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Classification of multiqubit mixed states: Separability and distillability properties
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We give a complete, hierarchic classification for arbitrary multiqubit mixed states based on the separability
properties of certain partitions. We introduce a familyNsfjubit states to which any arbitrary state can be
depolarized. This family can be viewed as the generalization of Werner states to multiqubit systems. We fully
classify those states with respect to their separability and distillability properties. This provides sufficient
conditions for nonseparability and distillability for arbitrary states.

PACS numbgs): 03.67.Hk, 03.65.Bz, 03.65.Ca

[. INTRODUCTION ily of states of N-qubit systems. These states are
characterized in terms of'2 * parameters and play the role
Entanglement is one of the basic concepts of quantunof WS in such systems, since any arbitrary state can be de-
mechanics and an important feature of most applications gpolarized to this form. We fully analyze the separability and
quantum information. It arises when a state of a multiparticledistillability properties of this family, thereby generalizing
quantum system cannot be prepared by acting on the pathe purification procedure introduced in RgL3] to multi-
ticles individually, i.e., is nonseparable. Despite the fact thatjubit systems. This automatically provides us—as in the bi-
we do not know yet how to classify and quantify entangle-partite case—with sufficient conditions for arbitrary multiqu-
ment in general, much progress has been made in recehit states. Among other things, this allows us to give the
years. In particular, the concept of entanglement distillationecessary and sufficient separability and distillability condi-
or purification[1] was introduced. This process, which is the tions of mixtures of a maximally entangled state and the
creation of (few) maximally entangled states out of many completely depolarized stafé4,15. Furthermore, we intro-
not-maximally entangled ones, turned out to be one of theluce a hierarchic classification of geneatjubit states with
most important concepts in quantum information theory.respect to their entanglement properties.
When combined with teleportatid@], it makes it possible to The paper is organized as follows. We start by briefly
send quantum information over noisy chanri@s3] and to  reviewing some of the present knowledge about distillability
convey secret information via quantum privacy amplificationand entanglement of bipartite quantum systems in Sec. Il. In
[4]. the following we generalize the results of REI3] to mul-
Particular important states of two qubits are the so callediqubit systems. We start by giving a classification of arbi-
Werner state$WS) [5], which are mixtures of a maximally trary N-qubit systems in Sec. lll. Then we introduce a family
entangled state, e.d® *)=1/y2(]00)+|11)), with the to-  of states that can be obtained via depolarization from an
tally depolarized state. These states are fully characterized tbitrary one in Sec. IV. Here we also investigate the sepa-
the fidelity F, which measures the overlap of the maximally rability and distillability properties of this family. Section V
entangled stat¢d ) with the WS. They play an essential gives examples to illustrate the results obtained in the pre-
role in the understanding of the entanglement and distillabilceding sections. In particular, we analyze in detail the sim-
ity properties of two qubit systen{§]. On the one hand, it plest cases of 3 and 4 qubit systems. In Sec. VI, we apply our
has been shown that WS are separableFfer1/2 and non- results to the case where we have a maximally entangled
separabléentangledi for F>1/2. On the other hand, Bennett State of N qubits mixed with the totally depolarized state.
et al.[1] showed that one can purify WS with arbitrary high Finally, we conclude and summarize in Sec. VII.
fidelity out of many pairs witt=>1/2 by using local opera-
tions and classical communication. Furthermore, any arbi- Il. BIPARTITE SYSTEMS AND PARTIAL
trary state can be depolarized to a WS without changing the TRANSPOSITION
fidelity F, which automatically provides a sufficient criterion

for non-separabilitf7—9] and distillability[10] for arbitrary et us start out by briefly reviewing the separability and
distillability properties of bipartite systems. A bipartite
states.

The description of the entanglement and distillability mixed statep is called separable if it can be prepared locally,
properties of systems with more than two particles is stilll-€- it can be written as a convex combination(efinormal-
almost unexploredsee Refs[11] and [12], howeve. In  1Z8d product states
Ref. [13], some steps towards the understanding of three-
particle entanglement of mixed states were taken. In particu- _ _ ) ) )
lar, a complete classification of arbitrary three-qubitpstates P Z 12 party 311101} pary A il @
was proposed and the distillability and separability properties
of a family of states was obtained. In this paper, we generA state is called distillable if one can create outiofinitely)
alize the ideas introduced in R¢f3] to multiparticle quan- many copies op one maximally entangled state, e.gb,").
tum systems. We provide a complete classification of a famin practice, it is difficult to decide whether a given state is
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separable or distillable respectively. As shown by Pérés
and the HoredecKi8—10], the partial transposition of a den-
sity operator turns out to provide a simple, sufficient crite-
rion for the classification of bipartite systems. Given an op-
erator X acting on(C%® (%, the partial transposition with
respect to the first subsystem in the standard basis
{11),]2), ... |d;)}, XTA, is defined as follows:

d FIG. 1. Example of two partitions of a 9-qubit system into three
Tal RT sets[full line: S;=(A1AsAq)-(AA3A5A,)-(A4Ag)] and five sets
XTa= 2 (XD ) dotied line ~ S=(ArAg)-(Ag)-(AAD-(AsAs) — (AdAg)]. We
have thatS; is contained inSs;.

Clearly, the partial transposition of the operaiis basis ) ) ) _
dependent, but the eigenvalues are not. We say that a sélf the following, we will consider a system & qubits, each
adjoint operator has positive partial transposition€!d by one of the partied; ,A;, ... Ay. In this cased,
(XTa=0)—positive partial transportatioPPT)—iff all ei-  —d2=:--dy=2. Let us now consider a partition of the
genvalues ofX"A are nonnegative. On the opposite, we SayN-qublt system |ntd<§N sets, Wh!Ch we call &-partite split
an operator has nonpositive partial transpositiPPT) iff  Of the system(see Fig. 1 That is we allow some of the

at least one eigenvalue is negative. Sometimes NPPT is alf§"ties to act together such that findtparties remain. As a
called “negative partial transposition(NPT). special case, we have 2-partite splits which we will also call

For bipartite two-level systemsl{=d,=2) it was shown bipartite §plits. A state is c:_:llledk—separaplg yvith respect to
that positive partial transpositiofPPT) is a necessary and this specmc partitior{or equaleptly splicif it is fully sepa-
sufficient condition for separability7,9] while negative par- rable inthe sense that we c%ns@eas ak-party system, i.e.,
tial transposition(NPT) is a necessary and sufficient condi- @S @ state it{=C1® ... ®% _
tion for distillability [10]. For higher dimensional systems, ~ Considering all possible partitiorigicluding all permuta-
however, the partial transposition only provides necessar§ions of theN-qubit system and determining the correspond-
conditions for separability9] and it seems that it provides Ng separability properties is sufficient to fully characterize
only a necessary condition for distillability16,17. In (2 the system in terms of its entanglement properties. However,
®(9(d=2) systems we have that a sufficient condition forthe number of_ po_ssnble partitions grows rap_|dly with the
separability is thap=pT [18], while the negativity of the number (_)f partles_ mvo_lvedsee Sec. llIB2 and |t_ turr_15 out
partial transposition already ensures distillability of thoseth@t the information given by all these properties is redun-
systemq 16]. dant in some cases. We, thus, propose a hierarchic classifi-

In the following, we generalize the notion of separability Cation in terms of the separability properties with respect to
and distillability to multiqubit systems. It turns out that in the partitions, i.e., we consider &hpartite splits at levek of
order to characterize an important family of multiqubit ©Ur classification. This turns out to be useful, since in some
mixed states, it is useful to consider bipartite splits of multi-Casessee Sec. Iythe information of one levein particular

particle systems and their corresponding partial transposf€Ve! 2 already implies all properties at the other levels.
tions. Since a bipartite split of a multiqubit system can beFurthermore, there are connections between the different lev-

viewed as a state ifi"t® (%, the partial transposition of the els, which can be used to.reduce the effort to determine the
density operatop is well defined in this case. full enta_nglement properties Qf the system. Howev_er, we
learned in the case of 3-qubits that these connections are
sometimes not obvious or are even counterintuitive. For ex-
ll. MULTIQUBIT SYSTEMS ample, we have that for a 3-qubit system separability with
We will give a classification of generdl-qubit systems in respect.tq all bipartite split§.e., partitiqns into two selsirg
terms of the separability properties of their partitions. In par-not sufficient to guarantee 3-separabilitye., full separabil-
ticular, we considek-partite splits(that are partitions divid- Ity when considering each systely, A;, A;as a separate
ing a N-partite systems intk<N parties, which gives rise Party of the systen13,21].
to a whole hierarchy of classes.
B. Classification of arbitrary states p

A. Separability with respect to certain splits In Ref. [13], the biseparability properties of the staie

Let us start by generalizing the notion of separability toWhere used to classify those states completely, and all to-
the case of multiparticle systems. We considemparties, gether(apart from permutations among the partigslistinct
each holding a system with dimensiaj, i.e., H=C% classes were fountsee Sec. V A for details Here we gen-
® ...®CIN, We callp fully separable if it can be written as eralize this classification tbl-qubit systems, considering all
a convex combination ofunnormalizedl product states, i.e., POSsible partitions of the system.

1. Hierarchic classification

pzzi 13 party i1 @ Di)pary A @ - @i paran(il- The basic idea of the hierarchic classification we propose

(3 here is to consider all possiblepartite splits of aN-partite
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system for all ke {N,N—1,...,2) and determine for each
split whether it isk-separable or not. For simplicity, we di-
vide this procedure into levels, starting witl=N, continue
with k=N-—1, etc. until we reack=2. This minimizes the
necessary effort for a full classification, since, as mentioned
in the previous section, there are connections between th
different levels which will be explained in more detail in B
Sec. Il B 3.
Level k of the characterization consists of the complete
determination of thek-separability properties of the stae FIG. 2. Hierarchy structure for classification of 4-qubit systems.
i.e., considering all possible partitions into exadtlgets and Note that not all connections at the lowest level are drawn.
determine whether the state is separable. At each leweé
have various classes, namely all possible combinations of Using the well-developed theory of partitioisee, e.g.,
k-separability and-inseparability. If the number dé-partite ~ Ref. [19]), one finds that the number of possible configura-
splits iskg, we have %o possible configurations at this level tions (including all possible permutations among the pajties

AB-C-D AD-B-C

in principle. for a certain partitionZ; is given by
However, the different levels of this structure are not in-
dependent of each other and thus some of the possible con- N!
figurations are forbidden by the structure at higher/lower lev- | L7l = - (4)
els. We call each allowed configuration of the whole IT vt IT vy

hierarchic classification a “class,” since it corresponds to
different physical properties. We have that permutations Otl'he total number of partitiong; is given by the partition
r

the parties lead to different classes. . . ) .
Note that all levels of this characterization are required tofunctlon P(N), which grows rapidly withN, e.g., p(10)

fully classify a state. It is not sufficient to give only the — 42 P(50)=204226,p(100)=190569 292. A closed ex-

number ofk-separable splits at each level and define class ression fop(N) is kn(_)wn and can b_e fou_nd_, €.9., m_Ref.
in terms of this numbers, as done fd=3 in Ref.[13]. In 19]. Using the;e relat|qns, one can in pr|_nC|pIe obtain the
this case, one obtains the remaining configurations by perr-‘umber of possiblé-partite splits of aN-qubit system.
muting the parties, while foN>3 this last property is no
longer valid, i.e., one can have two physically different situ-
ations (not only up to permutationscorresponding to the Let I<k. We say ak-partite splitS, belongs to(equiva-
same number ok-separable states at a certain level. Thislently is contained in al-partite splitS, if S; can be obtained
will be explained in more detail in Sec. VB. from S, by joining some of the parties db,. For three

In principle, it may turn out that some of the classes weparties (N=3) we have, for example, that the bipartite split
give here are empty. In fact, for the family of states we area, —(A,A;) contains the 3-partite splih;—A,— A3, since
going to consider in the following, we have that the splitA;—(A,A;3) can be obtained by joining the parties
k-separability is implied by the corresponding (A,A;). Note that in general we do not have a one-to-one
2-separabilities, i.e., by the biseparability properties of allcorrespondence in either direction. On one hand, each
bipartite splits containing th&-partite splitS, in question.  k-partite split is contained in variouspartite splits, while on
This means that these states are already fully classified by thRe other hand a number of differekdpartite splits may be
structure at level Zbiseparability propertigs However, for  contained in the samiepartite split(see also Fig. 2
N=3 examples for 3-inseparable states which are bisepa- Furthermore, k-separability with respect to a certain
rable with respect to all bipartite splits are knoWRl],  k-partite splitS, implies I-separability with respect to all
which makes it likely that similar exampldapart from the  thosel-partite splits which contairg,(I<k). However we
trivial generalization of those statpg to N qubits by taking  |earned in the case of three qubjts3] that 2-separability

3. Contained splits and implications for classification

e.g.,]0)(0|®N"3® pg) also exist forN>3. with respect to all possible 2-partite splits is not sufficient to
guarantee the corresponding 3-separability in general. Thus,
2. Partitions of N-qubits we have that-separability with respect to all thosepartite

splits, which contain a certaik-partite splitS, is a neces-

iy L atiar ;
A partition of N, £, is given by £;={17122.. .N'\} sary, but not sufficient condition fdt-separability with re-

with E}\':Ojrj=N, and the number of sét&=3r,. For ex- s
5 ol . o pect toS, .

ample,N=4 andL,,={17,2} denotes all possible partitions ) ot 5" apply this observation to our classification. We

of N into 3 sets such that one set consists of 2 parties, thg, e thatk-separability partly fixes the structure at lower

other two sets consist of one party each. Note that we maévelskk (k-inseparability has no influence at lower lev-

have many partitions that correspond to the same number Qg - \yhile I-inseparability fixes some properties at higher

sets, say, which we called ‘k-partite splits. levels k> (I-separability only provides necessary condi-
tions for separability at higher levels In particular,
k-separability with respect to a certakapartite splitS, al-

The number of sets is equivalent to the number of parties. ready impliesl-separability of alll-partite splits containing

042314-3



W. DUR AND J. I. CIRAC PHYSICAL REVIEW A61 042314

S«(I<k). On the other handsinseparabilty with respect to a =0110) in binary notation. Each basis state is a GHZ state,
certain|-partite splitS, implies that allk-partite splits that and all basis elements are connected\blcal unitary op-
belong toS(k>1) are alsok-inseparable. This means that €rations. So|¥s)=1//2(|0...0)+[1...1)) is only an
once one finds &-partite splitS, to bek-separable, one does arbitrary GHZ state, which can be selected by the choice of a
not have to consider allpartite splits containings, since local basis inA; ... Ay. We emphasis this here, since the
they are automaticalljseparable, which reduces the neces-States|¥ ) seem to play a special role in what follows. In

sary effort to fully classify a state. the following, we consider the family of states
C. Distillability properties within a specific class PN= Z+ )\g|\pg><\yg|
One can also consider the process of distillatie@m- N
tanglement purificationand relate it to this classification. 2(N"1)—q
Let us consider a specific class, characterized by all their + le NN [+ e D, ()

k-separability properties. A necessary condition for the dis-

tillation of a maximally entangled pair e.g., betwe&nand . . o .

A; is that all those syplits fo? whigmi al’?d A, beloﬂg to Wh'Ch IS th? straightforward g_enerallzatmn of the fa_lrmly
different parties ard-inseparable. In fact, it is sufficient to mtrtithgce(: n Rif[lw] torl:l qut';S' Du_e tdo the.go(rjmballéétion
consider only the bipartite splits fulfilling this property, since condition fpn) =1, we have thapy is escribed by

this already implies the inseparability of alipartite splits independent real parameters. The labeling is chosen such that

Nty
(k>2) of this kind. A=\y =7 =0.
In a similar way, we find a necessary condition for the o
creation of aj-GHZ state, i.e., a GHZ state shared amgng B. Depolarization to py
parties, e.gA/={A;, ... Aj }: We consider all those bipar- | this section, we are going to show that an arbitrary state

tite splits where not all of the parties are joint at one side. p can be depolarized to the standard fdi@h by a sequence
The inseparability of all those bipartite splits is a necessarpf N-local operations while keeping the values &f
condition for the creation of &GHZ state between the par- =(¥|p|¥;) and z\jz<q;j+|p|xyj+>+<\p;|p|xp;> un-
tiesAy. changed. Similarly as in the three-qubit case, this implies
By investigating these necessary conditions for distillabil-that the necessary and sufficient conditions for distillability
ity, we immediately observe that there exists a huge numbesind nonseparability found fgry automatically translate into
of classes that are inseparable at some Iéaptl thus en-  syfficient conditions for arbitrary states.
tangled, but cannot be distilled. Hence all these classes cor- we will now explicitly construct the required sequence of
respond to different kinds of bound entanglement. For exN-local operations to obtain the desired depolarization pro-
ample, we have that inseparability with respect to anycedure. By mixing we understand in the following that a
k-partite split already implies that the state is entangled, bugertain operation igrandomly performed withp=%, while
one can still have the 2-separability properties such that thgith p=1 no operation is performed. The followindl
necessary conditions for distillation of a pair between anyrounds of mixing operations are sufficient to makeliago-
two parties are not fulfilled. Sometimes this bound entangleng| in the basis(5) without changing the diagonal coeffi-
ment may be activated by allowing some additional en-ients: In the first round, we apply simultaneous spin flips at
tanglement between some subsystems. An example for this ig| N |ocations. The result of this mixing operation is that all

given in Sec. VA. e mcalions, e resull of s MiXing operation is
|¥, )| are eliminated. The remainingN¢-1) rounds
IV. FAMILY OF STATES py consist of applyingr, to particlesA, andAy (and the iden-

In the following, we show that any arbitraly-qubit state ity to all other particles wherek runs from 1 to N—1).
p can be brought to a standard fopy [13]. We also give a The effect of thekth operation is the following: a staf@ ")

full classification of this family of states in terms of their PICkS up @ minus sign if, written in binary notation, has a
separability and distillability properties. “1" at the kth position and remains unchanged if it has a

“0” there. Since the correspondingandi of two different
basis state$¥ ;") and|¥;") differ in at least one digit, this
implies that in at least one mixing round one state, |sh§)
will pick up a minus sign while the other state, &) will
1 remain unchanged. This ensures that all off-diagonal ele-
W y=—=[li)loy=[(2N" =] —1))[1)], (5)  ments of the forn{W;")(¥"| are eliminated in this mixing
V2 round. Finally, we have that after @l mixing rounds,p is
S . ) o ) diagonal in the basib).
wherej =ji2- . in-1ls understood in b!nary notation. We |t remains to depolarize the subspaces spanne{di\bﬁ)}
have thatj)a, . a,_, is the state of the firstN—1) qubits.  tor eachj>0. This can be accomplished by using random
For example, for N=5 and j=6 this reads|V¥g) operations that changfd),—€'%+|0), (a=A,, ... Ay
El/\/§(|011QA1...A4|O>A5i|100]>Al...A4|1>A5)u since (6  with Zy¢a =27 (this condition ensures that, remains

A. Notation
We introduce the orthonormal GHZ-ba$RZ0]
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unchangeg This implies that an arbitrary staje can be statementdi)—(iii). Let us start by provindii). The basic

brought to the standard forpy by a sequence of-local  idea of the proof is to define a state which we show to be
operations. 2-separable with respect to the bipartite split in question and
One can readily check that the partial transposep@f  which can be depolarized tay. Since a separable state is
with respect to the bipartite splif\; . . . Ay—1) —An is posi-  converted into a separable one by depolarizatignich is a
tive iff A=\g —\g <2\,n-1_4. Similar conditions hold for  N-local procesk this automatically implies the 2-separability
each possible bipartite split, i.gay has PPT with respect to of p,. We have thalpy has positive partial transposition
a certain bipartite split ifA <2\, for a specific(uniqug k  with respect to the bipartite spla; if A<2\, for k corre-
corresponding to this bipartite split. To determine the correponding tok. We define
spondingk, let us consider a bipartite split whetequbits
Ai={Ay,, - . -Ay} are jointly located at one side, while the
remainingN—1 qubits are located at the other side. Without
loss of generality we can assume thgte Ag. In this case,
the corresponding, is given byk, which, written in binary ~ The statep is positive sinceA<2\, and has the property
notation, has ones at the positiorts { . . . k) and zeros at ;= ;Ta; For a bipartite split of the forrone qubij-rest, this

a_II other positions and only_the highet { 1) bits are con- already implies the separability pf since it has been shown
sidered(the lowest oneky, is allways zero because we as- .

sumed thaf\y & A7). For instance we considér=6 and the 1N [18] that all states iz CY, which fulfill p’A=p are
bipartite splitS,=(A;AAs) — (A,AsAq). We have that the separable. For all tpe other splits we show the separability
corresponding is given byk= 100 110, where we only have directly. We rewritep as follows:
to consider the highest 5 bits. Thuss10011=19 and we

ha\_/e thf':\t the statgy has PPT with respect to the bipartite ;J:A(|q,ar><q,ar|+|\1,k+><\1,k+|)+
split S, iff A<2\qq

~ A
p=pnt Z (T =TT @®

A o
A= 5)(|‘Pk Wy
HW N DN (P (P | +[Po ) (Fg])

. . (N-1)_
Let us enumerate the separability properties of the states 2 _ B
(6). Then we obtain + j=12j#k N WP+ (P D). (9)
(i) We consider a specifik-partite splitS, of py . Iff all '
bipartite splits that containS, have PPT, thenpy is  We have that all prefactors are positiveince A<2\,).
k-separable with respect to this specHipartite split. The terms in lines 2-4 are completely separable, which can
In order to prove(i), we find it useful to consider first two pe seen by using that |¥ W W |+|¥ WP ])
special cases df) in order to illustrate the underlying ideas. — |jo)(jo|+|(2N 1| —1)1)((2’\"1]—j _i)1|_ The term
These special cases are the following: - o . -
(if) We consider a specific bipartite split, where we have! line 1 is biseparable with respect to the bipartite dplito

that | qubits AEE{Akl, " -Ak,} are jointly located at one see this, let us rewrite the basis states as follows:

C. Separability of py

side, while the remainindl— | qubits are located at the other 1
side. Iff we have that the partial transpose corresponding to |Wg)= Edo . O)Akg|0 o O)rest
- T T
this bipartite split is positive, i.epLAkEpNAkl Aa=0 then
pn IS separable with respect to this bipartite split, i.e., it can 1. Dall . Dresd
be written in the form (10)

1
Tiy=-"2(]1...D,]0...0
o= Deagl Bledest il @ o=t Ixl0 - Ores
+10 ... Oal1l .. Dyee).
(iii) We consider all possible™ *— 1 bipartite splits of a
N-qubit system. Iff for each of those splits the correspondingye define |£)=1//2(10...0)=[1...1). It is now

partial t_ra’r\llspositiogl is positive, thepy is fully separable, straightforward to check that line one of H§) can be writ-
i.e., pn is N-separable. : - : : - - - -
Tﬁgse stateFr)nents are illustrated for the simplest cases often_ as A(l +>Aﬁ<fr|®|+>re‘°‘K+_|+| I ~1®] >r.eSK .|)’ .
3 and 4-qubit system in Sec. V. Frofii follows that w ich is clearly biseparable with respect to the bipartite split
k-separability with respect to a certairpartite splitS, of the ~ k and concludes the proof in one direction. If we consider on
statespy is implied by the 2-separability properties of the the other hand thapy is biseparable with respect to the
bipartite splits containing, . Thus, the familypy is com-  bipartite splitk, it follows trivially that it also has PPT cor-
pletely characterized by its 2-separability properties, whictresponding to this bipartite split, since positive partial trans-
already determine the hierarchic structure proposed in Segosition is a necessary condition for separability.
[ B. To prove the third statemefiii ), we show that ifpy has
In the remainder of this section, we are going to prove thePPT with respect to all possible bipartite splits, thapis

042314-5



W. DUR AND J. I. CIRAC PHYSICAL REVIEW A61 042314

N-separable(note again that the opposite is trivially tjue minuses is even. It is now straightforward to check that line
This condition implies thaf/2<\; for all j. Again, the idea 1 of Eq. (12) can be written as\X;|®;)(®;| and is thus
is to define an operatqr which can be depolarized into the k-separable with respect to thepartite split we consider,
form py by using local operations and that is fully separable. @nd concludes the proof in one direction. -
Letp be a state of the forni) with coefficientskg =\, , It we consider on the other hand thaj, is k-separable

~ B 1 ~ with respect to a specifik-partite splitS,, it follows that it
and N\ =N\ =A2 [k=1, ... (2 —11]. Clearly, p can 5 giso biseparable with respect to all bipartite splits that
be depolarized int@y . We now rewritep as follows: containS,, since any of those bipartite splits corresponds to
joining systems which were divided for tHepartite split.

~ 1 At ~y o~ N N _ _ But the positivity of the partial transposition is a necessary
P=3 go OVE S VRV I(A DRIQ DAL PRIL R condition for biseparability corresponding to a certain bipar-
tite split[9], from which follows that positivity of all bipar-
Nl tite splits we consider is also a necessary condition for
+A kZO W WP (11 k-separability. So again the conditions we found are neces-

sary and sufficient.

Since all possible partial transposes are positive, we have

that all coefficients ir(11) are positive. The first term iL.1) D. Distillability of py
N ~ ~
can be written as =2_;Y(\,; +X, —A)/2(|k,0)(k,0| We will turn now to analyzing the distillability properties
+|(2N"1-k-1),0((2N"1-k—1),0) and is thus fully of py:
separable. It remains to show that the second term ir{Hg. (i) We consider all possible bipartite splits of tNequbits

is alsoN-separable. Let us first define the stafeg =(|0)  where the particle; and A, belong to different parties. Iff
i|1>)/\/§. To show the separability of the second term, weall such splits have negative partial transposition, then a

write it 332f261l¢j><¢j| where|¢;) are all the states of the maximally entangled pair between partiélgand A, can be

form |0y, . . . o) With o= =, which have an even num- distilled. , o
ber of minuses. All the statés;) are fully separable, which (i) We consider thek parties Aj={A;, ... A} (K
concludes the proof. =<N) and consider all those bipartite splits where not all of

Now we are ready to prove the first stateméint The the partiesA; are joint at one side. Iff all those splits have
basic idea of the proof is very similar to the one used in thenegative partial transposition, thenkaGHZ state(i.e., a
previous proofs: We define a stagié which can be depolar- GHZ state shared betwedrparties between the parties;
ized topy and we show thap’ is k-separable. We have that can be distilled.

a number of bipartite splits have PPT. To a specific bipartite To show(i) and without loss of generality we take-N
splits corresponds the relatian=2\; , which is the condi- andk=N-1. In that case, the condition we impose on the

tion that this specific bipartite split has PPT. Thus, we havé@tial transpositions is equivalent to require tha®>\;
that A=2\,, wherei e{i i }=i» and eachx. corre with j odd[note that with the notation we are using, the state
= i Qy ==l y=1, i -

sponds to a bipartite split that does not further divide system f the N—1 qubit determines the parity of the staig$ in

S . . . , g. (5)]. In order to show the distillability of a maximally
g?:;tewgfriég?;:?T:(g?d;ﬁﬁrtclgee;?;;mz C?EZ?\GJ' L)\Q,ii iia entangled state betweely_; and Ay, it is sufficient to

R N S0 ' show that a pair with fidelity= > 0.5 (overlap with the maxi-
+Af2 foriei andA'i ' =\ for kei. Clearly, p’ can be  majly entangled statéb*)) between those two parties can
depolarized topy . Similarly as in the previous proofs, we pe created1]. If we project all the qubits except the ones at

rewrite p” as follows: Ay and Ay_; onto the statd+) we see that the resulting
state obtained frompy hasF>0.5 and can thus be distilled
pf:A(|\pg><qu|+2‘ TP to a maximally entangled state betwegg and Ay iff
lel
A o AI2> D0\ (13
+3 [ nm o e fos
lel
- S Even though we have that/2>\; for all j odd, the condi-
+ 2_ MW |+ [P (i ) tion (13) might not be fulfilled. In this case we use the fol-
kel lowing purification procedure: The idea is to combile
N ([Wo ) (Wo | +]Wo X (Wol). (12  systems in the same stgi, perform a measurement and

obtain one system with the same fo(®) but in which the
All coefficients in Eq.(12) are positive, and line2—4) are  newA is exponentially amplified with respect iq, k odd.
fully separable. It remains to show tkeseparability of line 1 In order to do that, let us define the operator
of Eq. (12. To see this, we define the Statgs)pany

=120 ... O)pany = |1 . . . Dpany), and the states®;) P=|00...00(00...00+|10...00(11...11,
=|01) pary1® - - - ®f‘0'k>part)k with o;= * and the number of (14
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which acts onM qubits. Now we proceed as follows: We V. EXAMPLES
take M systems, and apply the operator P inldllocations.
This corresponds to measuring a POVM that cont&rob-
taining the outcome associated R The resulting state In this section, we investigate the simplest case of three
PENpaM(PTY®N has the first system in afunnormalizedd ~ qubits, each hold by one of the partidsB, or C.

density operator of the forr6) but with new coefficients\

andX\,. In order to calculate these new coefficients, we need

the following observations: First, the operanﬁ"" is diago- In order to perform the .classi.fication proposed in Sec.
nal in the basis{|x™ ")} with coefficientsA”® . .. A 111 B, we consider the 3-partite split of the system as well as
ko - - Ky ky "

Km all possible bipartite splits, where all together three such
where splits exist. Each corresponds to having one syseig,A)
on one side and the two other systefag.,B andC) on the
other side. In other words, for this specific bipartite split of
our three-qubit system we allow the partiBsand C to act

together, i.e.,H=Ci®Cg.. Thus each of these bipartite

andk;e{0,... 2" 1~ 1},¢;==. Second, we need the ac- splits will give us an upper limit of what can be done by

tion of the operatoP®N on the basis stated5). We find thre(_a—local operations on Fhe system. To pgrform the plassi-
fication, we have to consider the separability properties of

the 3-partite and bipartite splits. In particular, whether they
P®N|X501_'_'_'Ifk;“>: 5k0...kM|‘I’§ro>system 10 ... Orests can be written in one or more of the following forms:

(16)

A. Three-qubit systems

1. Classification

X D=l e e, (15

P:Z |ai) a(@i| ® | by)g(bi|®|ci)c(cil (183
where o=+ if the number of minuses ifo, ...oy} is
even, ando= — otherwise. Note also that we only have a
contribution ifky=k;= ...=Kky . Using these results, it is p=2 laalail®|eisc( @il (18b
now straightforward to check that the first system of '
PeNpaM (PN is an(unnormalizedl density operator of the
form (6) with new coefficients pzz [b))e(bi|®|¢i)ac @il (180

|

AR=(AIM: X =AM 1
(A72)T5 M= N @ p=2i |cidc(cil @] i) asl @il (18d

Given thatA/2> )\, k odd, for sufficiently largev we have
that condition(13) is fulfilled, i.e., that after the projection of

all systems excephy_; andAy on the staté+), the result- X . .
ing state ha$>0.5 and is thus distillable, which concludes SYSte'.“S- W_e .Ce.‘".a state blsepa_rable with respept to a certain
bipartite split if it is separable with respect to this split, e.g.,

the proof in one direction. On the other hand, the condition

: PP . . a state is biseparable with respect to the bipartite split
we impose for distillability is also necessary. Having a maxi- s ; . o
mally entangled pair between the partiég_; and Ay im- A-(BC) if it can be written in the form(18b). Similary, a

plies that all bipartite splits in question have NPT. Sinces'tate is called triseparabl@-separableif it is separable with

local operations keep the positivity of the partial transposi—reSpeCt to the splif-B-C, i.e., can be written in the form

_ ! Pt =183,
gﬁgs[tilc?% we must start with NPT of all bipartite splits in At the top level of the classificatiofevel 3, we consider

N . . .. the tripartite splitA-B-C and determine whether the state
To prove(ii), we just have to recognize that the condition is 3-separable or not. At the second ledlelel 2, one con-

we impose guarantees that maximally entangled pairs bd2 X S .
tween any two parties withif\; can be distilled. This is siders all possible bipartite splitf A-(BC),B-(AC),

- . LC-(AB)] and determines whether the stateean be written
clearly sufficient to create a GHZ state among those partlesC ( i
e.g., by means of teleportatidereating the GHZ state lo- I one or more of the form¢l8h),(180,(18d). At this level

cally atA; and teleporting thek—1) qubits to the parties of the classificati_on, one ha§28 diffgrent pogsibi!ities,

0 . : . each corresponding to a physically different situation. For
{Ai, ... Ay} using maximally entangled pairs created gppirary three-qubit systes one thus finds the following com-
amongA; andA; with je{iq, ...i}]. Note also the con- plete set of 9 disjoint classes.
dition we impose is also necessary, since a GHZ state allows Class 1—Fully inseparable stateStates that cannot be
us to create maximally entangled pairs among all parties inwritten in any of the above formél8). An example is the
volved, which implies that all bipartite splits in question GHZ state[20] |¥ ).
have NPT and thus have to have NPT at the beginning, since Classes 2.1, 2.2, 2.3—1-qubit biseparable stat@ass
one cannot convert a state from PPT to NPT by means d?.1: biseparable states with respect to qébdre states that
local operation$10]. are separable i\-(BC), but nonseparable otherwise. That

Here, |a;), |b;), and|c;) are (unnormalized states of sys-
temsA, B, and C, respectively, ande;) are states of two
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is, states that can be written in the fof@8b) but not as Eqgs. TABLE |. Separability and distillability classification gfs.
(180 or (18d. An example is the stat¢0),®|P " )zc, — —
Where |(I)+>:(|OO>+|11>)/\/§ |S a max|ma”y entangled Positive Opera’[ors Class D|St|”ab|l|ty
state of two qubits. S_imilarly, class 2.2_and 2.3 corre_spond 0 None 1 (GHZ) [ ¥ )asc
biseparable states with respect to qubandC respectively. s 21 . T
o p . (Pair) [®")ge

Classes 3.1, 3.2, 3.3—2-qubit biseparable statélsiss 3 T 31 Activate with |®*
3.1: biseparable states with respect to quBitand B are P3"P3 : ctivate with | ) g
states that are separable Aa(BC) and B-(AC), but non- Al 5

separable irfC-(AB). That is, states that can be written in the
forms (18b) and (180 but not as Eq(18d). For examples, . )
see below. Similary, classes 3(2.3) are biseparable with Recall that each of these conditions correspond gzmw-
respect to the qubitd andC(B andC). ally) bipartite split of the system. Investigating, e .g,, we
Class 4—3-qubit biseparable statdhose are states that actually have in mind a bipartite split of the system iAton
are separable id-(BC), B-(AC), andC-(AB) (i.e., sepa- one side an@®C on the other side. From these conditions we
rable with respect to each bipartite splibut which are not also see that in general no further depolarization that keeps
completely separable, i.e., cannot be written as(E8g. For  the form of p; is possible(except the depolarization toward
an example, see Rdi21]. the completely depolarized state, which can always be done
Class 5—Fully separable stateBhese are states that can trivially). We show this by giving a counterexample. Imag-
be written in the form(18a and are thus also separable with ine we would like to depolarize the subspaces spanned by
respect to each bipartite split. A trivial example is a product{|¥;),|¥, )} and thereby equalize the coefficients and
state|1)a®|1)g®|1)¢. \,. For certain values of the parameters, this would imply
Note that the classes 2.1, 2.2, Zr@spectively 3.1, 3.2, that the state after this depolarization has negative partial
3.3 were identified in Ref[13], since they can be obtained transposition with respect to one party, while it started with
from each other by permuting the parties. In this case, Positive partial transposition. Since one cannot change the

distinct classes remain. positivity of the partial transpose by local operatidi2g],
this further depolarization is impossible in genefelg., p3
2. Family p3 with Ny =%,\,=13, all other parameter 0 ha@TAzo, but

Let us now concentrate on the family of three-qubit stategvould have negative partial transposition with respect to all
p3 (6). This family is characterized by 4 paramete{g, bipartite splits after théimaginary further depolarization in
=Ng —\g .A1,M2,N3}, and we have that any state can bequestior.
depolarized to this standard form. The GHZ ba&sreads
in this case 3. Separability ofp

Let us specialize the theorems about separability obtained
in Sec. IV C toN=3. In this case, we do not need the gen-
eral theorem(i), but only give examples for the statements
(i) and (iii):
where|j)ag=|j1)ali2)s With j=]1j, in binary notation. For (i) ps is separable with respect to the bipartite split
example, |¥o)=1/1/2(|000+|111)) are standard GHZ A-(BC), i.e., it can be written in the forn(18b) iff p;ABO
states, as well as¥'3)=1//2(|110)=|001) (3=11inbi- [and analogously for Eq$18¢ and(18d) with pi?=0 and
nary notation. Note that all 8 basis states are connected by Tc— g (eg ectively:
3-local unitary operations, i.e., each basis state is a maxi- (iii) ps is completely separable, i.e., it can be written as

mally entangled GHZ state. Due to the fact that the local e Th Tg Te .
bases inA, B, andC can be chosen arbitrarily, none of the Eq. (183 iff p3*.pg 'P3 =0. Note that .the-se anéf state-
basis states has any preferences. ments and thus provide a full characterizatiorpgfin terms

We will now investigate the separability and distillability of the separability properties. The resulting classification is
properties ofp; and give a full classification in terms of the Summarized in Table I. Here, we have that 3-qubit bisepara-
classes introduced above. It turns out that using the partidlility implies fully separability (tri-separability, while in
transpose criterion for each bipartite split characterizes th@eneral this is not necessarily the castherwise class 4
statep completely. The conditions under which the operatorwould be empty. We have the the family; is completely

p3 has positive partial transpose with respect to each qubfharacterized by its biseparability properties, so only the
are as follows structure at level 2 is necessary for classification.

Furthermore, this also provides us with sufficient condi-
p-grA;O iff  A<2\,, tions for non-separability for arbitrary states Namely if
there exist a basi€l9) such that the corresponding statg
after depolarization has, e.g., the property tbgﬂ is nega-
tive, this implies thap is nonseparable iA-(BC). Note also
that no conclusion can be drawn about the separability prop-
erties ofp given PPT of the depolarized stagtg, since the

1
|\I}ji>5E[|j>AB|O>Ci|(3_j)>AB|l>C]a (19

piE=0 iff A<2\y, (20)
piC=0 iff A<2\s.
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depolarization process might convert a nonseparable gtate condition necessary and sufficient by introducingikering
into a separable stajs;. assistedl depolarization procedure such that at least two of
the partial transposes are kept negative for a certain choice of
4. Distillability of ps basis.
We now state the distillability properties pf:

. - . N B. Four-qubit system
(i) One can distill a maximally entangled stg® "),z

betweena and 8 iff both pl@ p# have negative partial Here, we consider the special case of a 4—p§1_rtite system in
A PsPs g P order to illustrate the theorems about separability and distill-

transposition. - . ) . . .
(ii) Iff all three partial transposes are negative, we Canablllty obtained in the previous sections. For convenience, let

distill a GHZ state(since we can distill an entangled state us call the partie\, B, C, andD instead ofAy, ... As.
betweenA and B and another betweeA and C and then
connect them to produce a GHZ stg&3]). . . o

(iii) If we have tha’fp;c is negative bub;A,p;BBO (e, We start by illustrating the classification for general

have PPT and we have maximally entangled states betwee4'qu't systems. At the top level of the structure is the

A andB at our disposal, then we cattivatethe entangle- -separability, that is the question whether the siatés
ment betweeBC and ,create a GHZ state separable with respect to the 4-partite splitA4B-C-D, i.e.,

Note that(iii) is an example for the activation of bound fully separable. At the second level, we have to consider 6

entanglement. In this example, the state is inseparable witf]erent 3-partite splits of the syster8a) A-B-(CD), (3b)

respect to the bipartite spli€-(AB) and thus entangled. A-(BC)-D, (30 A-(BD)-C, (3d (AB)-C-D, (3¢
However, no entanglement between any two subsystems Céﬁ\C)—B-D ar_1d (3 (AD)'BTC' At Fhe ‘h'Td level, all to-
be created, since we have that the PPRahdB implies the ~ 9ether 7 different 2-partite splits _exist, namela)
separability ofA-(BC) andB-(AC) [see(ii) in Sec. VA3, A-(BCD), (2b) B-(ACD), (20) C-(ABD), (2d) D-(ABC),
However entanglement betweénand B is sufficient to al- (29 (AB)'(CD)’_(Zf) (AC)-(BD) and (29? (AD)'(BC)'
low the creation of a GHZ state. One can show this by noting[ _We have for mstgnce t_hat the 3-partite s is con-
that the singlets allow to teleport states between locatfons glned_ n thg 2-partite Sp"t@?)' (2b), and (2_e): A” other
andB. Thus, for all practical purposes we can consider a pajPIP2rtite splits cannot be obtained fra@a) by joining some
of qubitsAB as a four-level system in which we can perform ©f the parties, since they would divide the syste@D)
arbitrary operations. The situation is equivalent to that in2/ong different parties, and thus the tripartite s(i#) does
which one has 2-level systems entangled to 4-level systenﬁm belong to_ Fher_n.

such that the density operator describing one pair acts on, ' N classification thus takes place as follo@ee also
(2% (* and has a negative partial transpose. It can be easil ig. 2): At the top level(level 4), one has to decide whether

shown[16] that in systems X N negative partial transpose is e state Is 4-separable or not. In the case itis 4-separab_|e, I
éautomatmally follows that it is also 3- and 2-separable with

gespect to all possible 3- or 2-partite splits. If it is
4-inseparable, one has to investigate the various kinds of
3-separability at level 3, where one can have all possible
combinations of the 6 kind632)6—(3f) of 3-separability and

. ; : and 3-inseparability. We have® 2lifferent configurations at
Ifftth?r; ex'ftr?izb:sf:) such th?;thercorr(ratspogm%: t@:@ this level. At the next level of the classificatidievel 2), one
atter depolarization has, €.g., thé property thstt,p, are investigates all possible bipartite spliga)—(2g) closer. One
negative, this implies that a maximally entangled pair beinqs o7 gifferent configurations at this level. Without taking
tween A.and B can be d'|st.|||ed. fromp. Note here 'ghat 0 the connections between different levels into accduich
make this condition for distillability necessaayd sufficient reduces the total number of allowed configuratiome have

for arbitrary statep, one should find a depolarization pro- 5, together(2)(2°)(27)=16 384 possible combinations of

cedure(may be assisted by some appropriate local filtering4_, 3-, and 2-separability and inseparability with respect to
operation such that the NPT property is maintained. That g, possible partitions.

is, the Tcorr$sponding stapg after depolarization should still  The structure at level 2 is partly determined by the struc-
havep;*,p;® negative. ture at level 3 and vice versa. If, e.g., the state is 3-separable
Note also that a sufficient condition to distill a GHZ-state with respect to the 3-partite spliBa), it follows that the
from p is that there exist two different basés9) such the bipartite splits(2a), (2b), and(2e) at level 2 which contain
corresponding statgs; after depolarization only have two of (3a) are also 2-separable. In the case where a state is
the partial transposes kept negative, where for the secor@tseparable with respect to the spli&a), (3b), and(30), it
basis one has to differ from the first one. For example, basieven follows that the state is 2-separable with respect to all
1 allows us to keegA and B each having NPTand thus to  possible bipartite splits. Although it still can be 3-inseparable
distill a pair betweerA andB), while basis 2 keepB andC  with respect to the 3-partite split8d), (3e), or (3f) in prin-
having NPT. These together ensure that a GHZ state can lwéple, the underlying structure at level 2 is already com-
created. Clearly, one has to start wighwhich has all three pletely determined by the structure at level 3.
partial transposes negative. Again, one may try to make thiS-inseparability with respect to a specific 3-partite sl

1. Classification

can thus distill arbitrary states. Using again teleportation, on
can end up with a GHZ state shared AyB, andC.

Again, these results also provide us with sufficient condi
tions for distillability of arbitrary statep. From (i) follows:

042314-9



W. DUR AND J. I. CIRAC PHYSICAL REVIEW A61 042314

on the other hand, still allows all combinations of then a GHZ state between the partfe®-C can be distilled.
2-separability and 2-inseparability within the bipartite splits Note that the split2d) is the only one that is not of relevance
at level 2 which contairg;. Conversely, 2-inseparabilty with  here, since the partiesBC are joint in this case. If in addi-
respect to the bipartite spli2a) implies 3-inseparability with  tion also the split2d) has NPT, then a GHZ state between
respect to the 3-partite split3a), (3b), and (3c), while  al| four parties can be created.
2-separability still leaves all possibilities at level 3 open. |f it turns out that there exist nondistillable states in
From this one also sees that it is neither sufficient to consider*e (* with NPT as conjectured in Refgl6] and[17], this
only the 4- and 2-separability to classify the state com-automatically implies that the conditiori for distillability
pletely, nor to consider only 4- and 3-separability. Takingobtained for the statgs, arenotsufficient for arbitrary states
now all these connections between different levels into acp. To see this, let us consider the question of distillability of
count, we find that many of the 16 384 possible combinationg maximally entangled pair betwe&hand D. Assume that
are forbidden. In fact, one can check that only 346 differentthe partial transposition with respect to the bipartite splits
allowed configurations rema[r24]. ForN=4, we thus have (2(;), (Zd), (2f), and (Zg) is negative_ Let us concentrate on
346 different classedncluding permutations among the par- the bipartite split (2f). According to the conjecture in
ties), which should be compared to the 9 classes we foungl16,17, the negativity of the partial transposition with re-
for N=3. spect to this split is not sufficient to ensure distillability. So
Furthermore, it is not sufficient to classify the states bywe have that there exist states which are not distillable even
the number ok-separable states at leviebof the hierarchic  if we allow for joint actions at AC) and BD) and are thus
classification. For example, we have that 3-separability withalso not distillable when allowing only local operationsAn
respect to the 3-partite split8a), (3b), and(3¢) already im- B, C, andD (as mentioned earlier, each bipartite split pro-
plies 2-separability with respect to all bipartite splits. On thevides us with an upper limit of what can be done by local
other hand, 3-separability with respect to the 3-partite splitpperations
(338, (3b), and (3d) does not determine the biseparability
properties of the bipartite spli2f), which may thus still be
2-inseparable. The two kinds of 3 times 3-separability corre- ~ VI. MIXTURES OF GHZ-STATE WITH IDENTITY

spond to different physical situations, and one cannot obtain We will apply now our results to the case in which we

one configuration from the other one by permuting the pary e 5 maximally entangled state Mfparticles mixed with
ties. Thus, it is not sufficient to give only the number of ﬂFe completely depolarized state
0

3-separable states, one also needs the information which
the splits is separable and which is not.

2. Separability and distillability properties op, p(X) =XV W (Pq|+ 2NX 1. (22)
Let us now turn to the family of statgs, and illustrate its
separability properties. We will give an example for each
theorem. This is clearly a special case of the statg with Ay =X\
(i) Let us consider the 3-partite spht-B-(CD) (3. Iff ~ =(1—x)/2%, Ag=x+(1-x)/2" and thus A=x. These

we have that the 2-partite split@a), (2b), and (2e) [which ~ states have been analyzed in the context of robustness of
contain(3a)] have PPT, themp, is 3-separable with respect entanglementl5], NMR computatior{14], and multiparticle
to this 3-partite split. purification[11]. In all these contexts bounds are given re-
(ii) Iff the partial transposition with respect to the bipartite garding the values of for which p(x) is separable or puri-
split (AB)-(CD) (2e) is positive, therp, is 2-separable in ficable. For example, in Refkl4] and[15] they show that in
(AB)-(CD). the caseN=3 if x<1/(3+6+/2),1/25 then the state is sepa-
(iii ) Iff for all possible 2-partite split§2a)-(2g) we have rable, respectively. In Refll] it is shown that folN=3 if
that the corresponding partial transposition is positive, therx>0.32 263 themp(x) is distillable. Using our results we can
pa IS 4-separable. state thap(x) is fully nonseparable and distillable to a maxi-
Note that this family of states is completely characterizedmally entangled state ifk>1/(1+2""1), and fully sepa-
by its 2-separability properties, since from 2-separability fol-rable otherwise. Specializing this for the cdde-3 we ob-
lows the corresponding 3-separability as well as the corretain that forx>1/5 it is non-separable and distilladl25].
sponding 4-separability. So in this case only one level of the Note also that the purification procedure proposed in this
hierarchic structure, namely level 2, is required to fully clas-work is pretty unefficient compared to the two-step proce-
sify the stateg,. dure proposed in Refl1], although it allows us to deter-
Finally we consider the distillability properties pf;. mine stronger bounds for the value xfHowever, one can
(i) Iff the partial transposition with respect to the bipartite slightly modify the procedure proposed in Rgf1] such that
splits (2¢), (2d), (2f), and(2g) is negative, then a maximally the protocols P1 and P2 are no longer performed alternately
entangled pair betwee@ and D can be distilled. Note that as in the original version, but rather in a specifitate de-
these four splits are the only ones of relevance, since thpendenk order, e.g., P1-P1-P1-P2-P1, etc. When doing so,
partiesC and D are not joint there. we found by numerical investigatioffor N=3) that all
(ii) Iff the partial transpositions with respect to the bipar- statesp; which are purificable to a GHZ state using our
tite splits (2a), (2b), (20), (2e), (2f), and (2g) are negative, procedure are also purificable using the modified procedure
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of Ref. [11], which thus provides an efficient purification these systems since any state can be reduced to such a form
protocol for states of the forms. by depolarization. Thus, our results provide sufficient condi-
tions for non-separability and distillability for general states.

ACKNOWLEDGMENTS

VIIl. SUMMARY We thank M. Lewenstein, S. Popescu, G. Vidal, P. Zoller,
and especially R. Tarrach for discussions. This work was
In summary, we have proposed a classification of arbisupported by the Serreichischer Fonds zur Fterung der
trary multiqubit systems. For a family of states, we gave awissenschaftlichen Forschung, the European Community un-
full characterization of the separability and distillability der the TMR network ERB-FMRX-CT96-0087, and the In-
properties. These states play the role of Werner states istitute for Quantum Information GmbH.

[1] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. AL6] W. Dur, J. I. Cirac, M. Lewenstein, and D. BruB, e-print

Smolin, and W. K. Wootters, Phys. Rev. Let6, 722(1996); quant-ph/9910022.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. [17] D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, A.

Wootters, Phys. Rev. A4, 3824(1996. V. Thapliyal, e-print quant-ph/9910026. _
[2] C. H. Bennett, G. Brassard, C. @eau, R. Jozsa, A. Peres, [18] M. Lewenstein, J. I Cirac, and S. Kamas, e-print

quant-ph/9903012.
. N ) [19] G. E. Andrews,The Theory of Partitions, Encyclopedia of
[3] H.-J. Briegel, W. D.u, J. l'.. Cirac, angl P. Zoller,.Phys. Rev. Mathematics and Its Applicatiorigéddison-Wesley Publishing
Lett. 81, 5932(1998; W. Dur, H.-J. Briegel, J. I. Cirac, and P. Company, Reading, MA, 1976

Zoller, Phys. Rev. /69, 169(1999; S. J. van Enk, J. I. Cirac, [20] D. M. Greenberger, M. Horne, and A. Zeilingsell's Theo-

and W. K. Wootters, Phys. Rev. Left0, 1895(1993.

and P. Zoller, Phys. Rev. Left8, 4293(1997); S. J. van Enk, rem, Quantum Theory, and Conceptions of the Universe
J. I. Cirac, and P. Zoller, Scien@y9, 205(1998. edited by M. Kafatos(Kluwer, Dordrecht 69, 1989 D.
[4] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, Bouwmeesteet al,, Phys. Rev. Lett82, 1345(1999.
and A. Sanpera, Phys. Rev. L€tfZ, 2818(1996. [21] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A.
[5] R. F. Werner, Phys. Rev. A0, 4277(1989. Smolin, and B. M. Terhal, Phys. Rev. Le®&2, 5385(1999.
[6] W. K. Wootters, Phys. Rev. LetB0, 2245(1998. [22] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev.
[7] A. Peres, Phys. Rev. Leff7, 1413(1996. Lett. 82, 1056(1999.
[8] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A [23] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert,
223 8 (1996. Phys. Rev. Lett71, 4287(1993.

[24] For example, we have that the following combination is in
principle allowed: The statp is 4-inseparable, 3-inseparable
with respect to all possible 3-partite split8a—(3f), but

[9] P. Horodecki, Phys. Lett. 232 333(1997.
[10] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev.

Lett. 78, 574(1997). 2-separable with respect to all possible bipartite sgl—
[11] M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. (2g). On the other hand, we have that the following combina-

Knight, Phys. Rev. A57, 4075(1998. tion is not allowedp is 4-inseparable, 3-separable with respect
[12] J. Kempe, Phys. Rev. A0, 910(1999; A. V. Thapliyal, ibid. to all possible 3-partite split§3a—(3f) and 2-separable with

59, 3336(1998; G. Vidal, Phys. Rev. Lett83, 1048(1999; respect to the bipartite splitb)—(2g), but 2-inseparable with

N. Linden and S. Popescu, Fortschr. PH&.567 (1998; N. respect to the bipartite splifa). Since, e.g., the 3-separability

Linden, S. Popescu, and A. Sudbery, Phys. Rev. 18&t243 with respect to the 3-partite split3a) already implies the

(1999; C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, 2-separability with respect to the bipartite sga) (see Fig.

A. V. Thapliyal, e-print quant-ph/9908073. 2), it follows that this configuration is impossible and thus
[13] W. Dur, J. I. Cirac, and R. Tarrach, Phys. Rev. L&8, 3562 forbidden.

(1999. [25] In R. Schack and C. M. Caves, e-print quant-ph/9904109, it
[14] S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. was independently shown using different methods that\for

Popescu, and R. Schack, Phys. Rev. L&3.1054(1999. =3, the statep(x) is separable fok<1/5. For largeMN how-
[15] G. Vidal and R. Tarrach, Phys. Rev. 39, 141(1999. ever, only weaker bounds were obtained.

042314-11



