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Calculation of properties of two-center systems
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A procedure is described by which the response of a two-center system to a perturbation can be expressed
in terms of single-center wave functions. We use the formulation to evaluate the asymptotic long-range part of
the Pauli-Dirac relativistic interaction between two ground-state hydrogen atoms and compare with the results
of ab initio calculations.

PACS number~s!: 34.20.Cf
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I. INTRODUCTION

The study of atomic collisions in ultracold regimes h
become important in interpreting observations made poss
by the current experimental techniques for cooling and tr
ping gaseous atomic samples; topics attracting interes
clude the construction of gaseous Bose-Einstein condens
accurate measurement of time, and the production of m
ecules in specified vibrational states by cold atom photo
sociation. Reviews of ultracold atomic physics are given
@1#.

This current interest in cold atomic collisions brings
need for precise interaction potentials because the effect
scattering induced by small corrections to the potentials
enhanced at the very low energies of the ultracold ensemb

Relativistic corrections influence the scattering at ultral
temperatures. They have been calculated for theX 1Sg

1 state
of H2 by ab initio variational methods for internuclear dis
tancesR between 0 bohr and 12 bohr@2# but their asymptotic
form has not been determined. We introduce here a pro
dure with which a precise determination can be achieved.
extend the calculations of Wolniewicz@2# to larger values of
R for both the X 1Sg

1 and b 3Su
1 states and compare th

results with the calculated long-range form.
The procedure, in which the effects of certain two-cen

interactions are factored into products of one-center fu
tions, is general and we describe it in Secs. II and III. W
apply it to the relativistic interaction calculation in Sec. I
and present theab initio calculations in Sec. V.

II. TWO-CENTER PERTURBATION

We consider an unperturbed two-center dynamical sys
consisting of a particle labeled 1 centered on pointA and
moving in the potentialVa(r1

a)5Va(r 1
a) wherer1

a is its dis-
placement fromA and a particle labeled 2 centered on po
B and moving in the potentialV b(r2

b)5Vb(r 2
b) wherer2

b is
its displacement fromB. The wave functionc0(r1

a ,r2
b) of the

system satisfies the equation
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~H02E0!c0~r1
a ,r2

b!50 ~1!

whereH0 and E0 are the unperturbed Hamiltonian and e
ergy, respectively, given by the sum of the separate Ham
tonians or energies for the centersA andB. The Hamiltonian
for centerA is

H0
a52

\2

2m1
¹1a

2 1Va~r 1
a! ~2!

wherem1 is the mass of particle 1, and the HamiltonianH0
b

for centerB is defined similarly. We may write the wav
function as the product

c0„r1
a ,r2

b
…5ua„r1

a
…ub~r2

a! ~3!

whereua(r1
a), assumed to be normalized, satisfies the eq

tion

~H0
a2E0

a!ua~r1
a!50 ~4!

andub(r2
b) satisfies a similar equation. We introduce the tw

center perturbation

V~r1
a ,r2

b!5(
i 51

N

f a
( i )~r1

a! f b
( i )~r2

b!. ~5!

Let

P5I2uc0&^c0u ~6!

be the operator that projects off the unperturbed stateuc0&,
assumed normalized, whereI denotes the identity operato
The first-order wave functionc1(r1

a ,r2
b), chosen to be or-

thogonal to the unperturbed wave function, satisfies
equation

uc1&52P~H02E0!21PVuc0&52~H02E0!21PVuc0&.
~7!

The second-order wave function satisfies the equation

uc2&5P~H02E0!21P~V2^c0uVuc0&!

3P~H02E0!21PVuc0& ~8!
r-
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which, if ^c0uVuc0& vanishes through, for example, symm
try considerations, may be written

uc2&5~H02E0!21PV~H02E0!21PVuc0&. ~9!

Let Pa andPb project out the ground states, assumed n
malized, of the single-center HamiltoniansH0

a and H0
b , re-

spectively. Then

P5Pauub&^ubu1Pbuua&^uau1PaPb . ~10!

We need

~H02E0!215@~H0
a2E0

a!1~H0
b2E0

b!#21 ~11!

which we may rewrite using the integral, fora and b posi-
tive,

~a1b!215
2

pE0

`

dv
ab

~a21v2!~b21v2!
. ~12!

Equation~12! enables us to obtain a product form for th
first-order wave function, albeit with the need to evaluate
integral. We use Eqs.~3!, ~5!, ~7!, ~10!, ~11!, and ~12! to
express the first-order wave function as the following sum
single-center products:

c1~r1
a ,r2

b!52(
i 51

N
1

H0
a2E0

a
Paf a

( i )~r1
a!ua~r1

a!^ubu f b
( i )uub&ub~r2

b!

2(
i 51

N
1

H0
b2E0

b
Pbf b

( i )~r2
b!ub~r2

b!^uau f a
( i )uua&ua~r1

a!

2
2

p (
i 51

N E
0

`

dv
H0

a2E0
a

~H0
a2E0

a!21v2
Paf a

( i )~r1
a!

3ua~r1
a!

H0
b2E0

b

~H0
b2E0

b!21v2
Pbf b

( i )~r2
b!ub~r2

b!. ~13!

The first term in Eq.~13! may be obtained from the solutio
ua

( i )(r1
a) of the equation

~H0
a2E0

a!ua
( i )~r1

a!5Paf a
( i )~r1

a!ua~r1
a! ~14!

and the second term may be found similarly. In studies
interacting atoms that have no permanent dipole or hig
moments theseinduction terms vanish identically. The las
term in Eq.~13! is

c1~r1
a ,r2

b!52
2

p (
i 51

N E
0

`

dv xa
( i )~v;r1

a!xb
( i )~v;r2

b! ~15!

wherexa
( i )(v;r1

a) satisfies the equation
04270
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@~H0
a2E0

a!21v2#xa
( i )~v;r1

a!5~H0
a2E0

a!Paf a
( i )~r1

a!ua~r1
a!

1v2^uauxa
( i )&ua~r1

a! ~16!

and xb
( i )(v;r2

b) satisfies a similar equation. Equation~16!
may be solved by direct numerical methods@3# or by varia-
tional methods such as that used by Chan and Dalgarno@4#,
who calculated the dynamical polarizability of atomic hydr
gen by finding the stationary values of the functional

Ja
( i )~v!5^Ja

( i )u~H0
a2E0

a!21v2uJa
( i )&

22^Ja
( i )uH0

a2E0
auua&2v2u^Ja

( i )uua&u2 ~17!

with respect to a trial functionJa
( i )(v;r1

a). We adopt their
method.

III. PERTURBED EXPECTATION VALUE

Suppose we wish to determine the expectation value
the operatorL5La1Lb , effective on each center separate
in the presence of the two-center perturbation~5!. The
zeroth-order contribution is straightforward to evaluate.

The first-order contribution is~with ^c0uc1& vanishing!

L15^c0uLuc1&1^c1uLuc0& ~18!

which may be expressed with the aid of Eqs.~13! and~15! as

L152
2

p (
i 51

N E
0

`

dv~^uauLauxa
( i )&^ubuxb

( i )&

1^ubuLbuxb
( i )&^uauxa

( i )&1^xa
( i )uLauua&^xb

( i )uub&

1^xb
( i )uLbuub&^xa

( i )uua&!. ~19!

The second-order contribution is~with ^c0uc2& vanish-
ing!

L25^c1uLuc1&1^c0uLuc2&1^c2uLuc0&

2^c0uLuc0&^c1uc1&. ~20!

It is not necessary to find the second-order wave function
evaluateL2; we can use the first-order wave function a
another first-order wave function corresponding to the p
turbationL to evaluate the matrix elements^c0uLuc2& and
^c2uLuc0& @5#. From Eqs.~7! and ~9! we may write~with
^c0uVuc0& vanishing!

^c0uLuc2&52^c0uL~H02E0!21PVuc1&5^f1uVuc1&
~21!

where uf1& is the first-order wave function induced by th
perturbationL alone, chosen orthogonal touc0&, that satis-
fies the equation

~H02E0!uf1&1~L2^c0uLuc0&!uc0&50. ~22!

Similarly we find
5-2
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^c2uLuc0&5^c1uVuf1&. ~23!

We may expressf1 as

f1~r1
a ,r2

b!5@ga~r1
a!1gb~r2

b!#c0~r1
a ,r2

b! ~24!

wherega(r1
a) satisfies the equation
p
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~H0
a2E0

a!ga~r1
a!ua~r1

a!1~La2^uauLauua&!ua~r1
a!50

~25!

@6# and gb(r2
b) satisfies a similar equation. From Eqs.~15!,

~20!, ~21!, ~23!, and~24! we obtain
L25
4

p2 (
i 51

N

(
j 51

N E
0

`

dv dv8@^xa
( i )~v!uLauxa

( j )~v8!&^xb
( i )~v!uxb

( j )~v8!&1^xb
( i )~v!uLbuxb

( j )~v8!&^xa
( i )~v!uxa

( j )~v8!&#

1
2

p (
i 51

N

(
j 51

N E
0

`

dv@^gauau f a
( j )uxa

( i )~v!&^ubuxb
( i )~v!&1^gbubu f b

( j )uxb
( i )~v!&^uauxa

( i )~v!&1^xa
( i )~v!u f a

( j )ugaua&

3^xb
( i )~v!uub&1^xb

( i )~v!u f b
( j )ugbub&^xa

( i )~v!uua&#2
4

p2
~^uauLauua&1^ubuLbuub&!(

i 51

N E
0

`

dv^xa
( i )~v!uxa

( i )~v!&

3(
i 51

N E
0

`

dv^xb
( i )~v!uxb

( i )~v!&. ~26!
n
no-

lity.
IV. APPLICATION TO LONG-RANGE PROPERTIES

The method described in Secs. II and III is generally a
plicable to two-center problems. We need to be able to so
equations of the form~25!; the method is much more conve
nient when this equation has an analytic solution. The Di
contribution is an important part of the relativistic energy
two interacting ground-state hydrogen atoms and influen
cold collisions and it happens that its calculation provides
example where Eq.~25! can be solved analytically, as w
demonstrate below.

In the Pauli approximation the Dirac energy of the hyd
gen molecule is@2,7#

e45pa2e2a0
2@d (3)~r1

a!1d (3)~r2
b!2d (3)~r1

a2r2
b2R!#

~27!

where a is the fine structure constant,e is the electronic
charge, a0 denotes one bohr, andd (3) is the three-
dimensional delta function. Thed function has dimension
@L#23. The third term vanishes for the triplet state and d
creases exponentially for the singlet state. The leading
terms decrease as inverse powers ofR. To evaluate the long-
range perturbation of the expectation value of thed function
we identify the operatorL with d (3)(r1

a)1d (3)(r2
b) and the

perturbationV(r1
a ,r2

b) with the long-range electrostatic inte
action between the atoms. The dipole-dipole componen
this interaction can be expressed as a sum of one-ce
products such as Eq.~5! by @8#

V~r1
a ,r2

b!52
4pe2

3R3 (
a521

1

C11a
2 Y1,a~r1

a!Y1,2a~r2
b!

~28!
-
e

c
f
es
n

-

-
o

of
ter

where Cm
n denotes the binomial coefficient andY1,a(r )

5rY1,a( r̂ ).
The HamiltoniansH0

a and H0
b , the perturbationsf a and

f b , and the operatorsLa andLb do not depend essentially o
the centers; henceforth where possible we dispense with
tation that distinguishes the centers.

The normalized ground-state orbital is

u~r !5u1s~r !Y0,0~ r̂ !52 exp~2r !Y0,0~ r̂ !. ~29!

The expectation value of thed function summed overboth
centers to zeroth order is 2a0

23p21, or 2p21 in atomic
units.

From ¹2r 21524pd (3)(r ) Dalgarno and Stewart@9#
found a closed form expression forg(r ); with our require-
ment thatf(r ) andu(r ) are orthogonal it is~in atomic units!

g~r !5g~r !5
1

2p
@2r 2112 ln r 12r 2 1

2 12C~3!22 ln 2#

~30!

where C(k) is the digamma function~see the Appendix!.
We note that C(3)'0.922 784 335 1 and ln 2
'0.693 147 180 6. The overlined terms ensure orthogona
The dimensions ofg(r ) are @E#21@L#21.

For any given value ofv Eq. ~16! can be solved varia-
tionally by adopting the trial function

J (a)~v;r !5F~v;r !Y1,a~ r̂ !u~r !5 (
p51

n

ap~v!r pY1,a~ r̂ !u~r !

~31!

and finding the stationary values of the functional~17! with
respect to variations in the coefficientsap(v). The dimen-
5-3
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sions ofF(v;r ) are@E#21/2@L#23/2. The coefficients satisfy
a matrix equation whose elements, being combinations
expectation values of powers ofr for the ground-state hydro
gen wave function, can be found following~considerable!
algebraic manipulation; Chan@10# has presented the matri
equations. The first-order contribution to the expectat
value of thed function vanishes on account of angular sy
metry. The trial function determined as described above
be substituted into Eq.~26! and the necessary quadratur
over v performed to yield the second-order contributio
whoseR dependence isR26. The perturbed wave function
are each linear inr near each center and hence thed func-
tions in the first term ofL2 in Eq. ~26! cause that term to
vanish.

The second and third parts ofL2 involve the sum of inte-
grals

I 5 (
a521

1

(
b521

1

C11a
2 C11b

2 E E dr̂1dr̂2Y1,a* ~ r̂1!Y0,0* ~ r̂1!

3Y1,b~ r̂1!Y0,0~ r̂1!Y1,2a* ~ r̂2!Y0,0* ~ r̂2!Y1,2b~ r̂2!Y0,0~ r̂2!.

~32!

The integration overr̂1 yields a factor

I 152
3

4p S 1 1 0

0 0 0D S 1 1 0

2a b 0D 52
1

4p
da,2b

~33!

and hence

I 5
1

16p2 (
a521

1

C11a
2 C12a

2 5
1

16p2
C2

45
3

8p2
. ~34!

The second part ofL2 in Eq. ~26! becomes

2
16a0

3

3pR6E0

`

dvE
0

`

r 2drF~v;r !g~r !ru1s~r !

3E
0

`

r 2drF~v;r !ru1s~r !. ~35!

The third part ofL2 in Eq. ~26! is

2
16a0

3

3p3R6E0

`E
0

`E
0

`

dv dv8r 2drF~v;r !F~v8;r !u1s~r !.

~36!

The total second-order contribution is obtained by add
the expressions~35! and ~36!. Once the coefficientsap(v)
are known for a value ofv the quadratures overr in expres-
sions~35! and ~36! can be done analytically. We performe
the quadratures overv over the range@0,100# by Simpson’s
rule and added the contributions from the range@100,̀ #
which was evaluated analytically using the asymptotic fo
for the perturbed wave functions; Eq.~16! shows that the
dependence is asv22 for large values ofv. Six terms
04270
of

n
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,
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proved sufficient in the trial function to achieve convergen
The intermediate numerical data that Chan and Dalgarno
cluded because of their possible future utility were used i
check of our presently adopted numerical procedures.

We found that the expectation value of thed function is
perturbed, toO(R26), by 228.29a0

3R26. Thus asymptoti-
cally, in atomic units,

^d (3)~r1!1d (3)~r2!&5
2

p S 12
28.29

R6
1••• D . ~37!

TABLE I. Born-Oppenheimer potentials~hartree!.

R ~bohr! X 1Sg
1 b 3Su

1

1.0 21.124539713 20.622264306
1.5 21.172855073 20.809666437
2.0 21.138132950 20.897076283
2.5 21.093938123 20.945453719
3.0 21.057326262 20.972015035
3.5 21.031858079 20.986130885
4.0 21.016390249 20.993380059
4.5 21.007993726 20.996972880
5.0 21.003785656 20.998687253
5.5 21.001774578 20.999471748
6.0 21.000835707 20.999813447
6.5 21.000400548 20.999952833
7.0 21.000197914 21.000003987
7.5 21.000102106 21.000018912
8.0 21.000055605 21.000020214
8.5 21.000032172 21.000017232
9.0 21.000019782 21.000013517
9.5 21.000012856 21.000010246

10.0 21.000008755 21.000007674
10.5 21.000006190 21.000005744
11.0 21.000004506 21.000004323
11.5 21.000003356 21.000003281
12.0 21.000002546 21.000002515
12.5 21.000001961 21.000001948
13.0 21.000001529 21.000001524
13.5 21.000001206 21.000001204
14.0 21.000000961 21.000000960
14.5 21.000000772 21.000000772
15.0 21.000000625 21.000000625
15.5 21.000000510 21.000000510
16.0 21.000000420 21.000000420
16.5 21.000000347 21.000000347
17.0 21.000000289 21.000000289
17.5 21.000000242 21.000000242
18.0 21.000000203 21.000000203
18.5 21.000000172 21.000000172
19.0 21.000000146 21.000000146
19.5 21.000000125 21.000000125
20.0 21.000000107 21.000000107
` 21.000000000 21.000000000
5-4
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V. AB INITIO CALCULATIONS

High precision variational methods to calculate Bor
Oppenheimer potential energies and eigenfunctions for
lecular hydrogen using carefully chosen basis sets have
developed by Kolos and Wolniewicz@11#. Wolniewicz @2#
calculated the potential energies of theX 1Sg

1 state over the
range@0,12# bohr and used the electronic eigenfunctions
calculate the adiabatic and relativistic corrections to the
tential energies. We have extended further the calculation
the potential energies and the expectation values of thd
function to a larger range ofR and to theb 3Su

1 state. The
resulting Born-Oppenheimer energies are given in Tab

TABLE II. d function expectation values (bohr23).

R ~bohr! X 1Sg
1 b 3Su

1

1.0 2.023490 1.386921
1.5 1.353334 1.098815
2.0 1.069361 1.073996
2.5 0.948122 1.067863
3.0 0.911053 1.052201
3.5 0.918475 1.035008
4.0 0.942387 1.021268
4.5 0.965166 1.011918
5.0 0.980793 1.006203
5.5 0.989925 1.002990
6.0 0.994839 1.001321
6.5 0.997371 1.000502
7.0 0.998649 1.000101
7.5 0.999293 0.999969
8.0 0.999617 0.999925
8.5 0.999784 0.999930
9.0 0.999871 0.999940
9.5 0.999910 0.999948

10.0 0.999948 0.999960
10.5 0.999965 0.999969
11.0 0.999975 0.999975
11.5 0.999980 0.999980
12.0 0.999984 0.999986
12.5 0.999988 0.999990
13.0 0.999991 0.999992
13.5 0.999993 0.999993
14.0 0.999994 0.999995
14.5 0.999996 0.999997
15.0 0.999996 0.999997
15.5 0.999997 0.999997
16.0 0.999998 0.999998
16.5 0.999999 0.999998
17.0 0.999999 0.999998
17.5 0.999998 0.999999
18.0 0.999998 0.999999
18.5 0.999997 0.999999
19.0 0.999997 0.999999
19.5 0.999997 0.999999
20.0 0.999998 0.999999
` 1.000000 1.000000
04270
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and the expectation values ofd (3)(r1)1d (3)(r2) in Table II.
Asymptotically the expectation values of an operatorL for

the X 1Sg
1 andb 3Su

1 states vary as the sum and differen
of a direct termLdir that decreases as a series in inve
powers of R and an exchange termLexc which decreases
exponentially; at largeR

L5Ldir6Lexc. ~38!

We have calculated the leading term ofLdir for the d func-
tion.

In Table III we show the results of adding the expectati
values of thed function of theX 1Sg

1 andb 3Su
1 states for

R>8.5 bohr. The procedure eliminates asymptotically
exchange contribution. Dividing by two and subtracting t
zero-order contribution 2/p yields estimates of the direc
term, which tends to228.29R26 for large R. The values
obtained after multiplying byR6 are given in Table III. The
ab initio results are less reliable for largeR where the chosen
basis functions are less appropriate. This is in contrast to
calculated asymptotic results of Sec. IV where the dep
dence onR is included explicitly. Also the variational calcu
lations are dominated by the zero-order contribution. Afte
is subtracted we are left with few significant figures. T
resulting cancellation error is occasionally large by chan
as, for example, at nuclear separations 9.5 bohr, 16.5 b
and 18–20 bohr. However, the remaining figures in Table

TABLE III. R6L2 (bohr3).

R ~bohr! X 1Sg
1 b 3Su

1 Average

8.5 252 217 234
9.0 243 220 231
9.5 242 224 233

10.0 233 225 229
10.5 230 226 228
11.0 228 228 228
11.5 229 229 229
12.0 230 227 229
12.5 229 224 227
13.0 228 225 226
13.5 227 227 227
14.0 229 224 226
14.5 224 218 221
15.0 229 222 225
15.5 226 226 226
16.0 222 222 222
16.5 213 226 220
17.0 216 231 223
17.5 237 219 228
18.0 244 222 233
18.5 276 226 251
19.0 289 230 260
19.5 2104 235 270
20.0 283 241 262
5-5
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do serve to show that our evaluation of the asymptotic fo
which is numerically exact, is consistent with theab initio
results.

VI. CONCLUSION

We have demonstrated how the first-order wave funct
of a two-center system can be expressed by an integral
mula and how it can be used in evaluating the second-o
contribution to the expectation values of other operators.
showed that the leading term in the expectation value of
d function, part of the relativistic interaction between atom
is proportional toR26 whereR is the nuclear separation, an
found the calculated coefficient to be consistent withab ini-
tio variational calculations for hydrogen atoms at large d
tances.
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APPENDIX

To derive the term in Eq.~30! that ensures orthogonalit
and in performing the quadratures in Eq.~35! we need
to evaluate definite integrals of the form
*0

`dt exp(2st)tk21 ln t. We use the equation

E
0

`

dt exp~2st!
tk21

G~k!
@C~k!2 ln t#5s2k ln s, ~A1!

from the theory of Laplace transforms@12#, whereC(k) is
the digamma function, which can be calculated from

C~k!511
1

2
1

1

3
1•••1

1

k21
2g ~A2!

whereg'0.577 215 664 9 is Euler’s constant.
-

st,

n
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