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Nonrelativistic numerical study of atomic ionization by strong laser fields
without the dipole approximation in a flat-atom model

J. R. Vázquez de Aldana and Luis Roso
Departamento de Fı´sica Aplicada, Universidad de Salamanca, E-37008 Salamanca, Spain

~Received 28 September 1999; published 2 March 2000!

Numerical experiments for a two-dimensional hydrogen model interacting with very intense~far beyond
the barrier suppression value! and linearly polarized laser fields are presented in nonrelativistic cases. The
Schrödinger equation retaining the space dependence of the fields is solved~nondipole!, comparing with results
obtained in the standard dipole approximation, in situations where the validity of such an approximation can
be questioned.

PACS number~s!: 42.50.Hz, 32.80.Fb
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I. INTRODUCTION

The interaction of atoms with intense laser fields has b
achieved from many points of view in the past two decad
Talking about theoretical studies, the direct numerical re
lution of the time-dependent Schro¨dinger equation for this
system is one of the most powerful research techniques.
ferent models and approximations have been develope
order to simplify the complexity of such a task. In this wa
for example, the dipole approximation~the long wavelength
of the fields compared to the typical dimension of the ato!
is widely accepted when laser parameters are such tha
electron dynamic is expected to be nonrelativistic@1–5#.
Howeover, very few quantum calculations have been p
lished in this regime taking into account the spatial dep
dence of the fields@6,7#, testing the dipole approximation. I
relativistic situations the nonvalidity of this approximatio
was clearly shown in different works@8,9#.

In this paper we present numerical simulations of a tw
dimensional atomic model interacting with very intense~far
beyond the barrier suppression! and high-frequency lase
fields, solving the Schro¨dinger equation with the space d
pendence of the fields retained~nondipole equation!, so as
the standard dipole Schro¨dinger equation. Results obtaine
from both equations are compared, showing the very dif
ent behaviors of the atomic electrons in some situations.
ser fields are always linearly polarized in this paper.

In Sec. II the two-dimensional atomic model is introduc
and justified for this kind of numerical experiments. The s
lected geometry in the numerical experiments is also m
tioned. The numerical method employed to solve the Sch¨-
dinger equation, and details of the calculation, are explai
in Sec. III. The effect of the magnetic field is studied in Se
IV, and other short-wavelength effects are discused in S
V. Finally, Sec. VI is devoted to conclusions.

II. FLAT-ATOM HYDROGEN MODEL

Computational requirements to solve the fully thre
dimensional time-dependent Schro¨dinger equation for an
atom are extremely prohibitive when the interaction w
very intense laser fields is studied. The very large grids
have to be employed in order to avoid reflections and bou
ary effects make the problem suitable only with massive p
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allel computers. The dipole approximation in the tim
dependent Schro¨dinger equation allows one to reduce th
dimensionality of the problem, thanks to the cylindrical sym
metry in the case of a linearly polarized laser field, and ma
calculations have been done in this way in past years. H
ever, in cases where the dipole approximation is not va
~for example, when magnetic effects are thought to be
portant! the dimensionality of the problem cannot be direc
reduced because the cylindrical symmetry breaks, and a f
three-dimensional treatment has to be employed.

On the other hand, two-dimensional atomic models
very useful because they make it possible to take into
count electric and magnetic effects, such as elliptic polari
tion of the electric field, and are not so prohibitively comp
tation demanding. Moreover two-dimensional models
reasonably realistic, especially if a soft core~smoothed! po-
tential is used which avoids the singularity at the origin:

V~x,y!52
1

Ax21y21a
. ~1!

a, the smoothness parameter, has been selected toa
51 a.u. (.0.053 nm). Atomic units (e5m5\51 a.u.
andc5137 a.u.) are used throughout this paper. The tim
independent Schro¨dinger equation for the atomic model i
Cartesian coordinates is

2
1

2 S ]2

]x2
1

]2

]y2D C~x,y!

2
1

Ax21y211
C~x,y!5EBC~x,y!. ~2!

Changing to polar coordinates,x5r cos(u), andy5r sin(u)
Eq. ~2! is separable into

2
d2

du2
j~u!5l2j~u! ~3!

2
1

2 S d2

dr2
1

1

r

d

dr
2

l2

r2D f~r!2
1

Ar21a
f~r!5EBf~r!,

~4!
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whereC(r,u)5f(r)j(u). The equation for the polar angl
@Eq. ~3!# is trivially solved: j(u)5eilu, with l50,61,
62, . . . . Theradial equation@Eq. ~4!# can be easily inte-
grated numerically with standard one-dimensional meth
~that of Numerov, for example!. In order to solve the time-
dependent Schro¨dinger equation of an atom interacting wi
laser fields, it is convenient to use a grid in Cartesian co
dinates~equally separated points along axesx andy) because
we thus obtain a uniform sampling of all the integration s
face. To calculate eigenfunctions in a two-dimensional C
tesian grid is not as easy as in one-dimensional proble
and more sophisticated methods have to be employed~see
Sec. III!, because eigenstates of the radial equation@Eq. ~4!#
are not exactly the same as those of the Cartesian equa

In the simulations presented in this paper, the electric fi
is linearly polarized in they direction, and the pulse propa
gates along thex direction:

EW ~x,t !5E0f ~x,t !sin~kx2vLt !eW y . ~5!

f (x,t) is the laser pulse turn-on. In the calculations presen
in this paper we have selected a linear turn-on~that lasts four
cycles of the electromagnetic fields! because it does not in
troduce the well-known drift along the polarization axis.

Then the vector potential and the magnetic field are

AW ~x,t !52cE
0

t

E~x,t8!dt8eW y ,

~6!

BW ~x,t !5¹W 3AW ~x,t !5B~x,t !eW z ,

with a convenient choice of gauge where the scalar poten
is taken to be zero. The vector potential is polarized in
same direction as the electric field, and the magnetic fiel
parallel to thez axis ~perpendicular to the flat-atom plane!.
Neglecting the atomic potential, the motion of a free nonr
ativistic electron in these electromagnetic fields is given
the Lorentz equation

d2rW

dt2
52S E~x,t !eW y1

1

c
vW 3BW ~x,t ! D , ~7!

and splitting it into components:

d2x

dt2
52

1

c
vyB~x,t !,

d2y

dt2
52E~x,t !1

1

c
vxB~x,t !, ~8!

d2z

dt2
50.

Then the classic Lorentz force causes the electron motio
be confined in thexy plane~if it is initially at rest, or at least,
has no velocity in thez direction!, making the present two
04340
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dimensional model reasonably realistic because the motio
by itself included in this plane.

In that case, the nondipole Schro¨dinger equation is

i
]

]t
C~x,y,t !5F2

1

2 S ]2

]x2
1

]2

]y2D 2
i

c
A~x,t !

]

]y

1
1

2c2
A~x,t !21V~x,y!GC~x,y,t !, ~9!

where obviously the spatial dependence of the fields
been retained. When the dipole approximation can be
sumed, that isA(x,t).A(t), Eq. ~9! reduces to

i
]

]t
C~x,y,t !5F2

1

2 S ]2

]x2
1

]2

]y2D 2
i

c
A~ t !

]

]y

1V~x,y!GC~x,y,t ! ~10!

~eliminating the ponderomotive term with a time-depend
phase!, which is the standard time-dependent dipole Sch¨-

dinger equation in the velocity gauge (pW •AW ). It is well

known that the length gauge (EW •rW) has no meaning when
working out of the dipole approximation, because it is n
possible to separate space and momentum coordinates i
coupling term2( i /c)A(x,t)(]/]y). Then it has to be solved
with no transformation.

III. NUMERICAL RESOLUTION

Numerical resolution of the time-dependent dipole Sch¨-
dinger equation has been carried out extensively in the
two decades, and thus, very sophisticated techniques
been developed~see, for example Ref.@4#, and references
therein!. In general, for a given time-dependent Schro¨dinger-
like equation,

i
]

]t
F~x,y,t !5Ĥ~x,y,t !F~x,y,t !; ~11!

knowing the wave function at a timet, it is possible to for-
mally calculate it in the time stept1Dt as

F~x,y,t1Dt !5expF2 i E
t

t1Dt

Ĥ~x,y,t8!dt8GF~x,y,t !

.expF2 iDtĤS x,y,t1
Dt

2 D GF~x,y,t !.

~12!

This is the starting point for most of the numerical metho
Now we split the exponential into three terms@10#:
3-2
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F~x,y,t1Dt !.expF2
iDt

2
ĤxS x,y,t1

Dt

2 D G
3expF2 iDtĤyS x,y,t1

Dt

2 D G
3expF2

iDt

2
ĤxS x,y,t1

Dt

2 D G
3F~x,y,t !1O~Dt3!. ~13!

In general, the operatorsĤx and Ĥy do not conmute them
selves, and that is the reason why this expression is no
equality: it is exact to the orderDt2.

The Hamiltonian operatorsĤx(x,y,t) and Ĥy(x,y,t) are
different in the case of the dipole Schro¨dinger equation than
in the nondipole equation. In order to solve Eq.~10!, we
have chosen

Ĥx~x,y,t !52
1

2

]2

]x2
1

1

2
V~x,y!,

~14!

Ĥy~x,y,t !52
1

2

]2

]y2
1

1

2
V~x,y!2

i

c
A~ t !

]

]y
,

and, in the case of the nondipole Schro¨dinger equation@Eq.
~9!#,

Ĥx~x,y,t !52
1

2

]2

]x2
1

1

2
V~x,y!1

1

2c2
A~x,t !2,

~15!

Ĥy~x,y,t !52
1

2

]2

]y2
1

1

2
V~x,y!2

i

c
A~x,t !

]

]y
.

Each time step, Eq.~13! is solved, employing the Cayley
Hamilton form and a Crank-Nicholson finite-differenc
scheme. The widely used methods that solve Eq.~13!, by
means of a Fourier transform, cannot be directly imp
mented in the case of the nondipole Schro¨dinger equation,
because the term

2
i

c
A~x,t !

]

]y
~16!

mixes space and momentum coordinates, and it is not
sible to separate them. Of course, a combined method
ploying Fourier-transform and Crank-Nicholson schemes
also suitable.

The initial state in the grid has been calculated by me
of the imaginary-time propagation method. A function in t
grid is chosen~as similar as possible to the ground state!, and
it is made to evolve in time with an imaginary time step:t0
→t01 iDt. Numerical algorithms for this purpose are th
same as those used in calculating the time evolution of
Schrödinger wave function, changingDt by iDt. This tech-
nique allows one to determine not only the ground state
04340
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the model but also a few low-lying states, by imposing o
thogonallity with the lower-energy states that have been p
viously calculated.

For the selected smoothing parameter value in this pa
a51 a.u. (.0.053 nm), and, employing a Cartesian gr
of 100031000 points with spatial separation between tw
consecutive pointsDx5Dy50.05 a.u. (.0.0027 nm), the

FIG. 1. Expected value of the wave-packet trajectory~nondipole
equation!, for the initial states 1s ~solid line! and 2s ~dashed line!,
in atomic units. Laser parameters areE0515 a.u. (I .
7.931018 W/cm2) and frequencyvL51 a.u. (.27.2 eV). The
linear turn-on of the laser lasts four cycles of the electric field.

FIG. 2. Time evolution of the population that remains in t
initial state, comparing between results obtained in the dipole
proximation ~dashed line! and without this approximation~solid
line!. In the plot at the top, the initial state of the model is 1s, and
in the plot at the bottom it is 2s. Laser parameters areE0

515 a.u. (I .7.931018 W/cm2) and frequency vL51 a.u.
(.27.2 eV). The linear turn-on of the laser lasts four cycles of
electric field.
3-3
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ground state energy of the two-dimensional atom mode
E(1s)520.43 a.u. (.211.7 eV). 2s and 2p states have
an energy in this grid of E(2s)520.12 a.u.
(.23.3 eV). The evolution of 1s and 2s states is studied
in this paper. We have used different grids to solve
Schrödinger equation, depending on the classic excursion
the electron, as is explained in each case.

IV. MAGNETIC-FIELD DRIFT

As we have seen above, the dipole approximation
glects the magnetic field because it assumes that the ve
potential is not space dependent@Eqs. ~6!#. When the inter-

FIG. 3. Contour plots of the probability densityuC(x,y,t)u2

after ten cycles of the field~the same parameters as in the Fig.!.
Graphics at the top correspond to an initial state taken to be 1s, and
that at the bottom to a state taken to be 2s. The column at the left
shows the dipole case, and the one at the right in the nondi
integration. The linear scale of the contour levels is the same fo
the plots.

FIG. 4. Expected value of the wave-packet trajectory~nondipole
equation! for the initial 1s ~solid line! and 2s ~dashed line! states, in
atomic units. Laser parameters areE0575 a.u. (I .
2.031020 W/cm2) and frequencyvL55 a.u. (.136.1 eV). The
linear turn-on of the laser lasts four cycles of the electric field.
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action of an electron with linearly-polarized lasers is clas
cally studied@the nonrelativistic Lorentz equation, Eq.~7!# in
this approximation, the electron motion is restricted to t
polarization direction. The velocity oscillates with amplitud
v05E0 /vL . As this classic velocity increases (v0>0.1c),
magnetic-field effects appear, and the dipole approxima
can be seriously questioned; even though the laser w
length was very large compared to typical atomic dime
sions,l@^r &nl . These effects have sometimes been cal
relativistic effects, because they are more important for h
electron velocities, but they can also be observed in non
ativistic equations. In fact, such an effect appears in the s
ond term in Eq.~7!.

The main effect of the magnetic field in the electron m
tion @11# is a drift along the propagation direction (x in this
paper!. This can also be understood as momentum tra
ferred to the electrons by the incident photons. For a giv
value of the classic velocityv0, this effect is more importan
as the classical excursion of the electrona05E0 /vL

2 in-
creases.

An estimation of the magnitude of the magnetic-field dr
for an initially at rest free electron can be easily done
neglecting the spatial dependence of the fields in Eq.~7!. In
the case of a squared pulse~for simplicity!, the electron
moves along the propagation axis with constant speed
addition to oscillatory terms. This velocity is approximate

le
ll FIG. 5. Time evolution of the population that remains in t
initial state, comparing between results obtained in the dipole
proximation ~dashed line! and without this approximation~solid
line!. In the plot at the top, the initial state of the model is 1s, and
in the plot at the bottom it is 2s. Laser parameters areE0

575 a.u. (I .2.031020 W/cm2) and frequency vL55 a.u.
(.136.1 eV). The linear turn-on of the laser lasts four cycles
the electric field.
3-4
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vdri f t.3E0
2/(4cvL

2). The displacement in this direction i
thenxdri f t}E0

2t/(cvL
2). Thus, the longer the interaction time

the larger that effect.
Figures 1, 2, and 3 show the results obtained when in

acting with a ten cycle laser pulse of amplitudeE0
515 a.u. (I .7.931018 W/cm2) and frequency vL
51 a.u. (.27.2 eV). The linear turn-on of the laser las
four cycles of the electric field. We have employed a spa
grid with 300031300 points, equally separatedDx5Dy
50.2 a.u. (.0.01 nm). In Fig. 1 we plot the expecte

value of the wave-packet trajectory, that iŝrW&
5*C(x,y,t)rWC(x,y,t)* dxdy, for two different initial
states: the ground 1s state ~solid line! and the 2s state
~dashed line! of the two-dimensional model. The magneti
field drift is very important, and leads to a displacement
the x direction of the same order of magnitude~after ten
cycles! as the motion along the polarization axis. The clas
velocity in this case isv05E0 /vL515 a.u., and the esti
mated drift velocity isvdri f t.1.2 a.u. ~a displacement of
75 a.u. after ten cycles!. Of course, this estimation is to
large compared to numerical results, but the discrepan
are well explained because in the estimation we have ne
taken the laser turn-on into account nor the Coulomb po
tial. Both effects decrease the magnitude of this motion. T
irregular behavior of the 1s state is a consequence of the fa
that this state has a smaller energy than the 2s state, and it
interacts more strongly with the Coulomb potential. Figure
shows the time evolution of the initial state population (s
and 2s states, up and down, respectively!, comparing results
obtained with the dipole approximation and with the non
pole Schro¨dinger equation. It is clearly seen in the 1s case

FIG. 6. Contour plots of the probability densityuC(x,y,t)u2

after ten cycles of the field~the same parameters as in Fig. 5!.
Graphics at the top correspond to the initial state taken to be 1s, and
that at the bottom to be 2s. The column at the left shows the dipo
case, and the one at the right the nondipole integration. The li
scale of the contour levels is the same for all the plots.
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that this state loses more population in the nondipole ca
lation because of the magnetic drift. This is not so eviden
the 2s time evolution because of the particular shape of su
a state. Figure 3 shows the contour plots of the probab
density uC(x,y,t)u2 after the interaction time. The scale o
the contour lines is linear, and it is the same for all the plo
It is important to realize that the axial symmetry along t
polarization direction in the dipole approximation strong
breaks when taking into account the spatial dependenc
the fields. The population spreads not only in this direct
as predicted by stabilization theories, but also in the pro
gation direction.

Figures 4, 5, and 6, show the same plots as the prev
figures, but now we study the interaction with a ten-cyc
laser pulse of amplitudeE0575 a.u. (I .2.031020 W/cm2)
and frequency vL55 a.u. (.136.1 eV). The linear
turn-on of the laser lasts four cycles. The grid that we ha
employed now has 300031000 points, equally separated b
Dx5Dy50.05 a.u. (.0.0027 nm). The different behavio
between dipole and nondipole integration, mainly for thes
state in Fig. 5, is more evident than in the previous ca
because the motion along the propagation axis is now
important as the oscillations in the polarization axis. Now t
wave functions distort just a little because the interact
time is very short, and natural spreading of the wave funct
is negligible~Fig. 6!. That is the reason why wave packe
maintain more or less their original shape.

ar
FIG. 7. Expected value of the wave-packet motion along

polarization direction for the initial states 2s, in dipole~dashed line!
and nondipole~solid line! integrations. In the plot at the bottom, w
show the time evolution of the population of this state in dipo
~dashed line! and nondipole~solid line! integrations. Laser param
eters are vL520 a.u. (.544 eV) and E05300 a.u. (I .
3.231021 W/cm2).
3-5
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V. SHORT-WAVELENGTH EFFECTS

In cases where the laser wavelength is comparable to
size of the atomic state that we are considering, the dip
approximation is clearly not valid, and does not depend
the electronic velocity and its coupling with the magne
field. As the electric field varies significantly along th
propagation axis (x), each ‘‘line’’ of the atomic wave func-
tion perpendicular to this axis experiences a different va
of the electric and magnetic fields at the same time. So
wave function is expected to behave in a very different w
than in cases where the whole wave function is affected b
uniform electric field.

If we study the hydrogen 1s state, whose dimension i
tvpically of the order of 1 a.u. (.0.053 nm), the required
laser frequency to find this effect@more than vL
.150 a.u. (.4.1 KeV)# is clearly unrealistic for the laser
available nowadays. However, it is possible to consi
highly excited states~Rydberg states! which have a very
large spatial extension so that, with lasers in the visi
range, the dipole approximation is again questioned. For
ample, then540 Rydberg state has a spatial dimension co
parable with a wavelength ofl5500 nm~visible!.

In this paper, we present some calculations starting fr
the 2s state of the flat-atom model, which has a spatial
tension of approximately 10 a.u. (.0.53 nm) larger than
the size of the state 1s. The grid that we have employed ha
100031000 points, equally separated Dx5Dy
50.05 a.u. (.0.0027 nm).

FIG. 8. Expected value of the wave-packet motion along
polarization direction for the initial states 2s, in dipole~dashed line!
and nondipole~solid line! integrations. In the plot at the bottom, w
show the time evolution of the population of this state in dipo
~dashed line! and nondipole~solid line! integrations. Laser param
eters are vL543 a.u. (.1.17 keV) and amplitude E0

5200 a.u. (I .1.431021 W/cm2).
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In Fig. 7, we show the time evolution of the expect
value of they coordinate~the polarization direction!, and the
population of the selected initial state. Laser parameters
vL520 a.u. ~.544 eV! and E05300 a.u. (I .3.231021

W/cm2). The laser turn-on is again linear, and it lasts fo
cycles of the electric field. The amplitude of the oscillatio
along the polarization axis is smaller in the nondipole ca
than in the dipole one. This effect is caused by the stro
spatial dependence of the electric field, that does not m
the wave function as a whole, but each line perpendicula
the x axis, in a different way. So, on average, the motion
the wave packet is smaller than expected in the dipole
proximation. The wave packet becomes deformed, instea
oscillating. It can be said that each point of the wave fun
tion moves classically, and independent of the remain
population.

The population of the state evolves surprisingly differe
in both cases. In the dipole approximation result, populat
oscillates as one would expect from the small sinusoidal m
tion shown in the graphic above. The wave packet mo
freely with no distortion, taking into account that the fr
quency of the field is very large~the interaction time is
small! and that the natural spread of the wave function
negligible. However, in the nondipole calculation the 2s
state loses most of its population in a few cycles of the fie
This is caused by a local phase shift induced by the field
the wave function@12#, which is esentially the classical ac
tion for each point of the wave packet, that depends on thx

e
FIG. 9. Expected value of the wave-packet motion along

polarization direction for the initial states 2s, in dipole~dotted line!
and nondipole~solid line! integrations. In the plot at the bottom, w
show the time evolution of the population of this state in dipo
~dotted line! and nondipole~solid line! integrations. Laser param
eters are vL543 a.u. (.1.17 keV) and amplitude E0

5600 a.u. (I .1.331022 W/cm2).
3-6
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coordinate. Even though the population remains near
nucleus ~very small oscillations of the wave packet!, the
overlapping of the evolved wave function and the init
wave function is very small because this phase destructi
interferes when evaluating the population.

Figures 8 and 9 show the same magnitudes as in Fig
but now the frequency of the laser isvL543 a.u.
(.1.17 keV), and the amplitudeE05200 a.u. (I .
1.431021 W/cm2) and E05600 a.u. (I .1.331022

W/cm2), respectively. The short-wavelength effects stud
above, now become more evident because of the freque
selected for the calculation, that causes a change ofp in the
phase of the fields in the spatial region occupied by the e
tronic wave packet. The effect of the laser amplitude can
observed by comparing between Figs. 8 and 9 for the s
value of the frequency.

VI. CONCLUSIONS

In this paper we have solved the time-dependent Sc¨-
dinger equation, mantaining the whole spatial dependenc
the electric and magnetic fields~the nondipole Schro¨dinger
equation!. With the very intense lasers available nowadays
is possible to find situations for which the standard dip
approximation cannot be assumed, and the Schro¨diger equa-
tion has to be solved with no approximations. We ha
pointed out two different situations, both of them with ov
ys
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the barrier suppresion and with frequencies over the ato
unit ~the photon energy is 27.2 eV).

In the first situation, the electron quiver velocity is hig
but not high enough to solve relativistic wave equatio
(v05E0 /vL.10 a.u.!. In this case, the magnetic field can
not be neglected. It leads to a spatial drift of the wave fu
tion along the propagation axis, which becomes very imp
tant when the classic excursion of the free electron is la
(a05E0 /vL

2). It can be as important as the oscillatory m
tion along the polarization direction. Then the very we
studied stabilization and Kramer-Henneberger methods
be questioned. In addition, when the laser wavelength
comparable to the atomic size,l.^r &nl , the space depen
dence of the fields cannot be neglected. The effect of
dependence causes a local and semiclassic behavior of
point of the wave function, which differs strongly from th
global motion observed in the dipole approximation.
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