PHYSICAL REVIEW A, VOLUME 61, 042502
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For a three-body system, a quantum wave funct[dg with definite | andm quantum numbers may be
expressed in terms of an internal wave functjgn which is a function of three internal coordinates. This
article provides necessary and sufficient constraints(iptto ensure that the external wave functitlfih is
analytic. These constraints effectively amount to boundary conditioaék and its derivatives at the boundary
of the internal space. Such conditions find similarities in ¢thna) two-body problem where the wave
function (to lowest order has the fornt!™ at the origin. We expect the boundary conditions to prove useful for
constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.

PACS numbgs): 31.15.Gy, 03.65.Fd, 03.65.Ge, 02.2@

[. INTRODUCTION There are at least two practical reasons for being inter-
ested in boundary conditions. First, if one attempts to expand
Consider a wave functio !, for a system of three bodies some unknown function in terms of a given basis, and if
that is an eigenfunction df2 andL , with quantum numbers there are boundary conditions satisfied by the unknown func-
| and m, respectively, wherd . is the space-fixed orbital tion that are not satisfied by the basis functions, then the
anguiar momentum(The S subscript stands for “space- convergence will be slow. In important cases, the coefficient
fixed.”) We regard¥| ., the “external wave function,” as a Of thenth term in the expansion will fall off either exponen-
function of the two Cartesian Jacobi vectors. It is well knowntially or algebraically withn, depending on whether the basis
[1-3] that such a wave function can be written in the form does or does not satisfy the required boundary conditions,
respectively. For example, it is a bad idea to use the ordinary
Legendre polynomials to expand a function whesgepen-
‘I"m—z DX (1.1)  dence has the boundary conditions of one of the associated
Legendre functions fom>0. The importance of properly
: _ . . treating such boundary conditions in three-body problems
where the Wigner rotation matri®p,, is a function of the o< peen discussed previously by Kendtlal. [14]
three Euler angles and wheyg, the “internal wave func- Sometimes basis functions are created on the internal
tion " is a function of three internal or Shape coordinates. ASspace s|mp|y by Writing down some internal wave functions
usual kis regarded as the quantum number of the body-fixed,| that are considered convenient, for example, distributed
L,. The wave function;, need not be an energy eigenfunc- Gaussians or wave packets. From the given internal wave
tion; for example, it could be an element of a basis set ifunctions, one can construct the corresponding external wave
terms of which an unknown energy eigenfunction is to befunctions according to Eq(1.1). The question then arises,
expanded. The basis sets we have in mind include standaig| these external wave functions have the same smoothness
orthonormal bases, hyperspherical harmof#$], discrete  and analyticity properties as some unknown wave function
variable representatiofDVR) bases[6-11], and wave (ysually an energy eigenfunctipthat one wishes to find? If
packet[12] or wavelet[13] bases. not, the convergence will be poor. For another example, it is
This paper concerns boundary conditions that the internaommon practice to create internal basis functions by writing
wave fU“C“O”Xk must satisfy, given that the external wave down the exact internal Hamiltonian, and then carving out
function \If is a smooth function of the Cartesian Jacobisome piece of it that has eigenfunctions which can be deter-
vectors. The boundary in question is the boundary of shapmined analytically. Again there is a question as to whether
space, which consists of the collinear configuratiof@ur  the basis functions created in this manner have the boundary
definition of “boundary conditions” excludes consideration conditions required of the desired unknown eigenfunction.
of the string or body-frame singularities of the wave func-The answer to this question depends in part on whether the
tion, which are discussed more fully belgwihe applica- operator created by carving out a piece of the Hamiltonian is
tions we have in mind are mainly molecul@ither bound itself well behaved. The analysis of this paper will show how
states of triatomic molecules or triatomic scattering prob-to answer these questions.
lems, but the considerations we raise also apply to atoms or A second reason for being interested in boundary condi-
other systems of bodies with Coulomb interactigngh cer-  tions is that numerical methods for solving partial differen-
tain qualifications discussed belpw/Ve ignore spin in this tial equations on a grid must generally take careful account
paper. We consider only three-body systems in this papenf boundary conditions, in order to guarantee reasonable ac-
but an important reason for studying boundary conditions ircuracy and convergence. Grid and basis set methods are re-
three-body systems is that it is good practice for the analolated, since grid methods implicitly involve a set of localized
gous problem for systems of four or more bodies, which isbasis functions associated with the grid points. For example,
generally more difficult and much less well understood. DVR methods involve a basis set consisting of localized
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wave functions, resembling diffraction patterns from a nar-in three-body systems. For the planar problem, an eigenfunc-
row slit. The often cited “unexpected accuracythat is, tion of L, can be written® (r)=¢e™?y,(r), wherer
rapid convergengeof DVR methods is closely related to =(x,y), ¢ is the azimuthal angle, and=0,+1,+2, ... is
satisfying the right boundary conditions. For example, thehe quantum number dfg,. If ¥, is analytic in the two
trapezoidal rule converges exponentiallapidly) when an  Cartesian coordinategc,y) at r=0, then the radial wave
analytic, periodic function is integrated over a period, but hagunction y,(r) is analytic atr =0, its Taylor series begins
only power law(slow) convergence if the function is analytic with the rl™ term, and it subsequently contains only every
but not periodic, or if it is integrated only over a partial other power ofr, rlM*2" n=12 ...

period. Similarly, if the wrong DVR basis set is used for a At this point a reader who works with three-body molecu-
given prob|em’ thqby now expecte)junexpected accuracy lar prOblemS may wonder what the relevance is of tWO'bOdy
will be lost. We will have more to say about boundary con-Poundary conditions at=0, sincer =0 is the two-body col-
ditions and rates of convergence in future publications, buliSion and the collision of atoms in molecular problems does

this paper will concentrate on the boundary conditions themP©t happen at ordinary energies. The answer is that in three-
selves. ody systems the collinear configurations play somewhat the

We will momentarily present the principal results of our S2Me role as the two-body collision in the planar two-body

analysis of boundary conditions in three-body systems, bu?roblem, i_nsgfar as boundary conditions are concerned. This
first it is well to recall some facts about two-body systems'S WhY it is important to know about two-body boundary

with rotational invariance. Thinking of energy eigenfunc- conditions atr=0, even for molecular problems. Collinear
tions, we will speak first of the problem of central force configurations are not necessarily suppressed in three-body

motion. In three spatial dimensions, the energy eigenfunctioff*olecular problems, and are often important. _

can be writtenW' (r)=Y! (6,4)x/(r), where y,(r) is the On the other hand, collisional configurations are impor-
m m 1 ’ . .

internal or radial wave function, defined on the radial half-@nt In Coulomb problems, where the wave function has

line O<r <, which is the internal space. According to the cusplike singularitie$16,17, again because of the nonana-

standard textbook analydi$5], the radial wave function be- Iyticit.y. of the potential. Since this paper studies the boundary
haves ag' nearr=0. This behavior holds when the true conditions on the internal wave function that result from the

potentialV(r) is analytic at =0, but also in other cases such analyticity of the .extgrnal wave function, apd since thg ex-
as that of the singular Coulorﬁb potential ternal wave function in Coulomb problems is not analytic at

The standard analysis that produces these results procee%osmsmns’ the analysis of this paper does not apply to colli-

by expanding the radial wave function in a Taylor Seriesslonal configurations in Coulomb problems. _But o_f course
_ : . Coulomb problems also have collinear configurations, and
aboutr=0 and balancing terms on the two sides of the

Schralinger equation. Unfortunately, this analysis leaves theour.a.nalyss does apply to thesg, as long as they are not a_Iso
. . X | . collisional. We also exclude string or body frame singulari-
impression that the behavigi~r' of the radial wave func-

. B . . X ties (discussed momentarijlyfrom consideration. We can
tion nearr =0 applies only to energy eigenfunctions. Actu-

; ST ; summarize by saying that the analysis of this paper applies to
ally th's beihawor 1S ml.JCh more generz_il. COQS'der any Wavey| the important boundary conditions in three-body molecu-
function ¥ (r), which is an eigenfunction df“ andL, and

R . . lar problems, and to some of thefthe collinear, noncolli-
which is analytic atr=0 when expressed in terms of the P {th

sional configurationsin Coulomb problems.
Cartesian coordinatég,y,z). This would apply to the eigen- g s b

i nally | : hat i I Regarding string or body frame singularities, some re-
functions of any rotationally invariant operator that is well ge5rchers would include them in their definition of “bound-

behaved at =0, including _Hamﬂtomans with central poten- 51 conditions.” These are the singularities of the three-body
tials V(r) which are analytic at=0. With standard assump- \ave function which occur along a curvghe string in
tions ?bout pr|1ase conventions the wave funct|on_can be Wr”s'hape space emanating from the three-body collisithis
ten W, (r) =Y (0,¢) xi(r), wherey,(r) is the radial wave  ggring contains points where the body frame is not well de-
function. We note that this form follows from the standardfined) Certainly these singularities are important in practice,
theory of rotations and the fact thiity, is an eigenfunction byt we prefer not to regard them as a part of the issue of
of LZ and Ls,; we do not invoke separation of variables, boundary conditions. This is because they do not occur at the
since we are not necessarily separating any wave equatioboundary of shape space and because the locations where
Then it turns out thaj,(r) is analytic atr =0, and that its they do occur depends on the choice of body fra(i@us,
Taylor series begins with the term and thereafter contains they can be moved around by a change of frariée have
only the powerg'*2" n=1,2, ... that is, every other in- discussed string singularities separately in two recent papers
teger power ofr. Energy eigenfunctions in the Coulomb [18,19. Pack has also studied these body frame singularities
problem do not fit this pattern, sinck! (r) has a cusp at  [20].
=0 and is not analytic there. This is becaléf) is not We now summarize the main results of this paper, which
analytic atr =0. Although Coulomb radial wave functiong  relate the analyticity of the three-body external wave func-
do go asr' nearr =0, the Taylor series of, contains every tion W}, to the behavior of the internal wave functigd) at
subsequent power af not every other one. the boundary of the internal space. The boundary of collinear
It is also worthwhile mentioning the case of two bodies inshapes is a plane specified By=0 in Smith’'s[21] hyper-
two spatial dimensions, since planar two-body boundarspherical coordinates, av;=0 in the coordinates to be in-
conditions bear a strong analogy to the boundary conditionroduced below. One point of this plane is the three-body
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collision, which is excluded from our analysis. At other possible. Section Il also contains a description of how the
points of this plane, we have established necessary and suieundary conditions are to be applied and discusses several
ficient conditions ory such that the external wave function explicit conventions for internal coordinates and body frame.
\Iflm should be analytic functions of the six Cartesian CompoSeCtionS Il and IV are more technical, and are devoted to
nents of the two Jacobi vectors.¥! is analytic at a collin-  Proving Theorem 1. Section Ill states and proves boundary
ear configuratior(not the three-body collisionthen the in- ~ conditions for the simpler case of the planar two-body prob-
ternal wave functiony) satisfies the following properties. 1€M. Section IV uses the results of Sec. Il to prove the

First, Xlk is itself analytic at the collinear shape, when ex- conditions for the three-body pmb'e'.“”- Section V contains
pressed in terms of certain internal coordinates to be det-he conclusmns_. An Append_lx_collectmg several facts about
scribed below. Suffice it for now to say that one of thesell® "éPresentations &0Q(2) is included for reference.
coordinates, call itvg, measures the mass-weighted distance

from the planew;=0 of collinear shapes, while the other Il. THE THREE-BODY BOUNDARY CONDITIONS
two coordinatesw; andws,, indicate where we are on this
plane.

The second property involves a modified version of the Before stating the boundary conditions on three-body
internal wave functiorp('# (in contrast toy} ). The distinc- wave functions, we review some necessary facts about the
tion is thatk is the eigenvalue of body-fixeld, whereasu is  three-body problem. We closely follow the notation and
the eigenvalue of body-fixed-L, wheref is the body- spirit of Littlejohn and Reinsch3]. A three-body configura-
referred unit vector specifying the axis of a collinear shapetion in the center of mass frame is described by twass-

The vector is defined on the boundary plane of the internalweighted Jacobi vectorsg,, a=1,2. Jacobi vectors are a
space(excluding the triple collisiop) and is a function of standard topic im-body problemg22,3]. The s subscript
where we are on that plane. Botrand u range from—| to  indicates thatrg, is referred to the space, or laboratory,
+1, and the two internal wave functions are related by aframe. For obvious reasons, we will call the space of Jacobi
rotation that maps the bodyaxis into thef axis. Then, as vectors “configuration space.” _ _ _

we shall show, it turns out that jf), is expanded in powers It is often convenient to specify a configuration by its
of ws, corresponding to movement in the internal spaceShape and orientation. By the shape, we mean the configura-
away from the boundary in the direction of increasing, ~ tion modulo physical rotations; it is parameterized by three
then the first nonvanishing power g/ , and subsequently rotationally invariant quantitiegalled internal, or shape, co-

only every other power occurs in the Taylor seriwg‘“z” ordinate$. We will denote shape coordinates in general by
n=12 Y d,, #=1,2,3. A specific and particularly useful set of such

coordinates is \/1,w,,w3) (henceforth called the w-
coordinates’) defined by

A. Review of three-body formalism

The converse is also true: )(fL satisfies these two prop-
erties at a collinear shagdaot the triple collision, then the
external wave function?|, is analytic. Obviously, these wy=r2—r2,=p?cos 29 cos 2b, 2.1
boundary conditions are like those of the planar two-body
problem atr =0, with w; playing the role of. We have also

proved the(plausible fact that at configurations that are not W,=2rg; 5= p? COS 20 sin 20, 22
at the boundary of the internal spag®ncollinear configu-

rationg, the external wave functioW’!, is analytic if and W3=2|rg; Xre|=p?sin 20, (2.3
only if Xlk is analytic. This concludes the summary of our

main results. where we have expressed tivecoordinates both in terms of

In current practice it seems that when questions of boundihe Jacobi vectors and in terms of Smitf24,23 symmetric
ary conditions of three-body internal wave functions havey, perspherical coordinatép,0,®). Herep=(r§1+r§2)1’2 is
arisen it has been assumed that the wave functions of intereﬁﬁ hyperradius. The~coordinates have been used by many
have the same leading order behavior near the boundary &ssearchers over the years, including Gronj24], Smith
that of the hyperspherical harmonics. This in fact is usuall 21], Dragt[25], lwai [26], Aquilanti et al. [23], and others.
true, but we know of no study that proves this in a generalrhe w-coordinates have ranges®e<w;, Wy<o, 0<Ws
context or tha_t_otherwise is devoted specifically to the., 5nd are in one-to-one correspondence with three-body
boundary conditions themselves. In our work the boundangpapes. Thus shape space is the closed half-space containing
conditions have .been.denved .rlgorously and to all ordersy,q physical region of coordinate spagg=0. Sometimes it
We would especially like to point out that our results were i a1so be convenient to consider the region of coordinate
obtained on the basis of analyticity and symmetry argument§paceW3<0, which we call the unphysical region. The
alone, and that they are independent of the Hamiltonian angoundary planav;=0 consists of all collinear shapes. The
applicable to all reasonable coordinate systems and ChOiC%%undary conditions to be presented below occur along this

of ?_?]dy frf}_me. ¢ thi s as fol Section Il containsP'2"e: We definev= (w5 +w3+w3) Y2 to be the “radius” in
e outline of this paper is as follows. Section Il con ams\évlwzw3-space and note the identity,

the main result of the paper, Theorem 1, which concerns th
boundary conditions satisfied by the internal wave function. 2 2 oap o
We have stated this theorem in as nontechnical language as W= (W1+Wy+w3) "= p”. 2.9
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The originw=0 is the three-body collision and is an espe-The importance of Eq(2.9) is that it completes the one-to-
cially singular point. one correspondence between the external and internal wave
The orientation of a configuration is defined relative tofunctions. Equatiori2.8) gives the internal wave function in

some convention for body frame. A body frame conventionterms of the external wave function while E8.9) gives the

may be defined by specifying the functiongq), wherer,  external wave function in terms of the internal wave func-
represents the body components of the Jacobi vectors aribn. One must realize, however, that all421 components
whereq represents an arbitrary shapgquivalently,q stands  of Xlk must be specified to constru&t'm, whereas only one

for (d1,02,03)]. Our rule is to attach assubscript to quan- ! is needed to construgt . This is because the different
tities referred to the space frame, and to omit this subscripy| 's are not independent but related by raising and lowering
for quantities referred to the body_frame. The q“a”t't_'esoperations, whereas tb@L’s are not.

r.(g) can also be thought of as specifying a reference orien-
tation for a given shape, relative to which other orienta-
tions of the same shape are referred. In the reference orien-
tation, the space frame is identical to the body frame. The We now turn to the principal question addressed in this
orientation of the configuration is defined as the rotation mapaper: What are necessary and sufficient conditions on the
trix Re SO(3) which rotates the reference configuration intointernal wave functiony|(q) that ensure that the external

B. Statement of boundary conditions

the actual configuration, wave function‘I"m(rSa) is analytic? Naively, one might ex-
pect the only condition to be thgyﬂ((q) is itself analytic, but
Fsa=Rr(0). (29 this is not sufficient as we now explain.

. . : First, we review some fundamental issues regarding ana-
We discuss several common choices of body frame in Sec. || .. . o : ;
o yticity. Further clarification of these points may be found in
C, but for now we leave the body frame unspecified.

For collinear shapes is not uniquely determined by Eq. any basic reference on differential geometry, for example

(2.5 and there is no unique body frame associated with all?efs.[28] and[29]. To say that a function of several vari-
"~ ) . . ables is analytic at a point means that the function agrees
particular choice of reference orientation. Nevertheless, the

functions r(q) are normally well defined at collinear With its Taylor series in a neighborhood of that point. To say

shapes. and the assianment of a reference orientation forthat a function defined on a smooth manifold is analytic at a
PES, 1SSIg . p%int means that the function, when represented in a suitable
collinear shape will prove to be a useful concept. We will

have more to sav in Sec. Il B about the sinaular nature of th choice of coordinates, is an analytic function of those coor-
y I . 9 Binates at that point. The choice of coordinates is critical
body frame at collinear shapes.

We now turn to the three-body wave functidhand give since a function analytic Wlth _respect to one set of coordi-
) L nates may not be analytic with respect to another. Thus,
a quick derivation of Eq(1.1) from angular momentaum

theorv. The wave functiont depends on the two Jacobi whenever we say that a function defined on a smooth mani-
Y. : P . fold is analytic, we must be careful to say with respect to
vectorsrg, . Rotations act on such wave functions by

what set of coordinates. Now, if two sets of coordinates are
(R(Q)W)(re,) =T (QTre,), (2.6) relateq tq one another by an invertible analytig functierth .
analytic inversgthen these two sets of coordinates are said
whereR is the rotation operator parameterized by the rota{in standard mathematical terminolggy be “compatible.”
tion matrix Qe SQ(3), andT is the transpose. We consider A function analytic with respect to one set of coordinates is
a collection of 2+1 wave functions¥! | —I<m=I, with  also analytic with respect to a compatible set of coordinates.
definite total angular momentumand transforming under Thus, the analyticity of a function is defined relative to an

the action ofSO(3) via the standard representation, entire set of compatible coordinates.
As an example, consider the plafié, and take the stan-

LT | | | dard(x,y) coordinates as the privileged coordinates defining
Vin(Q rsa)=(R(Q)‘lfm)(rsa)=2k D QW i(rsa), analyticity. Polar coordinatesr (§) are compatible with
2.7 (x,y) everywhere except at the origiand on a radial ling
Thus, a function such d$r, 6) =r which is an analytic func-
whereD},(Q) is the Wigner rotation matrix o). We use tion of the polar coordinates may still not be an analytic
the (active conventions of Messia[15] and Biedenharn and function at the origin ofi2. One needs additional boundary

Louck [27]. We define the internal wave function by conditions at the origin to guarantee that a function analytic
in polar coordinates is truly analytic oR?. This example
Xi(@) =T (r ,(q)). (2.8 contains the core idea of why boundary conditions may be

needed to guarantee analyticity of a function. We explore
The internal wave function is a multicomponent wave func-this example further in Sec. Il

tion which we call a “spinor.” The spinor index i, —I When considering the three-body wave functibh,, we
<ks=I. Using Egs(2.9), (2.7), and(2.8) we obtain the final  take the privileged set of coordinates defining analyticity to
result be the Jacobi coordinates,,,«=1,2,k=x,y,z. The reason

for choosing these coordinates is that in practice the potential

V! (re) ="' Rr(q)=2 D*(R)xi(q). (2.9  energy and the wave functions are typically analyéxcept
K at collisiong with respect to these coordinates. So long as
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one only uses Jacobi coordinates, this fact is sufficient and .

the rest of this paper could be skipped. However, as already T,muzz (T )k (T k=St (211
pointed out, a shape and orientation description of configu-

ration space is often advantageous and this naturally involveghere 1 represents the Hermitian conjugate. Hereutsab-
expressinglf'm in shape and orientation coordinates as in Eqscript does not index the componentsmgfbut rather labels
(2.9. An important fact is that shape and orientation coordi-the spinor; the P+ 1 components themselves are denoted by
nate are never compatible at collinear shapes, because the,)x, —I<k=I and are taken with respect to the normal-
rotation matrixR is not defined by Eq(2.5). This is much ized eigenbasis df,, using standard phase conventions. No-
like the relation between rectangular and polar coordinates dice that Eqs(2.10 and(2.11) determiner,(q) only up to

the origin of the plane, discussed earlier, and it explains whyan overall phase, which is another convention we have the
the analyticity ofy} alone is not sufficient to guarantee the freédom to choose. We define an alternative version of the

analyticity of W! at collinear shapes. internal wave function by

We will also be interested in the analyticity of functions

defined on the internal spa¢such as the internal wave func- )('M= TL)(' = Ek: (T,)’.Z)('k, (212
tion xl). We have found it most useful to take the
w-coordinates as the privileged coordinate system with reghere ! is the column vector X i,...x)T. Since the

All'internal coordinate systems in common use are compatgjye a

ible with thew-coordinates at most locations in shape space.
On the internal space there is the additional issue of what we
mean by analyticity at the boundans=0. We will say that
a function defined on the internal space is analytic at a par-
ticular point on the boundary if the function has an analytic ~Given some region of interest in the internal space, there
continuation into the nonphysical regian<0 in the neigh- ~ are conventions involved in choosing the coordinatgsthe
borhood of that point. functionsr ,(q), which specify the reference orientations, the
The analyticity of the functions ,(q) requires special function i(q), which extends the collinear axis away from
comment. These functions have singularities on certaithe boundary, and the spinorg(q). We will be particularly
curves(“strings”) in w;w,ws-space, which emanate from interested in a certain class of conventions which taken to-
the three-body collisioow=0 and go out to infinity. The gether we call “valid” conventions. At a noncollinear shape,
location of these strings depends on the convention for bodg set of conventions is said to be validgf, is compatible
frame[18-20. In the following we wish to work with body with the w-coordinates and the functiomg(q), A(q), and
frame conventions that remove the strings from the region of7,)(q) are analytic. In particular, this means that the shape
interest in the internal space. in question does not lie on a string singularity. At a collinear
The reader may wonder about the analyticity of the Euleishape, we still require the compatibility of the internal coor-
angles, or of functions of them. As it turns out, we neverdinates with thev-coordinates and the analyticity of,(q),
need to worry about such issues, because the main result 6{q), and (r,)«(q). However, we further require that the
this paper, which is the establishment of necessary and suboundary plane be given lgg=0. We also require that vari-
ficient conditions for the analyticity o', only involves  ous functions be either even or odd. Specifically,
the analytic properties QfL The results we prove below are

Xk= ; (TN - (2.13

valid for arbitrary conventions for Euler angles. 9u(~W3)=0u(Wa), n=1.2, (2.14
Turning away now from general notions of analyticity, we N

observe that at a collinear shape, which is not the triple col- Us(—Ws) = —Q3(W3), (219

lision, there is a well-definedup to sign unit vector, de- ANV (A,

noted by, pointing along the body-referred axis of col- (A-1a)(~Gg)=(N-Ta)(ds), (219

linearity. The vectori depends on the position along the p —ga)=—(P 21

boundary plane and is undefined off of the plane. We there- (Pre)(~03) (P11a)(a), .19

fore choose a convention for extendifn@ff of the boundary A(—qs)=h(qs) (2.18

plane. That is, we choose a functiéfq), defined on shape 3 3

space, which points along the collinear axis when evaluated (7)k(—03)=(7,)(03) (2.19

m o ) .

at a collinear shape. When evaluated at a noncollinear shape,
we only require thafi(q) lie in the plane spanned by(q)  where we have suppressed the dependencs;omw,, g,

andr(q). and g, and whereP, (q) denotes the projection operator
We now introduce a certain basis of spinatgq), —I onto the plane orthogonal 1(q).
< u<I, which are eigenspinors of the projectidfq)-L of With the preceding setup, we state the main result of this

the body-referred angular momentum operdtoonto the  paper.

collinear axis. These spinors are chosen to satisfy i ) o )
Theorem 1Let a configurationg, (which is not the triple

(A-L)7,=p7,, (2.10 collision) have shapeg, and assume valid conventions for the
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shape coordinateg,,, the reference orientation,(q), the ~ Since the collinear axis for a collinear shape is given by
vectorfi(q), and the spinor-,(q) in the neighborhood of. n(wy,w,)=2, we define the extension to noncollinear
(i) If qis noncollinear, thed’!_is analytic atr, if and only ~ Shapes by
if x!, (equivalentlyy) is analytic atg.
(i) If gqis collinear, thenl"m is analytic atrg, if and only if
X, (equivalentlyy,) is analytic atq with the Taylor series  Equations(2.2]) and (2.22 exhibit a discontinuity in the
functionr ,(w;,w,,w3) along thews axis. In fact the refer-
| ” Ll +2n ence orientation approaches a continuum of different values,
X,(01,02,03) = 20 a,n(d1,d2)af" ", (220 depending on the direction of approach. Thg axis forms

" the string singularity of the principal axis frame. This string
consists of oblate symmetric tops, and the discontinuity there
is a direct result of the ambiguity in the choice of the prin-
The most striking aspect of this theorem is that the waveeipal axes due to the degeneracy of the principal moments of
function grows asq|3m away from the collinear shapes. We inertia. A_npther singularity occurs in the principal axis
can provide the following heuristic physical interpretation of rame, arising from the double-valued nature of the frame.
this rule. If a classical three-body system, under the influenc&/Pon circling thews axis once, the principal axis frame does
of a smooth potential, approaches a collinear configurationf}Ot return to its original value, but rather has rotatedzy
any angular momentum about the collinear axis will create & hus, to make the principal-axis frame single-valued re-
centrifugal barrier that prevents the system from reaching thuires introducing a branch cut. In Eq8.21) and(2.22, we
collinear configuration. Quantum mechanically, the centrifu-Nave chosen this branch cut to be the two-dimensional sur-
gal barrier acts to suppress the wave function in the classfacew,=0, w;>0. Such string singularities and branch cuts
cally forbidden region. The more quanta of angular momen&r€ common to other choices of body frame as well and are
tum about the collinear axis, the more the wave function isdiscussed further in Ref18]. o .
suppressed resulting in tigg growth. This interpretation is W& comment briefly on the validity of the conventions
dynamical in nature since it depends on the notion of dntroduce.d here. Thw—cqordlnatgs are trivially valid every-
Hamiltonian. We stress, however, that the derivation ofwhere, with thew; coordinate being transverse to the collin-

Theorem 1 will depend only on notions of analyticity and €&r Shapes. The functidr(q) =Z is constant and hence ana-
symmetry. lytic everywhere. It obymusly .satls-ﬂes EQ.18 as We_II.
Away from the frame singularities discussed abavgq) is
analytic, and it is straightforward to show that E¢2.16
and (2.17) are satisfied. From Eq(2.25 we may take
We analyze the boundary conditions explicitly for several(r,),(q)=6,, which is clearly analytic and satisfies Eq.
common choices of valid conventions. Our purpose is to il(2.19. Hence these conventions are valid everywhere except
lustrate the general theory with some familiar conventionsat the frame singularities.

and to show how some well-known properties of certain in-  Away from the frame singularities and away from the
ternal wave functions, such as hyperspherical harmonicshoundary of shape space, Theorem 1 tells us that analyticity
come about. Of course, the properties we derive apply to angf y,(q) is a necessary and sufficient condition for analytic-
internal wave function for which the external wave function ity of ‘I’Im(rm)- In order to guarantee analyticity @f'm(rSa)

is analytic. on the boundary of shape spa@avay from the positivav,

The first example uses the-coordinates and a body ayis where there is a frame singulajity.(q) must have the
frame which coincides with the principal axes. The bOdy'Taylor series

referred Jacobi vectors are given parametrically by

A(wWq, Wy, W3)=2. (2.25

wherea,,, is an analytic function ofd;,q,).

C. Explicit examples of boundary conditions

©

ath [ W) w, Xy Wo w5 = > ay(wy wowhl 21, (2,26
r1(Wq,Wy,Wg)= >3 +ab W, z k " 3
a—b wq |2 where of coursa,,(w;,w,) is analytic.
|2 ( “ap 1% (2.2 In the next example, we keep the principal axis frame, but
change coordinates from thecoordinates to the symmetric
a+b Wi\ 172 hyperspherical coordinatép, ®, ©) defined in Eqs(2.1)—
1 . .
Fo(Wyq,Wo,W3)=| = (1__ }‘ (2.3). The coordinate® is transverse to the boundary of
2v2 ab shape space that occurs@t 0. These hyperspherical coor-
a—b wy | Y2 w, dinates are compatible everywhere except wheaxis and
+ o (1+ b m X, (2.22  the two-dimensional surface,=0, w;>0, where they ex-
2 perience a coordinate singularity. Note that the location of
the coordinate singularities agrees exactly with the location
a=\ywW+ws, (2.23 of the singularities in the principal axis frame. We again
choosefi(q)=2 and (7,)x=9J,«. It is again true that the
b= Jw—ws. (2.24 conventions are valid everywhere except at the frame singu-
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larities. Little modification to the form of Eq2.26) is nec-  nition the conventions are not valid there because we require
essary except to change the coordinates, which gives the boundary be given by;=0. Nevertheless, by using new
coordinates £,{,0' = 7— 6), the conventions are valid on
| B N this half-plane. If the external wave function is to be analytic
Xk(p’q)’e))_nz::o Bn(p, @) O 2N 220 on this half-planey}, must satisfy a Taylor series #f iden-
tical in form to Eq.(2.33 for 6. One set of functions that do
Of course, the coefficients,,(p,P) in the above equation satisfy the appropriate conditions at b@tk 0 andd= 7 are
are different from those in E42.26). The form of the wave the associated Legendre polynomid®(6). An internal
function in Eq. (2.27) can be witnessed in the results of wave functionyi(p,Z,8) =by(p,Z)Pk(8), with b(p,¢) ana-
Wolniewicz [30] for hypershperical harmonics in the sym- |ytic, therefore lifts to an analytic external wave functién
metric representation. the region of validity. Internal wave functions of this form

In the next example, we again use tiecoordinates but  arise naturally when constructing hyperspherical harmonics.
choose a different body frame, called tiezframe in Ref.  (seg, for example, Aquilanét al. [5,4].)

[3] or the BE,; frame in Ref.[20]. This frame places;

along the positive axis andr, in thexzplane. Explicitly, the IIl. THE PLANAR TWO-BODY PROBLEM
reference configuration,(w,,w,,w3) for the zxzframe is

©

Before proving the theorem on three-body boundary con-
ri(Wy, Wy, W)= (1W2)(W+w;) "2, (2.28  ditions, we discuss the two-body problem in the plane. Not
only is this simpler case useful practice for the three-body
problem, but in fact our proof of the three-body results relies
on the the two-body results presented here.
(2.29 First, we must adapt the basic concepts and notation in-
) ~ . troduced for the three-body problem for use with the two-
We again takéi(q) =2 and (r,,)(q) =6,

Ouk, anditis easy 10 o4y problem. The configuration space of a two-body sys-
see that Eqs(2.149—(2.19 are again satisfied. Equations g’ in the center of mass frame, is just the two-dimensional

(2.28 and(2.29 exhibit a string singularity on the negative pjane, the relative position of one body with respect to the
w; axis, which consists of shapes satisfying=0. Intu- g ar being denoted here ase R2. The shape of the two-
itively, we explain the location of the string by the following body system depends only on the separation distarte
observation: ifr; =0, then the orientation af, within thexz  yeen the bodies, and we denote the shape coordinate by
plane is not fixed. The conventions are valid everywhere Of(q(r). We assign to each shampa reference orientation

of the string; there is no branch cut for thezframe as there r(q). The reference orientatiar{q) is simply a point on the

was for the principal axis frame. The Taylor series given in.i.cle of radiusr (q) centered at the origin ok2. This fact

Eq.(2.26 is again applicable for the present conventions. Of\a1es the reference orientations much easier to visualize

course the coefficiens,(wy,wy) are different here and the  pgre than for the three-body problem:; the reference orienta-
domain of validity is also different. tions all lie on a curve beginning at the origin and intersect-
In the next example, we continue to use theframe, g each concentric circle once as it moves out to infinity. An

A(a)=2, and (7,)«(0) = 5.k, but use a different set of hy- 5rpitrary configuration is given by
perspherical coordinatdp,{,0) defined by

1
rZ(Wl \Wo ,W3) = (1/\/?) W(WBX—F sz).

w;=p?sin 2, (2.30 rs=Rr(q), (3.1
5 whereRe SO(2) denotes the orientation of the system. We
W, = p“ COS 2 c0sb), (23D will denote the rotation angle @® by 6.
) ) As an example, one could choose the internal coordinate
W3=p”cosZsiné. (232 {0 beq(r)=r and the reference orientation to be
These are the asymmetric hyperspherical coordinates of r(r)=rx. (3.2)

Smith[21,23. They are compatible everywhere in the physi-

cal region except on the; axis, where there is a coordinate This choice produces shape and orientation coordinates
singularity. Notice that this coordinate singularity includes(r, ), which are the usual polar coordinates loh

the singularities in thexzframe, which occur on the nega-  We now discuss the two-body wave functigh The ac-

tive w; axis. The coordinat® is transverse to the collinear tion of Qe SQ(2) on V¥ is

shapes, which occur at both=0 and#= w. We concentrate

on the boundary=0 first. Since the conventions are valid (R(QW)(rg) =¥ (Qry). 3.3

over the entire half-plané=0, the Taylor series . .
plane=0, y We denote by ,, a wave function which transforms accord-

i X ing to the irrepm of SO(2),

| _ k|+2n

‘ i=o " V(Qr)=(RQWp)(r)=e M Wy(ry), (3.4
is sufficient to guarantee analyticity of the external wavewhere« is the rotation angle of. The internal wave func-
function. With regards to the half-plane= 7, by our defi- tion y,(q) is defined by
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Xm(d) =Y r(r(q)). (3.5 (i) Assumeq#0. Assume¥ (rg,) is analytic. From Eq.
(3.5), the fact thatr(q) is analytic, and the fact that the
Given x(gq) we may recover the external wave function composition of analytic functions is analytig,(q) is ana-

¥ (rs) with the aid of Eqs(3.1), (3.4), and(3.5), Iytic.
imo Next assumey,(q) is analytic. By the assumption of
Vin(re)=¥n(Rr(q))=e""xn(q). (3.6 compatibility, q(r) is analytic. Furthermorey(rg)=(r2,
Equations(3.3~(3.6) are obviously analogous to Eq&.6)— + rSy is an analytic function of the Cartesian coordinates.

Hence,q(r)=q(r(rg)) is analytic. Turning to the rotation
matrix R in Eq. (3.1), its rotation anglef is given by
6(rg,r)=arcsin (- (r Xrs/r?)), which is an analytic func-
tion of rg andr. (We only consideré in the range— /2
<0< /2 since we are only checking for analyticity at the
reference orientatio@=0.) Furthermorer(rg)=r(q(rg)) is
eanalytic since (q) is analytic by the validity assumption and
q(rs) was shown to be analytic above. Hence,

(2.9 for the three-body problem.

We take the Cartesian coordinates,(rs,) [that is, the
usual space-fixetk,y)] as the privileged coordinates for de-
fining analyticity of functions on configuration space. We
take the radial coordinateas the privileged coordinate for
defining analyticity of functions on shape space. Sincea
positive quantity, we must give special consideration to th
boundaryr =0. A function on shape space is said to be anad
lytic at r =0 if it can be analytically continue@s a function
of r) into the regionr <0. O(rg)=0(rg,r(ry)) (3.10

For the three-body problem, there were four different con-
ventions that had to be specified. For the two-body problem,
we need only specify two conventions: the shape coordinatléS analytic. Since exjrfif) is an analytic function ob, we
g and the reference orientatioiiq); there is no analog of conclude that
f(q) or 7,(q) for the two-body problem. Away from the
two-body collision, these two conventions are said to be W o(re) =My (q(re)) (3.12
“valid” if the shape coordinatey is compatible withr and if
r(q) is analytic. At the two-body collisiong must still be
compatible withr andr(q) must still be analytic. However,
we also require thatj=0 coincide with the two-body colli-
sion and that the following conditions be met

is an analytic function of the Cartesian coordinates.

(i) Assumeq=0. AssumeW¥ ,(rg,) is analytic. By the
same argument as in ca8& x,(q) is analytic atg=0. To
prove Eq.(3.9), we differentiate Eq(3.4) d times with re-

q(—r)=—q(r), (3.7) ~ Specttors,
r(=q)=-r(q). (3.9 S 0.0 ( ] I )(QT )
k k D — r
We now state the following two-body theorem, which is kikg BT arg sk, sk )
analogous to Theorem 1 for the three-body problem.
g 'm L ml(re), (3.12
Theorem 2Let a configuratiorrg have shape, and as- i, WSJd s )

sume valid conventions for the shape coordingtend the
reference orientation(q) in the neighborhood ofj. _ _
(i) If q#0, then¥, is analytic atr, if and only if y,, is  WhereQy, j,k=x,y, are the components @. Evaluating

analytic atg. Eq. (3.12 atrg=0 produces
(i) If q=0, then¥,, is analytic atr;=0 if and only if y, is
analytic at O with the Taylor series
3 lEkd Qi iy dekd< . &rSkd‘I’m> (0)
Xm(@) =2 amqd ™+, (3.9
n=0 ) J J
:e—lma(T... P q/m>(0)_ (3.13

where thea,,, are constant complex coefficients. S Slg

Proof. For the entirety of this proof, when we say that a
function of either the Cartesian coordinates or shape coordFduation (3.13 ~shows that the rank d tensor
nate is analytic, we mean only that it is locally analytic at the(?/ 9" si,---9/9rsj;¥m)(0) transforms under the completely
specific pointsy or q respectively, mentioned in the state- Symmetrized action 06(Q(2) as an irrep 05O(2) labeled
ment of the theorem. by m. (See Appendiy. The decomposition of the fully sym-

Equation(3.4) shows that if¥’,, is analytic at an arbitrary metrized action 06O(2) on rankd tensors decomposes into
rs, then¥ is analytic at any other orientatio@'r¢ with irreps as shown in EqAL). If m does not label one of the
Qe SO(2) arbitrary. We therefore assume without loss thati'feps included in Eq(Al), that is, if m#d, d—2,...,
the specific configuration in the statement of the Theorem —(d—2),—d, then @/drg; ...d/drs; ¥m)(0)=0. Conse-
is the reference orientatian quently, the chain rule and E¢3.5 show that
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d drskl drst even analytic function in the neighborhood rof 0. Define
— 0)= 0)--- 0 the matrix-valued functiof(r) b
dqum”kl.dedq” ag © (r) by
5 ; F(r)=%FfT(r)+9@xf(r)T. (3.17)
X( arskl'“ arskdq}m) (0)=0 (314 Notice thatF(r) is the unique matrix ir5Q(2) satisfying
when m#d,d—2, ... —(d—2),~d. This shows that the F(NF(r)=X. (318

appropriate Taylor coefficients vanish in order to produce th
Taylor series in Eq(3.9).

Now assume thayt,, is analytic atq=0 with Taylor se-
ries shown in Eq(3.9). We first complete the proof of Theo-
rem 2 assuming the internal coordinag@)=r and the ref-
erence configuratiorr(r)=rX. We explicitly construct a

Since f(r) is an even analytic function, we see from Eq.
(3.17 thatF(r) is an even analytic function. Hence, from the
first of the two special cases of Theorem 2 mentioned above,
F(rg)=F(r(rg)) is also analytic. Notice of course th&frs)

is invariant under all rotation® e SQ(2),

function W (rs) by F(Qro)=F(ry). (3.19
5 * By the validity assumptiongj(r) is an odd analytic func-
Vo(r)=> > tion of r. Hence, from the second of the two special cases of
n=0 Ky -Kjm|+2n Theorem 2 mentioned above, the function
[m[+2n )
><a-mr'|(tm )kl"'k\m|+2nr5kl.”rSkﬁ‘nHZn, G(rs)zeleq(r) (32@
(3.195

is an analytic function of the Cartesian coordinafgsere
where thea,,, are the same Taylor coefficients as in Eq.(?:r) are the standard polar coordinatesiiifh ] We define a
(3.9 and thetET'““ are the rankm| + 2n tensors defined by Vector-valued version dB(r), denoteds(rs), by
Eqg. (A2). Clearly the transformation property E@3) of the . - N
~ G(rg)=Re&(G(rg))X+Im(G(r =q(r)fs. (3.2
tm+2n shows that¥,, satisfies Eq(3.4). Hence, we may (19 =Re(G(ry)) (Gray=anfs. (.29
apply the same analysis 18, as we have fol,,. In par-  Obviously,G(r,) is also an analytic function of the Cartesian

ticular, ¥, is uniquely determined via Eq3.6) by the in- ~ coordinates. Recall that the compatibility of the coordirate
q 1, thatis,q 1(q(r))=r. The functionG(r) therefore has
o an inverse given by
YD) =T (r) =, a, m+2 3.1
Xm(T) m(rX) n§=:0 mn (3.19 Gfl(l‘s)zqfl(l‘)fs, (3.22
where we have used Eq®.15 and(A4). Sincey,, andy,, as may be verified by inserting this formula into £8.21).

have the same Taylor serieg,=¥m. Furthermore, the Equations(3.21) and (3.22 easily admit the following re-
unique correspondence between internal and external wallts
functions guarantees that,,=W¥,. From Eq.(3.15, we see G(Qr)=QG(ry) (3.23
that ¥ .,=W¥ ., is analytic at O by construction. This com- s s '
pletes the proof of Theorem 2 for the specific conventions G YQr9=0G(r,) (3.24
chosen above. s S

We mention two noteworthy special cases of Theorem 2yhereQ e SO(2) is arbitrary.

which the above analysis has now proven. First(if) is an We define a new functioki(ry) by
even analytic function, them(rg)=f(r(rg)) is an analytic
function of the Cartesian coordinate§his fact is quite H(rd)=F(ro)G(ry). (3.25

trivial to prove from scratch by simply considering the Tay-

lor series of the two functionsSecond, iff(r) is an odd This function has several important properties. First, since

analytic function, therf(rg)=f(r,0) =exp(6)f(r) is an ana- bothG(rs) andF(r,) are analyticH(r) is analytic. Second,

lytic function of the Cartesian coordinates, whered) are

the standard polar coordinates. H(r(q))=F(r(q))G(r(q))=ax, (3.26
We now assume arbitrary valid conventiong) and ] ] )

q(r) for the reference orientation and shape coordinate rewhich follows from Egs.(3.18 and (3.21). A third fact is

spectively. To complete the proof of Theorem 2 for thesethat H is invertible. This fact requires more work to prove,

conventions, we first define and discuss three useful funcvhich we do by explicitly constructingH™*. Let rg

tions F(ry), G(ry), andH(ry) related to these conventions. =H(rs). Then,

By the validity assumptions(r) is an odd analytic function P , . 1,

in the neighborhood of =0, and hencé(r)=r(r)/r is an =G (F H(rgrd)=F (ryG " (rg),  (3.27
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where we use the definition dfi and the fact thalG is  the Cartesian coordinates. Furthermore, siH¢e,) is ana-

invertible in the first equality and the second equality follows|ytic, Eq. (3.35 implies that¥,(r) is analytic. [ |
from Eq.(3.24). Now, the magnitudes of, andr are related
by IV. PROOF OF THREE-BODY BOUNDARY CONDITIONS
Irel =[F(ro)G(ro)|=[G(rg)|=q(lr), (3.28 In this section, we prove Theorem 1.
where we have used E(B.21) in the final equality. Turning Proof. For the entirety of this proof, when we say that a
this relation around and using E.22 we have, function of either the Jacobi coordinates or shape coordinates
. i is analytic, we mean only that it is locally analytic at the
Irs=a *(rgh=1G"*(ro)l. (329 gpecific pointsy, or g respectively, mentioned in the theo-
rem.

As witnessed by Eq3.19, F(r,) depends only on the mag-
nitude of its argument, and hence Ed@8.27 and (3.29
combine to produce

A common fact we will use several times is that the
Wigner matricesD'mk(Q) are analytic functions of the rota-
tion matricesQ e SO(3). Equation(2.7) thus shows that if

=F YG X r)G (), (3.30 V| is analytic at an arbitrarys, , thenW}, is analytic at any
other orientatiorQ'r, with Qe SO(3) arbitrary. We there-
which givesrg in terms ofr; . Hence, fore assume without loss that the specific configuratigrin
the statement of the Theorem is the reference orientatjon
H Y(r)=F XG X(r))G (r)). (3.3 (i) Assumeq is noncollinear. The proof here is a straight-

forward generalization of the proof of pai) of Theorem 2.
Another fact regardingd is that if Qe SQ(2) is arbitrary,  First assume¥! (rs,) is analytic. From Eqgs.(2.8) and
then (2.12, the fact that bothr,(q) and (r,)«(q) are analytic,
and the fact that the composition of analytic functions is
H(Qrs) =F(Qro) G(Qre) =F(ro)QG(ry) analytic, X (q) andxk(q) arg both analytic. ’
=QF(rg)G(rg)=QH(ry), (3.32 Next assume(ﬂ(q) is analytlc From Eq(2.13 and the
fact that (r,)(q) is analytic, Xk(Q) is also analytic. The

where the second equality follows from Eq®.19 and  yajidity assumption guarantees thegw ) is analytic. From
(3.23 and the third equality follows from the commutativity gqs (2.1)—(2.3) it is evident that the functionwﬂ(rsa) are

of the groupSQ(2). From Eq.(3.32 follows an analogous  hemselves analytic. Therefore(rs,) =q(w,,(rs,)) is ana-
identity for H™* lytic.

_ _ We now focus on the orientation matri in Eq. (2.5

1 — 1 ’

H™(Qre)=QH"(ry). (333 which may be expressed in terms of the vectgrsandr , as
We now have the proper background to complete the 1

proof. SinceH is invertible, we introduce the functiow , R(Fgy o) = m[r 1VI+ rszvg+(fsl><rsz)(f1><rz)T],

by (4.)
q’m(rs):\I’m(H_l(rS))’ (3.34 Vi=—T,X(r,Xrq) (4.2)

17 —Fax X)), :
V(1) =T n(H(ry)). (3.39 Vo= — 11X (FL X1 ). 4.3

We see from Eq(3.33 that‘ﬁl'fm satisfies Eq(3.4) sinceV, ) . .
satisfies Eq.(3.4. We define the internal wave function 10 confirm the above expression fi; we need only verify

Fm(q) using the old convention(q) =g, Eqg. (2.5 and show thaR(r,Xr,)=rg; X1, both of which
follow easily from the simple identities

(D) =T n(9R). (3.36

Vo To=|r1Xr,?, (4.4
Using the new convention(q), we haveyx,(q) given by
Vo (r1Xrz)=0, (4.9
Xm(d) =W n(r(@)=VYn(H({(g) =¥ n(g%), (3.37
V1-r2=V2~I’1=0. (46)

where the second equality follows from E@.35 and the

third from Eq. (3.26. Thus, the functional form ofm(d)  Sincer;xr, does not vanish, it is clear th&(r, ,r,) is an
andy,(q) are identical. Since we have assumed thatis  analytic function of the vectons,, andr,,. Since bothr (q)
analytic atq=0 with the Taylor series in Eq3.9), xm IS andq(rs,) are analytic, the function,(r,)=r,(q(rs,)) is
also analytic with the identical Taylor series. Now since Weanalytic. Hence,R(rs,) =R(rs,.r.(rs,)) is also analytic.
have proved Theorem 2 for the old conventions used to derecalling that the Wigner matrices are analytic functions of
fine yn(q), we have thawm(rs) is an analytic function of R and thatq(rg,) is analytic, we see that
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We assume without loss of generality thdig;=0)=2.

(This assumption simply amounts to a judicious choice of

space frame.We may thus defineN(q) e SO(3) in the

neighborhood ofj;=0 to be the unique matrix such that

dinates on configuration space consisting of two shape coor- W(a)z=1(a) (4.14

dinates, two orientation coordinates, and two coordinates . : S

- . and such that its axis of rotation lies in tkg plane. In fact,

constructed from the one remaining shape coordinate and the
o , : . .We see from Eq(4.9) that

one remaining orientation coordinate. We call these coordi-

nates the “mixed coordinates.” The majority of the remain- (4.15

der of the proof will be dedicated to defining the mixed

coordinates and proving the_ most important fact_ about themrhe analyticity property ob) implies thatw(q) is analytic at

that they are compatible with the Jacobi coordinates at thg,—=0. We useW(q) to define an orthonormal frame

collinear configuration. A(q),i=1,2,3, by

First, we discuss the parameterization of the rotation ma-

Vi(rea) =2 PRs)Xid@(rsa) (47

is an analytic function of the Jacobi coordinates.
(ii) Assumeq is collinear. We define a new set of coor-

W(q)=U"(q,2).

trix R in Eq. (2.5). Consider an arbitrary unit vectérlying A1(q)=W(q)X, (4.16
in the northern hemispheréexcluding the equatdr with
A(q) as the north pole. We defing(q,&) e SO(3) to be the nx(q)=W(q)y, (4.17
unique rotation such that

fa(q) =W(q)z=A(q). (4.18

U(a.8f(q)=& (4.8

and such that its rotation axis lies on the equator. Specifi

cally, the rotation axis obJ lies in the direction of
a(q,8)=n(q) x8& (4.9

and the rotation angle dff has the value arcsifal. Thus,
U(q,8) is explicitly given by

U(g,®)=exd f(la(q,8)|)(a(q,8) x)], (4.10
arcsinx
f(x)= . (4.11

where we have introduced the notatiax for the 3x3
matrix which maps an arbitrary vectarinto axv. The pur-

pose of Eqs(4.10 and(4.1]) is to demonstrate the analyt-

icity of U(q,&). Observe that arcsir( is an odd analytic
function on the interva(—1,1), and hencef(x) is an even
analytic function on(—1,2). This in turn implies thatf(a)
=f(|a]) is an analytic function of. From Eq.(4.9) and the
fact thatA(q) is analytic atq;=0, a(q,&) is analytic atqs

=0 and at allé in the northern hemisphere defined by the
north pole N(g;=0). The analyticity of the exponential
function permits the following final statement. The function

U(q,8e) expressed in Eq4.10 is an analytic function af];
=0 and at alk in the northern hemisphere wifi{q;=0) as
the north pole.

For an arbitrary rotation anglé we defineV(q, 6) to be
the rotation byd abouti(q). Explicitly, this rotation is given

by

V(q,0)=1(q)AT(q)+[sin 8(A(q) X )+ cosd]P, (q).
(4.12

We now express the rotation matikin Eq. (2.5) by
R(&60)=U(q,8)V(q,0), (4.13

where we have parameteriz&dby the quantitie€ and 6.

The functions;(q) are of course analytic.

" The unit vectorg is determined by only two of its com-
ponents, of which we chooss=2&-n, andé,=&-n,. The
third componeng, (&, ,&,) = (&5+&35)*2 is an analytic func-
tion of the other two in the northern hemisphere. The func-
tion

&(Q1,81,8,)=21N1(q) +&,N,(q) +&5(81,8,)N3(q)

(4.19

is of course analytic.
We next define a pair of vectoss(q, ), a=1,2, by

S.(0,0)=V(q,0)r,(q)
=(f-1,)(@n(q) +[sin B(A(q) X))+ cos](P, r,)(q),
(4.20

where we have used E¢1.12). We introduce two new vari-
ablesu; andu, by

(4.21
(4.22

We defineu=q3, which is convenient notation since when
is positive, it is the radial coordinate im u,-space, that is,
u=(u2+ud)2 The vectorss, are conveniently parameter-
ized by the new coordinates

U;=0(3 COS¥,

U,=Qs3Ssiné.

Sx(Ug,Up) = (A1) (U)A(U) +[ux(A(u) X)+uy ]

(Pira)(w)
u

X

, (4.23

where we have dropped the explicit dependenceypand
g,. Sincef(u) is an even analytic function af, f(uq,u,)
=f((u?+u3)*? is analytic inu; andu,. This fact, together
with Egs.(2.16—(2.18), shows thaf, A-r,, (P, r,)/u, and
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hences, are all analytic functions afi; andu,. Reintroduc-
ing the explicit dependence oq; and g,, we see that
S.(01,02,Uq,U,) is analytic.

Using similar arguments as above, from E@.9 and
(4.10 we see that botha(q;,q9,,uU;,U,,6=2) and
U(g1,95,U;,U,,8=2) are analytic. Hence, E@4.15 shows
thatW(qq,d,,Uq,U,) is analytic, from which follows, using
Egs. (4.16—(4.18, that thef;(q,,q,,uUq,U,), i=1,2,3, are
analytic. Hence, Eq. (4.19 shows that
&(g1,02,Uq,U,,81,8,) is analytic. From this result we also
have, using Eq94.9) and(4.10), that

a(gi1,0z,U,Up,8,,85)
=a(qy,0;,U1,Up,8d1,02,Up,Uz,84,85))
and
U(Q1,0z2,U1,Uz,81,85)
=U(Q,,02,U1,U2,8(01,02,U7,U5,84,85))

are both analytic.
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Lemma 1If f(q) is an analytic function which is even in
ds, thenf(rg,)=1(q(rs,)) is analytic.

This lemma, together with Eq$2.16—(2.18), proves the
analyticity of the following functions:

(N M) (Fea) [P LTl 2(Fs) T 2N ) AT s0).

Furthermore, Eq94.9) and(4.10 show thatU is even ings
and hencdJ(rg, ,8)=U(q(rs,),®) is analytic at the collinear
configuration and at alé in the northern hemisphere with
f(g3=0) at the north pole. Equatio@.15 proves the ana-
Iyticity of W(rg,)=W(q(rs,)) and hence Eqs4.16—(4.18
prove the analyticity of the basis vector$(rg,)

= ﬁi(q(rsa))v i= 11213'

The vectoré is determined by the equation

(4.295

which follows from Eqgs.(4.12), (4.13, and (4.8). We ob-
served earlier that away from a collinear shape, the m&ktrix
is given by Eq.(4.1), which results in the following formula
for &

é=RnA,

We define the mixed coordinates to be the variables

(91,9,,uUq,U,,81,8,). We can expressg, in terms of the
mixed coordinates as follows

Iso(d1,02,U1U5,81,85)
=Rr,=UVr,

=U(d;1,92,U1,U,81,85)8,(01,02,Uq,Up),

(4.29

where we have used EqR.5), (4.13, and(4.20. Since we
have already shown that botl(q;,q,,u;,u,,&;,&,) and

s,(0d1,02,Uq,U,) are analytic, we see that the Jacobi coordi-

nates are analytic functions of the mixed coordinates.
To show compatibility of the mixed coordinates with the

e=vi(Prsit+ra(Qre, (4.26
p=tefl 4.27)
Voz' ra
where we have used E(.4) and the fact that
(ryxXr,)-A=0 (4.28

sincen is assumed to lie in the plane spannedrpyandr,.
We will now show that Eq(4.26 is valid not only at non-
collinear configurations, but at collinear configurations as
well. More specifically, we will prove tha(r,,) is analytic
at collinear configurations.

Considering Eq(4.26) in the neighborhood of a collinear

Jacobi coordinates we need now only show that the mixe@onfiguration, we first assume that neithenorr, vanishes.
coordinates are analytic functions of the Jacobi coordinatesppyiously, to show thag(r,) is analytic, we need only

First, since the internal coordinatgg are valid coordinates,
they are analytic functions of the-coordinates. By inspect-
ing Egs.(2.1) and(2.2), we see thaw,(rg,) andw,(rg,) are

show thatv (rs,)=»,(q(rs,)) is analytic. From Lemma 1
this amounts to showing that,(q) is analytic and even in
gs. Thatv,(q) is even ing; is easily proved by inserting

analytic, even at a collinear shape. However, because of theys (4.2) and(4.3) into Eq.(4.27) and using Eqs(2.16 and

absolute value in Eq(2.3 the same can not be said of
ws(rs,). However, the functiow3(rs,) is analytic. Thus,
we have the following lemma: Any analytic function of

(2.17. To show thatv,(q) is analytic requires the following
observation: The ratio of two functions which are both ana-
lytic at a given point is also analytic at that point provided

(w1, W, w3) may be viewed, via composition, as an analyticthat the ratio is not infinite(This fact is easily proved by

function of rg, . Using this lemma and noting that (w,,)
andq,(w,) are analytic functions which by Eq2.14 are
also even inw;, we see that the two mixed coordinates
g1(rse) andqgs(rs,) are both analytic functions of the Jacobi
coordinates.

Note that the coordinatgs(rg,) is not analytic. However,
since qg(wﬂ) is analytic and by Eq(2.15 also even in
w3,q§(rsa) is analytic. This fact allows us to generalize our
previous lemma regarding thg-coordinates to arbitrarg.

considering the Taylor series of the two functignas qs
tends toward O, by our previous assumptiog, does not
vanish, nor doe#é. The quantityv,, however, does vanish,
but since it appears to first order in both the numerator and
denominator of Eq(4.27), the ratio is finite atj3=0. Thus,
v,(q) is analytic, and hencev,(rs,) and consequently
&(rg,) are analytic as well.

If one of the Jacobi vectors, say;, vanishes at the col-
linear configuration, the preceding analysis must be modified

As we will have frequent need of this more general lemmagdue to the appearance of in the denominator of Eq4.27).

we record it below.

In this case, we define a new set of vectors
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ts1=rgtreo, (4.29

tso=rg1—rso, (4.30

and their counterparts, in the body frame which satisfy
ts,=Rt,, (4.3)

analogous to Eq2.5. Notice that neithet; nort, vanishes
at the collinear shape since this could only occur,ifvere
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pP.(aq), «=1,2, is analytic all we need to do is show that the
ratio in Eqg.(4.36 is not infinite whenq; tends toward O.
(Both the numerator and denominator are analytic functions
of g.) This fact follows readily from our assumption that
does not vanish and from the fact thgt, which does vanish
atq;=0, appears linearly in both the numerator and denomi-
nator. Proving thaps(q) is analytic requires a bit more care.
Since both the numerator and the denominator in(BE®@7)

are analytic functions, we again need only verify thatq)

also to vanish, which only occurs for the triple collision. does not blow up atj;=0, whence

Now, Egs.(4.1)—(4.3), (4.26), and(4.27) are all valid if one
replacesr,, andr, by ts, andt,, respectively. We may

repeat the same line of reasoning as above to show that the ¢, .o

new v,(q), with r, replaced by, , is analytic and even in
gs. Thus from Lemma 1, the new,(rs,) and hencerg,)
are both analytic. SincB,(rg,) andf,(rg,) are analytic, we
finally find that the two mixed coordinate®(rg,)=

&(rg,) - Ni(rg,), 1=1,2, are analytic functions of the Jacobi

coordinates.

We turn now to the final two mixed coordinataes and
U,. They are defined by Eq&4.21) and(4.22, but may also
be expressed as

U;=0szcosf=n;-(q3VP, )N,

=A,-UT(qzRP,)A;=1;-U T MA, (4.32
U,=Q3sinf=n,-UTMf,, (4.33

where
M=qzRP, . (4.34

The second equality in Eq4.32 follows from Eg. (4.12
and the orthogonality afi; andA. The third equality follows
from Eq. (4.13.

Recall thatU(rs,,8) and &rg,) are analytic. Hence,

U(rs,) =U(rg, &rs,)) is also analytic. We also recall that
the A;(rg,), 1=1,2,3, are analytic. Thus, inspecting Egs.

(4.32 and(4.33, we need only show thadl(rg,) is analytic.
The matrixM may be written with the aid of Eq4.1) as

M(, 1 s0) ='s1P1(0) + T 52P2( Q) + (rs1 X T 5)P3(Q),
4

(4.39
qSPLVa
a Va'ra 1] a_112; (4.36)
P, (r{Xr
p3ZQ3 L(ry 2). (4.3
[riXryl

We first assume that; andr, do not vanish at the collinear

shape. To prove tha#l(rg,) =M(q(rs,),rs,) iS analytic, we
need only show thap,(rs,), «=1,2, andps(rs,) are ana-
lytic. From Lemma 1 we must therefore show thmgtq),

a=1,2, andps(q) are analytic and even igz. Using the
definitions Eqs(4.2), (4.3), (4.36), and(4.37) and the valid-
ity conditions Eqs(2.16 and(2.17), it is straightforward to
prove thatp,(rs,), @«=1,2, andps(rg,) are even imz. As

with our proof of the analyticity ofv,(q), to prove that

r{Xr,

lim = lim lim
p3(q3) |r1><r2|

=28 Lim |p
qgéo[W3(Q3)L3Ho :

}(%),
(4.38

where we have used the definition Eg.3) of w;. We now
note

lim — L _ %
as—0Wa(d3) (0w3/d93)(0)  dws

(0), (4.39

which cannot be infinite sincg; is an analytic function of
w;. [We have used I'Hospital’s rule in the second step of
Eq. (4.39.] The second limit in Eq4.38 cannot be infinite
either, sinceP, is well-defined aig;=0 and

FXro/|ryXry

is a unit vector. Thusps(q) is analytic atq;= 0. Hence, we
have shown the analyticity qf,(rs,), a=1,2, andps(rs,)
from which follows analyticity ofM(rg,) and u;(rg,), i
=1,2. If the assumption that, andr, do not vanish at the
collinear shape proves to be false, then we can prove the
analyticity ofM(rg,) by applying the same trick used earlier
of defining the vectors,, . We omit the straightforward de-
tails of completing this argument. This finishes the proof of
the compatibility of the mixed coordinates with the Jacobi
coordinates.

We turn now to the eigenspinors, satisfying Eqs(2.10
and (2.11). We denote by s)mmw ., 1=X,Y,Z, mm’'=
—1,...,l, the components of the space-referred angular mo-
mentum operatok g; with respect to the g, eigenbasis. The
matricesL ; transform under a rotatio e SO(3) as a vec-
tor operator,

2 QiLy=P(QLsP Q. (4.40
We denote by I(;) v, i1=X,Y,2, k, K'=—1,... |, the com-
ponents of the body-referred angular momentum opetator
with respect to thé , eigenbasis. The components of the two
operatorsg; andL;, with respect to their respective bases,
are related by () = (Ls)k=(Ls) g - (See Ref.[3],
Sect. 4.H for a derivatioh.Thus, the matriceg; satisfy

2 Q;L;=D*(QL,P'T(Q). (4.4))

In view of Egs.(4.14) and(4.41), we have
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A-L=2-WL=D"*(W)L,D'T(W). (4.42
From Eq.(4.42 we see thatr, can be expressed as
(7,)k=€' "D (WT), (4.43

PHYSICAL REVIEW A 61 042502

Next assume thag (q), and hence(k(q) is analytic and

that Xﬂ(q) has the Taylor series given by E@.20. Then
from Theorem 2, the functloﬂfm(u1 ,Us) given in Eq.(4.50

is analytic inu; andu, and based on the analyticity of the
coefficientsa,,5(d;,9>), ‘Pm(ul,uz,ql,qz) is analytic inq;

whereo(q) is a phase factor that must be analytic and everyng a, as well. We now rewrite Eq4.46) as

in g3 in order to guarantee the same properties o) ((d).
This result, together with Eq$2.12 and(2.13, yields

X,= 2 e DI (W) xi (4.44)

xk—E €D (W) ), (4.4

We may use Eq(4.45 to rewrite Eq.(2.9) as
—e"’Z D, (RW) X}, —e“’Z Dy (UVW)Y,, (4.4

where we have used E.13).

We now assume thaI"m(rSa) is analytic which implies,
as in part(l) that botth(q) and Xﬂ(q) are analytic, and
hence)(#(q) has a Taylor series

xL(ql,qz,q3)=r§O bn,(d1,02)95, (4.47)

UW)\T" ,
(4.51)

v, —e'”z Dl (UW) ey —e"’E 2

where we have used E®.49 in the first equality and Eq.
(4.50 in the second. We have already shown teat), W,
and \P' are analytic functions of the mixed coordinates.
Thus, \If' is an analytic function of the mixed coordinates
and hence of the Jacobi coordinates as well. [ |

V. CONCLUSIONS

Assuming valid conventions, Theorem 1 solves the prob-
lem of determining whether an internal wave function for the
three-body problem is associated with an analytic external
wave function. The criteria presented are both necessary and
sufficient. The proof invoked only general concepts of ana-
lyticity and group theory and there was never any need to

whereb,,,(q;,0,) is analytic. We must now only show that assume that the external wave function was an eigenfunction
the appropriate coefficients vanish in the Taylor series Eqof a Hamiltonian or any other operator. The class of valid

(4.47 to produce the Taylor series E@.20. Sinceo(q) is
analytic and even ingz, Lemma 1 shows thawtr(rg,)
=0(q(rs,)) is analytic. Therefore the functioﬁy"m defined
by

‘I'lm((h ,Q2,Up,Up) =g 'o(d10z.U1.2)
(4.48

is analytic. Sinceé=2, we see from Eq(4.15 that the ma-
trix product UVW appearing in Eq.(4.46 is equal to
WTVW. From Egs.(4.12 and (4.14 it is evident that
WTVW2=2, and henc&/"VW is a rotation byg about thez
axis, whered is the rotation angle of. Therefore,

XW! (Qq,02,U1,U,,8=2),

Dy (WIVW) = 8, exp(im). (4.49
Thus, Eqs(4.46) and(4.48 combine to yield
T}y, Up) = €M X1 (), (4.50

where we have dropped the explicit dependence)pand
g,. From this equation and the fact that,{5) are the usual

conventions for our results is very general and encompasses
most of the conventions in common use.

We now propose several useful extensions of the present
work which we plan to consider in future publications. First,
Theorem 1 says nothing about the properties of the external
wave function in the neighborhood of body frame singulari-
ties. Our justification for ignoring these singularities at
present is that they may always be moved away from the
region of interest by a change of body frame; they may even
be moved into the unphysical region of shape space. How-
ever, in practice it is not always convenient to change body
frames or to use a body frame that places the singularities in
the unphysical region. Therefore, one should like to have a
set of criteria on the internal wave function which guarantees
the analyticity of the external wave function in the neighbor-
hood of a body frame singularity.

A second desirable extension of the present work would
be to develop a set of criteria applicable at the three-body
collision. Such an analysis would almost certainly involve
the analysis of body frame singularities mentioned above.
This is because the stringr strings of body frame singu-
larities emanates from the three-body collision and no body
frame avoids singularities at the three-body collision.

polar coordinates with respect to the Cartesian coordinates aAs mentioned in the introduction, the external wave func-
(Ul,Uz) we may apply Theorem 2. In particular, since tion for three-body problems is not necessarily analytic at all

m(ul,uz) is analytlc,Xm(qg) has the Taylor series given in points, the collisional configurations of Coulomb problems
Eq.(3.9. This implies that the appropriate coefficients in Eq.being an obvious example. Yet another useful extension of

(4.47) vanish.

the present work would be to develop criteria on the internal
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wave function that capture such singular behavior of the exresentation by X2 real orthogonal matrices, decomposes

ternal wave function. into the direct sum of then= =1 irreps, which we denote
Finally, it is natural to try and extend our analysis to four + 1@ — 1. The two irreducible carrier spaces are spanned by

or more bodies. The case of four bodies is certainly morehe vectorse, =(1,+i)". The d-fold tensor product of the

challenging than that of three bodies. For the three-bodyundamental representation contaimsth various multiplici-

problem, we can always pick valid reference orientationgies) the irrepsd, d—2,d—4,...,—(d—4), —(d—2), —d.

r.(q), which are well-defined analytic functions in the However, exactly one irrep for each allowed valuenois

neighborhood of an arbitrary collinear shapexcept the totally symmetric. That is, the fully symmetrized tensor

three-body collision For the four-body problem, however, product of the fundamental representatiorS@¥2) decom-

any reference orientation,(q), «=1,2,3, we choose will poses as

not be analytic at any collinear shape. This is because all

body frames for the four body problem have singular sur- S®(+1e—-1)=de(d-2)e(d—4)®---®—(d—4)

faces emanating from all collinear shap#8]. Extending the d

analysis of this paper to the four body problem will neces- ®&—(d-2)®—d (A1)

sarily require a deeper consideration of frame singularities. ’

where® denotes the tensor product afddenotes the total
ACKNOWLEDGMENTS symmetrization operator. The irrep labeled fyis spanned
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wherem=u—v andd=u+wv. Explicitly, tdm transforms as
APPENDIX: FACTS CONCERNING SO(2)

We collect some basic facts concerniBQJ(Z) that are 2 lek1'"dekd(tg")kl"'kd:eiima(t?ﬂ)jl"'jd' (A3)
necessary for the proof of Theorem 2. All irreducible repre- k--ka
sentationgirreps of SO(2) are one-dimensional and may be d i
labeled by an integem, with —<m<c. The components Where tm);, .., are the components of,. A final fact we
of a vector in an invariant one-dimensional carrier space laneed, which follows readily from EqA2), is that
beled bym are multiplied by exptimé) when rotated byo. d

The fundamental representation®€X(2), that is the rep- (tmx. x=1. (A4)
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