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Nonrelativistic numerical study of atomic ionization by strong laser fields
without the dipole approximation in a flat-atom model
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Numerical experiments for a two-dimensional hydrogen model interacting with very int&arskeyond
the barrier suppression valuand linearly polarized laser fields are presented in nonrelativistic cases. The
Schralinger equation retaining the space dependence of the fields is $otwedipole, comparing with results
obtained in the standard dipole approximation, in situations where the validity of such an approximation can
be questioned.

PACS numbgs): 42.50.Hz, 32.80.Fb

[. INTRODUCTION allel computers. The dipole approximation in the time-
dependent Schdinger equation allows one to reduce the
The interaction of atoms with intense laser fields has beedimensionality of the problem, thanks to the cylindrical sym-
achieved from many points of view in the past two decadesmetry in the case of a linearly polarized laser field, and many
Talking about theoretical studies, the direct numerical resoealculations have been done in this way in past years. How-
lution of the time-dependent Scliinger equation for this ever, in cases where the dipole approximation is not valid
system is one of the most powerful research techniques. Diffor example, when magnetic effects are thought to be im-
ferent models and approximations have been developed iportan) the dimensionality of the problem cannot be directly
order to simplify the complexity of such a task. In this way, reduced because the cylindrical symmetry breaks, and a fully
for example, the dipole approximatidthe long wavelength three-dimensional treatment has to be employed.
of the fields compared to the typical dimension of the atom  On the other hand, two-dimensional atomic models are
is widely accepted when laser parameters are such that tiwery useful because they make it possible to take into ac-
electron dynamic is expected to be nonrelatividtic-5]. count electric and magnetic effects, such as elliptic polariza-
Howeover, very few quantum calculations have been pubtion of the electric field, and are not so prohibitively compu-
lished in this regime taking into account the spatial depentation demanding. Moreover two-dimensional models are
dence of the field§6,7], testing the dipole approximation. In reasonably realistic, especially if a soft cdsmnoothedl po-
relativistic situations the nonvalidity of this approximation tential is used which avoids the singularity at the origin:
was clearly shown in different work$,9].
In this paper we present numerical simulations of a two-
dimensional atomic model interacting with very interar Vixy)=- iyira @
beyond the barrier suppressjoand high-frequency laser
fields, solving the Schdinger equation with the space de- a, the smoothness parameter, has been selected ta be
pendence of the fields retaing¢dondipole equation so as =1 a.u. <=0.053 nm). Atomic units §=m=#=1 a.u.
the standard dipole Schiimger equation. Results obtained gndc=137 a.u.) are used throughout this paper. The time-

from both equations are compared, showing the very differindependent Schdinger equation for the atomic model in
ent behaviors of the atomic electrons in some situations. Lacartesian coordinates is

ser fields are always linearly polarized in this paper.

In Sec. Il the two-dimensional atomic model is introduced 1{ 62 42
and justified for this kind of numerical experiments. The se- —o| —=t+—|VY(XYy)
. . . . 2 2 2
lected geometry in the numerical experiments is also men- ax= ay
tioned. The numerical method employed to solve the Schro 1
dinger equation, and details of the calculation, are explained e (xV)=E.T(XV). 2
in Sec. lll. The effect of the magnetic field is studied in Sec. Vx3+y2+1 oY) =Esi6y) @
IV, and other short-wavelength effects are discused in Sec.
V. Finally, Sec. VI is devoted to conclusions. Changing to polar coordinates:=p cos(), andy= p sin(6)
Eqg. (2) is separable into
Il. FLAT-ATOM HYDROGEN MODEL d2
—\2
Computational requirements to solve the fully three- B @5( 0)=N\"¢(0) 3

dimensional time-dependent ScHiager equation for an

atom are extremely prohibitive when the interaction with 1/d2 1d 22 1

very intense laser fields is studied. The very large grids that _ —( ~_, = — _ = #(p)— ——d(p)=Egd(p)
have to be employed in order to avoid reflections and bound- 2\ dp? P dp p? \/p7+a ’
ary effects make the problem suitable only with massive par- 4
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whereW¥(p, 0) = ¢(p) £(0). The equation for the polar angle dimensional model reasonably realistic because the motion is
[Eq. (3)] is trivially solved: £(6)=e'*? with A\=0,+1, by itself included in this plane.

+2,.... Theradial equationEqg. (4)] can be easily inte- In that case, the nondipole Schinger equation is

grated numerically with standard one-dimensional methods

(that of Numerov, for examp)eIn order to solve the time- P 1( 2 52 i P
dependent Schdinger equation of an atom interacting with i—T(xy,t)=|— —(— — | = ZAX)—
laser fields, it is convenient to use a grid in Cartesian coor- t 2\gx* gy?] ¢© ay
dinates(equally separated points along axeendy) because 1
we thus obtain a uniform sampling of all the integration sur- 2

. X . . . +— +
face. To calculate eigenfunctions in a two-dimensional Car- 202A(X't) V) Oy, Y, (9)

tesian grid is not as easy as in one-dimensional problems,

and more sophisticated methods have to be emplgyed , . .
! : where obviously the spatial dependence of the fields has
Sec. I, because eigenstates of the radial equéiem (4)] been retained. When the dipole approximation can be as-

are not exactly the same as those of the Cartesian equation. : -
In the simulations presented in this paper, the electric fieléumed’ that IAA(x, ) =A(t), Eq. (9) reduces to
is linearly polarized in the direction, and the pulse propa-

gates along the direction: 9 v oo 92 . 92 i At d
- - G y=| T2 ax*  ay?| ¢ ( )f7y
E(x,t) =Epf(x,t)sin(kx—w t)e, . (5)
f(x,t) is the laser pulse turn-on. In the calculations presented +V(x,y) | P(xy,t) (10)
in this paper we have selected a linear turndat lasts four

cycles of the electromagnetic fieldsecause it does not in-
troduce the well-known drift along the polarization axis.  (eliminating the ponderomotive term with a time-dependent
Then the vector potential and the magnetic field are phasg, which is the standard time-dependent dipole Sehro
. dinger equation in the velocity gauge-(A). It is well
,&(x,t)z—cJ' E(x,t’)dt’éy, known that the length gaugeE(r) has no meaning when
0 working out of the dipole approximation, because it is not
R o R (6) possible to separate space and momentum coordinates in the
B(x,t)=VXA(X,t)=B(x,t)e,, coupling term—(i/c)A(x,t)(d/dy). Then it has to be solved
with no transformation.
with a convenient choice of gauge where the scalar potential
is taken to be zero. The vector potential is polarized in the
same direction as the electric field, and the magnetic field is
parallel to thez axis (perpendicular to the flat-atom plane Numerical resolution of the time-dependent dipole Sehro
Neglecting the atomic potential, the motion of a free nonrel-dinger equation has been carried out extensively in the past
ativistic electron in these electromagnetic fields is given bytwo decades, and thus, very sophisticated techniques have

IIl. NUMERICAL RESOLUTION

the Lorentz equation been developedsee, for example Ref4], and references
R therein. In general, for a given time-dependent Salinger-
d?r -o1. . like equation,
F—— E(x,t)ey+ EUXB(X,t) s (7)
0 ~
and splitting it into components: |E<I>(x,y,t):H(x,y,t)d)(x,y,t), 1D
ﬂ: _ EU B(x,1) knowing the wave function at a timig it is possible to for-
dt? c Yy o mally calculate it in the time stept At as
d2y 1 . t+At o , ,
?=—E(X,t)+ava(X,t), (8) d(x,y,t+At)=exg —i t H(x,y,t")dt" |®(x,y,t)
t
d’z iAtH A ®
W_O' =exp —1AtH| x,y,t+ = |12 (Xy,1).
(12)

Then the classic Lorentz force causes the electron motion to
be confined in thay plane(if it is initially at rest, or at least, This is the starting point for most of the numerical methods.
has no velocity in the direction), making the present two- Now we split the exponential into three terfi]:
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At~ At ® ‘ ‘ ‘ ‘ ‘ ‘ -
CID(x,y,t+At)zex;{—THX(x,y,H— ?” j A o
10 i h T
o At i
xex;{—|AtHy Xy, t+ — } s o A
¥
iAt - At ¥ o0
X ex;{ - THX(x,y,H 7”
-20
XD(x,y,1)+O(At). (13
~ ~ Moz 4 & 8 10 12 14
In general, the operatotd, andH, do not conmute them- X> (@)
selves, and that is the reason why this expression is not an
equality: it is exact to the ordekt?. FIG. 1. Expected value of the wave-packet trajeciogndipole

. . ~ ~ equation, for the initial states & (solid line) and X (dashed ling
The Hamiltonian operatorsl,(x,y,t) andHV(X’y’t) are  in' atomic units. Laser parameters ar&;=15 a.u. (=

different in the case of the dipole Schlinger equation than 7.9x10® Wicn?) and frequencyw, =1 a.u. (=27.2 eV). The

in the nondipole equation. In order to solve HA0), We  |ineqr turn-on of the laser lasts four cycles of the electric field.
have chosen

the model but also a few low-lying states, by imposing or-

2 thogonallity with the lower-energy states that have been pre-

A 190 1
HX(Xiy!t): -5t EV(le)l

2 o%2 viously calculated.
(14) For the selected smoothing parameter value in this paper
12 1 . P a=1 a.u. =0.053 nm), and, employing a Cartesian grid
H,(x Yy =—=—+=V(X,y)— I—A(t)— of 1000< 1000 points with spatial separation between two
Y 29y? 2 c ay consecutive pointAx=Ay=0.05 a.u. &0.0027 nm), the
and, in the case of the nondipole Satirger equatiodEq. 1 ,
(9)]1 0.9 dipoI‘e
nondipole
08 7
- 1 & 1 ) Bo7}
HX(X,y,t)Z - E %‘F EV(X,y)_l— EA(X,'[) s :% zz
(15 §oel
H t)= ” +2V At 2o
y(X,y,t)=— Ea_yz > (X,y)— c (X,t)@- zf
Each time step, Eq13) is solved, employing the Cayley- Yo 2 AR G\I 7 8 9 10
Hamilton form and a Crank-Nicholson finite-difference me (inlaser cycles)
scheme. The widely used methods that solve @), by ’ ,
means of a Fourier transform, cannot be directly imple- oolV | dipo(lf |
mented in the case of the nondipole Sainger equation, 08| | & _— nondeole
because the term Zor ||}
é 06 IE
i d 05
- EA(X,t) @ (16) Tosa|
g 03¢
mixes space and momentum coordinates, and it is not pos- 02y ; o
sible to separate them. Of course, a combined method em- ¥

ploying Fourier-transform and Crank-Nicholson schemes is
also suitable. time (in (aser cycles)

The_ initie_ll Statg in the grid h.as been calculated_by means FIG. 2. Time evolution of the population that remains in the
Of,th,e 'magmary't'm? propaganqn method. A function in theinitial state, comparing between results obtained in the dipole ap-
grid is chosertas similar as possible to the ground staéad  oximation (dashed ling and without this approximatiorsolid
it is made to evolve in time with an imaginary time stép: |ine). In the plot at the top, the initial state of the model i and
—to+iAt. Numerical algorithms for this purpose are thein the plot at the bottom it is € Laser parameters arg,
same as those used in calculating the time evolution of the- 15 a.u. (=7.9x10"® W/cnm?) and frequency w, =1 a.u.
Schralinger wave function, changingt by iAt. This tech-  (=27.2 eV). The linear turn-on of the laser lasts four cycles of the
nique allows one to determine not only the ground state oglectric field.
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FIG. 3. Contour plots of the probability density(x,y,t)|? g
. . . 0.2
after ten cycles of the fieldhe same parameters as in the Fig. 2
. P 0.1
Graphics at the top correspond to an initial state taken tosharid

o

that at the bottom to a state taken to & Zhe column at the left
shows the dipole case, and the one at the right in the nondipole
integration. The linear scale of the contour levels is the same for all
the plots.

(=3
-

2 3 4 5 6 7 8 9 10
time (in laser cycles)

FIG. 5. Time evolution of the population that remains in the
initial state, comparing between results obtained in the dipole ap-
. . _proximation (dashed ling and without this approximatiortsolid
ground state energy of the two-dimensional atom model igine) In the plot at the top, the initial state of the model & and
E(1s)=-043 au. —-11.7 eV). 3 and 2 states have 5 the plot at the bottom it is € Laser parameters arg,

an energy in this grid of E(25)=-0.12 au. =75 au. (=2.0x10° W/cm?) and frequency w =5 a.u.
(=—3.3 eV). The evolution of 4 and X states is studied (=136.1 eV). The linear turn-on of the laser lasts four cycles of
in this paper. We have used different grids to solve thehe electric field.

Schralinger equation, depending on the classic excursion of

the electron, as is explained in each case. action of an electron with linearly-polarized lasers is classi-
cally studied the nonrelativistic Lorentz equation, E@)] in
IV. MAGNETIC-FIELD DRIFT this approximation, the electron motion is restricted to the

polarization direction. The velocity oscillates with amplitude
As we have seen above, the dipole approximation ney =E,/w, . As this classic velocity increases = 0.1c),
gleCtS the magnetic field because it assumes that the VeCtﬁ{agnetiC_ﬁem effects appear, and the d|p0|e approximation
potential is not space dependgBis. (6)]. When the inter-  can be seriously questioned; even though the laser wave-
length was very large compared to typical atomic dimen-
4 sions,A\>(r), . These effects have sometimes been called
...... ¢ relativistic effects, because they are more important for high
A electron velocities, but they can also be observed in nonrel-
i ativistic equations. In fact, such an effect appears in the sec-
. ond term in EqJ(7).
Vo The main effect of the magnetic field in the electron mo-
| tion [11] is a drift along the propagation directior {n this
! papej. This can also be understood as momentum trans-
A ] ferred to the electrons by the incident photons. For a given
: value of the classic velocity, this effect is more important
‘ ‘ ‘ ‘ ‘ ‘ ‘ as the classical excursion of the electrag= EO/wE in-
0 05 1 15 2 25 3 35 4 creases.
An estimation of the magnitude of the magnetic-field drift

FIG. 4. Expected value of the wave-packet trajectmgndipole for an initially at rest free electron can be easily done by
equation for the initial 1s (solid line) and % (dashed lingstates, in ~ Neglecting the spatial dependence of the fields in(&qg.In
atomic  units. Laser parameters areE,=75 a.u. (= the case of a squared pulgtr simplicity), the electron
2.0x10?° W/cn?) and frequencyw, =5 a.u. (=136.1 eV). The moves along the propagation axis with constant speed in
linear turn-on of the laser lasts four cycles of the electric field.  addition to oscillatory terms. This velocity is approximately

<Y> (a.u.)
=3

1t

2t

3t

-4
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FIG. 6. Contour plots of the probability densityl(x,y,t)|? 0.2
after ten cycles of the fieldthe same parameters as in Fig. 5 0.1
Graphics at the top correspond to the initial state taken tosbelj]d T s 3 4 5 & v 8 ¢ 10
that at the bottom to be2 The column at the left shows the dipole time (in laser cycles)
case, and the one at the right the nondipole integration. The linear )
scale of the contour levels is the same for all the plots. FIG. 7. Expected value of the wave-packet motion along the

polarization direction for the initial states2in dipole (dashed ling
and nondipoldsolid line) integrations. In the plot at the bottom, we
show the time evolution of the population of this state in dipole
Udnft—3Eo/(4ch) The displacement in this direction is (dashed ling and nondipolesolid line) integrations. Laser param-
thenxdrmocEOt/(Cw,_) Thus, the longer the interaction time, eters are w, =20 a.u. &544 eV) and E,=300 a.u. (=
the larger that effect. 3.2x10% Wicn?d).
Figures 1, 2, and 3 show the results obtained when inter-
acting with a ten cycle laser pulse of amplitudg,
=15 a.u. (=7.9x10"® W/cn?) and frequency
=1 a.u. &=27.2 eV). The linear turn-on of the laser lasts
four cycles of the electric field. We have employed a spatial
grid with 3000< 1300 points, equally separatelix=Ay

that this state loses more population in the nondipole calcu-
lation because of the magnetic drift. This is not so evident in
fhe 2s time evolution because of the particular shape of such
a state. Figure 3 shows the contour plots of the probability
2 . density | ¥ (x,y,t)|? after the interaction time. The scale of
=02 au. £0.01 nm). In Fig. 1 yve plot the expeﬁcted the contour lines is linear, and it is the same for all the plots.
value of the wave-packet trajectory, that ir) s important to realize that the axial symmetry along the
=[P(xy,)rv(xy,t)*dxdy, for two different initial polarization direction in the dipole approximation strongly
states: the ground sl state (solid line) and the 2 state  breaks when taking into account the spatial dependence of
(dashed ling of the two-dimensional model. The magnetic- the fields. The population spreads not only in this direction
field drift is very important, and leads to a displacement inas predicted by stabilization theories, but also in the propa-
the x direction of the same order of magnitudafter ten  gation direction.

cycles as the motion along the polarization axis. The classic Figures 4, 5, and 6, show the same plots as the previous
velocity in this case ivg=Eq/w =15 a.u., and the esti- figures, but now we study the interaction with a ten-cycles
mated drift velocity isvg,i;=1.2 a.u.(a displacement of laser pulse of amplitud&,="75 a.u. (=2.0x 10?° W/cn?)

75 a.u. after ten cyclgsOf course, this estimation is too and frequency w, =5 a.u. =136.1 eV). The linear
large compared to numerical results, but the discrepanciesirn-on of the laser lasts four cycles. The grid that we have
are well explained because in the estimation we have neitheimployed now has 30001000 points, equally separated by
taken the laser turn-on into account nor the Coulomb potenAx=Ay=0.05 a.u. &0.0027 nm). The different behavior
tial. Both effects decrease the magnitude of this motion. Th@etween dipole and nondipole integration, mainly for tise 2
irregular behavior of the d state is a consequence of the fact state in Fig. 5, is more evident than in the previous case,
that this state has a smaller energy than tBestate, and it because the motion along the propagation axis is now as
interacts more strongly with the Coulomb potential. Figure 2important as the oscillations in the polarization axis. Now the
shows the time evolution of the initial state populatiors (1 wave functions distort just a little because the interaction
and X states, up and down, respectivelgomparing results time is very short, and natural spreading of the wave function
obtained with the dipole approximation and with the nondi-is negligible (Fig. 6). That is the reason why wave packets
pole Schrdinger equation. It is clearly seen in the tase maintain more or less their original shape.

043403-5



J.R. VAZQUEZ de ALDANA AND LUIS ROSO PHYSICAL REVIEW A61 043403

0.2 | 0.4
—————— dipole
nondipole

dipole
nondipole

0.15

<Y> (a.u.)
<Y> (a.u.)

-0.15
-0.2 -0.4
012:1-4-|56|78910 "0 1 2 3 4 5 8 7 8 9 10
ime (in laser cycles) time (in laser cycles)
1
. 1 i =
dipole | N T dipol
0.995 nondipole 09 - N e
nondipole
— 099 0.8 T
& @ o7
S .
£ osss Py
g 5 08
c 098 2
£ £ 05
o 2
3 0975 B 04
g 2
0.97 g 03
0.965 02
0.96 o1
0 1 2 8 4 5 &6 7 8 9 10 0

time (in laser cycles) o 1 2 3 4 5 6 7 8 9 10
time (in laser cycles)

FIG. 8. Expected value of the wave-packet motion along the )
polarization direction for the initial states2in dipole (dashed ling Fl_G' 9 E)_(pec_ted value _Of_ Fhe Wave-packet motion alpng the
and nondipolésolid line) integrations. In the plot at the bottom, we polanzatlc_m dwecpor_] for_the |n|t|_al statess2in dipole (dotted ling
show the time evolution of the population of this state in dipole and nondlpple{solld I|n_e) Integrations. In t,he plot af[ the bott_om,_we
(dashed lingand nondipolgsolid line) integrations. Laser param- show th? time evolutlpn of the popullatlon O,f this state in dipole
eters are w, =43 au. 1.17 keV) and amplitude E, (dotted ling and nondipolesolid ling) integrations. La;er param-
=200 au. (=1.4x10%* W/cn?). eters are o =43 a.u. &1.17 keV) and amplitude E,

=600 a.u. (=1.3x10%? W/cn?).
V. SHORT-WAVELENGTH EFFECTS
In Fig. 7, we show the time evolution of the expected

In cases where the laser wavelength is comparable to thgalue of they coordinate(the polarization direction and the
size of the atomic state that we are considering, the dipolpopulation of the selected initial state. Laser parameters are
approximation is clearly not valid, and does not depend on, =20 a.u. (=544 e\) and E;=300 a.u. (=3.2x 10
the electronic velocity and its coupling with the magnetic\w/cn?). The laser turn-on is again linear, and it lasts four
field. As the electric field varies significantly along the cycles of the electric field. The amplitude of the oscillations
propagation axisX), each “line” of the atomic wave func- along the polarization axis is smaller in the nondipole case
tion perpendicular to this axis experiences a different valughan in the dipole one. This effect is caused by the strong
of the electric and magnetic fields at the same time. So thepatial dependence of the electric field, that does not move
wave function is expected to behave in a very different waythe wave function as a whole, but each line perpendicular to
than in cases where the whole wave function is affected by ¢he x axis, in a different way. So, on average, the motion of
uniform electric field. the wave packet is smaller than expected in the dipole ap-

If we study the hydrogen d state, whose dimension is proximation. The wave packet becomes deformed, instead of
tvpically of the order of 1 a.u. £0.053 nm), the required oscillating. It can be said that each point of the wave func-
laser frequency to find this effec{more than w_  tion moves classically, and independent of the remaining
=150 a.u. &4.1 KeV)]is clearly unrealistic for the lasers population.
available nowadays. However, it is possible to consider The population of the state evolves surprisingly different
highly excited stategRydberg statgswhich have a very in both cases. In the dipole approximation result, population
large spatial extension so that, with lasers in the visibleoscillates as one would expect from the small sinusoidal mo-
range, the dipole approximation is again questioned. For extion shown in the graphic above. The wave packet moves
ample, then=40 Rydberg state has a spatial dimension com{reely with no distortion, taking into account that the fre-
parable with a wavelength of=500 nm(visible). guency of the field is very largéthe interaction time is

In this paper, we present some calculations starting frorsmal) and that the natural spread of the wave function is
the 2s state of the flat-atom model, which has a spatial exnegligible. However, in the nondipole calculation the 2
tension of approximately 10 a.u.=0.53 nm) larger than state loses most of its population in a few cycles of the field.
the size of the statesl The grid that we have employed has This is caused by a local phase shift induced by the field in
1000x 1000 points, equally separated Ax=Ay the wave functiorf12], which is esentially the classical ac-
=0.05 a.u. &0.0027 nm). tion for each point of the wave packet, that depends onxthe
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coordinate. Even though the population remains near théhe barrier suppresion and with frequencies over the atomic
nucleus (very small oscillations of the wave packethe unit (the photon energy is 27.2 eV).
overlapping of the evolved wave function and the initial In the first situation, the electron quiver velocity is high,
wave function is very small because this phase destructivelput not high enough to solve relativistic wave equations
interferes when evaluating the population. (vo=Ep/w, =10 a.u). In this case, the magnetic field can-

Figures 8 and 9 show the same magnitudes as in Fig. fiot be neglected. It leads to a spatial drift of the wave func-
but now the frequency of the laser i@ =43 a.u. tion along the propagation axis, which becomes very impor-
(=1.17 keV), and the amplitudeEy=200 a.u. (= tant when the classic excursion of the free electron is large
1.4x 107 W/cn?) and  Ep=600 a.u. (=1.3x107 (ag=Ey/w?). It can be as important as the oscillatory mo-
W/cn?), respectively. The short-wavelength effects studiedion along the polarization direction. Then the very well-
above, now become more evident because of the frequeneyudied stabilization and Kramer-Henneberger methods can
selected for the calculation, that causes a change iofthe  be questioned. In addition, when the laser wavelength is
phase of the fields in the spatial region occupied by the eleccomparable to the atomic size=(r),,, the space depen-
tronic wave packet. The effect of the laser amplitude can belence of the fields cannot be neglected. The effect of this
observed by comparing between Figs. 8 and 9 for the samgependence causes a local and semiclassic behavior of each
value of the frequency. point of the wave function, which differs strongly from the

global motion observed in the dipole approximation.
VI. CONCLUSIONS
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