PHYSICAL REVIEW A, VOLUME 61, 043408

Coherent properties of a tripod system coupled via a continuum
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We present results from a study of the coherence properties of a system involving three discrete states
coupled to each other by two-photon processes via a common continuum. This tripod linkage is an extension
of the standard laser-induced continuum structt€S), which involves two discrete states and two lasers.

We show that in the tripod scheme, there exist two population trapping conditions; in some cases these
conditions are easier to satisfy than the single trapping condition in a two-state LICS. Depending on the pulse
timing, various effects can be observed. We derive some basic properties of the tripod scheme, such as the
solution for coincident pulses, the behavior of the system in the adiabatic limit for delayed pulses, the condi-
tions for no ionization and for maximal ionization, and the optimal conditions for population transfer between
the discrete states via the continuum. In the case when one of the discrete states is strongly coupled to the
continuum, the population dynamics reduces to a standard two-state LICS probleiving the other two

state$ with modified parameters; this provides the opportunity to customize the parameters of a given two-state
LICS system.

PACS numbsd(s): 42.50.Hz, 32.80.Fb, 32.80.Qk, 32.80.Dz

[. INTRODUCTION particular with a nonzero Fano parametgrlt has subse-
quently been recognized that although complete population
Coherent interaction between discrete quantum states vieansfer is unrealistic, significant partial transfer may still be
a continuum is an intriguing process. Although the con-feasible[34—39. It has been shown that, at least in principle,
tinuum is traditionally seen as an incoherent medigpar-  the detrimental effect of the nonzero Fano parameter and
tial) transfer of coherence can nevertheless occur through iStark shifts can be overcome by using Stark shifts induced
In particular, much theoretical and experimental attentiorby a third (nonionizing laser[36] or by using appropriately
has been devoted to the laser-induced continuum structurshirped laser pulsef37,3§. It has been concludel$6,37]
(LICS) [1-19], where the interaction between a discrete statehat the main difficulty in achieving efficient population
¢, and a structureless, flat continuum creates a structure imansfer is related to the incoherent ionization channels, of
the continuum which significantly affects the interaction of which at least one is always present and leads to inevitable
another discrete stat#; with this continuum. For example, irreversible population losses. It has been suggdsB(B6|
the ionization probability for state,, when plotted as a that these losses can be redu¢aithough not eliminatedoy
function of the frequency of the ionizing laser, exhibits thechoosing an appropriate region in the continuum where the
so-called Fano profilgl]. The physical nature of the LICS is ionization probability is minimal. Later, it was shown that
closely related to autoionizing statgls20-24. incoherent ionization can be suppressed very effectively by
It was suggested by Carroll and Hioe a few years agaising a Fano-like resonance induced by an additional laser
[27,28 that a continuum can serve as an intermediary forfrom a third state/s;, resulting in a considerable increase in
population transfer between two discrete states in an atom dhe transfer efficiency40].
a molecule by using a sequence of two counterintuitively In the present paper, we investigate the coherence prop-
ordered delayed laser pulses. This scheme is an interestimgties of a scheme comprisirigree discrete states coupled
variation of the process of stimulated Raman adiabatic passia a common continuum. This tripod linkage can be viewed
sage(see Refs[29-32 and references thergiwhere a dis- as an extension of the standard LICS, involving two discrete
crete intermediate state is used. The Carroll-Hioe analytistates and two lasers, with the inclusion of an extra state by
model, which involves an infinite quasicontinuum of equidis-using a third laser. Such a scheme can also appear in a stan-
tant discrete states, equally strongly coupled to the twalard two-state LICS when the two lasers are tuned near an
bound states, suggests that complete population transfer &utoionizing state; the latter is strongly coupled to the con-
possible, the ionization being suppressed. Later, Nakajim&nuum by configuration interaction. The present scheme can
et al, [33] demonstrated that this result derives from the veryalso be viewed as a variation of the tripod scheme compris-
stringent restrictions of the model which are unlikely to being three discrete states coupled viadcammorn fourth dis-
met in a realistic physical system with a real continuum, increte statd41,42. In contrast to the three-state scheme in
Ref. [40], in which the additional laser used to suppress in-
coherent ionization was tuned in the continuum much above
*Permanent address: Institute for Physical Research, Armeniathe region where the main lasers are tuftéds reducing the
National Academy of Sciences, 378410 Ashtarak-2, Armenia.  coupled three-state dynamics to a pair of two-state LICS sys-
"Permanent address: Lawrence Livermore National Laboratorytems; here the additional laser is tuned in the same region as
Livermore, CA 94550. the two main lasers, which means that we have to deal with
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generally irreducible three-state dynamics. Some properties
of this tripod scheme have been studied in Ré8] in the
particular case when the Fano parameters are equal and the
additional state is a strongly coupled autoionizing state. In L
the present paper we establish the basic properties of this s AT .
system in the general case of arbitrary Fano parameters and L T
arbitrary strong ionization rates. We derive the population T f \
trapping conditions, which are now two, in contrast to the
single trapping condition in a two-state LICS. Furthermore,
we obtain the solution for coincident pulses and the behavior I3 T
of the system in the adiabatic limit for delayed pulses, in- I 2
cluding the optimal conditions for population transfer be-
tween the discrete states via the continuum. ;

This paper is organized as follows. In Sec. Il, we intro- Y3
duce the tripod-continuum system, present the basic equa-
tions and definitions, and derive the trapping conditions. In Y2
Sec. lll, we consider the case when all laser fields have the Vi
same time dependence. In Sec. IV, we examine the case of
delayed laser pulses with a special attention to population F|G. 1. Sketch of the tripod scheme involving three discrete
transfer in the near-adiabatic regime. In Sec. V, we explor&tatesy,, i,, andy; coupled via a common continuum by three
the case when the third stafley is strongly coupled to the lasers. The ionization rateE,(t) are proportional to the corre-
continuum, and eliminate it adiabatically to simplify the dy- sponding laser intensities, and are generally time dependent.
namics and gain insight into the tripod-continuum interac-
tion. Finally, in Sec. VI we summarize the conclusions. . r, VT L, Tils

B:_E ‘/FlFZ Fz \F2F3 . (ZC)
\/Flrg \F2F3 F3
A. System
We shall ignore any continuum-continuum transitions, (For typographic simplicity, here and subsequently we often

such as above threshold ionizatip#4], which become im- omit the explicit time argumentHere
portant only for very high laser intensities. We also neglect

II. TRIPOD-CONTINUUM SYSTEM

spontaneous emission from the bound states, which is justi- Aq(t) =61+ Si(t) — S5(1), (33
fied when these states are ground or metastable or when the
interaction time is short compared to the atomic relaxation A,(t)=8,+Sy(1) — S5(1), (3b)

times. Finally, we ignore incoherent ionization channels
[36,37,4Q, i.e., we assume that each laser drives only ongyith §,(k=1,2) being the static two-photon laser detuning

transition between a bound state and the continuum. between statey, and stateys,
The total wave function can be written as a linear super-
position of the three discrete states and the continuum. We 8= Ex+ 0 —E3— w3, (4)

then substitute this expansion into the time-dependent Schro

dinger equation and eliminate the continuum using th§here E, is the energy of states, and w, is the carrier
rotating-wave and Markov approximatiof8]. The probabil- frequency of the laser that couples this state to the con-
ity amplitudes of the three bound states are then found t@nuum. As evident from Eq2b) and as shown in Fig. 1, we
obey the equationf{=1) have chosen the Stark-shifted energy of stajeas the zero
d energy level.
iaC(t)=H(t)C(t), (1) The quantityI', (t)(k=1,2,3) is the ionization rate of
state ., which is proportional to the generally time-

] dependente.g., pulse-shapgdhtensity of the corresponding
where C(t)=[C4(t),Cx(t),C3(t)]". The time-dependent laser,
Hamiltonian describing the system separates into real and

imaginary parts, Tr(t)=27|Vi(1)|? 5

e=Et oy
H(t)=A(t)+iB(t), (23 whereV, (1) (k=1,2,3) is the interaction operator matrix el-
ement between staif, and the continuum state with energy
L —2A;  I'iToq, VIil30ps €. S(t) (k=1,2,3) is the total laser-induced dynamic Stark
A= — = /_Flrquz —2A, /_F2F3q23 . (2b) shift for stateys,, which is a sum of the Sta.rk _shlfts, mdyced
2 by each laser. For each laser the Stark shift is proportional to
VIil3013 VIol'3003 0 the corresponding laser intensity, and has the form
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Vie(1)]?
s(=r3 VO ®)

1 1
p —— Aqy(t)= EQ13[F3(U_F1(U]+ E(le_ 029 5(1),
(13a
whereP is the principal value and the above expression in-
volves summation over all participating bound states and in-
tegration over the continuum states.

The dimensionless constantg,, i3, and g,z in Eg.
(2b) are the Fano asymmetry parametgts-3,45, which
characterize the transitions between the corresponding pai
of states via the continuum and depend on the atomic stru
ture. They are defined by the ratio

1 1
Ay(t)= EQ23[F3(U -]+ E(le— g1a)1(1).
(13b

quuations(13) will be referred to ashe population trapping
conditions Hence there are two such conditions imposed on
She interaction parameters, rather than just one as in a two-
state LICS. It is easily verified that fdr;=0, Egs. (13
reduce to the well-known trapping condition in a LICH:

V, (DOV](t
7)}: ke(DV(1)

€— Ek_ Wy 1
A= - : (7) A1()=Ax(1) =5 ad Ia(D) ~Ta (D] (14)
vae(t)vls(t)
) ) , . Given Egs.(13), the eigenvalues oA(t) are
With the exception of the Fano parameters, all variables in-
volved in Egs.(2) can be controlled externally by the laser A (t) =a(t)+a2(t)+b(1), (153
fields and are generally time dependent.
We shall assume that the system is initially in Stéte Ay(t)=a(t)— Va?(t)+b(t), (15b)
Ci(—2)=1, Cp(~®)=C4(~*)=0, (8 . 1
A(t)=— E[Q13F1(t)+QZ3F2(t)], (1509

and the quantities of interest are the populations of the dis-
crete states at— -+, P,=|Cy(+=)|? (k=1,2,3), and with
the ionization probability?;=1—P,;—P,— P;. Because we
choose the initial conditiongd) and we intend to explore

how the additional state/; affects the interaction between

statesy; and ,, we shall refer td™;(t), I'»(t), andI';(t)

1
a= Z[Q13(F3_F1)+QZ3(F3_F2)+Q12(F1+F2)],

as ionization rates induced by the pump, Stokes, and control 1

lasers, respectively.

B. Eigenvalues and trapping conditions
It was shown in Ref[46] that if the matricesA(t) and
B(t) commute,

A(t)B(t)=B(t)A(1), €)
then the eigenvalues &f(t) read as

MO =N+ (k=1,2,3), (10)
where \{(t) and AE(t) are eigenvalues of(t) and B(t),
respectively. The importance of relatigh0) derives from

the fact that the eigenvalues Bft) are given by

(D =A3(1)=0, x%(t>=—%r<t), (11

where

()= (t)+ () +3(1), (12
i.e., B(t) has two zero eigenvalues which corresponddo-
decayingeigenstates ofi(t). The fulfillment of relation(9)
requires that

b= er[chs(%s— 01211+ d23(d23— d12) T2 — Q130230 3]

C. Eigenstates and adiabatic basis

Important information of the interaction dynamics is con-
tained in the instantaneous eigenstatesH¢f)—the adia-
batic statesThey are derived readily when the trapping con-
ditions (13) are fulfilled, which we shall assume.

Because of the degeneracy of the two zero eigenvalues of
B(t), there is an ambiguity in the corresponding two eigen-
states ofB(t), since any linear combination of them would
be a zero-eigenvalue eigenstateBgt) too. This implies, in
particular, that despite the commutation relati(®), the
zero-eigenvalue eigenstates &f(t) are not necessarily
eigenstates oA(t). Any eigenstate oAA(t), however, is an
eigenstate ofB(t), and hence oH(t) too. The common
(time-dependenteigenstates ofA(t), B(t), and H(t) are
given by
[ cosfcosy—sin@singsiny |
@©,=| —Ssin@cosy—cosésingsiny |, (168

COS¢ Siny

[ cos@siny+sin@sing cosy |

p,=| —sinésiny+cosésin¢ cosy |, (16b

— COS¢ COSy
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sin# cos¢
p3=| COSHCOSP |, (160
sing
where the time-dependent anglé&), ¢(t), and x(t) are
defined by
= \/Fl 17
tang= T, (179
_ L 17b
tang = T+T, (170
(I =T)(I'+T5+2I'3)
cot2y=
4T Tl +T,+T3)
(I'1+T5)%(A13+ Gp3—2012)
AT Tol5(T 1+ 5+ 3) (A1~ 022)
(179

PHYSICAL REVIEW A 61 043408

cosf sinfsing sinfcos¢
R=| —sinf@ cosf#sing cosfcose |. (20)
0 —CO0S¢ sing
The Schrdinger equation in the new basis reads
d
|aC’(t)=H’(t)C’(t), (21

with C’(t)=[C}(t),C4(t),Cs(t)]" and(an overdot meaning
a time derivative

H'=R !HR—iR"'R

Aj Q' —ifsing —ibHcose
_| Q' +ibsing A i
. . 1|
i 0 cos¢ —i¢ Ag—zil"

(22)

wherel is given by Eq.(12), and

The use of adiabatic states is appropriate in two cases—in 1
the near-adiabatic regime and for coincident pulses—because Aj;=—————[T3(q3l'1+q13l'2) + Q1A T1+T,)?
then the couplings between the adiabatic states vanish and it 2(Fy+ 1)

is possible to derive analytic estimates for the population

dynamics. We shall do this in Secs. Il and IV.

D. Basis ofe1(t), ¢5(t), and ¢3(t)

In some cases it is convenient to employ an alternative

time-dependent basis composed of statgd), ¢,(t), and
¢@5(t), where

cosé sinésing¢
p1=| —sind|, ¢,=|cosdsing |, (18
0 —CO0S¢

and ¢5(t) is the adiabatic statEEq. (160)]. Obviously, the

adiabatic stateg,(t) and ¢,(t) are linear superpositions of

statesep; (t) and ¢5(t):

(199

1= @1COSY— @ssiny,

©,=@1Siny + @,CoSy. (19b

Like statese,(t) and ¢,(t), statese;(t) and ¢5(t) do not
decay; the only decaying state in the;(¢5,¢3) basis is
¢3(t). Statesep;(t) and ¢5(t) are (zero-eigenvalueeigen-
states ofB(t), but not generally ofA(t) and H(t). It can
easily be shown that they become eigenstates(®j and
H(t) only whenqq3=0»3.

The transformation from the bare-state badis to the
(@1.92,93) basis,C(t)=R(t)C'(t), is carried out by the
time-dependent rotation matrix

= (I +T2)(deal' 1+ d2al2) ], (239
, Da(0ual’s +030)
AT, (23
, 1
Az=-— E(Q13F1+Q23F2), (2309
0= e T AT, Ty, (23
2(F1+F2) 1+ 243 1 2 3/

Note that cot 2=(A,—A)/2Q".

IIl. COINCIDENT PULSES

A. Case of equal Fano parameters

The above theory allows us to derive analytic formulas
for the bound-state populations and the ionization probability
in the case when all ionization rates have the same time
dependence:

L =nft) (k=123). (24)
Then the mixing angle®, ¢, andy are constant, and the
nonadiabatic couplingswhich are proportional to deriva-
tives of these anglg¢wvanish identically. The solution can be
found by an appropriate change of the independent variable
(time), and transformation to the adiabatic basis where all
nonadiabatic couplings vanish and the Hamiltonian is diago-
nal. Let us also assume for simplicity that all Fano param-

eters are equak]i,=(qi3=023=(. If the population is ini-
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1.0 T T T T . T T T T B. General case
] In the general case of unequal Fano parameters one can
still find an analytic solution, but the resulting formulas are
0.3f . o
too cumbersome to be presented here. The qualitative behav-
1 ior of the populations remains essentially the same. A simple
. 06k i estimate exists for the maximum possible ionization prob-
S ability (achieved in the limit of strong ionization rajes
%’_ I Py ] which is equal to the initial population of the only decaying
€ 04l i adiabatic statep;(t) [Eq. (160)]:
P; 1 . Y1
Pi max=SiF0 cogp= ———. (27
02 . L Y1t vat s
P,=P,
7 Hence, the stronger the Stokes and control pulsesndl 3,
0 R T T T the smaller the ionization.
0 2 4 6 8 10
Pulse Area IV. DELAYED PULSES
FIG. 2. The populations of the bound states and the ionization A. Minimal and maximal ionization
probability (25) in the case of coincident puls¢gqg. (24)] plotted
against the(dimensionlesspulse areaA. All Fano parameters are 1. No ionization

equal, 4;,=013=023=5, and all ionization rates are also equal |, is easily seen from Eq(160 that when @(—%=)=0

(71=7v2=73). and/org(— =)= 1, the only decaying adiabatic statg(t)
is not populated initially. As Eqg17a and(17b) show, this

tially in state,, the populations of the bound states and thehappens when

ionization after the interaction are easily found to be
: I'y(t)

5, B 1 lim =

(yo+ y3)2+ vie A+2'y1('yz+ v3)e AIZCO%qA , ool (D) F (1) +T5(1)

0. (28

P]_:?

(259 In the adiabatic limit statep;(t) remains unpopulated and
hence, the ionization probability is zero throughout the inter-
action, P;(t)=0. In other words, in the adiabatic limit the
ionization probability is zero when the pump pulse is delayed
with respect to the Stokes pulse and/or the control pulse. The
1 pulse ordering28) generalizes the counterintuitive pulse or-
1+e A 26—A/2CO%qA>, (259  der in the two-state LICS and provides the most appropriate

conditions for coherent processes via the continuum, such as
population transfer between the bound states, which we shall
discuss in Sec. IV B.

1
1+e A- Ze‘A/zco%qA> , (25b)

_ Y172

)’2

Ps

P=2t(1-e ), (250
v 2. Complete ionization

wherey=y;+y,+vs and As follows from Eq. (160, when 6(—«)=%17 and
¢(—=)=0, the decaying states(t) is the only adiabatic
A= fx I(t)dt. (26) state populated initially. According to Eqg&l79 and (17b),
o this happens when the pump pulsg(t) arrives before both
the control and Stokes pulses, i.e.,

The results are similar when the system is initially in siate
or i5; then the initial-state population is given by H853), Ty o Ta(t)
the populations of the other two states by E(@5b) and tﬂrlrl(t) _tﬂTwrl(t) =
(250, and the ionization by Eq25d) (with an appropriate
permutation of the labe)s Obviously, a similar population | the adiabatic regime no population is transferred to the
trapping phenomenon as for a two-state LICS takes placgher adiabatic states, and the ionization probability is given
limiting the maximum possible ionization probability to by P;=1—|@s(+)|2. Since the decay rate of statg(t) is
for equal ionization ratesy; = y,=y3), compared to; for 1T (1) [see Eq(11)], we find that
two-state LICS.

In Fig. 2, populationg25) are plotted against the pulse Pi=1—-e A (30)
areaA for the case of equal ionization rates. As the pulse
area increases, the populations tend to their adiabatic limitwhereA is given by Eq.(26), i.e., P; can approach unity for
P,—3%, P,=P3—3%, andP,—1. strong ionization rates, even though the trapping conditions

0. (29)
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(13) are satisfied. The pulse ord@9) generalizes the intui- For g13=0,3=q1», the population behavior is most easily
tive pulse order in the two-state LICS. revealed in the ¢;,¢5,¢3) basis because therdj(t)
—A5(t)=0 and Q’(t)=0 [see Egs.(23)]. Hence states
B. Population transfer via continuum @1(t) and @5(t) are degenerate, and the coupling between
1. Adiabatic limit them is given byg(t)sin ¢(t). For pulse ordering31), states

An intriguing process based on a LICS is population(’pi(t) and g;(t) have the following asymptotic behaviors

transfer between two bound states via a common continuun];jc'ee Eas(18))

which has received considerable attention recently (o) = (o) = — 35

[27,28,33—-40 We will show that the tripod system enables e1(=0) =91, er(Fe) Y2, (359
idi th i flex- : ,

;cgitleit)s/ame process, providing at the same time a greater flex oh(—0) =t @h(+%)= . (35b)

Let us consider the pulse timing when the control puls&ence the bare-state populations in the adiabatic limit are
I'3(t) arrives first and disappears last, i.e.,

Iy (b lesinzf f(t)sin (t)dt, (369
I = | =0. 31 e
A LT (313
As we have shown abov&ec. IV A 1), the ionization prob- pzwcos?fx 6(t)sin ¢(t)dt, (36b)

ability in this case is zerd?;(t) =0, because the only decay-
ing adiabatic states(t) is not populated initially. Hence the

population is distributed among the bound states throughout P3~0. (360
the interaction. Suppose also that the Stokes pulse precedes i
the pump pulsécounterintuitive ordex i.e., The populations of state_&;l a_md i, depend only on t_he
angles 6(t) and ¢(t), which in turn depend on the time
B Tes) I'5(t) delay 7 betweenl;(t) andI',(t). This dependence provides
lim T,(0) =0, M (1) =0. (B1b  the possibility to control the created coherent superposition
I ot of , and i, through the pulse delay. This property of the
It follows from Egs.(17) that tripod-continuum system is similar to the one for a discrete

tripod system coupled via a discrete stpté], rather than a

1 continuum, which was demonstrated experimentally recently
0(=2)=0, O(+=)=7m, (328 [42].

2. Optimal conditions for population transfer

1 1
d(==)=5m,  P(+=)=5m. (32D Although in the general case of ;3% q,3 the population
returns to the initial statg in the adiabatic limit, it is still
The initial and final values of, however, depend on the possible to transfer population to state for certain ranges

Fano parameters. of interaction parameters. These ranges are most easily de-
For q13=023# 12, We havey(==)=0. Hence termined in the ¢ ,¢5,¢3) basis, which is more convenient
than the adiabatic basis. As is evident from the asymptotic
Pr(=®)=¢1,  ea(+2)=—¢y, (333 jimits [Egs. (35)] of ¢.(t) and ¢(t), only statee)(t) is
e _ populated initially, and if the atom stays @1(t) at all times,
o =2)= Y2, e+ )=, 33D e desired population transfer frog to‘pz,gz will occur. In
@3(—2)=ths,  @a(+0)=ths. (330 order to achieve this, transitions frogy (t) to both states

@5(t) and ¢3(t) must be suppressed. This restriction deter-
Thus, in the adiabatic limit, the population is transferredmines the ranges of interaction parameters for which signifi-

from stateys; to statey, via the adiabatic state,(t). cant population transfer fronf, to ¢, is possible.
For gi3#0s3, We have y(—«)=37 and y(+=)=0. Statee;(t) is coupled to states(t) with a coupling pro-
Hence portional toé(t) [see Eqgs(22)]. Hence the detrimental tran-
oy(£0)=— iy, (343 sitions frome;(t) to ¢3(t) can be avoided if the interaction

is sufficiently adiabatic, which requires that

Qo x2)=14, (34b)

P3(E %)= 3. (349

Thus, in the adiabatic limit, the population returns to the On the other hand, the interaction should not be too adia-
initial state ¢, staying all the time in the adiabatic state batic, because then, as we have shown in Sec. IV B 1, the
es(t). population returns to stat#;. This conclusion is confirmed

. 1
|6(t)cose(t)|< \/[Ai(t)—Aé(t)]2+ ZFZ(t)- (37)
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when examining the nature of the interaction between states
e1(t) and p,(t) [see Eq(22)]. Indeed, the effective detun-
ing in this subsystend(t) —A;(t) has different signs at
— * oo, which means that there is a level-crossing transition
and hence, complete population transfer between states
¢1(t) and ¢5(t) occurs in the adiabatic limit. According to
Egs.(35), such a complete transfer means complete popula-
tion return toy, in the bare-state basis. Obviously, only in
the case ofy,3=(,3 does the coupling)’(t) vanish identi-
cally, ande;(t) ande;(t) are only coupled by a weak nona-
diabatic coupling, which vanishes in the adiabatic limit.
However, the casg3=0,3 is exceptional, and it is difficult
to find atomic states which satisfy this condition. Fpr;
#053, there is a residual coupling’(t) betweeny;(t) and
¢5(t) which remains nonzero in the adiabatic limit and
causes transitions between these states. Referring to the ’ .PulseWidthT(unitson(,l)
Landau-Zener formuld47], we conclude that in order to
avoid population transfer fromp;(t) to ¢,(t), the relation FIG. 3. The populations of the discrete states and the ionization
) _ probability plotted against the pulse widfh of the pump and
[Q’(to)]2<|A£(to)_Ai(to)| (39 Stokes pulses. The pulse shapes are given by 8$.with 7
=0.5T, y1=1v,=7v, andy3=3y,. We have chosen the maxi-
must be fulfilled, wheret, is the crossing pointAj(t,) ~ Mum ionization ratey, for statesy; and; to determine the fre-
=AJj(to). Itis possible to refine conditiof88) by including ~ duéncy and time scales. The Fano parametersqgge S, Gas
effects of asymmetr{48] and nonlinearityf49] at the cross- =5.5, andqy,=2. The detunings,(t) andA,(t) are assumed to
ing and finite transition timeES0]. satisfy the trapping conditiond 3) at any time.
Conditions(37) and (38) provide the restrictions on the
interaction parameters needed for significant populatioras noted in Sec. I, this can be achieved, at least in principle,

Populations

100

transfer fromy; to ¢». by using the Stark shifts induced by an additior@nioniz-
ing) laser[36] or by using appropriately chirped laser pulses
3. Numerical examples [37,39. In this case, the Stark shiftS(t)(k=1,2,3) are
In our numerical simulations we have used GaussiatiNimportant because they enter Ed) throughA,(t) and
pu'se Shapes f(fl(t) andrz(t) and Constanrs, Az(t) Only [Wh|Ch are giVen the values prescribed by Eqs
(13)], and are therefore set equal to zero. The figure shows
rl(t)zylef(tff)leZ, (399 that a reasonably high efficiency of population transfer to
statey, can be achieved in a certain rangeTothis range is
o A (tEDAT2 predicted correctly by conditiori40), which in this case
oD =7se ’ (399 eads as 02 ysT<16. For smallT, the interaction is nona-
T5(t) = ys, (390 diabatic and the population is distributed mainly between the

initial state(due to a transition fronp; to ¢;) and the con-
where 2r is the delay between the pump and Stokes pulse§nuum (due to a transition fromp; to ¢3). As T increases,
andT is their width. the interaction becomes increasingly adiabatic and the ion-
It is possible to simplify condition$37) and (38) when ization probabilityP; is reduced, as well as the initial-state
the control pulse is much stronger than the pump and StokegopulationP;. For largeT the interaction becomes almost
pulses, and the latter two have equal peak valygs:y,  completely adiabatic, and the population returns to the initial
= y,. Then the crossing point is given by~0, and condi- state because of the level-crossing transition figrto ¢ .

tions (37) and (38) become As Egs.(13) show, for large and constaht, the trapping
conditions are satisfied approximately &t~ 3q3l'3 and
27 167 8,~ 303l 3. The implication is that in this case it may be

<y3l< ﬁ (40) easier to satisfy the tw@onstank trapping conditions for the
T /1+ E( 02 RECIIR S tripod system than the singléme-dependentrapping con-
RN dition (14) for the two-state LICS. In Fig. 4, the population
of statey, is plotted against the sum and the difference of
Hence an appreciable population transfer frgmto , is  the detuningss; and 6, for three values of the constant
only possible if the differenclg;3—q,4 is sufficiently small.  ionization rateys;. For y3=0, when statays is uncoupled,

In Fig. 3, the populations of the discrete states and thd®>, depends only on the two-photon detuniag— 6, be-
ionization probability are plotted against the pulse widthf ~ tween statesy; and ¢,, as expected. The figure shows that
the pump and Stokes pulses. The detunifigd) andA,(t) for y3=1o and y;=4v,, there is a region in thed, 5,)
are chosen to satisfy the trapping conditioh®) at any time;  plane, whereP, achieves higher values than fgg=0 (and
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T glected and set to zero. Their inclusion would not introduce
gualitative changefbecause the trapping conditio(is3) are
not satisfied anyway, even at the maximbaut could only

Ho slightly modify the values oP,.

0.8

0.6 V. EFFECTIVE TWO-STATE LICS SYSTEM

04 Finally, we discuss the case whEg is large compared to

I'y andT',. For example, such a situation arises when state
3 IS an autoionizing state whose coupling to the continuum
(by configuration interactionis usually much stronger than
laser ionization rates. Then we can eliminate sigieadia-

@+ 3 batically by settingdCs/dt=0 in Eq.(1), determiningCs in

2 terms of C; and C, from the resulting algebraic equation,
and replacingz5 in the other two equations. We also make a
(population preservingphase transformation that shifts the
zero energy level to coincide with the modified energy of
statey;. We thus reduce the initial three-state problem to an
effective two-state one, involving statgg and ¢, only,

0.2

-2 10

d
i&Cae(t)=Hae(t)Cae(t), (41

whereCqt) =[ C34t),C59t)]" and

1 —irge —TiT5(0%+)
H* ) =5 ,
=3 — 23 q2%+i) 2A%—iT'3
(42
\ with
It =T1()aZ, (43a
I3%t)=T5(t)03, (43b)
ae_ d127 G13™ CI23, (439

Q13023

A%(t)=8,— 61+ 25(1) =21 (1) + [5(1)gaz— T'1(t) 03,
(430

FIG. 4. The population of statg, plotted against the sum and \yhere the label “ae” stands for “adiabatic elimination.”
the difference of the detuningd, and 9, (in units yo) for three  pence we obtain a standard two-state LICS problem with
different constant ionization rate;=0 (upper framg ¥s=yo  modified ionization rate§24t) and'3Yt), Fano parameter
(middle frame, and y;=41v, (lower frame. The pulse shapes are _5e . . a .

. o T - g?¢ and detuning\24t). Thus the presence of a third state,
given by Eqs.(39) with 7=0.5T, y;=1y,=7v,, andy,T=1. The . o .
_ M _ strongly coupled to the continuum, modifies the properties of
Fano parameters arg;;=1, Q,3=1.2, andq;,=2. The Stark bl . Vi d |
shifts of all states are neglected. As in Fig. 3, we have chosen thtshe two-state pro em invoiving statgh an _1,02- t_may
maximum ionization ratey, for statesy; and , to determine the apPpen that the modified parameters, and in partioyddr
frequency and time scales. have more suitable values for observing and investigating
LICS and related phenomena, such as population transfer. In
also regions wher®, achieves lower valugsThe maximum  particular, if the Fano parametetss, d.3, and g, are
transfer efficiency is approximately 0.30 fgs=0, 0.76 for  large, the effective Fano parametgt will be small, which
¥3= o, and 0.95 fory;=4y,. This shows that, indeed, in a can facilitate the observation of a LIJ$7,18. _
certain detuning range it is easier to satisfy the two trapping It is possible to obtain further insight of the tripod-
conditions(13) for the tripod system than the single trapping continuum system by adiabatic elimination of the only de-
condition for the two-state LICS. In this example, the Starkcaying adiabatic states(t) both in the adiabatic basis and in
shifts S,(t) (k=1,2,3) of the three bound states were ne-the (¢1,¢3,¢3) basis.

043408-8



COHERENT PROPERTIES OF A TRIPOD SYSTEM.. .. PHYSICAL REVIEW®&A 043408

VI. SUMMARY AND CONCLUSIONS In the case of a strongly coupled state, by adiabatically elimi-
nating this state, we have found that the tripod scheme re-

o o s posmelices to an efectiv Siandard two-Sale LICS systn wir
prop y 9 P %odified Fano parameter and ionization rates; such modifi-

to each other_ by _two—photon PrOCESSES via a common Conc, ;) may provide better conditions for observing and in-
tinuum. In this tripod scheme, there exist two population

trapping conditions, rather than just one as in a standar&es’tlgatlng a LICS and related phenomena.

LICS. In some cases, e.g., for a strong and constant control
pulse, it may be easier to satisfy these conditions than the
single trapping condition in a standard LICS. Depending on
the pulse timing, various effects can be observed. We have R.G.U. thanks the Alexander von Humboldt Foundation
derived some basic properties of the tripod scheme, such dsr financial support. The work of N.V.V. was supported by
the solution for coincident pulsesharing the same time the Academy of Finland, Project No. 43336. B.W.S. thanks
dependenge the behavior of the system in the adiabaticthe Alexander von Humboldt Foundation for a Research
limit for delayed pulses, the conditions for no ionization andAward; his work was supported in part under the auspices of
for maximal ionization, and the optimal conditions for popu- the U.S. Department of Energy at Lawrence Livermore Na-
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