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State estimation for large ensembles
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We consider the problem of estimating the state of a large but finite numberN of identical quantum systems.
As N becomes large the problem simplifies dramatically. The only relevant measure of the quality of estimation
becomes the mean quadratic error matrix. Here we present a bound on this quantity: a quantum Crame´r-Rao
inequality. This bound succinctly expresses how in the quantum case one can trade information about one
parameter for information about another. The bound holds for arbitrary measurements on pure states, but only
for separable measurements on mixed states—a striking example of nonlocality without entanglement for
mixed but not for pure states. Crame´r-Rao bounds are generally only derived for unbiased estimators. Here we
give a version of our bound for biased estimators, and a simple asymptotic version for largeN. Finally we
prove that when the unknown state belongs to a two-dimensional Hilbert space our quantum Crame´r-Rao
bound can always be attained, and we provide an explicit measurement strategy that attains it. Thus we have
a complete solution to the problem of estimating as efficiently as possible the unknown state of a large
ensemble of qubits in the same pure state. The same is true for qubits in the same mixed state if one restricts
oneself to separable measurements, but nonseparable measurements allow dramatic increase of efficiency.
Exactly how much increase is possible is a major open problem.

PACS number~s!: 03.67.2a, 02.50.2r
e
ig
o
e
on

r
gi
a
e

rt
s

e-
up
r

en
x-
k
w

o

on
te
ent
st.
tate
rive
ion.
me
ts

one
he

lo-
e
a-
the

nd,
an
to

on-
ost

se

s of

a-

//
e

I. INTRODUCTION

One of the central problems of quantum measurem
theory is the estimation of an unknown quantum state. Or
nally only of theoretical interest, this problem is becoming
increasing practical importance. Indeed there are now sev
beautiful experimental realizations of quantum state rec
struction in such diverse systems as quantum optics@1#, mo-
lecular states@2#, trapped ions@3#, and atoms in motion@4#.

The theoretical work which is the basis for these expe
ments is concerned with devising measurement strate
that are simple to realize experimentally and which allow
unambiguous reconstruction of the quantum state. The b
known such technique is quantum state tomography@5#,
adapted in Ref.@6# for the case of finite-dimensional Hilbe
spaces. However, other techniques are also available;
Ref. @7# for a recent discussion in the case of finit
dimensional Hilbert spaces. However, all these works s
pose that the measurements are perfect, and that any ope
can be measured with an infinite precision. However, in g
eral the quality of the reconstruction will be limited by e
perimental error@8# or by finite statistics. The present wor
is devoted to studying this latter aspect, when the unkno
state belongs to a finite-dimensional Hilbert space.

Thus the setting of the problem is that we may dispose
a finite numberN of copies of an unknown quantum stater
~pure or mixed!. Our task is to determiner as well as pos-
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sible. This is by now a classical problem@9,10#.
A common approach is first to specify a cost functi

which numerically quantifies the deviation of the estima
from the true state. One then tries to devise a measurem
and estimation strategy which minimizes the mean co
Since the mean cost typically depends on the unknown s
itself, one typically averages over all possible states to ar
at a single number expressing the quality of the estimat
However optimal strategies have only been found in so
simple highly symmetric cases~the covariant measuremen
of Ref. @10#; also see Refs.@11,12#!.

However when the number of copiesN becomes large,
one can hope that the problem becomes simpler so that
might be able to find the optimal strategies in this limit. T
reason for this is that in the large-N limit the estimation
problem ceases to be a ‘‘global’’ problem and becomes ‘‘
cal.’’ Indeed for smallN the estimated state will often b
very different from the true state. Hence the optimal me
surement strategy must take into account the behavior of
cost function for large estimation errors. On the other ha
in the limit of an infinite number of copies any two states c
be distinguished with certainty. So the relevant question
ask about the estimation strategy is at whatrate it distin-
guishes neighboring states. In that case we are only c
cerned with the behavior of the estimator and of the c
function very close to the true value.

To formulate the problem with precision, let us suppo
that the unknown stater~u! depends on a vector ofp un-
known real parametersu5(u1 ,...,up). For instance,u i
could correspond to various settings or physical propertie
the apparatus that produces the stater. After carrying out a
measurement on theN copies ofr, one will guess what isu.
Call ûN5( û1

N ,...,ûp
N) the guessed value. For a good estim
©2000 The American Physical Society12-1
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tion strategy we expect the mean quadratic error~MQE! to
decrease as 1/N:

Eu„~ û i
N2u i !~ û j

N2u j !…[Vi j
n ~u!.

Wi j ~u!

N
, ~1!

where the scaled MQE matrixW(u)5„Wi j (u)….NVN(u)
does not depend onN. Eu denotes the mean taken over re
etitions of the measurement with the value ofu fixed.

Consider now a smooth cost functionf ( û,u), which mea-
sures how much the estimated valueû differs from the true
value u of the parameter.f will have a minimum atû5u,
hence can be expanded as

f ~ û,u!5 f 0~u!1(
i j

Ci j ~u!~ û i2u i !~ û j2u j !1O~ i û2ui3!,

~2!

whereC(u)5„Ci j (u)… is a non-negative matrix. Thus for
reasonable estimation strategy the mean value of the
will decrease as

Eu„f ~ ûN,u!…5 f 0~u!1N21(
i j

Ci j ~u!Wi j ~u!1o~N21!

~3!

since we expect the expectation value of higher order te
in û2u to decrease faster than 1/N. The problem has be
come local: only the quadratic cost matrixC(u) and the
scaled mean quadratic error matrixW(u) at u intervene. The
essential question about state estimation for large ensem
is thereforewhat scaled MQE matrices W(u) are attainable
through arbitrary measurement and estimation procedur?
In particular, what does the boundary of this set of attaina
MQE matrices look like?

In the case when the parameteru is one dimensional (p
51), the problem has been solved: a bound on the varia
of unbiased estimators—the quantum Crame´r-Rao bound—
was given in Ref.@9#, and a strategy for attaining the boun
in the large-N limit was proposed in Ref.@15#. This justifies
taking the bound to induce a ‘distinguishability metric’ o
the space of states@13,14#. In the case of a multidimensiona
parameter, however, though different bounds for the ma
W have been established, in general they are not t
@9,16,10#.

In this paper we present a bound forW in the multiparam-
eter case which is inspired by the discussion in Ref.@15#.
This bound expresses in a natural way how one can tr
information about one parameter for information about
other. The interest of this new bound depends on the pre
problem one is considering:

~i! Whenr(u)5uc(u)&^c(u)u is a pure state belonging t
a two-dimensional Hilbert space, the bound is sharp: it p
vides a necessary and sufficient condition thatW must satisfy
in order to be attainable. Furthermore, the bound can be
tained by carrying out separate measurements on each
ticle. This completely solves the problem of estimating t
state of a large ensemble of spin-1

2 particles~qubits! in the
same pure state.
04231
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~ii !Whenr~u! is a pure state belonging to a Hilbert spa
of dimensiond larger than 2, then our bound onW applies,
but it is not sharp.

~iii ! When the unknown state is mixed and belongs to
two-dimensional Hilbert space, and if one restricts onesel
measurements that act separately on each particle, then
bound applies and is sharp.

~iv! When the unknown state is mixed and belongs to
Hilbert space of dimensiond.2, and if one restricts onese
to measurements that act separately on each particle, the
bound applies but is not sharp.

~v! If the unknown state is mixed and one allows colle
tive measurements, then our bound is not necessarily s
fied.

This last point is surprising, and points to a fundamen
difference between measuring pure states and mixed st
Indeed it is known that carrying out measurements on sev
identical copies of the same pure state can generally be d
better with collective measurements on the different cop
@17,11#. This is known as ‘‘nonlocality without entangle
ment’’ @18#. The first point shows that in the limit of a larg
number of copies, pure states of spin1

2 do not exhibit nonlo-
cality without entanglement. On the other hand, the last po
shows that in the limit of a large number of copies mix
states of spin1

2 continue to exhibit nonlocality without en
tanglement.

To describe our bound onW, we first consider for sim-
plicity the case of a pure state of spin-1

2 particles. Suppose
the unknown state is a spin12 known to be in a pure state, an
the state is known to be almost pointing in the1z direction:

uc~u1 ,u2!&.u↑z&1 1
2 ~u11 iu2!u↓z&, ~4!

where we have written an expression valid to first order
u1 ,u2 . Suppose we carry out a measurement of the oper
sx . We obtain the outcome6x with probability p(6x)
5(16u1)/2. Thus the outcome of this measurement tells
about the value ofu1 . Similarly we can carry out a measure
ment of sy . We obtain the outcome6y with probability
p(6y)5(16u2)/2. The outcome of this measurement te
us aboutu2 . But the measurementssx andsy are incompat-
ible, i.e., the operators do not commute and cannot be m
sured simultaneously. Thus if one obtains knowledge ab
u1 , it is at the expense ofu2 . Indeed suppose one hasN
copies of the statec and one measuressx on N1 copies and
sy on N25N2N1 copies. Our estimator foru1 is the frac-
tion of 1x outcomes minus the fraction of2x outcomes.
This estimator is unbiased. The resulting uncertainty~at the
point u15u250! about u1 is then Eu„( û12u1)2

…51/N1 .
Similarly we can estimateu2 and the corresponding unce
tainty is Eu„( û22u2)2

…51/N2 . We can combine these tw
expressions in the following relation:

1

Eu„~ û12u1!2
…

1
1

Eu„~ û22u2!2
…

5
1

V11
N

1
1

V22
N

5N, ~5!

which expresses in a compact form how we can trade kno
edge aboutu1 for knowledge aboutu2 . We shall show that it
2-2
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STATE ESTIMATION FOR LARGE ENSEMBLES PHYSICAL REVIEW A61 042312
is impossible to do better than precisely Eq.~5! when one
restricts attention to unbiased estimators based on arbi
measurements, and asymptotically not possible to do be
with any estimator whatsoever.

To generalize Eq.~5!, we rewrite it in a more abstrac
form, and state it as an inequality. We use polar coordina
to parametrize the unknown state of the spin-1

2 particle: uc&
5cos(h/2)u↑&1sin(h/2)eiwu↓&. We introduce the tensor

Hhh51, Hww5sin2h, Hhw50, ~6!

which is simply the Euclidean metric on the sphere. Th
bound~5! can be reexpressed as

tr H21~VN!21<N, ~7!

whereVN is the MQE matrix defined in Eq.~1!.
For mixed states belonging to a two-dimensional Hilb

space, Eq.~7! can be generalized as follows. Let us suppo
that the stater~u! depends on three unknown paramete
Then we can parametrize it byr(u)51/2(I 1S iu is i) where
I is the identity matrix,s i are the Pauli matrices, and th
three parametersu i obeyiui25S iu i

2<1. We now introduce
the tensor

Hi j ~u!5d i j 1
u iu j

12iui2 , ~8!

which generalizes tensor~6! to the case of mixed states
Then, upon restricting oneself to separable measurem
we will show that the MQE matrixVN must satisfy~exactly
for unbiased estimators, and otherwise asymptotically!

tr H~u!21VN~u!21<N. ~9!

As an application of these results, the minimum of t
cost function~3! in the case of spin-1

2 particles~for mixed
states restricting oneself to separable measurement! is

minEu„f ~ û,u!…5 f 0~u!1
„trAH~u!21/2C~u!H~u!21/2

…

2

N

1o~1/N! ~10!

which is obtained simply by minimizing Eq.~3! subject to
constraints~7! or ~9!.

We can compare Eq.~10! with the exact results which ar
known in the case of covariant measurements on pure s
of spin-12 particles@10,11#. In this problem one is givenN
spin-12 particles polarized along the directionV. V is uni-
formly distributed on the sphere. One wants to devise a m
surement and estimation strategy that minimize the m
value of the cost function cos2 v/2, wherev is the angle
between the estimated directionV̂ and the true directionV.
Expanding the cost function to second order inv ~to obtain
the quadratic cost matrixC!, and averaging Eq.~10! over the
sphere, one finds

E~cos2 v/2!>12
1

N
1oS 1

ND , ~11!
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which in the limit for largeN coincides with the results~ex-
act for all N! of Refs. @10,11#. If the directionsV are not
uniformly distributed, then Refs.@10,11# do not apply, but
Eq. ~10! stays valid. However, we cannot compare our
sults with the recent analysis of covariant measurements
mixed states@12# because we suppose separability of t
measurement, whereas Ref.@12# does not.

Equations~7! and ~9! have a simple generalization to th
case of particles belonging to higher-dimensional Hilb
spaces. But in these cases these bounds are no longer s

In order to appreciate the above results, we must re
some results from classical statistical inference. This is
subject of Sec. II.

II. CLASSICAL CRAME´ R-RAO BOUND

Consider a random variableX with a probability density
p(x,u). The connection with the quantum problem is that w
can view p(x,u) as the probability density that a quantu
measurement on the system yields an outcomex given that
the state wasr~u!. We take a random sample of sizeN from
the distribution, and use it to estimate the value of each
rameteru i . Call û i

N the estimated value. The following re
sults about the MQE matrix of the estimator are well know

~1! Suppose that the estimator is unbiased, that
Eu( ûN2u)50, whereEu is the expectation value at fixedu,
i.e., the integral*dxp(xuu). Define its MQE matrixVN(u)
by

Vi j
N~u!5Eu„~ û i

N2u i !~ û j
N2u j !…. ~12!

Furthermore define the Fisher information matrixI (u) by

I i j ~u!5Eu„]u i
ln p~Xuu!]u j

ln p~Xuu!…

5E dx
]u i

p~xuu!]u j
p~xuu!

p~xuu!
. ~13!

Then, for anyN, the following inequalities, known as th
Cramér-Rao inequalities, hold@19,9#:

VN~u!>I ~u!21/N, ~14!

or, equivalently,

VN~u!21>NI~u!, ~15!

the inequality meaning that the difference of the two side
a non-negative matrix.

~2! The hypothesis of unbiased estimators is very rest
tive since most estimators will be biased. Happily it is po
sible to relax this condition. Here are just two of the ma
results available.

~a! First of all, if one is interested in averaging the me
cost over possible values ofu with respect to a given prior
distribution l~u!, then there is a Bayesian version of th
Cramér-Rao inequality: the van Trees inequality@20,21#. In
the multivariate case, upon giving oneself a quadratic c
function determined by a matrixC(u), one can derive the
inequality
2-3
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RICHARD D. GILL AND SERGE MASSAR PHYSICAL REVIEW A61 042312
E dul~u!tr C~u!VN~u!>
E dul~u!tr C~u!I 21~u!

N
2

a

N2 ,

~16!

wherea is a positive number that depends onC(u), I (u),
andl~u!, but is independent ofN.

~b! The second approach makes no reference to any p
distribution for u, but only holds in the limitN tending to
infinity, and lays a mild restriction on the estimators cons
ered. Specifically, if the probability distribution ofAN( ûN

2u) converges uniformly inu toward a distribution depend
ing continuously onu, say of a random vectorZ, then the
limiting scaled MQE matrix W(u) defined by Wi j (u)
5Eu(ZiZj ) obeysW>I 21.

~3! Furthermore in the limit of arbitrarily large sample
one can attain the Crame´r-Rao bound. This is proven b
explicitly constructing an estimator that attains the bound
the extended senses~2a! ~apart from the 1/N2 term! or ~2b!
just indicated: the maximum likelihood estimator~MLE!.

Modern statistical theory contains many other results h
ing the same flavor as point~2! above, namely, that the
Cramér-Rao bound holds in an approximate sense for la
N, without the restriction to biased estimators. Result~2a!
applies to a larger class of estimators than~2b!, but only
gives a result on the average behavior over different va
of u. On the other hand combining results~3! and ~2b! tells
us that the maximum likelihood estimator is for largeN an
optimal estimator for each value ofu separately. The reaso
why in ~2b! additional regularity is demanded is because
the phenomenon of superefficiency~see Ref.@22# for a recent
discussion!, whereby an estimator can have mean quadr
error of smaller order than 1/N at isolated points. Modern
statistical theory~see again Refs.@22# or @23#! has concen-
trated on the more difficult problem of obtaining no
Bayesian results~i.e., pointwise rather than average! making
much use of the technical tool of ‘‘local asymptotic norma
ity.’’ A major challenge in the quantum case is to obtain
result of type~2b! when this technique is definitely not avai
able.

III. QUANTUM CRAME ´ R-RAO BOUND

In this paper we show that results similar to~1!, ~2a!, ~2b!,
and~3! can be obtained when one must estimate the stat
an unknown quantum systemr~u! of which one possessesN
copies. This problem is most simply addressed, follow
Ref. @14#, by decomposing it into a first~quantum! step in
which one carries out a measurement onrN5r ^¯^ r and
a second~classical! step in which one uses the result of th
measurement to estimate the value of the parametersu.

The most general way to describe the measurement i
a positive operator-valued measurement~POVM! M
5(M j), whose elements satisfyM j>0, SjM j5I . ~For sim-
plicity we take the outcomes of the POVM to be discre
The generalization to an arbitrary outcome space is ju
question of translating into measure-theoretic language.!

Quantum mechanics tells us the probability to obtain o
comej given stater~u!:
04231
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p~juu!5tr rN~u!M j . ~17!

From the outcomej of the measurement one must gue
what are the values of thep parametersu i . Call ûN the
estimated value of the parameter vector. We want to ob
bounds on the MQE matrixVN(u) of the estimatorûN when
the true parameter value isu; thus Vi j

N(u)5Eu( û i
N2u i)( û j

N

2u j ). To proceed we temporarily make the simplifying a
sumption that the estimators are unbiased,EuûN5u. Then
we can apply the classical Crame´r-Rao inequality to the
probability distributionp(juu) to obtain

VN>I N~M ,u!21 ~18!

or

~VN!21<I N~M ,u!, ~19!

where the Fisher information matrixI N for the measuremen
M is defined by

I i j
N~M ,u!5(

j

] i p~juu!] j p~juu!

p~juu!

5(
j

tr~r ,i
NM j!tr~r , j

NM j!

tr~M jr
N!

, ~20!

with r ,i
N5]u i

rN. These expressions suggest the followi
questions.

~1! Is there a simple bound for the MQEVN of unbiased
estimatorsûN, or equivalently for the Fisher information
I N(M ,u)?

~2! Is the bound also valid for sufficiently well behave
but possibly biased estimators—at least in the limit of lar
N?

~3! Can this bound be attained—at least in the limit of
large number of copiesN?

Most of the work on this subject has been devoted
answering the question~1!. We now recall what is known
about these questions.

Suppose first the parameteru is one dimensional,p51.
The symmetric logarithmic derivative~SLD! lu of r is the
Hermitian matrix defined implicitly by

r ,u5
lur1rlu

2
. ~21!

In a basis wherer is diagonal,r5Skpkuk&^ku, this can be
inverted to yield

~lu!kl5~r ,u!kl

2

pk1pl
. ~22!

Then we have the bound

I uu
N ~M ,u!<N tr rlulu . ~23!
2-4
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Furthermore it was suggested in Ref.@15# how to adapt the
classical MLE so as to attain, in the limit of largeN, the
bound~23!.

In the multiparameter case the bound based on the S
can be generalized in a natural way. Define the SLD alo
directionu i by

r ,i5
l ir1rl i

2
, ~24!

and Helstrom’s quantum information matrixH by

Hi j 5tr r
l il j1l jl i

2
. ~25!

@This is the same matrix that was introduced for spin-1
2 par-

ticles for a particular choice of parameters in Eqs.~6! and
~8!#. Then one can prove the bound@9#

I N~M ,u!<NH~u!. ~26!

@This can be deduced directly from Eq.~23!, as proven in
@14#. Indeed since Eq.~23! holds for each path in paramete
space, it implies the matrix equation~26!#.

However, this bound is in general not achievable. Anot
bound has been proposed based on an asymmetric loga
mic derivative~ALD ! @16# which in some cases is better tha
Eq. ~26!. Holevo @10# proposed yet another bound that
stronger than both the SLD and ALD bounds, but this bou
is not explicit: it requires a further minimization. As far a
we know no general achievable bound is known in the m
tiparameter case.

The difficulty in obtaining a simple bound in the multipa
rameter case is that there are many inequivalent way
which one can minimize the MQE matrixVi j

N . That is, in
order to build a good estimator one must make a choice
what one wants to estimate, and according to this choice
measurement strategy followed will be different. Hence
bound in the form of a matrix inequality like Eq.~26! cannot
be expected to be tight.

IV. RESULTS

In this paper we obtain answers to the three questi
raised above in the multiparameter case. Our results are s
marized in this section.

We first discuss point~1!, that is bounds on the Fishe
information. We shall show the following.

Theorem I: When r(u)5uc(u)&^c(u)u is a pure state,
then the Fisher informationI N(M ,u) defined in Eq.~20!
must satisfy the relation

tr H21~u!I N~M ,u!<~d21!N, ~27!

whereH21 is the inverse of the quantum information matr
defined in Eq.~25!, and d is the dimension of the Hilber
space to whichr~u! belongs. Note that inequality~27! is
invariant under change of parametrizationu→u8(u).

This result immediately gives an inequality for the me
quadratic error matrix ofunbiasedestimatorsûN by invoking
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the classical Crame´r-Rao inequality in order to replac
I N(M ,u) by the inverse of the MQEVN(u):

tr H21~u!@NVN~u!#21<d21. ~28!

Theorem II: Whenr~u! is a mixed state, and if the mea
surementM consists of separate measurements on each
ticle, then the Fisher information also satisfies Eq.~27!.
Hence for separable measurements on a mixed state
MQE matrix of an unbiased estimator satisfies Eq.~28!.

Theorem III (nonadditivity of optimal Fisher informa
tion): In the case of mixed states, it is in general possible
devise a collective measurement for which the Fisher inf
mation does not satisfy inequality~27!.

The second part of this paper consists of proving t
constraint~28! also holds for biased estimators under su
able additional conditions. We give two forms of this gene
alized form of Eq.~28! corresponding to the two forms~2a!
and~2b! of the generalized classical Crame´r-Rao inequality.

ConsiderN copies of a stater~u!. If r is pure we can
make either collective or separable measurements. Ifr is
mixed we restrict ourselves to separable measurem
@since theorem III shows that in this case collective measu
ments can beat Eq.~27!#. Based on the outcome of the me
surement we estimate the value of the parameter vectou.
Call û the estimator, and denote byVN5VN(u) its MQE
matrix when the true value of the parameter isu. We shall
prove the following generalization of result of type~2b! con-
cerning the behavior of the mean quadratic error matrix aN
tends to infinity.

Theorem IV: Suppose that the scaled MQENVN(u) has
the limit W(u) as N→`. Suppose that the convergence
uniform in u, and thatW is continuous at the pointu5u0.
Furthermore we suppose thatH and its derivatives are
bounded in a neighborhood of this point. Then we sh
prove in Sec. VI thatW(u0) must satisfy

tr H21~u0!W21~u0!<~d21!. ~29!

This result gives a bound on the mean value of a quadr
cost function C as N tends to infinity. Indeed, using a
Lagrange multiplier to impose condition~29!, the minimum
cost is readily found to be

lim
N→`

N tr C~u0!VN~u0!>„trAH21/2~u0!C~u0!H21/2~u0!…2.

~30!

In terms of a cost function, it is also possible to prove
Bayesian version of the Crame´r-Rao inequality which is the
analog of the classical result~2a!.

Theorem V: Suppose that one is given a quadratic c
function C(u) and a prior distributionl~u! for the param-
etersu. If C, l, andH are sufficiently smooth functions ofu
~the continuity of the first derivatives is sufficient!, while l is
zero outside a compact region with smooth boundary, th
2-5
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E du l~u!tr C~u!VN~u!>
1

N

3E du l~u!tr„AH21/2~u!C~u!H21/2~u!…22
a

N2

~31!

wherea is a constant independent ofN but which depends
on C, l andH.

Theorems I, II, IV, and V put bounds on the MQE matr
of an estimator of an unknown stater~u! ~for mixed states,
under the restriction that the measurement is separable!. The
third part of this paper is devoted to showing that in the c
of spin-12 systems (d52) these bounds can be attained. W
first show that at any pointu0 we can attain equality in Eq
~27!.

Theorem VI: Suppose one hasN spin-12 particles in an
unknown~possibly mixed! stater~u!. Fix any pointu0. Give
yourself a matrixG0 satisfying trH21(u0)G0<1. We call
G0 the target scaled information matrix. Then there exist
measurementM u0

~depending on the choice ofu0! acting on
each spin separately such thatI N(M u0

,u0)5NG0. This mea-
surement is described in detail in Sec. VII A.

For largeN we can also approximately attain equality
all pointsu simultaneously.

Theorem VII: Suppose one hasN spin-12 particles in an
unknown pure stateuc~u!&, or suppose that one hasN spin-
1
2 particles in an unknown mixed stater~u!. In the latter case
we also require that the state never be pure, i.e., trr(u)2

,1 for all u. Give oneself a smooth positive matrix functio
G(u) satisfying trH21(u)G(u)<1 for all u, the target
scaled information for each possible value ofu. Define the
corresponding target scaled MQE matrixW(u)5G(u)21.
Suppose thatW(u) is nonsingular@i.e., G(u) never has a
zero eigenvalue#. Then there exists a measurementM acting
on each spin separately, and a corresponding estimatoû,
whose MQE matrixVN(u) satisfies

VN~u!5
W~u!

N
1o~1/N! ~32!

for all values ofu simultaneously. For this estimation stra
egyAN( û2u) converges in distribution towardN(0,W), the
normal distribution with mean zero and covarianceW. The
measurementM and estimation strategy is described in det
in Sec. VII B.

It is interesting to note that the measurement strat
which satisfies Eq.~32! is an adaptive one. That is, one fir
carries out a measurement on a small fraction of the p
ticles. This gives a preliminary estimate of the quantum s
which allows a fine tuning of the measurements that are
ried out on the remaining particles. This is to be contras
with previously proposed state estimation strategies in
case of finite-dimensional Hilbert spaces@7,6# in which the
same measurement is carried out on all the particles.
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necessity of an adaptive measurement strategy if one w
to minimize the MQE was pointed out in Ref.@15#.

When the unknown state belongs to a Hilbert space
dimensiond.2, then bound~27! cannot be attained in gen
eral. Indeed we shall show in Sec. V F that ford.2, neither
Eq. ~26! nor ~27! implies the other.

V. NEW QUANTUM CRAME´ R-RAO INEQUALITY

In this section we prove theorems I, II, and III. That is, w
prove Eq.~27! for general measurements in the case of p
states and for separate measurements on each particle i
case of mixed states.

A. Preliminary results

The first step in proving Eq.~27! is to show that one can
restrict oneself to POVM’s whose elements are proportio
to one-dimensional projectors. Indeed, any POVM can
ways be refined to yield a POVM whose elements are p
portional to one-dimensional projectors. We call such a m
surement exhaustive. This yields a refined probability
distribution„p(j,u)…. It is well known that under such refin
ing of the probability distribution, the Fisher information ca
only increase@24#.

The second step in proving Eq.~27! consists of increasing
the number of parameters. Suppose thatr~u! depends onp
parametersu i , i 51,...,p. If r5uc(u)&^c(u)u is a pure state,
thenp<2d22 @sinceuc~u!& is normalized and defined up t
a phase#. If r is a mixed state, then Hermiticity and th
condition trr51 impose thatp<d221. Suppose thatp,v
is less than the maximum number of possible parame
(v52d22 or v5d221 according to whether the state
pure or mixed!. Then one can always increase the number
parameters up to the maximum. Indeed let us suppose th
the p parameters, one adds independent parametersu i 8 , i 8
5p11,...,v. We can now consider the quantum informatio
matrix H̃, and Fisher information matrixĨ , for the com-
pleted set of parameters. We shall show below that

tr H21~u!I N~M ,u!<tr H̃21~u! Ĩ N~M ,u!. ~33!

Therefore it will be sufficient to prove Eq.~27! in the case
when there arev parameters.

To prove Eq.~33!, fix a particular pointu0. At this point
we have the derivativer ,i and SLDl i of r for i 51,...,p.
Introduce a set of Hermitian matricesl i 8 with tr r(u0)l i 8
50, for i 85p11,...,v, such that

tr r~u0!
l il i 81l i 8l i

2
50, i 51,...,p, i 85p11,...,v.

~34!

This is always possible because we can view Eq.~34! as a
scalar product betweenl i andl i 8 , and a Gram-Schmidt or
thogonalization procedure will then yield the matricesl i 8 .
Now define matricesr ,i 8 by r ,i 85„r(u0)l i 81l i 8r(u0)…/2
and define additional parametersu i 8 satisfying, atu0: ]u i 8

r

5r, i 8 . The point of this construction is that because of E
2-6
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~34!, the quantum information matrixH̃ is block diagonal
with the first block equal toH. Let Ĩ (M ) be the Fisher in-
formation matrix for the enlarged set of parameters~but the
same measurement!. Then trH̃21 Ĩ (M )5tr(H̃21)11Ĩ 11(M )
1tr(H̃21)22Ĩ 22(M ), where the indices 11 and 22 denote t
blocks of these matrices corresponding to the original
new parameters. But both terms are non-negative since
matrices involved are nonnegative, and (H̃21)115H21, so
we obtain Eq.~33! at u0 and for the particular paramete
just introduced. But since the right-hand side of Eq.~33! is
invariant under reparametrization, it is true for any para
etrization, and at anyu.

B. Pure states

To proceed we shall consider a POVM whose eleme
are proportional to one-dimensional projectors, and explic
calculate the left-hand side of Eq.~27! in the case where the
number of parameters is the maximump52d22 in a basis
where H is diagonal. We fix a pointu0. At this point we
choose a basis such that

r~u0!5u1&^1u. ~35!

Hence the density matrix of theN copies is

rN5u1&^1u ^¯^ u1&^1u. ~36!

Consider now the 2d22 Hermitian operators

r ,k15u1&^ku1uk&^1u, 1,k<d,

r ,k25 i u1&^ku2 i uk&^1u, 1,k<d. ~37!

We choose a parametrization such that in the vicinity ofu0,
it has the formr5r(u0)1Sk,6(uk62uk6

0 )r ,k6 with the
unknown parametersuk6 ,k52,...,d. With this parametriza-
tion the derivatives ofrN are

r ,k6
N 5r ,k6 ^ r¯^ r1¯1r ^¯^ r ,k6 . ~38!

One then calculates the SLD ofr, and hence the quantum
information matrixH. One verifies that in this basisH is
diagonal:

Hk6,k86854dkk8d668 . ~39!

Consider any POVM whose elements are proportiona
one-dimensional projectors

M j5ucj&^cju, ucj&5 (
k151

d

¯ (
kN51

d

ajk1 ...kN
uk1 ...kN&.

~40!

The completeness relationSjM j5I takes the form

(
j

ajk1 ...kN
* ajk

18 ...k
N8
5dk1k

18
...dkNk

N8
. ~41!

To proceed we need the formulas
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tr r~u0!M j5uaj1...1u2 ~42!

and

tr r~u0! ,k1M j5 (
p51

N

~aj1...1* aj1...kp5k...11aj1...kp5k...1* aj1...1!,

~43!

and similarly for trr(u0),k2M j . Thus we obtain

„tr r~u0! ,k1M j…
21„tr r~u0! ,k2M j…

2

5 (
p51

N

4uaj1...1u2uaj1...kp5k...1u2. ~44!

Putting everything together yields

tr H21I ~M !5(
j

1

tr r~u0!M j

1

4 (
k52

d

(
6

„tr r~u0! ,k1M j…
2

1„tr r~u0! ,k2M j…
2

5 (
k52

d

(
p51

N

(
j

uaj1...kp5k...1u25N~d21!, ~45!

which proves that equality holds in Eq.~27! for arbitrary
exhaustive measurements in the case of pure states.

C. One mixed state

Deriving Eq. ~27! for mixed states is more complicate
than for pure states, and we shall proceed in two steps. F
we shall consider the case of one mixed state (N51), and
show that equality in Eq.~27! holds in this case for arbitrary
exhaustive measurements. Then we shall consider the ca
an arbitrary numberN of mixed states.

We first diagonalize r at a point u0: r(u0)
5Sk51

d pkuk&^ku. We now introduce the following complet
set of Hermitian traceless matrices:

r ,kl15uk&^ l u1u l &^ku, k, l .

r ,kl25 i uk&^ l u2 i u l &^ku, k, l , ~46!

r ,m5 (
k51

d

cmkuk&^ku, m51,...,d21,

where the coefficientscmk obey

(
k

cmk50,

~47!

(
k

1

pk
cm8kcmk5dm8m .

Let us denote the matricesr ,kl6 andr ,m collectively asr ,i .
@They constitute a set of generators of su(d)#.

We choose a parametrization such that in the vicinity
u0, it has the formr5r(u0)1S i(u i2u i

0)r ,i . One then cal-
2-7
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RICHARD D. GILL AND SERGE MASSAR PHYSICAL REVIEW A61 042312
culates the SLD ofr, and from this the quantum informatio
matrix H. One verifies that in this basisH is diagonal:

Hkl6,k8 l 8685
4

pk1pl
dkk8d l l 8d668 ,

Hkl6,m50, ~48!

Hm,m85dm8m .

Consider any POVM whose elements are proportiona
one dimensional projectors

M j5ucj&^jju,
~49!

ucj&5(
k

ajkuk&.

The left-hand side of Eq.~27! can now be written as

tr H21I ~M !5(
j

1

^cjurucj&
S (

k, l
(
6

pk1pl

4
^cjur ,kl6ucj&

2

1(
m

^cjur ,mucj&
2D . ~50!

Using the expressions

^cjur ,mucj&5(
k

uajku2cmk ,

~51!
^cjur ,kl1ucj&

21^cjur ,kl2ucj&
254uajku2uaj l u2,

one obtains

tr H21I ~M !5(
j

1

^cjurucj&
S (

k, l
~pk1pl !uajku2uaj l u2

1(
m

S (
k

uajku2cmkD 2D
5(

j

1

^cjurucj&
S (

kÞ l
pkuajku2uaj l u2

1(
k

(
l

uajku2uaj l u2(
m

cmkcmlD . ~52!

We now use the relation

(
m

cmkcml5dklpk2pkpl , ~53!

which is derived from Eq.~47! as follows: definevmk

5cmk /Apk(m51,...,d21) andvdk5Apk. Then Eq.~47! can
be rewritten asSkvmkvm8k5dmm8 . The vectorsvmk there-
fore are a complete orthonormal basis ofRd; hence they
obeySmvmkvmk85dkk8 . Reexpressing in terms ofcmk yields
Eq. ~53!. Inserting this into Eq.~52!, we obtain
04231
o

tr H21I ~M !5(
j

1

^cjurucj&

3S (
k

(
l

pk~12pl !uajku2uaj l u2D
5(

k
~12pk!(

j
uajku2

5(
j

tr~ I 2r!M j5d21, ~54!

as announced.
Note that this has demonstrated that equality holds in

~27! wheneverN51, p5d221, and the POVM is exhaus
tive. It follows from the classical properties of the Fish
information that equality also holds for arbitraryN whenever
the POVM can be considered as a sequence ofN separate
exhaustive measurements on each copy of the system. It
holds if thenth measurement is chosen at random depend
on the outcomes of the previous measurements.

D. Separable measurements onN mixed states

We shall now prove that if we possessN identical mixed
states of spin-12 particles, and carry out separable measu
ments, then

tr H21I ~M !<N~d21!. ~55!

We recall that a separable measurement is one that ca
carried out sequentially on separate particles, where the m
surement on one particle at any stage~and indeed which
particle to measure: one is allowed to measure particles
eral times! can depend arbitrarily on the outcomes so far; s
Ref. @17# for a discussion. It is therefore more general th
the case considered at the end of Sec. V C, where the m
surement on thenth particle could only depend on the me
surements carried out on then21 previous particles.

If a POVM is separable, then its elementsM j can be
decomposed into a sum of terms proportional to project
onto unentangled states:

M j5(
i

ucj i&^cj i u,

~56!

ucj i&5ucj i
1 & ^ ...^ ucj i

N &.

We call measurements having such a representationnonen-
tangled. ~Note that there exist nonentangled POVM’s whi
are not separable@18#.!

By refining a separable measurement~which increases the
Fisher information!, one can restrict oneself to measureme
whose POVM elements are proportional to projectors o
product states:

M j5ucj&^cju5ucj
1&^cj

1u ^¯^ ucj
N&^cj

Nu . ~57!
2-8
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We now evaluate the left-hand side of Eq.~55! for mea-
surements of form~57!. First recall that theN unknown
states have the form

rN5r ^ ...^ r5 (
k151

d

¯ (
kN51

d

pk1
...pkN

uk1 ...kN&^k1 ...kNu,

~58!

and the derivatives ofrN have the form

r ,i
N5r ,i ^ r¯^ r1¯1r ^¯^ r ,i5 (

p51

N

r ^¯r ,i¯^ r,

~59!

where in the second rewriting it is understood thatr ,i is at
the pth position in the product.

Using the product form of measurement~57!, one finds
that

^cjurNucj&5^cj
1urucj

1&¯^cj
Nurucj

N&,
~60!

^cjur ,i
Nucj&5 (

p51

N

^cj
1urucj

1&¯^cj
pur ,i ucj

p&¯^cj
Nurucj

N&.

Inserting these expressions into the Fisher information
trix, one finds

I i j ~M !5(
j

^cjur ,i
Nucj&^cjur , j

Nucj&

^cjurNucj&

5(
j

(
pÞp8

^cj
1urucj

1&¯^cj
pur ,i ucj

p&...

3^cj
p8ur , j ucj

p8&¯^cj
Nurucj

N&

1(
j

(
p

^cj
1urucj

1&¯
^cj

pur ,i ucj
p&^cj

pur , j ucj
p&

^cj
purucj

p&
¯

3^cj
Nurucj

N&

5(
j

(
p

^cj
1urucj

1&¯
^cj

pur ,i ucj
p&^cj

pur , j ucj
p&

^cj
purucj

p&
¯

3^cj
Nurucj

N&, ~61!

where we have used the fact that the first term in the sec
equality vanishes. Indeed it is equal to

(
j

(
pÞp8

^cjur ^¯^ r ,i ^¯^ r , j ^¯^ rucj&. ~62!

The sum overj can be carried out in Eq.~62! to yield the
identity matrix, and the resulting trace vanishes beca
tr r ^¯^ r ,i ^¯^ r , j ^¯^ r50.

We now insert Eq.~61! into trH21I (M ). All the opera-
tions from Eqs.~50!–~54! can be carried out exactly as i
Sec. V C, and one arrives at the expression
04231
a-

nd

e

tr H21I ~M !5(
p

(
j

^cjur ^¯^ ~ I 2r! ^¯^ rucj&

5N~d21!, ~63!

which is the sought for relation.

E. Inequality for more than one mixed state

We now provide a counterexample showing that if o
carries out a collective measurement onN.1 mixed states
one can violate Eq.~27!. We takeN52, and suppose the
unknown states belong to a two-dimensional Hilbert spa
r(u)5 1

2 (I 1S iu is i) . We take as reference pointu i50 cor-
responding tor5 1

2 I . At this pointHi j (u i50)5d i j .
We consider as measurement on the two copies the

lowing POVM:

M5$ 1
2 u↑x↑x&^↑x↑xu,

1
2 u↓x↓x&^↓x↓xu,

1
2 u↑y↑y&^↑y↑yu,

1
2 u↓y↓y&^↓y↓yu,

1
2 u↑z↑z&^↑z↑zu,

1
2 u↓z↓z&^↓z↓zu,

1
2 u↑z↓z2↓z↑z&^↑z↓z2↓z↑zu%. ~64!

This POVM cannot be realized by separate measurement
each particle, since the last term projects onto an entan
state.

For this POVM one calculates thatI i j (M ,u i50)5d i j .
Hence the left-hand side of Eq.~27! evaluates to
S i j Hi j

21(u i50)I i j (M ,u i50)53.N(d21)52. This shows
that the optimal Fisher information is nonadditive.

F. Comparison with other quantum Cramér-Rao bounds

An important question raised by bound~27! is how it
compares to other quantum Crame´r-Rao bounds obtained in
the literature. In this respect, our most important result is t
Eq. ~27! is both a necessary and sufficient condition th
I (M ,u) must satisfy when the dimensionality of the systemd
equals 2 and the state is pure. This will be proven and
cussed in detail in Sec. VII.

When d.2, Eq. ~27! is not a sufficient condition tha
I (M ,u) must satisfy. To see this let us compare Eq.~27!
with the bound derived by Helstrom based on the SLD. T
bound is the matrix inequalityI N(M ,u)<NH(u); see Eq.
~26!. The comparison is most easily carried out by defini
the matrixF5(1/N)H21/2I NH21/25S i 51

p g i f i ^ f i , whereg i

are the eigenvalues ofF and f i its eigenvectors. Helstrom’s
bound can be reexpressed asg i<1 for all i, whereas bound
~27! states thatS ig i<d21. From these expressions it resu
that the bound~27! is better than Helstrom’s bound ford
52. Ford.2 andp<d21, Helstrom’s bound is better tha
Eq. ~27! as is seen by summing the inequalitiesg i<1 to
obtainS ig i<p. For p.d21, neither Helstrom’s bound no
bound~27! are better than the other.

Yuen and Lax@16# proposed another matrix bound bas
on an asymmetric logarithmic derivative. This bound
known to be worse than the bound based on the SLD in
case of one parameter, but it can be better, for some
functions, in the case of two or more parameters. We h
2-9
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RICHARD D. GILL AND SERGE MASSAR PHYSICAL REVIEW A61 042312
however not been able to make a detailed comparison
tween the bound based on the ALD and Eq.~27!.

Although whend.2, bound~27! is not a sufficient con-
dition it can be complemented by additional constrai
based on partial traces ofH21I N(M ,u) which we now ex-
hibit. Consider a subseti 51,...,p8(p8,p) of the parameters
Let r ,i 8 be the corresponding derivatives ofr~u!. Let us de-
fine the effective dimensiond8 of the space in which thes
parameters act at the pointu0 as follows. LetP be a projec-
tor that commutes withr(u0) „@P,r(u0)#50… and such that
r ,i 8 , i 851,...,p8 acts only within the eigenspace ofP ~that
is, Pr ,i 8P5r ,i 8!. Thend8 is the smallest dimension of th
eigenspace of such a projectorP (d85tr P). To be more
explicit, let us reexpress the definition ofd8 in coordinates.
First we diagonalizer(u0)5Skpkuk&^ku. If some pk are
equal this can be done in many ways. The projectorP
projects onto some of the eigenvectors ofr: P

5Sk51
d8 uk&^ku. Next we write the operatorsr ,i 8 in this basis:

r ,i 85Sk,l 51
d8 (r ,i 8)kluk&^ l u, where the fact that the indicesk, l

go from one tod8 expresses the fact thatr ,i 8 acts only within
the eigenspace ofP. Finally we choose the smallest suchd8.

We will show that

(
i 8, j 851

p8

Hi 8 j 8
21 I i 8 j 8

N
~M ,u0!<N~d821!. ~65!

Before proving this result let us illustrate it by an e
ample. Consider an unknown pure state ind dimensions. In
the neighborhood of a particular point we can paramet
the state by

c5u1&1~u21 ih2!u2&1¯1~ud1 ihd!ud&, ~66!

where the unknown parameters areu i and h i , i 52,...,d.
There are thus 2d22 parameters. At the pointu5h50, H is
diagonal in this parametrization:Hu iu j

5d i j , Hh ih j
5d i j , and

Hu ih j
50. Hence Eq.~27! takes the form

(
i

I u,u
N ~M ,u5h50!1I h ih i

N ~M ,u5h50!<N~d21!.

~67!

But using Eq.~65! we also find the constraints

I u iu i

n ~M ,u5h50!1I h ih i

N ~M ,u5h50!<N, i 52,...,d

~68!

which are stronger than Eq.~67! since they must hold sepa
rately, but by summing them one obtains Eq.~67!.

The proof of Eq.~65! proceeds as in Sec. V. First w
restrict ourselves to POVM’s whose elements are prop
tional to one dimensional projectors. Second we restrict o
selves to the subspaceP in evaluating Eq.~65!. This follows
from the inequality
04231
e-

s

e

r-
r-

I ~M ! i 8 j 85(
j

tr~r ,i 8M j!tr~r , j 8M j!

tr~rM j!

5(
j

tr~r ,i 8PM jP!tr~r , j 8PM jP!

tr~rPM jP!1tr„r~12P!M j~12P!…

<(
j

tr~r ,i 8PM jP!tr~r , j 8PM jP!

tr~rPM jP!
. ~69!

Note that equality in Eq.~69! holds when the measureme
consists of one-dimensional projectors and when the PO
decomposes into the sum of two POVM’s acting on the s
spaces spanned byP and 12P separately~i.e., the POVM
elementsM j5ucj&^cju must commute withP and 12P!.
Third, we can increase the number of parameters fromp8 to
d8221. We then introduce exactly as in Eq.~46! a param-
etrization in which ther ,i are particularly simple, but in
place of Eq.~53! we use

(
1<m8<d8

cm8k8cm8 l 85dk8 l 8pk82
pk8pl 8
tr~Pr!

. ~70!

After these preliminary steps the left-hand side of Eq.~65! is
calculated exactly as in Secs. V B, V C, and V D.

VI. DROPPING THE CONDITION OF UNBIASED
ESTIMATORS

A. Quantum van Trees inequality

In Sec. V we proved a bound on the MQE of unbias
estimatorsûN of N copies of the quantum systemr(u) ~with
the additional condition that ifr is mixed, the measuremen
should be separable!. In this section we shall prove theorem
IV and V, that under additional conditions it is possible
drop the hypothesis that the estimator is unbiased.

The starting point for the results in this section is a Bay
sian form of the Crame´r-Rao inequality, the van Trees in
equality @20#, and in particular the multivariate form of th
van Trees inequality proven in Ref.@21#. Adapted to the
problem of estimating a quantum state, this inequality ta
the following form. LetûN be an arbitrary estimator of th
parameteru based on a measurementM of the systemrN(u).
Suppose it has MQE matrixVN(u), and Fisher information
matrix I N(M ,u). Let l~u! be a smooth density supported o
a compact region~with smooth boundary! of the parameter
space, and supposel vanishes on the boundary. ByEl we
denote expectation over a random parameter valueQ with
the probability densityl~u!. Let C(u) and D(u) be two p
3p matrix valued functions ofu, the former being symmet
ric and positive definite. Then the multivariate van Tre
inequality reads

Eltr C~Q!VN~Q!

>
„Eltr D~Q!…2

Eltr C~Q!21D~Q!I N~M ,Q!D~Q!T1Ĩ~l!
,

~71!
2-10
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whereT denotes the transpose of the matrix, and

Ĩ~l!5E du
1

l~u! (i jkl
Ci j ~u!21]uk

$Dik~u!l~u!%]u l

3$D jl ~u!l~u!%. ~72!

As a first application of this inequality we shall prov
theorem V, that is bound the minimum value averaged ovu
of a quadratic cost function. LetC(u) be the quadratic cos
function. Consider the matrixWopt(u) that minimizes for
each value ofu the cost trC(u)W(u) under the condition
that trH(u)21W(u)21<d21. One easily finds that

Wopt5
trAH21/2CH21/2

d21
H21/2AH1/2C21H1/2H21/2, ~73!

5
trAC1/2H21C1/2

d21
C21/2AC1/2H21C1/2C21/2, ~74!

and that

tr CWopt5
~ trAH21/2CH21/2!2

d21
5

~ trAC1/2H21C1/2!2

d21
.

~75!

In Eq. ~71! we chooseD(u)5C(u)Wopt(u). Thus trD(u)
5tr C(u)Wopt(u) is given by Eq.~75!. Note that

D~u!TC~u!21D~u!5Wopt~u!C~u!Wopt~u!

5
tr C~u!Wopt~u!

d21
H~u!21. ~76!

Thus

tr D~u!TC~u!21D~u!I N~M ,u!

5
tr C~u!Wopt~u!

d21
tr H~u!21I N~M ,u!

<N tr C~u!Wopt~u!. ~77!

Inserting these expressions into Eq.~71!, one obtains

Eltr C~Q!VN~Q!>
~Eltr C~Q!Wopt~Q!!2

NEltr C~Q!Wopt1Ĩ~l!

>
Eltr C~Q!Wopt~Q!2

N
2

a

N2
~78!

where

a5
Ĩ~l!

Eltr C~Q!Wopt~Q!
~79!

is independent ofN. This proves that upon averaging overu
it is impossible~for largeN! to improve over the minimum
cost @Eq. ~30!#.
04231
B. Asymptotic version of the Cramér-Rao inequality

We now prove theorem IV, that is an asymptotic versi
of our main inequality~28! which is valid at every pointu
and does not make the assumption of unbiased estima
We must, however, slightly restrict the class of compet
estimators since otherwise by the phenomenon of super
ciency we can beat a given estimator at any specific valu
the parameter, though we pay for this by bad behavior clo
and closer to the chosen value asN becomes larger.

The restriction on the class of estimators is thatN times
their mean quadratic error matrix must converge uniform
in a neighborhood of the true valueu0 of u to a limit W(u),
continuous atu0. We assume that bothW(u0) andH(u0) are
nonsingular. Furthermore, we shall require some m
smoothness conditions onH(u) in a neighborhood ofu0: it
must be continuous atu0 with bounded partial derivatives
with respect to the parameter in a neighborhood ofu0. Note
that imposing regularity conditions onH is natural since it
corresponds to supposing that theu i smoothly parametrize
the allowed density matrices.

Suppose that, asN→`,

NVN~u!→W~u!

uniformly in u in a neighborhood ofu0, with W continuous
at u0; write W05W(u0). Now in Eq. ~71! let us make the
following choices for the matrix functionsC andD:

C~u!5W021
H21~u!W021

,

D~u!5W021
H21~u!.

Then Eq.~71! ~multiplied throughout byN! and~72! become

Eltr W021
H21~Q!W021

NVN~Q!

>
„Eltr W021

H21~Q!…2

1

N
Eltr H21I N~M ,Q!1

1

N
Ĩ~l!

>
„Eltr W021

H21~Q!…2

~d21!1
1

N
Ĩ~l!

~80!

and

Ĩ~l!5E du
1

l~u! (i jkl
Hi j ~u!]uk

$Hik
21~u!l~u!%

3]u l
$H jl

21~u!l~u!%, ~81!

where we have used our central inequality~27! to pass to Eq.
~80!. Now suppose that quantity~81! is finite ~we will give
conditions for that in a moment!. By the assumed uniform
convergence ofNVN to W, upon lettingN→`, Eq. ~80!
becomes
2-11
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Eltr W021
H21~Q!W021

W~Q!>
„Eltr W021

H21~Q!…2

~d21!
.

~82!

Now suppose the densityl in this equation~the probability
density ofQ! is replaced by an elementlm in a sequence o
densities, concentrating on smaller and smaller neighb
hoods ofu0 as m→`. Assume thatH(u) is continuous at
u0. Recall our earlier assumption thatW(u) is also continu-
ous at u0, with W05W(u0). Then taking the limit asm
→` of Eq. ~82! yields

tr W21~u0!H21~u0!>„tr W21~u0!H21~u0!…2/~d21!.

or the required limiting form of Eq.~27!:

tr W21~u0!H21~u0!<~d21!.

It remains to discuss whether it was reasonable to ass
that Ĩ(lm) is finite ~for eachm separately!. Note that this
quantity only depends on the prior densityl and onH(u),
where l is one of a sequence of densities supported
smaller and smaller neighborhoods ofu0. We already as-
sumed thatH(u) was continuous atu0. It is certainly pos-
sible to specify prior densitieslm concentrating on the bal
of radius 1/m, say, satisfying the smoothness assumption
Ref. @21# and with, for eachm, finite Fisher information ma-
trix

E du
1

lm~u!
]uk

$lm~u!%]u l
$lm~u!%.

Consideration of Eq.~81! then shows that it suffices furthe
just to assume that]uk

$Hik
21(u)% is, for eachi andk, bounded

in a neighborhood ofu0.
In conclusion we have shown that under mild smoothn

conditions onH(u), the limiting mean quadratic error matri
W of a sufficiently regular but otherwise arbitrary sequen
of estimators must satisfy the asymptotic version of our c
tral inequality trH21W21<d21.

VII. ATTAINING THE CRAME ´ R-RAO BOUND IN TWO
DIMENSIONS

We shall now show that bounds~27!, ~29!, and ~31! are
sharp in the case of pure states of spin-1

2 systems, and of
separable measurements in the case of mixed states of
1
2 systems. In particular, in the limit of a large number
copies N any target scaled MQE matrixW that satisfies
tr H21W21<1 can be attained~providedW is nonsingular!.
We shall show this by explicitly constructing a measurem
strategy that attains the bound. In Sec. VI we have alre
shown that if trH21W21.1, then it cannot be attained.

A. Attaining the bound at a fixed point u0

The first step in the proof is to consider the case of o
copy of the unknown state (N51) and fix a particular point
u0. Then we show that for any target information matr
04231
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G(u0) that satisfies trH21(u0)G(u0)<1, we can build a

measurementM5M u0
, in general depending onu0, such

that I (M u0
,u0)5G(u0). In the next sections we shall sho

how to use this intermediate result to build a measurem
and estimation strategy whose asymptotic MQE is equa
W(u)5G(u)21 for all u.

Let us first consider the case of pure states. Atu0, the
state isuc0&. We introduce a parametrizationu1 ,u2 such that
in the vicinity of uc0&, the unknown state is

uc~u!&5uc0&1~u11 iu2!uc1&. ~83!

Thus the original pointu0 corresponds to the newu15u2
50. In this parametrization,H is proportional to the identity
at u15u250: Hu1u1

(0)5Hu2u2
(0)51, Hu1u2

(0)50.
We now diagonalize the matrixG. Thus there exist new

parametersu185coslu11sinlu2 andu2852sinlu11coslu2

such that Gu
18u

18
(0)5g1>0, Gu

28u
28
(0)5g2>0, and

Gu
18u

28
(0)50.

In terms of the parametersu18 andu28 , the unknown state
is written

uc0&5uc0&1~u181 iu28!uc18&, ~84!

whereuc18&5eiluc1&.
The POVM M u0

consists of measuring the observab
uc0&^c18u1uc18&^c0u with probability g1 , of measuring the
observable i (uc0&^c18u2uc18&^c0u) with probability g2 ,
and of measuring nothing~or measuring the identity! with
probability 12g12g2 . It is straightforward to verify that the
Fisher information atu0 in a measurement of the POVM
M u0

is equal toG(u0).
Let us now turn to the case of mixed states. We supp

that there are three unknown parameters. We use a pa
etrization in which r(u)5(1/2)(I 1u•s), with iui,1.
Without loss of generality we can suppose thatu0

5(0,0,n), so thatr(u0)5(1/21n/2)u1&^1u1(1/22n/2)u2&
3^2u51/2(I 1nsz). The tangent space atr is spanned by
the Pauli matricesr ,x5sx(5r ,121/2), r ,y5sy(5r ,122/2),
andr ,z5sz(5r ,1A12n2), where in parentheses we give th
relation to the basis used in Sec. V C. In this coordin
systemH(u0) is diagonal with eigenvalues 1, 1, 1/(12n2).

Take any symmetric positive matrixG satisfying
tr GH21(u0)<1. Define the matrix F5H21/2GH21/2

5S ig i f i ^ f i , whereg i and f i are the eigenvalues and eige
vectors of F. The condition trGH21(u0)<1 can then be
rewritten S ig i<1. If we define gi5H1/2f i , then we can
write G5S ig igi ^ gi . Denotemi5gi /igi i .

Consider the measurement of the spin along the direc
mi . This is the POVM consisting of the two projecto
P1mi

51/2(I 1mi•s) and P2mi
51/2(I 2mi•s). The infor-

mation matrix for this measurement is

I ~P6mi
!kl5(

6

tr~P6mi
sk!tr~P6m ,s l !

tr~P6mr!
5

~mi !k~mi ! l

„12n2~mi !z
2
…

~85!
2-12
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where (mi)k is componentk of vector mi . Therefore this
information matrix is proportional togi ^ gi . One verifies
that it obeys trH21I (P6mi

)51, as it must by our findings in

Sec. V since the measurement is exhaustive,N51, and p
5d221. Therefore, the coefficient of proportionality is
and

I ~P6mi
!5gi ^ gi . ~86!

We now combine such POVM’s to obtain the POV
whose element are

g1P1m1
, g1P2m1

, g2P1m2
, g2P2m2

,

~87!
g3P1m3

, g3P2m3
, ~12g12g22g3!.

The information matrix for this measurement is just t
sum g1I (P6m1

) 1 g2I (P6m2
) 1 g3I (P6m3

) 5 S ig igi ^ gi

5G. Thus POVM~87! attains the target informationG at the
point u0.

B. Attaining the bound for every u and arbitrary N by
separable measurements

We now prove theorem VII, that states that in the case
spin half particles we can attain bound~29! for everyu. Give
yourself a continuous matrixW(u), the target-scaled MQE
matrix, satisfying Eq. ~29! for every u. Define G(u)
5W(u)21, the target-scaled information matrix, whic
therefore satisfies Eq.~27!. We will show that there exists a
separable measurement and an estimation strategy onN cop-
ies of the stater~u! such that the MQE matrixVN of the
estimator satisfies

VN~u! i j 5Eu~„û i2u i !~ û j2u j !…5
Wi j ~u!

N
1oS 1

ND ~88!

for all u. In fact this holds uniformly inu in a sufficiently
small neighborhood of any given point. This is proven
constructing explicitly a measurement and estimation st
egy that satisfies Eq.~88!, following the lines of Ref.@15#.

The measurement and estimation strategy we propos
the following: first take a fractionN05O(Na) of the states,
for some fixed 0,a,1, and on one-third of them measu
sx , on one-thirdsy and on one-thirdsz . From each mea-
surement ofsx one obtains the outcome61 with probabili-
ties 1/2(16ux), and similarly forsy and sz . Using these
data we make a first estimate ofu, call it ũ, for instance by
equating the observed relative frequencies of61 in the three
kinds of measurement to their theoretical values. If the s
is pure this determines a first estimate of the direction
polarization. If the state is mixed it is possible that the init
estimate suggests that the Bloch vector lies outside the
sphere. This only occurs with exponentially small probabil
~in N0!, and if this is the case the measurement is discard
As discussed below this only affects the mean quadratic e
by o(1/N).

On the remainingN85N2N0 states we carry out the

measurementM5M ũ such thatI (M ũ,ũ)5G( ũ), which we
04231
f

t-
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te
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have just shown how to construct. Note thatI (M ũ,u)
5G(u) is only guaranteed whenu is precisely equal toũ.
Write I (M ,u; ũ) for the Fisher information aboutu, based on

the measurementM ũ, optimal atũ, while the true value of

the parameter is actuallyu, based on the measurementM ũ

optimal atũ, while the true value of the parameter is actua
u. Given ũ, each of theN8 second stage measurements re
resents one draw from the probability distributionp(juu; ũ)

5tr M j
ũr(u). We use the classical MLE based on this da

only ~with ũ fixed at its observed value! to estimate what is
the value ofu. Call this estimated valueû.

Let e.0 be fixed, arbitrarily small. Letu0 denote the true
value of u. For givend.0 let B(u0,d) denote the ball of
radiusd aboutu0. Fix a convenient matrixi•i. We have the
exponential bound

Pr$ũPB~u0,d!%>12Ce2DN0d2
~89!

for some positive numbersC and D ~depending ond!. The
reason we takeN0 proportional toNa for some 0,a,1 is
that this ensures that 12Ce2DN05o(1/N).

Modern results@23# on the MLE û state that, under cer
tain regularity conditions, the conditional MQE matrix ofû

satisfies~at u5u0, and conditional onũ!

VN8~u0; ũ !5
I ~M ,u0; ũ !21

N8
1oS 1

N8D ~90!

uniformly in u0. However, for the next step in our argume
this same result must be true uniformly inũ for given u0.
This could be verified by careful reworking of the proof
Ref. @23#. Rather than doing this, in Secs. VII C and VII D
we will explicitly calculate the conditional MQE matrix o
our estimator, and show that it satisfies Eq.~90! uniformly in
ũ in a small enough neighborhoodB(u0,d) of u0. The ‘‘little
o’’ in Eq. ~90! refers to the chosen matrix norm.

We will also need thatI (M ,u0; ũ)21 is continuous inũ at
ũ5u0, at which point by our construction it is equal to th
target-scaled MQEW(u0). This is also established in Se
VII C. Therefore, replacing if necessaryd by a smaller value,
we can guarantee thatI (M ,u0; ũ)21 is within e of
I (M ,u0;u0)215W(u0) for all ũPB(u0,d). If ũ is outside
the domainB(u0,d), then the norm ofVN8(u0; ũ) is bounded
by a constantA sinceu belongs to a compact domain.

Putting everything together, we find that

iN8VN~u0!2W~u0!i5 I E ~N8VN8~u0; ũ !2W~u0!!dP~ ũ !I
<E

B~u0,d!
iN8VN8~u0; ũ !

2W~u0!idP~ ũ !1AN8C8e2DN0
2-13
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5E
B~u0,d!

i I ~M ,u0; ũ !211o~1!

2W~u0!idP~ ũ !1o~1!

<e1o~1!1o~1!.

It follows sinceN8/N→1 asN→` that

lim sup
N→`

iNVN~u0!2W~u0!i<e.

Sincee was arbitrary, we obtain Eq.~88!.

C. Analysis of the conditional mean quadratic error

We first consider the case of impure states, with the
rametrization

r5
1

2
~ I 1u•s! with ( ~u i !

2,1, ~91!

where we have imposed that the state is never pure. This
turns out to allow the most explicit and straightforwa
analysis because the relation between the frequency of
outcomes and the parametersu is linear. For other cases th
analysis is more delicate, and is discussed in Sec. VII D
general, smoothness assumptions will have to be mad
the parametrizationr5r(u).

We suppose thatW(u) is nonsingular and continuous i
u. Consequentlyg i ~defined in Sec. VII A! depend continu-
ously onu, and are all strictly positive at the true valueu0 of
u.

Given the initial estimate, the second state measurem
can be implemented as follows: for each of theN85N
2N0 observations, independently of one another, with pr
ability g i , measure the projectorsP6mi

, in other words,

measure the spin observablemi•s. With probability 1
2Sg i , do nothing.

We emphasize thatg i and mi all depend on the initial
estimateũ through W( ũ) and H( ũ). In the following, all
probability calculations are conditional on a given value
ũ.

For simplicity we will modify the procedure in the fol
lowing two ways: first, rather than taking a random numb
of each of the three types of measurements, we will take
fixed ~expected! numbers@g iN8# ~and neglect the differenc
between@g iN8# andg iN8] !. Second, we will ignore the con
straint S(u i)

2<1. These two modifications make the max
mum likelihood estimator easier to analyze, but do n
change its asymptotic MQE. Later we will sketch how
extend the calculations to the originalconstrainedmaximum
likelihood estimator based onrandomnumbers of measure
ments of each observable.

Now measuringmi•s produces the values61 with prob-
abilities p6 i5

1
2 (16u•mi). Since our data consist of thre

binomially distributed counts and we have three parame
u1 , u2 , andu3 , the maximum likelihood estimator can b
described, using the invariance of maximum likelihood e
mators under 121 reparametrization, as follows: set the th
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oretical valuesp6 i equal to their empirical counterpart
~relative frequencies of61 in the g iN8 observations of the
i th spin! and solve the resulting three equations in three
knowns.

To be explicit, defineh i52p1 i215u•mi , and letĥ i be
its empirical counterpart. Recall thatmi5gi /igi i and gi
5H1/2f i , where f i are the orthonormal eigenvectors
H21/2GH21/2, and whereH andG areH( ũ), G( ũ), andũ is
the preliminary estimate ofu. Then we can rewrite

h i5u•mi5u•gi /igi i

5u•H1/2f i /iH1/2f i i5~H1/2u!• f i /iH1/2f i i ,

from which we obtain

~H1/2u!• f i5iH1/2f i ih i

and hence

u5H21/2(
i

iH1/2f i ih i f i .

The same relation holds betweenû and ĥ and yields the
sought for expression forû in terms of the empirical relative
frequencies.

Observing that ĥ i are independent with varianc
4p1mi

p2mi
/(g iN8)5„12(umi)

2
…/(g iN8), the MQE matrix

of û, conditional on the preliminary estimateũ, is

VN8~u0; ũ !5
1

N8 (i

1

g i
S 12

~u0
•H1/2f i !

2

iH1/2f i i2 D iH1/2f i i2

3H21/2~ f i ^ f i !H
21/2. ~92!

There is noo(1/N8) term here, so we do not have to che
uniform convergence: the limiting value is attained exact
Actually we cheated by replacingbg iN8c by g iN8. This does
introduce ao(1/N8) error into Eq.~92! uniformly in a neigh-
borhood ofu0 in which g i , which depend onũ, are bounded
away from zero, andH and its inverse are bounded.

One may verify that Eq.~92! reduces toW(u0)/N8 at ũ

5u0 @indeed atu05 ũ, (ũ•H1/2f i)
25@n2f iz

2 /(12n2)# and
iH1/2f i i25(12n21n2f iz

2 )/(12n2)…. But this computation
is really superfluous since, at this point, we are comput
the MQE of the maximum likelihood estimator based on
measurement with, by our construction, Fisher informat
equal to the inverse ofW(u0). ~The modifications to our
procedure do not alter the Fisher information!. The two
quantities must be equal by the classical large sample re
for the maximum likelihood estimator.

We finally need to show the continuity inũ at ũ5u0 of
N8 times the quantity in Eq.~92!. This is evident ifg i are all
different at u0. Both the eigenvalues and eigenvectors
H21/2GH21/2 are then continuous functions ofũ at u0. How-
ever, there is a potential difficulty if someg i are equal to one
another atũ5u0. In this case, the eigenvectorsf i are not
continuous functions ofũ at this point, and not even
uniquely defined there. We argue as follows that this d
2-14



on

ot
un
en
ibl
e

e
s

r
ai
y.

h
id
en

od
ti

n
at
on

a
r
i

r
t

ha
d

e
r
r

u
es
all
ix

ce
-
e

ua

wn

pure
the
one

un-

er

s

es
r, a

-

in

ase,
ext,
to

t
nts
-
ter

ce
ec.

ed
one
lo-
e
e of
e is
any

of

od-
els
s a
re

am-

STATE ESTIMATION FOR LARGE ENSEMBLES PHYSICAL REVIEW A61 042312
not destroy the continuity of the mean quadratic error. C
sider a sequence of pointsũn approachingu0. This generates
a sequence of eigenvectorsf i

n and eigenvaluesg i
n . The ei-

genvalues converge to theg i , but the eigenvectors need n
converge at all. However by compactness of the set of
vectors inR3, there is a subsequence along which the eig
vectors f i

n converge; and they must converge to a poss
choice of eigenvectors atu0. Thus along this subsequenc
the mean quadratic error~92! does converge to a limit given
by the same formula evaluated at the limitingf i , etc. But
this limit is equal by construction to the inverse of the targ
information matrixG(u). A standard argument now show
that the limiting mean quadratic error is continuous atu0

5u0. The MQE ofû given ũ ~timesN8! therefore converges
uniformly in a sufficiently small neighborhood ofu0 to a
limit continuous at that point, and is equal toW(u0) there.

In our derivation of Eq.~88! we required the paramete
and its estimator to be bounded. By dropping the constr
on the length ofu we have inadvertently lost this propert
Suppose we replace our modified estimatorû by the actual
maximum likelihood estimator respecting the constraint. T
two only differ when the unconstrained estimator lies outs
the unit sphere; but this event only occurs with an expon
tially small probability, uniformly inũ, provided theg i are
uniformly bounded away from 0 in the given neighborho
of u0. From this it can be shown that the mean quadra
error is altered by an amounto(1/N8) uniformly in ũ.

If we had worked with random numbers of measureme
of each spin variable, when computing the mean quadr
error we would first have copied the computation above c
ditional on the numbers of measurements, sayXi , of each
spin mi . These numbers are binomially distributed with p
rametersN8 and g i . The conditional mean quadratic erro
would be the same as the expression above but w
1/(g iN8) replaced by 1/Xi ~and special provision taken fo
the possible outcomeXi50!. So to complete the argumen
we must show thatE(1/Xi)51/(g iN8)1o(1/N8) uniformly
in ũ. This can also be shown to be true, using the fact t
Xi /N8 only differs from its mean by more than a fixe
amount with exponentially small probability asN8→`, and
we restrict attention toũ in a neighborhood ofu0 whereg i
are bounded away from zero. Inspection of our argum
shows that the convergence of the mean quadratic erro
uniform in u0, as long as we keep away from the bounda
of the parameter space.

By the convergence of the normalized binomial distrib
tion to the normal distribution, the representation of the
timator we gave above also shows that it is asymptotic
normally distributed with asymptotic covariance matr
equal to the target covariance matrixW. Moreover, ifX has
the binomial~n, p! distribution, thenn1/2(X/n2p) converges
in distribution to the normal with mean zero and varian
p(12p), uniformly in p. Thus the convergence in distribu
tion is also uniform inu0 as long as we keep away from th
boundary of the parameter space.

D. Conditional mean quadratic error for other models

Section VII C gave a complete analysis of the mean q
dratic error, given the preliminary estimateũ for the three
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unknown parametersu j , of parametrization~91!. We shall
first analyze the mean quadratic error when the unkno
parameters are functionsf i(u j ) of the parametersu j . We
shall then consider the important case when the state is
and depends on two unknown parameters, and finally
case when the state is pure or mixed and depends on
unknown parameter, or is mixed and depends on two
known parameters.

Our first result is that if the change of parametersf i(u j )
is locally C1, then the MQE matrix of thef i is obtained
from the MQE ofu j by the Jacobian]f i /]u j except even-
tually at isolated points. This follows from the fact that und
a smooth~locally C1! parametrization, thed method~first-
order Taylor expansion! allows us to conclude a uniform
convergence of the probability distribution ofAN(f̂N2f)
to a normal limit with the target mean quadratic error. Iff i
and their derivatives]f i /]u j are bounded, then this prove
our claim. If there are points wheref i or their derivatives
]f i /]u j are infinite, then convergence in distribution do
not necessarily imply convergence of moments. Howeve
truncation device allows one to modify the estimatef̂, re-
placing it by 0 if any component is larger thancNa for given
c anda @use the method of Ref.@23#, Lemma II.8.2, together
with the exponential inequality~89! for the multinomial dis-
tribution#. With this minor modification one can show~uni-
form in f in a neighborhood off0! convergence of the mo
ments of the correspondingAN(f̂2f) to the moments of its
limiting distribution, and hence achievement of the bound
the sense of theorem IV. In particular, if the parameterf is
bounded then the truncation is superfluous.

Now turn to the pure-state analog of model~91!. Obtain a
preliminary estimate of the location ofr on the surface of the
Poincare´ sphere using the same method as in the mixed c
but always projecting onto the surface of the sphere. N
after rotation to transform the preliminary estimate in
‘‘spin-up,’’ reparametrize tor51/2(11f•s), where the
parameters to be estimated are (f1 ,f2)5(u18 ,u28) of the pa-

rametrization~84! while f35A(12f1
22f2

2). The prelimi-
nary estimate is atf15f250. The optimal measurement a
this point according to Sec. VII A consists of measureme
of the spinss1 and s2 on specified proportions of the re
maining copies. The resulting estimator of the parame
(f1 ,f2) is a linear function of binomial counts, and hen
its mean quadratic error can be studied exactly as in S
VII C. Then we must transfer back to the originally specifi
parametrization, for instance polar coordinates. This is d
as in the preceeding paragraph. If the transformation is
cally C1, then uniform convergence in distribution to th
normal law also transfers back; there is also a convergenc
the mean quadratic error if the original parameter spac
bounded. Otherwise a truncation might be necessary. In
case, we can exhibit a procedure optimal in the sense
theorem IV.

It remains to consider one- and two-dimensional subm
els of the full mixed model, and one-dimensional submod
of the full pure model. We suppose that the model specifie
smooth curve or surface in the interior of the Poinca´
sphere, or a smooth curve on its surface, smoothly par
2-15
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etrized by a one- or two-dimensional parameter as appro
ate. The first stage of the procedure is just as before, fin
ing in projection of an estimated density matrix into t
model. Then we reparametrize locally, augmenting the
mension of the parameter to convert the model into a
mixed or pure model, respectively. The target informat
for the extra parameters is zero. Compute as before the
timal measurement at this point. Because of the zero va
in the target information matrix, there will be zero eigenv
uesg i in the computation of Sec. VII A. Thus the optim
measurement will involve specified fractions of the measu
ment of spin in the same number of directions as the dim
sion of the model. Compute the maximum likelihood estim
tor of the original parameters based on this data. If
parametrization is smooth enough, the estimator will
again achieve the bound of theorem IV.

VIII. CONCLUSIONS AND OPEN QUESTIONS

In this paper we have solved some of the theoretical pr
lems that arise when trying to estimate the state of a quan
system of which one possesses a large number of co
This constitutes a preliminary step toward solving the qu
tion with which Helstrom concluded his book@9#: ‘‘... math-
ematical statisticians are often concerned with asympt
properties of decision strategies and estimators, ... When
parameters of a quantum density operator are estimate
the basis of many observations, how does the accuracy o
estimates depend on the number of observations as that
ber grows very large? Under what conditions have the e
mates asymptotic normal distributions? Problems such
s
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these, and still others that doubtless will occur to physic
and mathematicians, remain to be solved within the fram
work of the quantum-mechanical theory.’’

In the case of pure states of spin-1
2 particles, the problem

has been solved. The key result is that in the limit of largeN,
the variance of the estimate is bounded by Eq.~28!, and the
bound can be attained by separate von Neumann mea
ments on each particle.

In the case of mixed states of spin-1
2 particles the state

estimation problem for largeN has been solved if one re
stricts oneself to separable measurements. However, if
considers nonseparable measurements, then one can im
the quality of the estimate, which shows that the Fisher
formation, which in classical statistics is additive, is n
longer so for quantum state estimation.

For the case of mixed states of spin-1
2 particles, or for

higher spins, we do not know what the ‘‘outer’’ boundary
the set of~rescaled! achievable Fisher information matrice
based on arbitrary~nonseparable! measurements ofN sys-
tems looks like. We have some indications about the sh
of this set~see Sec. V F!, and we know that it is convex an
compact.
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