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Classification of multiqubit mixed states: Separability and distillability properties
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~Received 10 November 1999; published 17 March 2000!

We give a complete, hierarchic classification for arbitrary multiqubit mixed states based on the separability
properties of certain partitions. We introduce a family ofN-qubit states to which any arbitrary state can be
depolarized. This family can be viewed as the generalization of Werner states to multiqubit systems. We fully
classify those states with respect to their separability and distillability properties. This provides sufficient
conditions for nonseparability and distillability for arbitrary states.

PACS number~s!: 03.67.Hk, 03.65.Bz, 03.65.Ca
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I. INTRODUCTION

Entanglement is one of the basic concepts of quan
mechanics and an important feature of most application
quantum information. It arises when a state of a multiparti
quantum system cannot be prepared by acting on the
ticles individually, i.e., is nonseparable. Despite the fact t
we do not know yet how to classify and quantify entang
ment in general, much progress has been made in re
years. In particular, the concept of entanglement distillat
or purification@1# was introduced. This process, which is t
creation of ~few! maximally entangled states out of man
not-maximally entangled ones, turned out to be one of
most important concepts in quantum information theo
When combined with teleportation@2#, it makes it possible to
send quantum information over noisy channels@2,3# and to
convey secret information via quantum privacy amplificati
@4#.

Particular important states of two qubits are the so ca
Werner states~WS! @5#, which are mixtures of a maximally
entangled state, e.g.,uF1&51/A2(u00&1u11&), with the to-
tally depolarized state. These states are fully characterize
the fidelity F, which measures the overlap of the maxima
entangled stateuF1& with the WS. They play an essentia
role in the understanding of the entanglement and distilla
ity properties of two qubit systems@6#. On the one hand, i
has been shown that WS are separable forF<1/2 and non-
separable~entangled! for F.1/2. On the other hand, Benne
et al. @1# showed that one can purify WS with arbitrary hig
fidelity out of many pairs withF.1/2 by using local opera
tions and classical communication. Furthermore, any a
trary state can be depolarized to a WS without changing
fidelity F, which automatically provides a sufficient criterio
for non-separability@7–9# and distillability @10# for arbitrary
states.

The description of the entanglement and distillabil
properties of systems with more than two particles is s
almost unexplored~see Refs.@11# and @12#, however!. In
Ref. @13#, some steps towards the understanding of thr
particle entanglement of mixed states were taken. In part
lar, a complete classification of arbitrary three-qubit sta
was proposed and the distillability and separability proper
of a family of states was obtained. In this paper, we gen
alize the ideas introduced in Ref.@13# to multiparticle quan-
tum systems. We provide a complete classification of a fa
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ily of states of N-qubit systems. These states a
characterized in terms of 2N21 parameters and play the rol
of WS in such systems, since any arbitrary state can be
polarized to this form. We fully analyze the separability a
distillability properties of this family, thereby generalizin
the purification procedure introduced in Ref.@13# to multi-
qubit systems. This automatically provides us—as in the
partite case—with sufficient conditions for arbitrary multiq
bit states. Among other things, this allows us to give t
necessary and sufficient separability and distillability con
tions of mixtures of a maximally entangled state and
completely depolarized state@14,15#. Furthermore, we intro-
duce a hierarchic classification of generalN-qubit states with
respect to their entanglement properties.

The paper is organized as follows. We start by brie
reviewing some of the present knowledge about distillabi
and entanglement of bipartite quantum systems in Sec. II
the following we generalize the results of Ref.@13# to mul-
tiqubit systems. We start by giving a classification of ar
trary N-qubit systems in Sec. III. Then we introduce a fam
of states that can be obtained via depolarization from
arbitrary one in Sec. IV. Here we also investigate the se
rability and distillability properties of this family. Section V
gives examples to illustrate the results obtained in the p
ceding sections. In particular, we analyze in detail the s
plest cases of 3 and 4 qubit systems. In Sec. VI, we apply
results to the case where we have a maximally entang
state ofN qubits mixed with the totally depolarized stat
Finally, we conclude and summarize in Sec. VII.

II. BIPARTITE SYSTEMS AND PARTIAL
TRANSPOSITION

Let us start out by briefly reviewing the separability a
distillability properties of bipartite systems. A bipartit
mixed stater is called separable if it can be prepared local
i.e., it can be written as a convex combination of~unnormal-
ized! product states

r5(
i

uai&party1̂ ai u ^ ubi&party2̂ bi u. ~1!

A state is called distillable if one can create out of~infinitely!
many copies ofr one maximally entangled state, e.g.,uF1&.
In practice, it is difficult to decide whether a given state
©2000 The American Physical Society14-1
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W. DÜR AND J. I. CIRAC PHYSICAL REVIEW A61 042314
separable or distillable respectively. As shown by Peres@7#
and the Horedecki@8–10#, the partial transposition of a den
sity operator turns out to provide a simple, sufficient cri
rion for the classification of bipartite systems. Given an o
erator X acting onCd1^ Cd2, the partial transposition with
respect to the first subsystem in the standard b
$u1&,u2&, . . . ,ud1&%, XTA, is defined as follows:

XTA[ (
i , j 51

d1

^ i uXu j &u j &^ i u. ~2!

Clearly, the partial transposition of the operatorX is basis
dependent, but the eigenvalues are not. We say that a
adjoint operator has positive partial transpositi
(XTA>0)—positive partial transportation~PPT!—iff all ei-
genvalues ofXTA are nonnegative. On the opposite, we s
an operator has nonpositive partial transposition~NPPT! iff
at least one eigenvalue is negative. Sometimes NPPT is
called ‘‘negative partial transposition’’~NPT!.

For bipartite two-level systems (d15d252) it was shown
that positive partial transposition~PPT! is a necessary an
sufficient condition for separability@7,9# while negative par-
tial transposition~NPT! is a necessary and sufficient cond
tion for distillability @10#. For higher dimensional system
however, the partial transposition only provides necess
conditions for separability@9# and it seems that it provide
only a necessary condition for distillability@16,17#. In C2

^ Cd(d>2) systems we have that a sufficient condition
separability is thatr5rTA @18#, while the negativity of the
partial transposition already ensures distillability of tho
systems@16#.

In the following, we generalize the notion of separabil
and distillability to multiqubit systems. It turns out that
order to characterize an important family of multiqub
mixed states, it is useful to consider bipartite splits of mu
particle systems and their corresponding partial transp
tions. Since a bipartite split of a multiqubit system can
viewed as a state inCd1^ Cd2, the partial transposition of the
density operatorr is well defined in this case.

III. MULTIQUBIT SYSTEMS

We will give a classification of generalN-qubit systems in
terms of the separability properties of their partitions. In p
ticular, we considerk-partite splits~that are partitions divid-
ing a N-partite systems intok<N parties!, which gives rise
to a whole hierarchy of classes.

A. Separability with respect to certain splits

Let us start by generalizing the notion of separability
the case of multiparticle systems. We considerN parties,
each holding a system with dimensiondi , i.e., H5Cd1

^ . . . ^ CdN. We callr fully separable if it can be written a
a convex combination of~unnormalized! product states, i.e.

r5(
i

uai&party1̂ ai u ^ ubi&party2̂ bi u ^ . . . ^ uni&partyN^ni u.

~3!
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In the following, we will consider a system ofN qubits, each
held by one of the partiesA1 ,A2 , . . . ,AN . In this case,d1
5d25•••dN52. Let us now consider a partition of th
N-qubit system intok<N sets, which we call ak-partite split
of the system~see Fig. 1!. That is we allow some of the
parties to act together such that finallyk parties remain. As a
special case, we have 2-partite splits which we will also c
bipartite splits. A stater is calledk-separable with respect t
this specific partition~or equivalently split! if it is fully sepa-
rable in the sense that we considerr as ak-party system, i.e.,
as a state inH5Cd1^ . . . ^ Cdk.

Considering all possible partitions~including all permuta-
tions! of theN-qubit system and determining the correspon
ing separability properties is sufficient to fully characteri
the system in terms of its entanglement properties. Howe
the number of possible partitions grows rapidly with t
number of parties involved~see Sec. III B 2!, and it turns out
that the information given by all these properties is redu
dant in some cases. We, thus, propose a hierarchic clas
cation in terms of the separability properties with respec
the partitions, i.e., we consider allk-partite splits at levelk of
our classification. This turns out to be useful, since in so
cases~see Sec. IV! the information of one level~in particular
level 2! already implies all properties at the other leve
Furthermore, there are connections between the different
els, which can be used to reduce the effort to determine
full entanglement properties of the system. However,
learned in the case of 3-qubits that these connections
sometimes not obvious or are even counterintuitive. For
ample, we have that for a 3-qubit system separability w
respect to all bipartite splits~i.e., partitions into two sets! are
not sufficient to guarantee 3-separability~i.e., full separabil-
ity when considering each systemA1 , A2 , A3 as a separate
party! of the system@13,21#.

B. Classification of arbitrary states r

In Ref. @13#, the biseparability properties of the stater
where used to classify those states completely, and all
gether~apart from permutations among the parties! 5 distinct
classes were found~see Sec. V A for details!. Here we gen-
eralize this classification toN-qubit systems, considering a
possible partitions of the system.

1. Hierarchic classification

The basic idea of the hierarchic classification we prop
here is to consider all possiblek-partite splits of aN-partite

FIG. 1. Example of two partitions of a 9-qubit system into thr
sets @full line: S35(A1A6A9)-(A2A3A5A7)-(A4A8)# and five sets
@dotted line 2S55(A1A6)-(A9)-(A2A7)-(A3A5)2(A4A8)#. We
have thatS5 is contained inS3.
4-2
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CLASSIFICATION OF MULTIQUBIT MIXED STATES: . . . PHYSICAL REVIEW A 61 042314
system for all (kP$N,N21, . . . ,2%) and determine for each
split whether it isk-separable or not. For simplicity, we d
vide this procedure into levels, starting withk5N, continue
with k5N21, etc. until we reachk52. This minimizes the
necessary effort for a full classification, since, as mentio
in the previous section, there are connections between
different levels which will be explained in more detail
Sec. III B 3.

Level k of the characterization consists of the comple
determination of thek-separability properties of the stater,
i.e., considering all possible partitions into exactlyk sets and
determine whether the state is separable. At each levelk, we
have various classes, namely all possible combination
k-separability andk-inseparability. If the number ofk-partite
splits isk0, we have 2k0 possible configurations at this leve
in principle.

However, the different levels of this structure are not
dependent of each other and thus some of the possible
figurations are forbidden by the structure at higher/lower l
els. We call each allowed configuration of the who
hierarchic classification a ‘‘class,’’ since it corresponds
different physical properties. We have that permutations
the parties lead to different classes.

Note that all levels of this characterization are required
fully classify a state. It is not sufficient to give only th
number ofk-separable splits at each level and define clas
in terms of this numbers, as done forN53 in Ref. @13#. In
this case, one obtains the remaining configurations by
muting the parties, while forN.3 this last property is no
longer valid, i.e., one can have two physically different si
ations ~not only up to permutations! corresponding to the
same number ofk-separable states at a certain level. T
will be explained in more detail in Sec. V B.

In principle, it may turn out that some of the classes
give here are empty. In fact, for the family of states we
going to consider in the following, we have th
k-separability is implied by the correspondin
2-separabilities, i.e., by the biseparability properties of
bipartite splits containing thek-partite splitSk in question.
This means that these states are already fully classified by
structure at level 2~biseparability properties!. However, for
N53 examples for 3-inseparable states which are bise
rable with respect to all bipartite splits are known@21#,
which makes it likely that similar examples~apart from the
trivial generalization of those statesrB to N qubits by taking
e.g.,u0&^0u ^ N23

^ rB) also exist forN.3.

2. Partitions ofN-qubits

A partition of N, L, is given by LrW5$1r 12r 2 . . . Nr N%
with ( j 50

N jr j5N, and the number of sets1 k5(r i . For ex-
ample,N54 andL215$12,21% denotes all possible partition
of N into 3 sets such that one set consists of 2 parties,
other two sets consist of one party each. Note that we m
have many partitions that correspond to the same numbe
sets, sayk, which we called ‘‘k-partite splits.’’

1The number of sets is equivalent to the number of parties.
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Using the well-developed theory of partitions~see, e.g.,
Ref. @19#!, one finds that the number of possible configu
tions ~including all possible permutations among the parti!
for a certain partitionLrW is given by

uLrWu5
N!

) r j !) ~ j ! !r j

. ~4!

The total number of partitionsLrW is given by the partition
function p(N), which grows rapidly withN, e.g., p(10)
542, p(50)5204 226,p(100)5190 569 292. A closed ex
pression forp(N) is known and can be found, e.g., in Re
@19#. Using these relations, one can in principle obtain
number of possiblek-partite splits of aN-qubit system.

3. Contained splits and implications for classification

Let l ,k. We say ak-partite splitSk belongs to~equiva-
lently is contained in! a l-partite splitSl if Sl can be obtained
from Sk by joining some of the parties ofSk . For three
parties (N53) we have, for example, that the bipartite sp
A12(A2A3) contains the 3-partite splitA12A22A3, since
the splitA12(A2A3) can be obtained by joining the partie
(A2A3). Note that in general we do not have a one-to-o
correspondence in either direction. On one hand, e
k-partite split is contained in variousl-partite splits, while on
the other hand a number of differentk-partite splits may be
contained in the samel-partite split~see also Fig. 2!.

Furthermore, k-separability with respect to a certai
k-partite split Sk implies l-separability with respect to al
those l-partite splits which containSk( l ,k). However we
learned in the case of three qubits@13# that 2-separability
with respect to all possible 2-partite splits is not sufficient
guarantee the corresponding 3-separability in general. T
we have thatl-separability with respect to all thosel-partite
splits, which contain a certaink-partite splitSk is a neces-
sary, but not sufficient condition fork-separability with re-
spect toSk .

Let us apply this observation to our classification. W
have thatk-separability partly fixes the structure at low
levels l ,k (k-inseparability has no influence at lower le
els!, while l-inseparability fixes some properties at high
levels k. l ( l -separability only provides necessary cond
tions for separability at higher levels!. In particular,
k-separability with respect to a certaink-partite splitSk al-
ready impliesl-separability of alll-partite splits containing

FIG. 2. Hierarchy structure for classification of 4-qubit system
Note that not all connections at the lowest level are drawn.
4-3
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W. DÜR AND J. I. CIRAC PHYSICAL REVIEW A61 042314
Sk( l ,k). On the other hand,l-inseparabilty with respect to
certain l-partite split Sl implies that allk-partite splits that
belong toSl(k. l ) are alsok-inseparable. This means th
once one finds ak-partite splitSk to bek-separable, one doe
not have to consider alll-partite splits containingSk since
they are automaticallyl-separable, which reduces the nece
sary effort to fully classify a state.

C. Distillability properties within a specific class

One can also consider the process of distillation~en-
tanglement purification! and relate it to this classification
Let us consider a specific class, characterized by all t
k-separability properties. A necessary condition for the d
tillation of a maximally entangled pair e.g., betweenAi and
Aj is that all those splits for whichAi and Aj belong to
different parties arek-inseparable. In fact, it is sufficient t
consider only the bipartite splits fulfilling this property, sinc
this already implies the inseparability of allk-partite splits
(k.2) of this kind.

In a similar way, we find a necessary condition for t
creation of aj -GHZ state, i.e., a GHZ state shared amonj
parties, e.g.,AiW[$Ai 0

, . . . ,Ai j
%: We consider all those bipar

tite splits where not all of the partiesAiW are joint at one side
The inseparability of all those bipartite splits is a necess
condition for the creation of aj -GHZ state between the pa
ties AiW .

By investigating these necessary conditions for distillab
ity, we immediately observe that there exists a huge num
of classes that are inseparable at some level~and thus en-
tangled!, but cannot be distilled. Hence all these classes c
respond to different kinds of bound entanglement. For
ample, we have that inseparability with respect to a
k-partite split already implies that the state is entangled,
one can still have the 2-separability properties such that
necessary conditions for distillation of a pair between a
two parties are not fulfilled. Sometimes this bound entang
ment may be activated by allowing some additional e
tanglement between some subsystems. An example for th
given in Sec. V A.

IV. FAMILY OF STATES rN

In the following, we show that any arbitraryN-qubit state
r can be brought to a standard formrN @13#. We also give a
full classification of this family of states in terms of the
separability and distillability properties.

A. Notation

We introduce the orthonormal GHZ-basis@20#

uC j
6&[

1

A2
@ u j &u0&6u~2N212 j 21!&u1&], ~5!

where j 5 j 1 j 2 . . . j N21 is understood in binary notation. W
have thatu j &A1 . . . AN21

is the state of the first (N21) qubits.

For example, for N55 and j 56 this reads uC6
6&

[1/A2(u0110&A1 . . . A4
u0&A5

6u1001&A1 . . . A4
u1&A5

), since (6
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[0110) in binary notation. Each basis state is a GHZ st
and all basis elements are connected byN-local unitary op-
erations. SouC0

1&51/A2(u0 . . . 0&1u1 . . . 1&) is only an
arbitrary GHZ state, which can be selected by the choice
local basis inA1 . . . AN . We emphasis this here, since th
statesuC0

6& seem to play a special role in what follows. I
the following, we consider the family of states

rN5 (
s56

l0
suC0

s&^C0
su

1 (
j 51

2(N21)21

l j~ uC j
1&^C j

1u1uC j
2&^C j

2u!, ~6!

which is the straightforward generalization of the familyr3
introduced in Ref.@13# to N qubits. Due to the normalization
condition tr(rN)51, we have thatrN is described by 2N21

independent real parameters. The labeling is chosen such
D[l0

12l0
2>0.

B. Depolarization to rN

In this section, we are going to show that an arbitrary st
r can be depolarized to the standard form~6! by a sequence
of N-local operations while keeping the values ofl0

6

[^C0
6uruC0

6& and 2l j[^C j
1uruC j

1&1^C j
2uruC j

2& un-
changed. Similarly as in the three-qubit case, this imp
that the necessary and sufficient conditions for distillabil
and nonseparability found forrN automatically translate into
sufficient conditions for arbitrary states.

We will now explicitly construct the required sequence
N-local operations to obtain the desired depolarization p
cedure. By mixing we understand in the following that
certain operation is~randomly! performed withp5 1

2 , while
with p5 1

2 no operation is performed. The followingN
rounds of mixing operations are sufficient to maker diago-
nal in the basis~5! without changing the diagonal coeffi
cients: In the first round, we apply simultaneous spin flips
all N locations. The result of this mixing operation is that a
off-diagonal elements of the formuCk

1&^C l
2u and

uCk
2&^C l

1u are eliminated. The remaining (N21) rounds
consist of applyingsz to particlesAk andAN ~and the iden-
tity to all other particles!, wherek runs from 1 to (N21).
The effect of thekth operation is the following: a stateuC j

6&
picks up a minus sign ifj, written in binary notation, has a
‘‘1’’ at the kth position and remains unchanged if it has
‘‘0’’ there. Since the correspondingj and i of two different
basis statesuC j

6& and uC i
6& differ in at least one digit, this

implies that in at least one mixing round one state, sayuC j
6&

will pick up a minus sign while the other state, sayuC i
6& will

remain unchanged. This ensures that all off-diagonal e
ments of the formuC j

6&^C i
6u are eliminated in this mixing

round. Finally, we have that after allN mixing rounds,r is
diagonal in the basis~5!.

It remains to depolarize the subspaces spanned by$uC j
6&%

for each j .0. This can be accomplished by using rando
operations that changeu0&a→eifau0&a (a5A1 , . . . ,AN)
with (kfAk

52p ~this condition ensures thatl0
6 remains
4-4
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CLASSIFICATION OF MULTIQUBIT MIXED STATES: . . . PHYSICAL REVIEW A 61 042314
unchanged!. This implies that an arbitrary stater can be
brought to the standard formrN by a sequence ofN-local
operations.

One can readily check that the partial transpose ofrN
with respect to the bipartite split (A1 . . . AN21)2AN is posi-
tive iff D[l0

12l0
2<2l2N2121. Similar conditions hold for

each possible bipartite split, i.e.,rN has PPT with respect to
a certain bipartite split iffD<2lk for a specific~unique! k
corresponding to this bipartite split. To determine the cor
spondingk, let us consider a bipartite split wherel qubits
AkW[$Ak1

, . . .Akl
% are jointly located at one side, while th

remainingN2 l qubits are located at the other side. Witho
loss of generality we can assume thatAN¹AkW . In this case,
the correspondinglk is given byk, which, written in binary
notation, has ones at the positions (k1 , . . . ,kl) and zeros at
all other positions and only the highest (N21) bits are con-
sidered~the lowest one,kN , is allways zero because we a
sumed thatAN¹AkW). For instance we considerN56 and the
bipartite splitS25(A1A4A5)2(A2A3A6). We have that the
correspondingk is given byk5100 110, where we only hav
to consider the highest 5 bits. Thus,k510 011[19 and we
have that the staterN has PPT with respect to the biparti
split S2 iff D<2l19

C. Separability of rN

Let us enumerate the separability properties of the st
~6!. Then we obtain

~i! We consider a specifick-partite splitSk of rN . Iff all
bipartite splits that containSk have PPT, thenrN is
k-separable with respect to this specifick-partite split.

In order to prove~i!, we find it useful to consider first two
special cases of~i! in order to illustrate the underlying idea
These special cases are the following:

~ii ! We consider a specific bipartite split, where we ha
that l qubits AkW[$Ak1

, . . .Akl
% are jointly located at one

side, while the remainingN2 l qubits are located at the othe
side. Iff we have that the partial transpose correspondin

this bipartite split is positive, i.e.,r
N

TAkW[r
N

TAk1
. . . TAkl>0 then

rN is separable with respect to this bipartite split, i.e., it c
be written in the form

rN5(
i

ux i&AkW
^x i u ^ uw i& rest̂ w i u. ~7!

~iii ! We consider all possible 2N2121 bipartite splits of a
N-qubit system. Iff for each of those splits the correspond
partial transposition is positive, thenrN is fully separable,
i.e., rN is N-separable.

These statements are illustrated for the simplest cases
3 and 4-qubit system in Sec. V. From~i! follows that
k-separability with respect to a certaink-partite splitSk of the
statesrN is implied by the 2-separability properties of th
bipartite splits containingSk . Thus, the familyrN is com-
pletely characterized by its 2-separability properties, wh
already determine the hierarchic structure proposed in S
III B.

In the remainder of this section, we are going to prove
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statements~i!–~iii !. Let us start by proving~ii !. The basic
idea of the proof is to define a stater̂, which we show to be
2-separable with respect to the bipartite split in question
which can be depolarized torN . Since a separable state
converted into a separable one by depolarization~which is a
N-local process!, this automatically implies the 2-separabilit
of rN . We have thatrN has positive partial transpositio
with respect to the bipartite splitAkW if D<2lk for k corre-
sponding tokW . We define

r̂5rN1
D

2
~ uCk

1&^Ck
1u2uCk

2&^Ck
2u!. ~8!

The stater̂ is positive sinceD<2lk and has the property
r̂5 r̂TAkW. For a bipartite split of the form~one qubit!-rest, this
already implies the separability ofr̂, since it has been show
in @18# that all states inC2

^ CN, which fulfill r̃TA5 r̃ are
separable. For all the other splits we show the separab
directly. We rewriter̂ as follows:

r̂5D~ uC0
1&^C0

1u1uCk
1&^Ck

1u!1S lk2
D

2 D ~ uCk
2&^Ck

2u

1uCk
1&^Ck

1u!1l0
2~ uC0

2&^C0
2u1uC0

1&^C0
1u!

1 (
j 51,j 5” k

2(N21)21

l j~ uC j
1&^C j

1u1uC j
2&^C j

2u!. ~9!

We have that all prefactors are positive~since D<2lk).
The terms in lines 2-4 are completely separable, which
be seen by using that (uC j

1&^C j
1u1uC j

2&^C j
2u)

5u j 0&^ j 0u1u(2N212 j 21)1&^(2N212 j 21)1u. The term
in line 1 is biseparable with respect to the bipartite splitkW . To
see this, let us rewrite the basis states as follows:

uC0
1&5

1

A2
~ u0 . . . 0&AkW

u0 . . . 0& rest

1u1 . . . 1&AkW
u1 . . . 1& rest),

~10!

uCk
1&5

1

A2
~ u1 . . . 1&AkW

u0 . . . 0& rest

1u0 . . . 0&AkW
u1 . . . 1& rest).

We define u6W &51/A2(u0 . . . 0&6u1 . . . 1&). It is now
straightforward to check that line one of Eq.~9! can be writ-
ten as D(u1W &AkW

^1W u ^ u1W & rest̂ 1W u1u2W &AkW
^2W u ^ u2W & rest̂ 2W u),

which is clearly biseparable with respect to the bipartite s
kW and concludes the proof in one direction. If we consider
the other hand thatrN is biseparable with respect to th
bipartite splitkW , it follows trivially that it also has PPT cor-
responding to this bipartite split, since positive partial tran
position is a necessary condition for separability@7#.

To prove the third statement~iii !, we show that ifrN has
PPT with respect to all possible bipartite splits, thenrN is
4-5
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N-separable~note again that the opposite is trivially true!.
This condition implies thatD/2<l j for all j. Again, the idea
is to define an operatorr̃ which can be depolarized into th
form rN by using local operations and that is fully separab
Let r̃ be a state of the form~6! with coefficientsl̃0

6[l0
6 ,

and l̃k
6[lk6D/2 @k51, . . . ,(2N2121)#. Clearly, r̃ can

be depolarized intorN . We now rewriter̃ as follows:

r̃5
1

2 (
k50

2N2121

~ l̃k
11l̃k

22D!~ uCk
1&^Ck

1u1uCk
2&^Ck

2u!

1D (
k50

2N2121

uCk
1&^Ck

1u. ~11!

Since all possible partial transposes are positive, we h
that all coefficients in~11! are positive. The first term in~11!

can be written as (k50
2N21(l̃k

11l̃k
22D)/2(uk,0&^k,0u

1u(2N212k21),0&^(2N212k21),0u) and is thus fully
separable. It remains to show that the second term in Eq.~11!
is alsoN-separable. Let us first define the statesu6&5(u0&
6u1&)/A2. To show the separability of the second term,

write it as( j 50
2N21uf j&^f j u whereuf j& are all the states of the

form us1s2 , . . .sN& with s i56, which have an even num
ber of minuses. All the statesuf j& are fully separable, which
concludes the proof.

Now we are ready to prove the first statement~i!. The
basic idea of the proof is very similar to the one used in
previous proofs: We define a stater8 which can be depolar
ized torN and we show thatr8 is k-separable. We have tha
a number of bipartite splits have PPT. To a specific bipar
splits corresponds the relationD<2l i 0

, which is the condi-
tion that this specific bipartite split has PPT. Thus, we ha
that D<2l i , where i P$ i 0 , . . . ,i l%[ iW, and eachl i corre-
sponds to a bipartite split that does not further divide syste
that were joint for thek-partite split we consider. Letr8 be a
state of the form~6! with coefficientsl80

6[l0
6 , l8 i

6[l i

6D/2 for i P iW and l8k
6[lk for k¹ iW. Clearly, r8 can be

depolarized torN . Similarly as in the previous proofs, w
rewrite r8 as follows:

r85D(uC0
1&^C0

1u1(
i P iW

uC i
1&^C i

1u)

1(
i P iW

S l i2
D

2 D ~ uC i
2&^C i

2u1uC i
1&^C i

1u!

1(
k¹ iW

lk~ uCk
1&^Ck

1u1uCk
2&^Ck

2u!

1l0
2~ uC0

2&^C0
2u1uC0

1&^C0
1u!. ~12!

All coefficients in Eq.~12! are positive, and lines~2–4! are
fully separable. It remains to show thek-separability of line 1
of Eq. ~12!. To see this, we define the statesu6W &partyl

51/A2(u0 . . . 0&partyl6u1 . . . 1&partyl), and the statesuF j&
[us1&party1^ . . . ^ usk&partyk with s i56 and the number of
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minuses is even. It is now straightforward to check that l
1 of Eq. ~12! can be written asD( j uF j&^F j u and is thus
k-separable with respect to thek-partite split we consider,
and concludes the proof in one direction.

If we consider on the other hand thatrN is k-separable
with respect to a specifick-partite splitSk , it follows that it
is also biseparable with respect to all bipartite splits t
containSk , since any of those bipartite splits corresponds
joining systems which were divided for thek-partite split.
But the positivity of the partial transposition is a necess
condition for biseparability corresponding to a certain bip
tite split @9#, from which follows that positivity of all bipar-
tite splits we consider is also a necessary condition
k-separability. So again the conditions we found are nec
sary and sufficient.

D. Distillability of rN

We will turn now to analyzing the distillability propertie
of rN :

~i! We consider all possible bipartite splits of theN qubits
where the particlesAi andAk belong to different parties. Iff
all such splits have negative partial transposition, then
maximally entangled pair between particleAi andAk can be
distilled.

~ii ! We consider thek parties AiW[$Ai 0
, . . . ,Ai k

% (k

<N) and consider all those bipartite splits where not all
the partiesAiW are joint at one side. Iff all those splits hav
negative partial transposition, then ak-GHZ state ~i.e., a
GHZ state shared betweenk parties! between the partiesAiW

can be distilled.
To show~i! and without loss of generality we takei 5N

and k5N21. In that case, the condition we impose on t
partial transpositions is equivalent to require thatD/2.l j
with j odd @note that with the notation we are using, the sta
of the N21 qubit determines the parity of the statesu j & in
Eq. ~5!#. In order to show the distillability of a maximally
entangled state betweenAN21 and AN , it is sufficient to
show that a pair with fidelityF.0.5 ~overlap with the maxi-
mally entangled stateuF1&) between those two parties ca
be created@1#. If we project all the qubits except the ones
AN and AN21 onto the stateu1& we see that the resulting
state obtained fromrN hasF.0.5 and can thus be distilled
to a maximally entangled state betweenAN andAN21 iff

D/2.(
j odd

l j . ~13!

Even though we have thatD/2.l j for all j odd, the condi-
tion ~13! might not be fulfilled. In this case we use the fo
lowing purification procedure: The idea is to combineM
systems in the same staterN , perform a measurement an
obtain one system with the same form~6! but in which the
new D is exponentially amplified with respect tolk , k odd.
In order to do that, let us define the operator

P5u00 . . . 00&^00 . . . 00u1u10 . . . 00&^11 . . . 11u,
~14!
4-6
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which acts onM qubits. Now we proceed as follows: W
takeM systems, and apply the operator P in allN locations.
This corresponds to measuring a POVM that containsP ob-
taining the outcome associated toP. The resulting state
P^ NrN

^ M(P†) ^ N has the first system in an~unnormalized!

density operator of the form~6! but with new coefficientsD̃
andl̃k . In order to calculate these new coefficients, we ne
the following observations: First, the operatorrN

^ M is diago-
nal in the basis$uxk0 . . . kM

s1 . . . sM&% with coefficientslk1

s1 . . . lkM

sM

where

uxk0 . . . kM

s1 . . . sM&5uCk0

s0& ^ . . . ^ uCkM

sM&, ~15!

and kjP$0, . . . 2N2121%,s j56. Second, we need the ac
tion of the operatorP^ N on the basis states~15!. We find

P^ Nuxk0 . . . kM

s1 . . . sM&5dk0 . . . kM
uCk0

s &system 1u0 . . . 0& rest,

~16!

where s51 if the number of minuses in$s1 . . . sM% is
even, ands52 otherwise. Note also that we only have
contribution if k05k15 . . . 5kM . Using these results, it is
now straightforward to check that the first system
P^ NrN

^ M(P†) ^ N is an~unnormalized! density operator of the
form ~6! with new coefficients

D̃/25~D/2!M;l̃k5lk
M . ~17!

Given thatD/2.lk , k odd, for sufficiently largeM we have
that condition~13! is fulfilled, i.e., that after the projection o
all systems exceptAN21 andAN on the stateu1&, the result-
ing state hasF.0.5 and is thus distillable, which conclude
the proof in one direction. On the other hand, the condit
we impose for distillability is also necessary. Having a ma
mally entangled pair between the partiesAN21 and AN im-
plies that all bipartite splits in question have NPT. Sin
local operations keep the positivity of the partial transpo
tion @10#, we must start with NPT of all bipartite splits i
question.

To prove~ii !, we just have to recognize that the conditio
we impose guarantees that maximally entangled pairs
tween any two parties withinAiW can be distilled. This is
clearly sufficient to create a GHZ state among those par
e.g., by means of teleportation@creating the GHZ state lo
cally at Ai 0

and teleporting the (k21) qubits to the parties

$Ai 1
, . . . ,Ai k

% using maximally entangled pairs create

amongAi 0
and Aj with j P$ i 1 , . . . i k%]. Note also the con-

dition we impose is also necessary, since a GHZ state all
us to create maximally entangled pairs among all parties
volved, which implies that all bipartite splits in questio
have NPT and thus have to have NPT at the beginning, s
one cannot convert a state from PPT to NPT by means
local operations@10#.
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V. EXAMPLES

A. Three-qubit systems

In this section, we investigate the simplest case of th
qubits, each hold by one of the partiesA, B, or C.

1. Classification

In order to perform the classification proposed in S
III B, we consider the 3-partite split of the system as well
all possible bipartite splits, where all together three su
splits exist. Each corresponds to having one system~e.g.,A)
on one side and the two other systems~e.g.,B andC) on the
other side. In other words, for this specific bipartite split
our three-qubit system we allow the partiesB and C to act
together, i.e.,H5CA

2
^ CBC

4 . Thus each of these bipartit
splits will give us an upper limit of what can be done b
three-local operations on the system. To perform the cla
fication, we have to consider the separability properties
the 3-partite and bipartite splits. In particular, whether th
can be written in one or more of the following forms:

r5(
i

uai&A^ai u ^ ubi&B^bi u ^ uci&C^ci u ~18a!

r5(
i

uai&A^ai u ^ uw i&BC^w i u ~18b!

r5(
i

ubi&B^bi u ^ uw i&AC^w i u ~18c!

r5(
i

uci&C^ci u ^ uw i&AB^w i u. ~18d!

Here, uai&, ubi&, and uci& are ~unnormalized! states of sys-
tems A, B, and C, respectively, anduw i& are states of two
systems. We call a state biseparable with respect to a ce
bipartite split if it is separable with respect to this split, e.
a state is biseparable with respect to the bipartite s
A-(BC) if it can be written in the form~18b!. Similary, a
state is called triseparable~3-separable! if it is separable with
respect to the splitA-B-C, i.e., can be written in the form
~18a!.

At the top level of the classification~level 3!, we consider
the tripartite splitA-B-C and determine whether the stater
is 3-separable or not. At the second level~level 2!, one con-
siders all possible bipartite splits@A-(BC),B-(AC),
C-(AB)] and determines whether the stater can be written
in one or more of the forms~18b!,~18c!,~18d!. At this level
of the classification, one has 2358 different possibilities,
each corresponding to a physically different situation. F
arbitrary three-qubit systes one thus finds the following co
plete set of 9 disjoint classes.

Class 1—Fully inseparable states. States that cannot b
written in any of the above forms~18!. An example is the
GHZ state@20# uC0

1&.
Classes 2.1, 2.2, 2.3—1-qubit biseparable states.Class

2.1: biseparable states with respect to qubitA are states tha
are separable inA-(BC), but nonseparable otherwise. Th
4-7
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is, states that can be written in the form~18b! but not as Eqs.
~18c! or ~18d!. An example is the stateu0&A^ uF1&BC ,
where uF1&5(u00&1u11&)/A2 is a maximally entangled
state of two qubits. Similarly, class 2.2 and 2.3 correspon
biseparable states with respect to qubitB andC respectively.

Classes 3.1, 3.2, 3.3—2-qubit biseparable states: Class
3.1: biseparable states with respect to qubitsA and B are
states that are separable inA-(BC) and B-(AC), but non-
separable inC-(AB). That is, states that can be written in th
forms ~18b! and ~18c! but not as Eq.~18d!. For examples,
see below. Similary, classes 3.2~3.3! are biseparable with
respect to the qubitsA andC(B andC).

Class 4—3-qubit biseparable states: Those are states tha
are separable inA-(BC), B-(AC), andC-(AB) ~i.e., sepa-
rable with respect to each bipartite split!, but which are not
completely separable, i.e., cannot be written as Eq.~18a!. For
an example, see Ref.@21#.

Class 5—Fully separable states: These are states that ca
be written in the form~18a! and are thus also separable wi
respect to each bipartite split. A trivial example is a prod
stateu1&A^ u1&B^ u1&C .

Note that the classes 2.1, 2.2, 2.3~respectively 3.1, 3.2
3.3! were identified in Ref.@13#, since they can be obtaine
from each other by permuting the parties. In this case
distinct classes remain.

2. Family r3

Let us now concentrate on the family of three-qubit sta
r3 ~6!. This family is characterized by 4 parameters,$D
[l0

12l0
2 ,l1 ,l2 ,l3%, and we have that any state can

depolarized to this standard form. The GHZ basis~5! reads
in this case

uC j
6&[

1

A2
@ u j &ABu0&C6u~32 j !&ABu1&C], ~19!

whereu j &AB[u j 1&Au j 2&B with j 5 j 1 j 2 in binary notation. For
example, uC0

6&51/A2(u000&6u111&) are standard GHZ
states, as well asuC3

6&51/A2(u110&6u001&) (3[11 in bi-
nary notation!. Note that all 8 basis states are connected
3-local unitary operations, i.e., each basis state is a m
mally entangled GHZ state. Due to the fact that the lo
bases inA, B, andC can be chosen arbitrarily, none of th
basis states has any preferences.

We will now investigate the separability and distillabilit
properties ofr3 and give a full classification in terms of th
classes introduced above. It turns out that using the pa
transpose criterion for each bipartite split characterizes
stater3 completely. The conditions under which the opera
r3 has positive partial transpose with respect to each q
are as follows

r3
TA>0 iff D<2l2,

r3
TB>0 iff D<2l1, ~20!

r3
TC>0 iff D<2l3 .
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Recall that each of these conditions correspond to a~virtu-
ally! bipartite split of the system. Investigating, e.g.,r3

TA, we
actually have in mind a bipartite split of the system intoA on
one side andBC on the other side. From these conditions w
also see that in general no further depolarization that ke
the form ofr3 is possible~except the depolarization towar
the completely depolarized state, which can always be d
trivially !. We show this by giving a counterexample. Ima
ine we would like to depolarize the subspaces spanned
$uC1

6&,uC2
6&% and thereby equalize the coefficientsl1 and

l2. For certain values of the parameters, this would im
that the state after this depolarization has negative pa
transposition with respect to one party, while it started w
positive partial transposition. Since one cannot change
positivity of the partial transpose by local operations@22#,
this further depolarization is impossible in general.@e.g.,r3

with l0
15 2

3 ,l25 1
3 , all other parameter 0 hasr3

TA>0, but
would have negative partial transposition with respect to
bipartite splits after the~imaginary! further depolarization in
question#.

3. Separability ofr3

Let us specialize the theorems about separability obtai
in Sec. IV C toN53. In this case, we do not need the ge
eral theorem~i!, but only give examples for the statemen
~ii ! and ~iii !:

~ii ! r3 is separable with respect to the bipartite sp
A-(BC), i.e., it can be written in the form~18b! iff r3

TA>0

@and analogously for Eqs.~18c! and ~18d! with r3
TB>0 and

r3
TC>0, respectively#.

~iii ! r3 is completely separable, i.e., it can be written
Eq. ~18a! iff r3

TA ,r3
TB ,r3

TC>0. Note that these areiff state-
ments and thus provide a full characterization ofr3 in terms
of the separability properties. The resulting classification
summarized in Table I. Here, we have that 3-qubit bisepa
bility implies fully separability ~tri-separability!, while in
general this is not necessarily the case~otherwise class 4
would be empty!. We have the the familyr3 is completely
characterized by its biseparability properties, so only
structure at level 2 is necessary for classification.

Furthermore, this also provides us with sufficient con
tions for non-separability for arbitrary statesr. Namely if
there exist a basis~19! such that the corresponding stater3

after depolarization has, e.g., the property thatr3
TA is nega-

tive, this implies thatr is nonseparable inA-(BC). Note also
that no conclusion can be drawn about the separability pr
erties ofr given PPT of the depolarized stater3, since the

TABLE I. Separability and distillability classification ofr3.

Positive Operators Class Distillability

None 1 (GHZ) uC0
1&ABC

r3
TA 2.1 (Pair) uF1&BC

r3
TA ,r3

TB 3.1 Activate with uF1&AB

All 5
4-8
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depolarization process might convert a nonseparable star
into a separable stater3.

4. Distillability of r3

We now state the distillability properties ofr3:
~i! One can distill a maximally entangled stateuF1&ab

betweena and b iff both r3
Ta ,r3

Tb have negative partia
transposition.

~ii ! Iff all three partial transposes are negative, we c
distill a GHZ state~since we can distill an entangled sta
betweenA and B and another betweenA and C and then
connect them to produce a GHZ state@23#!.

~iii ! If we have thatr3
TC is negative butr3

TA ,r3
TB>0 ~i.e.,

have PPT! and we have maximally entangled states betw
A andB at our disposal, then we canactivatethe entangle-
ment betweenABC and create a GHZ state.

Note that~iii ! is an example for the activation of boun
entanglement. In this example, the state is inseparable
respect to the bipartite splitC-(AB) and thus entangled
However, no entanglement between any two subsystems
be created, since we have that the PPT ofA andB implies the
separability ofA-(BC) andB-(AC) @see~ii ! in Sec. V A 3!.
However entanglement betweenA and B is sufficient to al-
low the creation of a GHZ state. One can show this by not
that the singlets allow to teleport states between locationA
andB. Thus, for all practical purposes we can consider a p
of qubitsAB as a four-level system in which we can perfor
arbitrary operations. The situation is equivalent to that
which one has 2-level systems entangled to 4-level syst
such that the density operator describing one pair acts
C2

^ C4 and has a negative partial transpose. It can be ea
shown@16# that in systems 23N negative partial transpose
a necessary and sufficient condition for distillation, and o
can thus distill arbitrary states. Using again teleportation,
can end up with a GHZ state shared byA, B, andC.

Again, these results also provide us with sufficient con
tions for distillability of arbitrary statesr. From ~i! follows:
If there exist a basis~19! such that the corresponding stater3

after depolarization has, e.g., the property thatr3
TA ,r3

TB are
negative, this implies that a maximally entangled pair b
tween A and B can be distilled fromr. Note here that to
make this condition for distillability necessaryandsufficient
for arbitrary statesr, one should find a depolarization pro
cedure~may be assisted by some appropriate local filter
operations! such that the NPT property is maintained. Th
is, the corresponding stater3 after depolarization should stil
haver3

TA ,r3
TB negative.

Note also that a sufficient condition to distill a GHZ-sta
from r is that there exist two different bases~19! such the
corresponding statesr3 after depolarization only have two o
the partial transposes kept negative, where for the sec
basis one has to differ from the first one. For example, b
1 allows us to keepA andB each having NPT~and thus to
distill a pair betweenA andB), while basis 2 keepsB andC
having NPT. These together ensure that a GHZ state ca
created. Clearly, one has to start withr which has all three
partial transposes negative. Again, one may try to make
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condition necessary and sufficient by introducing a~filtering
assisted! depolarization procedure such that at least two
the partial transposes are kept negative for a certain choic
basis.

B. Four-qubit system

Here, we consider the special case of a 4-partite system
order to illustrate the theorems about separability and dis
ability obtained in the previous sections. For convenience
us call the partiesA, B, C, andD instead ofA1 , . . . ,A4.

1. Classification

We start by illustrating the classification for gener
4-qubit systems. At the top level of the structure is t
4-separability, that is the question whether the stater is
separable with respect to the 4-partite split (4)A-B-C-D, i.e.,
fully separable. At the second level, we have to conside
different 3-partite splits of the system:~3a! A-B-(CD), ~3b!
A-(BC)-D, ~3c! A-(BD)-C, ~3d! (AB)-C-D, ~3e!
(AC)-B-D and ~3f! (AD)-B-C. At the third level, all to-
gether 7 different 2-partite splits exist, namely~2a!
A-(BCD), ~2b! B-(ACD), ~2c! C-(ABD), ~2d! D-(ABC),
~2e! (AB)-(CD), ~2f! (AC)-(BD) and ~2g! (AD)-(BC).

We have for instance that the 3-partite split~3a! is con-
tained in the 2-partite splits~2a!, ~2b!, and ~2e!. All other
bipartite splits cannot be obtained from~3a! by joining some
of the parties, since they would divide the system (CD)
along different parties, and thus the tripartite split~3a! does
not belong to them.

The classification thus takes place as follows~see also
Fig. 2!: At the top level~level 4), one has to decide whethe
the state is 4-separable or not. In the case it is 4-separab
automatically follows that it is also 3- and 2-separable w
respect to all possible 3- or 2-partite splits. If it
4-inseparable, one has to investigate the various kinds
3-separability at level 3, where one can have all poss
combinations of the 6 kinds~3a!–~3f! of 3-separability and
and 3-inseparability. We have 26 different configurations at
this level. At the next level of the classification~level 2!, one
investigates all possible bipartite splits~2a!–~2g! closer. One
finds 27 different configurations at this level. Without takin
the connections between different levels into account~which
reduces the total number of allowed configurations!, we have
all together(2)(26)(27)516 384 possible combinations o
4-, 3-, and 2-separability and inseparability with respect
all possible partitions.

The structure at level 2 is partly determined by the str
ture at level 3 and vice versa. If, e.g., the state is 3-separ
with respect to the 3-partite split~3a!, it follows that the
bipartite splits~2a!, ~2b!, and ~2e! at level 2 which contain
~3a! are also 2-separable. In the case where a stat
3-separable with respect to the splits~3a!, ~3b!, and ~3c!, it
even follows that the state is 2-separable with respect to
possible bipartite splits. Although it still can be 3-insepara
with respect to the 3-partite splits~3d!, ~3e!, or ~3f! in prin-
ciple, the underlying structure at level 2 is already co
pletely determined by the structure at level
3-inseparability with respect to a specific 3-partite splitS3,
4-9
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on the other hand, still allows all combinations
2-separability and 2-inseparability within the bipartite spl
at level 2 which containS3. Conversely, 2-inseparabilty with
respect to the bipartite split~2a! implies 3-inseparability with
respect to the 3-partite splits~3a!, ~3b!, and ~3c!, while
2-separability still leaves all possibilities at level 3 ope
From this one also sees that it is neither sufficient to cons
only the 4- and 2-separability to classify the state co
pletely, nor to consider only 4- and 3-separability. Taki
now all these connections between different levels into
count, we find that many of the 16 384 possible combinati
are forbidden. In fact, one can check that only 346 differe
allowed configurations remain@24#. For N54, we thus have
346 different classes~including permutations among the pa
ties!, which should be compared to the 9 classes we fo
for N53.

Furthermore, it is not sufficient to classify the states
the number ofk-separable states at levelk of the hierarchic
classification. For example, we have that 3-separability w
respect to the 3-partite splits~3a!, ~3b!, and~3c! already im-
plies 2-separability with respect to all bipartite splits. On t
other hand, 3-separability with respect to the 3-partite sp
~3a!, ~3b!, and ~3d! does not determine the biseparabili
properties of the bipartite split~2f!, which may thus still be
2-inseparable. The two kinds of 3 times 3-separability cor
spond to different physical situations, and one cannot ob
one configuration from the other one by permuting the p
ties. Thus, it is not sufficient to give only the number
3-separable states, one also needs the information whic
the splits is separable and which is not.

2. Separability and distillability properties ofr4

Let us now turn to the family of statesr4 and illustrate its
separability properties. We will give an example for ea
theorem.

~i! Let us consider the 3-partite splitA-B-(CD) ~3a!. Iff
we have that the 2-partite splits~2a!, ~2b!, and ~2e! @which
contain~3a!# have PPT, thenr4 is 3-separable with respec
to this 3-partite split.

~ii ! Iff the partial transposition with respect to the bipart
split (AB)-(CD) ~2e! is positive, thenr4 is 2-separable in
(AB)-(CD).

~iii ! Iff for all possible 2-partite splits~2a!-~2g! we have
that the corresponding partial transposition is positive, th
r4 is 4-separable.

Note that this family of states is completely characteriz
by its 2-separability properties, since from 2-separability f
lows the corresponding 3-separability as well as the co
sponding 4-separability. So in this case only one level of
hierarchic structure, namely level 2, is required to fully cla
sify the statesr4.

Finally we consider the distillability properties ofr4.
~i! Iff the partial transposition with respect to the bipart

splits ~2c!, ~2d!, ~2f!, and~2g! is negative, then a maximally
entangled pair betweenC and D can be distilled. Note tha
these four splits are the only ones of relevance, since
partiesC andD are not joint there.

~ii ! Iff the partial transpositions with respect to the bipa
tite splits ~2a!, ~2b!, ~2c!, ~2e!, ~2f!, and ~2g! are negative,
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then a GHZ state between the partiesA-B-C can be distilled.
Note that the split~2d! is the only one that is not of relevanc
here, since the partiesABC are joint in this case. If in addi-
tion also the split~2d! has NPT, then a GHZ state betwee
all four parties can be created.

If it turns out that there exist nondistillable states
C4

^ C4 with NPT as conjectured in Refs.@16# and @17#, this
automatically implies that the conditions~i! for distillability
obtained for the statesr4 arenot sufficient for arbitrary states
r. To see this, let us consider the question of distillability
a maximally entangled pair betweenC and D. Assume that
the partial transposition with respect to the bipartite sp
~2c!, ~2d!, ~2f!, and ~2g! is negative. Let us concentrate o
the bipartite split ~2f!. According to the conjecture in
@16,17#, the negativity of the partial transposition with re
spect to this split is not sufficient to ensure distillability. S
we have that there exist states which are not distillable e
if we allow for joint actions at (AC) and (BD) and are thus
also not distillable when allowing only local operations inA,
B, C, andD ~as mentioned earlier, each bipartite split pr
vides us with an upper limit of what can be done by loc
operations!.

VI. MIXTURES OF GHZ-STATE WITH IDENTITY

We will apply now our results to the case in which w
have a maximally entangled state ofN particles mixed with
the completely depolarized state

r~x!5xuC0
1&^C0

1u1
12x

2N
1. ~21!

This is clearly a special case of the staterN with l0
25l j

5(12x)/2N, l0
15x1(12x)/2N and thus D5x. These

states have been analyzed in the context of robustnes
entanglement@15#, NMR computation@14#, and multiparticle
purification @11#. In all these contexts bounds are given r
garding the values ofx for which r(x) is separable or puri-
ficable. For example, in Refs.@14# and@15# they show that in
the caseN53 if x<1/(316A2),1/25 then the state is sepa
rable, respectively. In Ref.@11# it is shown that forN53 if
x.0.32 263 thenr(x) is distillable. Using our results we ca
state thatr(x) is fully nonseparable and distillable to a max
mally entangled state iffx.1/(112N21), and fully sepa-
rable otherwise. Specializing this for the caseN53 we ob-
tain that forx.1/5 it is non-separable and distillable@25#.

Note also that the purification procedure proposed in t
work is pretty unefficient compared to the two-step proc
dure proposed in Ref.@11#, although it allows us to deter
mine stronger bounds for the value ofx. However, one can
slightly modify the procedure proposed in Ref.@11# such that
the protocols P1 and P2 are no longer performed alterna
as in the original version, but rather in a specific~state de-
pendent! order, e.g., P1-P1-P1-P2-P1, etc. When doing
we found by numerical investigation~for N53) that all
statesr3 which are purificable to a GHZ state using o
procedure are also purificable using the modified proced
4-10
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of Ref. @11#, which thus provides an efficient purificatio
protocol for states of the formr3.

VII. SUMMARY

In summary, we have proposed a classification of a
trary multiqubit systems. For a family of states, we gave
full characterization of the separability and distillabili
properties. These states play the role of Werner state
J.
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these systems since any state can be reduced to such a
by depolarization. Thus, our results provide sufficient con
tions for non-separability and distillability for general state
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