2(t).
04340
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For q135q235q12, the population behavior is most easi
revealed in the (w18 ,w28 ,w3) basis because thereD18(t)
2D28(t)50 and V8(t)50 @see Eqs.~23!#. Hence states
w18(t) and w28(t) are degenerate, and the coupling betwe

them is given byu̇(t)sinf(t). For pulse ordering~31!, states
w18(t) and w28(t) have the following asymptotic behavior
@see Eqs.~18!#:

w18~2`!5c1 , w18~1`!52c2 , ~35a!

w28~2`!5c2 , w28~1`!5c1 . ~35b!

Hence the bare-state populations in the adiabatic limit ar

P1'sin2E
2`

`

u̇~ t !sinf~ t !dt, ~36a!

P2'cos2E
2`

`

u̇~ t !sinf~ t !dt, ~36b!

P3'0. ~36c!

The populations of statesc1 and c2 depend only on the
anglesu(t) and f(t), which in turn depend on the time
delayt betweenG1(t) andG2(t). This dependence provide
the possibility to control the created coherent superposi
of c1 and c2 through the pulse delay. This property of th
tripod-continuum system is similar to the one for a discr
tripod system coupled via a discrete state@41#, rather than a
continuum, which was demonstrated experimentally rece
@42#.

2. Optimal conditions for population transfer

Although in the general case ofq13Þq23 the population
returns to the initial statec1 in the adiabatic limit, it is still
possible to transfer population to statec2 for certain ranges
of interaction parameters. These ranges are most easily
termined in the (w18 ,w28 ,w3) basis, which is more convenien
than the adiabatic basis. As is evident from the asympt
limits @Eqs. ~35!# of w18(t) and w28(t), only statew18(t) is
populated initially, and if the atom stays inw18(t) at all times,
the desired population transfer fromc1 to c2 will occur. In
order to achieve this, transitions fromw18(t) to both states
w28(t) andw3(t) must be suppressed. This restriction det
mines the ranges of interaction parameters for which sign
cant population transfer fromc1 to c2 is possible.

Statew18(t) is coupled to statew3(t) with a coupling pro-

portional tou̇(t) @see Eqs.~22!#. Hence the detrimental tran
sitions fromw18(t) to w3(t) can be avoided if the interactio
is sufficiently adiabatic, which requires that

uu̇~ t !cosf~ t !u!A@D18~ t !2D38~ t !#21
1

4
G2~ t !. ~37!

On the other hand, the interaction should not be too ad
batic, because then, as we have shown in Sec. IV B 1,
population returns to statec1. This conclusion is confirmed
8-6
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when examining the nature of the interaction between st
w18(t) andw28(t) @see Eq.~22!#. Indeed, the effective detun
ing in this subsystemD28(t)2D18(t) has different signs att
→6`, which means that there is a level-crossing transit
and hence, complete population transfer between st
w18(t) andw28(t) occurs in the adiabatic limit. According t
Eqs.~35!, such a complete transfer means complete pop
tion return toc1 in the bare-state basis. Obviously, only
the case ofq135q23 does the couplingV8(t) vanish identi-
cally, andw18(t) andw28(t) are only coupled by a weak nona
diabatic coupling, which vanishes in the adiabatic lim
However, the caseq135q23 is exceptional, and it is difficult
to find atomic states which satisfy this condition. Forq13

Þq23, there is a residual couplingV8(t) betweenw18(t) and
w28(t) which remains nonzero in the adiabatic limit an
causes transitions between these states. Referring to
Landau-Zener formula@47#, we conclude that in order to
avoid population transfer fromw18(t) to w28(t), the relation

@V8~ t0!#2!uḊ28~ t0!2Ḋ18~ t0!u ~38!

must be fulfilled, wheret0 is the crossing point:D18(t0)
5D28(t0). It is possible to refine condition~38! by including
effects of asymmetry@48# and nonlinearity@49# at the cross-
ing and finite transition times@50#.

Conditions~37! and ~38! provide the restrictions on th
interaction parameters needed for significant popula
transfer fromc1 to c2.

3. Numerical examples

In our numerical simulations we have used Gauss
pulse shapes forG1(t) andG2(t) and constantG3,

G1~ t !5g1e2(t2t)2/T2
, ~39a!

G2~ t !5g2e2(t1t)2/T2
, ~39b!

G3~ t !5g3 , ~39c!

where 2t is the delay between the pump and Stokes pu
andT is their width.

It is possible to simplify conditions~37! and ~38! when
the control pulse is much stronger than the pump and Sto
pulses, and the latter two have equal peak values:g3@g1
5g2. Then the crossing point is given byt0'0, and condi-
tions ~37! and ~38! become

2t

TA11
1

4
~q131q23!

2

!g3T!
16t

Tuq132q23u
. ~40!

Hence an appreciable population transfer fromc1 to c2 is
only possible if the differenceuq132q23u is sufficiently small.

In Fig. 3, the populations of the discrete states and
ionization probability are plotted against the pulse widthT of
the pump and Stokes pulses. The detuningsD1(t) andD2(t)
are chosen to satisfy the trapping conditions~13! at any time;
04340
es
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es
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as noted in Sec. I, this can be achieved, at least in princi
by using the Stark shifts induced by an additional~nonioniz-
ing! laser@36# or by using appropriately chirped laser puls
@37,38#. In this case, the Stark shiftsSk(t)(k51,2,3) are
unimportant because they enter Eq.~1! through D1(t) and
D2(t) only @which are given the values prescribed by Eq
~13!#, and are therefore set equal to zero. The figure sh
that a reasonably high efficiency of population transfer
statec2 can be achieved in a certain range ofT; this range is
predicted correctly by condition~40!, which in this case
reads as 0.2!g3T!16. For smallT, the interaction is nona-
diabatic and the population is distributed mainly between
initial state~due to a transition fromw18 to w28) and the con-
tinuum ~due to a transition fromw18 to w3). As T increases,
the interaction becomes increasingly adiabatic and the
ization probabilityPi is reduced, as well as the initial-sta
populationP1. For largeT the interaction becomes almo
completely adiabatic, and the population returns to the ini
state because of the level-crossing transition fromw18 to w28 .

As Eqs.~13! show, for large and constantG3, the trapping
conditions are satisfied approximately atd1' 1

2 q13G3 and
d2' 1

2 q23G3. The implication is that in this case it may b
easier to satisfy the two~constant! trapping conditions for the
tripod system than the single~time-dependent! trapping con-
dition ~14! for the two-state LICS. In Fig. 4, the populatio
of statec2 is plotted against the sum and the difference
the detuningsd1 and d2 for three values of the constan
ionization rateg3. For g350, when statec3 is uncoupled,
P2 depends only on the two-photon detuningd12d2 be-
tween statesc1 andc2, as expected. The figure shows th
for g35g0 and g354g0, there is a region in the (d1 ,d2)
plane, whereP2 achieves higher values than forg350 ~and

FIG. 3. The populations of the discrete states and the ioniza
probability plotted against the pulse widthT of the pump and
Stokes pulses. The pulse shapes are given by Eqs.~39! with t
50.5T, g15g2[g0, and g353g0. We have chosen the maxi
mum ionization rateg0 for statesc1 andc2 to determine the fre-
quency and time scales. The Fano parameters areq1355, q23

55.5, andq1252. The detuningsD1(t) andD2(t) are assumed to
satisfy the trapping conditions~13! at any time.
8-7
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also regions whereP2 achieves lower values!. The maximum
transfer efficiency is approximately 0.30 forg350, 0.76 for
g35g0, and 0.95 forg354g0. This shows that, indeed, in
certain detuning range it is easier to satisfy the two trapp
conditions~13! for the tripod system than the single trappin
condition for the two-state LICS. In this example, the Sta
shifts Sk(t) (k51,2,3) of the three bound states were n

FIG. 4. The population of statec2 plotted against the sum an
the difference of the detuningsd1 and d2 ~in units g0) for three
different constant ionization rates:g350 ~upper frame!, g35g0

~middle frame!, andg354g0 ~lower frame!. The pulse shapes ar
given by Eqs.~39! with t50.5T, g15g2[g0, andg0T51. The
Fano parameters areq1351, q2351.2, and q1252. The Stark
shifts of all states are neglected. As in Fig. 3, we have chosen
maximum ionization rateg0 for statesc1 andc2 to determine the
frequency and time scales.
04340
g

-

glected and set to zero. Their inclusion would not introdu
qualitative changes@because the trapping conditions~13! are
not satisfied anyway, even at the maxima#, but could only
slightly modify the values ofP2.

V. EFFECTIVE TWO-STATE LICS SYSTEM

Finally, we discuss the case whenG3 is large compared to
G1 andG2. For example, such a situation arises when st
c3 is an autoionizing state whose coupling to the continu
~by configuration interaction! is usually much stronger tha
laser ionization rates. Then we can eliminate statec3 adia-
batically by settingdC3 /dt50 in Eq.~1!, determiningC3 in
terms of C1 and C2 from the resulting algebraic equation
and replacingC3 in the other two equations. We also make
~population preserving! phase transformation that shifts th
zero energy level to coincide with the modified energy
statec1. We thus reduce the initial three-state problem to
effective two-state one, involving statesc1 andc2 only,

i
d

dt
Cae~ t !5Hae~ t !Cae~ t !, ~41!

whereCae(t)5@C1
ae(t),C2

ae(t)#T and

Hae~ t !5
1

2 F 2 iG1
ae 2AG1

aeG2
ae~qae1 i !

2AG1
aeG2

ae~qae1 i ! 2Dae2 iG2
ae G ,

~42!

with

G1
ae~ t !5G1~ t !q13

2 , ~43a!

G2
ae~ t !5G2~ t !q23

2 , ~43b!

qae5
q122q132q23

q13q23
, ~43c!

Dae~ t !5d22d11S2~ t !2S1~ t !1G2~ t !q232G1~ t !q13,
~43d!

where the label ‘‘ae’’ stands for ‘‘adiabatic elimination.
Hence we obtain a standard two-state LICS problem w
modified ionization ratesG1

ae(t) andG2
ae(t), Fano parameter

qae, and detuningDae(t). Thus the presence of a third stat
strongly coupled to the continuum, modifies the properties
the two-state problem involving statesc1 and c2. It may
happen that the modified parameters, and in particularqae,
have more suitable values for observing and investiga
LICS and related phenomena, such as population transfe
particular, if the Fano parametersq13, q23, and q12 are
large, the effective Fano parameterqae will be small, which
can facilitate the observation of a LICS@17,18#.

It is possible to obtain further insight of the tripod
continuum system by adiabatic elimination of the only d
caying adiabatic statew3(t) both in the adiabatic basis and i
the (w18 ,w28 ,w3) basis.

he
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VI. SUMMARY AND CONCLUSIONS

In the present paper we have investigated the cohere
properties of a system involving three discrete states cou
to each other by two-photon processes via a common c
tinuum. In this tripod scheme, there exist two populati
trapping conditions, rather than just one as in a stand
LICS. In some cases, e.g., for a strong and constant con
pulse, it may be easier to satisfy these conditions than
single trapping condition in a standard LICS. Depending
the pulse timing, various effects can be observed. We h
derived some basic properties of the tripod scheme, suc
the solution for coincident pulses~sharing the same time
dependence!, the behavior of the system in the adiaba
limit for delayed pulses, the conditions for no ionization a
for maximal ionization, and the optimal conditions for pop
lation transfer between the discrete states via the continu
.
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In the case of a strongly coupled state, by adiabatically eli
nating this state, we have found that the tripod scheme
duces to an effective standard two-state LICS system w
modified Fano parameter and ionization rates; such mo
cation may provide better conditions for observing and
vestigating a LICS and related phenomena.
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