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Calculation of properties of two-center systems
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A procedure is described by which the response of a two-center system to a perturbation can be expressed
in terms of single-center wave functions. We use the formulation to evaluate the asymptotic long-range part of
the Pauli-Dirac relativistic interaction between two ground-state hydrogen atoms and compare with the results
of ab initio calculations.

PACS numbd(s): 34.20.Cf

I. INTRODUCTION (Ho—Eo)iho(r2,r9)=0 (1)

The study of atomic collisions in ultracold regimes haswhereH, and Ey are the unperturbed Hamiltonian and en-
become important in interpreting observations made possiblergy, respectively, given by the sum of the separate Hamil-
by the current experimental techniques for cooling and traptonians or energies for the centé&xsandB. The Hamiltonian
ping gaseous atomic samples; topics attracting interest irfor centerA is
clude the construction of gaseous Bose-Einstein condensates, )
accurate measurement of time, and the production of mol- Ha= — ﬁ_vz +V(rd) @)
ecules in specified vibrational states by cold atom photoas- 0 a’ Tatl
sociation. Reviews of ultracold atomic physics are given in
[1]. wherem; is the mass of particle 1, and the Hamiltoniaﬁ

This current interest in cold atomic collisions brings afor centerB is defined similarly. We may write the wave
need for precise interaction potentials because the effects drnction as the product
scattering induced by small corrections to the potentials are a b a a
enhanced at the very low energies of the ultracold ensembles. Po(r1,rz)=uarpuy(ry) 3

Relativistic corrections influence the scattering at ultralow a . -

+ whereuy(r7), assumed to be normalized, satisfies the equa-

temperatures. They have been calculated fomﬁEg state . 1

- - : . tion
of H, by ab initio variational methods for internuclear dis-
tancesk between 0 bohr anq 12 bo[ﬁ].but their asymptotic (Ha—E3)u (r¥=0 ()
form has not been determined. We introduce here a proce-
dure with which a precise determination can be achieved. Wgndu,(rb) satisfies a similar equation. We introduce the two-
extend the calculations of Wolniewi¢2] to larger values of  center perturbation
R for both theX'S; and b®%; states and compare the
results with the calculated long-range form. N )

The procedure, in which the effects of certain two-center V(g =2 t0rHErb). 5)
interactions are factored into products of one-center func- =1
tions, is general and we describe it in Secs. Il and Ill. Wey o
apply it to the relativistic interaction calculation in Sec. IV
and present thab initio calculations in Sec. V. P=T—| o) Yo (6)

Il. TWO-CENTER PERTURBATION be the operator that projects off the unperturbed gtage,
assumed normalized, whefedenotes the identity operator.

er (_:onsider an u_nperturbed two-center dynami(;al systefithe first-order wave functiorqbl(r"i‘,r'z’), chosen to be or-
consisting of a particle labeled 1 centered on pdin&nd  hogonal to the unperturbed wave function, satisfies the
moving in the potential/q(r7) =V,(rf) whererf is its dis-  gquation
placement fromA and a particle labeled 2 centered on point
B and moving in the potentiaV/ ,(r5) =V(r5) wherer} is |1)=—P(Ho—Eg) YPV|¢ho)=— (Ho—Eg) " YPV| ).
its displacement frorB. The wave functionyy(r2,rb) of the (7)

system satisfies the equation The second-order wave function satisfies the equation

=P(Ho—Eg) " *P(V—(i|V
*Permanent address: Department of Computing Science, Univer- [2) (Mo~ o) ( (ol VIoD)
sity of Glasgow, Glasgow G12 8QQ, UK. X P(Ho—Eg) " *PV|4o) ()
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which, if (40|V|¢o) vanishes through, for example, symme- [ (H3—E2)2+ w2y D (w;rd)=(H3—E3)Pf O (rd)uyrd)
try considerations, may be written
+oX(udxMuyrd) (16

and x(w;rh) satisfies a similar equation. Equati¢h6)
Let P, andP, project out the ground states, assumed normay be solved by direct numerical methd@s or by varia-
malized, of the single-center Hamiltoniakg and HB, re- tional methods such as that used by Chan and Daldgarho
spectively. Then who calculated the dynamical polarizability of atomic hydro-
gen by finding the stationary values of the functional

|2y =(Ho—Eq) " *PV(Ho—Eq) " *PV| o). 9

P=Pup){Up| + Pplu{u + PPy (10) 30 (ED|(H3-E3)2+ =)
a (@) =(E3’[(H5—EQ) =P
We need ~2(EQHS - Eflud— o (EQ(ud? (17)
- - [ i iorE () (w;r? dopt their
HoeEa) " 1=[(H2—E3)+ (HP—EP)1-1 11 with respect to a trial functiorE}’(w;ry). We adop
(Ho=Eo) '=[(HE-ED+(Ho-Eg)1 ™" an T ™
which we may rewrite using the integral, farand b posi-
tive, Ill. PERTURBED EXPECTATION VALUE
Suppose we wish to determine the expectation value of
2 [ ab the operatot. =L+ L, effective on each center separately,
(a+b) t=—| do . (12 in the presence of the two-center perturbati®). The
T 24 w2/ (b2+ w2 T .
0 (@t ) (b™+ ) zeroth-order contribution is straightforward to evaluate.

Equation(12) enables us to obtain a product form for the The first-order contribution igwith {yo|4,) vanishing

first-order wave function, albeit with the need to evaluate an
integral. We use Eq93), (5), (7), (10), (11, and (12) to Ly=(to|L| )+ (| L| b (18)
express the first-order wave function as the following sum of

single-center products: which may be expressed with the aid of E(3) and(15) as

N
== 2 e Pl (DU D (Ul ) () 1= 2 f do({udLd xg”)(usl x3”)
= 0
N 0 o + (Ul Lol x5 (X&) + (XL u (xSl up)
-3, e ) LU (T, 19
o N o a_E3 @ ' The second-order contribution isvith (|,) vanish-
_;i:1 Jo dePaa ( 1) |ng)

Lo= (|| 1)+ (ol L|¢h2) + (ol L| tho)
Pt (rDuy(rd). (13 —(olL| o) tra| ). (20)

It is not necessary to find the second-order wave function to
The first term in Eq(13) may be obtained from the solution evaluateL,; we can use the first-order wave function and
0(')(r ) of the equation another first-order wave function corresponding to the per-
turbationL to evaluate the matrix elementg|L|,) and
_ . (¢,|L| o) [5). From Egs.(7) and (9) we may write (with
(H3—ED) 60 (rH) =Pt L (rDuy(rd) (149 (y|V|o) vanishing

b b

o~ ~o
XU (r))————
Y (HE-ED?+ w?

and the second term may be found similarly. In studies of  (y|L|)=—{(wo|L(Ho—Eq) " 1PV|i;)= <¢1|V|¢1>
interacting atoms that have no permanent dipole or higher

moments thesénduction terms vanish identically. The last ] i o
term in Eq.(13) is where|¢,) is the first-order wave function induced by the

perturbationL alone chosen orthogonal tpy,), that satis-
fies the equation

—Eo)| 1)+ (L—(wol|L| o)) |tho) =0. (22

wherex{)(w;r?) satisfies the equation Similarly we find

Y (rd,r9 = ——E dw)((')(w rx$(w;rd) (15)
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(ol L|tho)=(¢1|V] d1). (23
We may expressgb, as
B1(r3.rD) =[9a(rD) +gu(r3) 1ho(r3.r9) (24)

wheregy(r$) satisfies the equation

PHYSICAL REVIEW®A 042705

(HG—EQ)Ga(rDua(ri) + (La—(ug Lua))uy(ry) =0

(29

[6] and gb(rg) satisfies a similar equation. From Ed45),
(20), (21), (23), and(24) we obtain

4 N N
L= 2 2 f do do'[(x8(@)|LdxP (@)X (@) X (@) + (6 (@)L xP (0 NP (@) [xP(0"))]

o N X A
;Z Zlf do[(gaud FP X8 (0))(upl xS () +(Gpupl T x5 (0) ) (ud x P (0)) + (XL (@) [ FP]gau

x<x£,><w>|ub>+<x<'><w>|f<“|gbub><x<'><w>|ua>]——<<uaJLaJua>+<ub|Lb|ub>>E f do(x§()[x§)(@))

XZ f do(x ()| x{(w

IV. APPLICATION TO LONG-RANGE PROPERTIES

(26)

where C;, denotes the binomial coefficient andl ,(r)

The method described in Secs. Il and IIl is generally ap-="Y 1.4(F)-
plicable to two-center problems. We need to be able to solve The HamiltoniansH3 and Hg, the perturbations , and

equations of the forng25); the method is much more conve-

fy, and the operators, andL, do not depend essentially on

nient when this equation has an analytic solution. The Diradhe centers; henceforth where possible we dispense with no-
contribution is an important part of the relativistic energy oftation that distinguishes the centers.

two interacting ground-state hydrogen atoms and influences The normalized ground-state orbital is

cold collisions and it happens that its calculation provides an

example where Eq25) can be solved analytically, as we
demonstrate below.

In the Pauli approximation the Dirac energy of the hydro-

gen molecule i$2,7]

4= ma?e?al 8O (rd) + s®(rh) — 58 (ra—r3—R)]
(27)

where « is the fine structure constarg, is the electronic
charge, a, denotes one bohr, and® is the three-
dimensional delta function. Thé function has dimension

[L]3. The third term vanishes for the triplet state and de-

u(r)=uy(r)Yodr)=2exg—r)Yodr). (29

The expectation value of thé function summed oveboth
1

centers to zeroth order isag3w %, or 27! in atomic
units.
From V?r 1=—476®)(r) Dalgarno and Stewarf9]

found a closed form expression fg(r); with our require-
ment thaté(r) andu(r) are orthogonal it igin atomic unit$

g(r)=g(r)=%[—r*1+2 Inr+2r—31+2¥(3)—21In2]
(30)

creases exponentially for the singlet state. The leading twahere W (k) is the digamma functiorisee the Appendix

terms decrease as inverse powerfofo evaluate the long-
range perturbation of the expectation value of éheinction
we identify the operatot. with §®)(r3)+ 5©)(rb) and the
perturbationV(ri‘,rg) with the long-range electrostatic inter-

We note that W¥(3)=0.9227843351 and In2
~0.693 147 180 6. The overlined terms ensure orthogonality.
The dimensions of(r) are[E] Y[L] L.

For any given value ofv Eq. (16) can be solved varia-

action between the atoms. The dipole-dipole component ofonally by adopting the trial function

this interaction can be expressed as a sum of one-center

products such as E@5) by [8]

47e

V1 4( rd) V1—af rg)
(29)

V(rirg)=-

E@(w;1)=F(@;1)Y1,(Nu(r) =2, ay(@)rPYy,(Hu(r)
(31)

and finding the stationary values of the functiofir) with
respect to variations in the coefficierdg(w). The dimen-
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sions of F(w;r) are[E] Y9 L] *2. The coefficients satisfy TABLE |. Born-Oppenheimer potentialéartree.
a matrix equation whose elements, being combinations of - .
expectation values of powers ofor the ground-state hydro- R (bohp X 24 b=X,

gen wave function, can be found followingonsiderable

. . . . 1.0 —1.124539713 —0.622264306
algebraic manipulation; Chgri0] has presented the matrix 15 1172855073 —0.809666437
equations. The first-order contribution to the expectation ' L e
value of thed function vanishes on account of angular sym- ;g _1'332;2222 _8'222%2523
metry. The trial function determined as described above can ) 1- 7326262 ) 7201
be substituted into Eq(26) and the necessary quadratures 3.0 —1.05732626 —0.972015035
over w performed to yield the second-order contribution, 35 —1.031858079 —0.986130885
whoseR dependence iR6. The perturbed wave functions 4.0 —1.016390249 —0.993380059
are each linear im near each center and hence thefunc- 4.5 —1.007993726 —0.996972880
tions in the first term oL, in Eq. (26) cause that term to 2.0 —1.003785656 —0.998687253
vanish. 5.5 —1.001774578 —0.999471748

The second and third parts b involve the sum of inte- 6.0 —1.000835707 —0.999813447

grals 6.5 —1.000400548 —0.999952833

7.0 —1.000197914 —1.000003987

1 1 7.5 —1.000102106 —1.000018912

=> 3 Ci*ﬁrCi*BJ' f drdioYE (F1)YE T 1) 8.0 —1.000055605 —1.000020214

a=-1p=-1 ' ' 8.5 —1.000032172 —1.000017232

~ ~ " ~ % n ~ ~ 9.0 —1.000019782 —1.000013517

XYl,ﬁ(rl)YO,O(rl)Yl,fa(rZ)YO,O(rZ)YlﬁB(rZ)YO,O(rZ)- 95 —1.000012856 —1.000010246

(32) 10.0 —1.000008755 —1.000007674

. 10.5 —1.000006190 —1.000005744

The integration over; yields a factor 11.0 —1.000004506 —1.000004323

11.5 —1.000003356 —1.000003281

o3t opt 10 1 12.0 ~1.000002546 ~1.000002515

" 47z\o0 0 0/\-a B O b "B 12,5 —1.000001961 —1.000001948

(33 13.0 —1.000001529 —1.000001524

13.5 —1.000001206 —1.000001204

and hence 14.0 —1.000000961 —1.000000960

1 1 1 3 14.5 —1.000000772 —1.000000772

| = > 2, .c? o= ci=— . (34 15.0 —1.000000625 —1.000000625

1672 o= 1 Y 16w 8m? 15.5 —1.000000510 —1.000000510

) 16.0 —1.000000420 —1.000000420

The second part af, in Eq. (26) becomes 16.5 —1.000000347 —1.000000347

3 17.0 —1.000000289 —1.000000289

163 J“dwrrzd”:(w_r) ()rUs(r) 175 —1.000000242 —1.000000242

37R%Jo 0 )9 1s 18.0 —1.000000203 —1.000000203

18.5 —1.000000172 —1.000000172

% fwrzd”:(w.r)ru (r) (35) 19.0 —1.000000146 —1.000000146

0 ' 1st2 19.5 —1.000000125 —1.000000125

. . ' 20.0 —1.000000107 —1.000000107

The third part ofL, in Eq. (26) is o —1.000000000 —1.000000000
16a3

7 do do'r2drF F (0 r)us(r).
fo fo fo @R (@inF(whir)us(r) proved sufficient in the trial function to achieve convergence.
(36) The intermediate numerical data that Chan and Dalgarno in-

o . ~ cluded because of their possible future utility were used in a
The total second-order contribution is obtained by adding:heck of our presently adopted numerical procedures.

the expressiong35) and (36). Once the coefficienta,(w) We found that the expectation value of tA€function is

are known for a value ob the quadratures overin expres- perturbed, toO(R™®), by _28.2918R—6_ Thus asymptoti-
sions(35) and(36) can be done analytically. We performed cally, in atomic units

the quadratures oves over the rang¢0,10( by Simpson’s
rule and added the contributions from the rard®0~]

- 37°R®

which was evaluated analytically using the asymptotic form 5 28.29
for the perturbed wave functions; E(L6) shows that the (5(3)(r1)+5(3)(r2)>=—( 155 ) (37)
dependence is a® 2 for large values ofw. Six terms ™ R®
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TABLE II. 6 function expectation values (boh). TABLE lIl. R®L, (bohP).
R (bohp X2y b33 R (bohn X2y b33, Average
1.0 2.023490 1.386921 8.5 —52 =17 —34
1.5 1.353334 1.098815 9.0 —-43 —-20 =31
2.0 1.069361 1.073996 9.5 —42 —24 -33
2.5 0.948122 1.067863 10.0 -33 -25 -29
3.0 0.911053 1.052201 10.5 —-30 —26 —-28
3.5 0.918475 1.035008 11.0 —28 —28 —28
4.0 0.942387 1.021268 11.5 —-29 —-29 —-29
4.5 0.965166 1.011918 12.0 —-30 27 —-29
5.0 0.980793 1.006203 12.5 —-29 —24 —27
55 0.989925 1.002990 13.0 —28 —25 —26
6.0 0.994839 1.001321 13.5 =27 =27 =27
6.5 0.997371 1.000502 14.0 —-29 —24 —-26
7.0 0.998649 1.000101 14.5 —24 —-18 -21
7.5 0.999293 0.999969 15.0 —-29 —-22 -25
8.0 0.999617 0.999925 15.5 —26 —26 —26
8.5 0.999784 0.999930 16.0 —22 —22 —-22
9.0 0.999871 0.999940 16.5 —-13 —26 —-20
9.5 0.999910 0.999948 17.0 —16 —-31 —23
10.0 0.999948 0.999960 17.5 —-37 —-19 —28
10.5 0.999965 0.999969 18.0 —44 —-22 -33
11.0 0.999975 0.999975 18.5 —76 —26 -51
11.5 0.999980 0.999980 19.0 -89 -30 —60
12.0 0.999984 0.999986 19.5 —104 -35 —70
12.5 0.999988 0.999990 20.0 —83 —-41 —62
13.0 0.999991 0.999992
135 0.999993 0.999993
14.0 0.999994 0.999995 and the expectation values 6f)(r;) + 8®)(r,) in Table II.
14.5 0.999996 0.999997 Asymptotically the expectation values of an operatdor
15.0 0.999996 0.999997 theX'X  andb®3 states vary as the sum and difference
15.5 0.999997 0.999997 of a direct termL, that decreases as a series in inverse
16.0 0.999998 0.999998 powers of R and an exchange term,,. which decreases
16.5 0.999999 0.999998 exponentially; at largdR
17.0 0.999999 0.999998
17.5 0.999998 0.999999
18.0 0.999998 0.999999 L=Lair™ Lexe- (38)
18.5 0.999997 0.999999
19.0 0.999997 0.999999 We have calculated the leading termLaf, for the & func-
19.5 0.999997 0.999999 tion.
20.0 0.999998 0.999999 In Table 11l we show the results of adding the expectation
% 1.000000 1.000000 values of thes function of theX 'Y andb®3 [ states for
R=8.5 bohr. The procedure eliminates asymptotically the
V. AB INITIO CALCULATIONS exchange contribution. Dividing by two and subtracting the

zero-order contribution 2/ yields estimates of the direct
High precision variational methods to calculate Born-term, which tends to—28.2R© for large R. The values

Oppenheimer potential energies and eigenfunctions for masbtained after multiplying byR® are given in Table Ill. The
lecular hydrogen using carefully chosen basis sets have beeib initio results are less reliable for largRwhere the chosen
developed by Kolos and Wolniewid4 1]. Wolniewicz[2]  basis functions are less appropriate. This is in contrast to the
calculated the potential energies of tKéEg state over the calculated asymptotic results of Sec. IV where the depen-
range[0,12] bohr and used the electronic eigenfunctions todence orR is included explicitly. Also the variational calcu-
calculate the adiabatic and relativistic corrections to the pofations are dominated by the zero-order contribution. After it
tential energies. We have extended further the calculations a§ subtracted we are left with few significant figures. The
the potential energies and the expectation values oféthe resulting cancellation error is occasionally large by chance
function to a larger range d® and to theb 33! state. The as, for example, at nuclear separations 9.5 bohr, 16.5 bohr,
resulting Born-Oppenheimer energies are given in Table &nd 18—20 bohr. However, the remaining figures in Table IlI
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do serve to show that our evaluation of the asymptotic formtion to the Smithsonian Institution and Harvard University.
which is numerically exact, is consistent with thb initioc  M.J.J. acknowledges support in part for this research from
results. the Engineering and Physical Sciences Research Council.
The research of A.D. is supported by the U.S. Department of

VI. CONCLUSION Energy, Division of Chemical Sciences, Office of Basic En-

. _ergy Sciences, Office of Energy Research.
We have demonstrated how the first-order wave function

of a two-center system can be expressed by an integral for- APPENDIX

mula and how it can be used in evaluating the second-order

contribution to the expectation values of other operators. We To derive the term in Eq30) that ensures orthogonality
showed that the leading term in the expectation value of thand in performing the quadratures in E@g5 we need
6 function, part of the relativistic interaction between atoms,to  evaluate  definite  integrals of the form
is proportional taR~°® whereR is the nuclear separation, and fﬁdtexp(—st)tk‘llnt. We use the equation

found the calculated coefficient to be consistent vaithini-

tio variational calculations for hydrogen atoms at large dis- wdtexp(—st) tht (W(K)—Int]=sKIns, (AL)
tances. 0 I'(k) - '
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