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We consider the problem of estimating the state of a large but finite nushbEidentical quantum systems.
As N becomes large the problem simplifies dramatically. The only relevant measure of the quality of estimation
becomes the mean quadratic error matrix. Here we present a bound on this quantity: a quanturrR@mame
inequality. This bound succinctly expresses how in the quantum case one can trade information about one
parameter for information about another. The bound holds for arbitrary measurements on pure states, but only
for separable measurements on mixed states—a striking example of nonlocality without entanglement for
mixed but not for pure states. CrarsRao bounds are generally only derived for unbiased estimators. Here we
give a version of our bound for biased estimators, and a simple asymptotic version foNlaFgeally we
prove that when the unknown state belongs to a two-dimensional Hilbert space our quantun-Raame
bound can always be attained, and we provide an explicit measurement strategy that attains it. Thus we have
a complete solution to the problem of estimating as efficiently as possible the unknown state of a large
ensemble of qubits in the same pure state. The same is true for qubits in the same mixed state if one restricts
oneself to separable measurements, but nonseparable measurements allow dramatic increase of efficiency.
Exactly how much increase is possible is a major open problem.

PACS numbegs): 03.67—a, 02.50-r

[. INTRODUCTION sible. This is by now a classical probl€®,10].
A common approach is first to specify a cost function

One of the central problems of quantum measuremenvhich numerically quantifies the deviation of the estimate
theory is the estimation of an unknown quantum state. Origifrom the true state. One then tries to devise a measurement
nally only of theoretical interest, this problem is becoming ofand estimation strategy which minimizes the mean cost.
increasing practical importance. Indeed there are now sever&ince the mean cost typically depends on the unknown state
beautiful experimental realizations of quantum state reconiself, one typically averages over all possible states to arrive
struction in such diverse systems as quantum opti;smo-  at & single number expressing the quality of the estimation.
lecular state$2], trapped iong3], and atoms in motiof4]. However optimal strategies have only _been found in some

The theoretical work which is the basis for these experi-Simple highly symmetric casdthe covariant measurements
ments is concerned with devising measurement strategie¥f Ref.[10]; also see Refd.11,12).
that are simple to realize experimentally and which allow an However when the number of copiés becomes large,
unambiguous reconstruction of the quantum state. The bes@ne can hope that the problem becomes simpler so that one
known such technique is quantum state tomografffly =~ Might be able to find the optimal strategies in this limit. The
adapted in Ref[6] for the case of finite-dimensional Hilbert reason for this is that in the larde-limit the estimation
spaces. However, other techniques are also available; s@&oblem ceases to be a “global” problem and becomes “lo-
Ref. [7] for a recent discussion in the case of finite- cal.” Indeed for smallN the estimated state will often be
dimensional Hilbert spaces. However, all these works supvery different from the true state. Hence the optimal mea-
pose that the measurements are perfect, and that any operafé'ément strategy must take into account the behavior of the
can be measured with an infinite precision. However, in gencost function for large estimation errors. On the other hand,
eral the quality of the reconstruction will be limited by ex- in the limit of an infinite number of copies any two states can
perimental errof8] or by finite statistics. The present work be distinguished with certainty. So the relevant question to
is devoted to studying this latter aspect, when the unknow@sk about the estimation strategy is at whete it distin-
state belongs to a finite-dimensional Hilbert space. guishes neighboring states. In that case we are only con-

Thus the setting of the problem is that we may dispose Operngd with the behavior of the estimator and of the cost
a finite numbem of copies of an unknown quantum state function very close to the true value.

(pure or mixed_ Our task is to determinﬁ as well as pos- To formulate the prObIem with preCiSion, let us suppose
that the unknown statp(6) depends on a vector gf un-

known real parameter$=(6,,...,0,). For instance,o;

* Electronic address: gill@math.uu.nl; URL:http// could correspond to various settings or physical properties of
www.math.uu.nl/people/gil; also affiliated with EURANDOM, The the apparatus that produces the sjatéfter carrying out a
Netherlands. measurement on thé copies ofp, one will guess what 9.

"Electronic address: smassar@ulb.ac.be Call 9N= (&) ,...,0,’;‘) the guessed value. For a good estima-
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tion strategy we expect the mean quadratic e(MQE) to (ilWhenp(0) is a pure state belonging to a Hilbert space
decrease as N of dimensiond larger than 2, then our bound &N applies,
but it is not sharp.

(iii) When the unknown state is mixed and belongs to a
two-dimensional Hilbert space, and if one restricts oneself to
measurements that act separately on each particle, then our
where the scaled MQE matrivV(6)=(W;;(6))=NVN(6)  bound applies and is sharp.
does not depend oN. E, denotes the mean taken over rep-  (jv) When the unknown state is mixed and belongs to a
etitions of the measurement with the valueéofixed. Hilbert space of dimensiod> 2, and if one restricts oneself

Consider now a smooth cost functi6(®, 6), which mea- to measurements that act separately on each particle, then our

sures how much the estimated val@igiffers from the true  bound applies but is not sharp.
value 6 of the parametert will have a minimum ath= 6, . (v) If the unknown state is mixed a}nd one allows pollec—_
hence can be expanded as ']E:\e/(éI measurements, then our bound is not necessarily satis-
N N . . This last point is surprising, and points to a fundamental
f(8,0)="fo(6)+ > Ci;(0)(8—6,)(8,—6,)+0(|6—6]°), difference between measuring pure states and mixed states.
4 @) Indeed it is known that carrying out measurements on several
identical copies of the same pure state can generally be done
whereC(6)=(C;;(6)) is a non-negative matrix. Thus for a better with collective measurements on the different copies
reasonable estimation strategy the mean value of the cokt7,11. This is known as “nonlocality without entangle-
will decrease as ment” [18]. The first point shows that in the limit of a large
number of copies, pure states of sgido not exhibit nonlo-
~N . 1 cality without entanglement. On the other hand, the last point
Ey(f(67,6)=Fo(6)+N ; Cij(OW;;(6)+0o(N"7) shows that in the limit of a large number of copies mixed
3) states of spin continue to exhibit nonlocality without en-
tanglement.
since we expect the expectation value of higher order terms To describe our bound ow, we first consider for sim-

in #— 0 to decrease faster thanNL/ The problem has be- Plicity the case of a pure state of spjrparticles. Suppose
come local: only the quadratic cost mati®(6#) and the the unknown state is a spiknown to be in a pure state, and
Scaled mean quadratic error matm]( 0) ateo intervene' The the state is known to be almost pOinting in the direction:
essential question about state estimation for large ensembles L _

is thereforewhat scaled MQE matrices (¥) are attainable |(01,602))=1)+3(01+i165)[ 1), 4
through arbitrary measurement and estimation procederres . _ . . .
In particular, what does the boundary of this set of attainablé/here we have written an expression valid to first order in
MQE matrices look like? 0.,0,. Suppose we carry out a measurement of the operator

In the case when the parameteis one dimensionalff ~ “x- We obtain the outcome-x with probability p(+x)
—1), the problem has been solved: a bound on the variancﬁ(li 0,)/2. Thus the outcome of this measurement tells us

of unbiased estimators—the quantum CfaReo bound— about the value of);. Similarly we can carry out a measure-

was given in Ref[9], and a strategy for attaining the bound Ment of o,. \We obtain the outcome-y with probability

in the largeN limit was proposed in Ref15]. This justifies P(*Y)=(1% 6,)/2. The outcome of this measurement tells
taking the bound to induce a ‘distinguishability metric’ on US @boutd,. But the measurements, and o, are incompat-

the space of statdd3,14. In the case of a multidimensional Pl€; i.., the operators do not commute and cannot be mea-
parameter, however, though different bounds for the matriured simultaneously. Thus if one obtains knowledge about
W have been established, in general they are not tighf: it is at the expense of,. Indeed suppose one has
[9,16,10. copies of the stat¢ and one measures, on N, copies and

In this paper we present a bound ffin the multiparam- @y 0N N2=N—N; copies. Our estimator foé, is the frac-
eter case which is inspired by the discussion in R&f].  tion of +x outcomes minus the fraction of x outcomes.
This bound expresses in a natural way how one can tradghis estimator is unbiased. The resulting uncertaiatythe
information about one parameter for information about an{oint 6;=6,=0) about 6, is then E,((#;— 6;)%)=1/N;.
other. The interest of this new bound depends on the precisgimilarly we can estimat®, and the corresponding uncer-

problem one is considering: tainty is E,((8,— 6,)%)=1/N,. We can combine these two

(i) Whenp(6) =|4(6)){(6)| is a pure state belonging to expressions in the following relation:
a two-dimensional Hilbert space, the bound is sharp: it pro-

vides a necessary and sufficient condition tanhust satisfy 1 1 1 1

in order to be attainable. Furthermore, the bound can be at- - + - =—t—=x=N,
tained by carrying out separate measurements on each par- E,(6;—601)%) Eq(6,— 6,2 Vi1 Va

ticle. This completely solves the problem of estimating the

state of a large ensemble of sgirparticles(qubits in the  which expresses in a compact form how we can trade knowl-
same pure state. edge about); for knowledge abou#,. We shall show that it

. . Wi (6
EAA—0)@ - op=vio="""
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is impossible to do better than precisely Ef) when one  which in the limit for largeN coincides with the result@x-
restricts attention to unbiased estimators based on arbitragct for all N) of Refs.[10,11]. If the directions() are not
measurements, and asymptotically not possible to do bettemiformly distributed, then Refd.10,11] do not apply, but
with any estimator whatsoever. Eqg. (10) stays valid. However, we cannot compare our re-

To generalize Eq(5), we rewrite it in a more abstract sults with the recent analysis of covariant measurements on
form, and state it as an inequality. We use polar coordinatesixed stateq12] because we suppose separability of the
to parametrize the unknown state of the spiparticle: | ) measurement, whereas REE2] does not.

=cos(y/2)|1) +sin(7/2)e'?|| ). We introduce the tensor Equations(7) and(9) have a simple generalization to the
_ case of particles belonging to higher-dimensional Hilbert
H,,=1, H,=siryp, H,,=0, (6)  spaces. But in these cases these bounds are no longer sharp.

In order to appreciate the above results, we must recall

which is simply the Euclidean metric on the sphere. Thensome results from classical statistical inference. This is the
bound(5) can be reexpressed as subject of Sec. II.

-1 Ny—1
trH V=N, ™ Il. CLASSICAL CRAME, R-RAO BOUND
whereV" is the MQE matrix defined in Eq1). _ Consider a random variabk with a probability density
For mixed states belonglng to a two-dimensional Hllbertp(x,a)_ The connection with the quantum problem is that we
space, Eq(7) can be generalized as follows. Let us SUPPOS&an viewp(x, 6) as the probability density that a quantum
that the statep(6) depends on three unknown parameters,naasurement on the system yields an outcangiven that
Then we can parametrize it py(6) = 1/2(1 + % 6,07) where o state wag(6). We take a random sample of sikifrom
| is the identity matrix,o; are the Pauli matrices, and the the distribution, and use it to estimate the value of each pa-
three parameterg; obey 6= 67<1. We now introduce rameter; . Call 6 the estimated value. The following re-

the tensor sults about the MQE matrix of the estimator are well known.
0.6 (1) Suppose that the estimator is unbiased, that is,
| ~
Hij(0)= 6+ r“;”z (8)  E,(6N—0)=0, whereE,, is the expectation value at fixet]

i.e., the integralfdxp(x|#). Define its MQE matrixVN( )
which generalizes tensdi6) to the case of mixed states. by
Then, upon restricting oneself to separable measurements,
we will show that the MQE matrix/N must satisfy(exactly
for unbiased estimators, and otherwise asymptotigally

V() =Eq (8] 6,)(8) - 0)). (12)

Furthermore define the Fisher information matr{¥) by

trH(G)ilvN(0)71$N (9) II](G)ZEH((?OIIH p(X|0)(90]|n p(xle))

As an application of these results, the minimum of the

cost function(3) in the case of spig- particles(for mixed :J X&gip(xlﬁ)ﬁej P(x|6) (13
states restricting oneself to separable measureneent p(x| )
_ . (tryH(8) " Y2C(o)H(0) Y32 Then, for anyN, the following inequalities, known as the
minE,(f(0,0))="fo(0)+ N Crame-Rao inequalities, hol@19,9]:
+0(1/IN) (10) VN()=1(6) "IN, (14)
which is obtained simply by minimizing Eq3) subject to  ©F equivalently,
constrainty7) or (9). VN 9)1=NI(8), (15)

We can compare E@10) with the exact results which are
known in the case of covariant measurements on pure stat
of spin4 particles[10,11]. In this problem one is givelN a non-negative matrix

spin- particles polarized along the directidd. {) is uni- (2) The hypothesis of unbiased estimators is very restric-
formly distributed on the sphere. One wants to devise a Me3ye since most estimators will be biased. Happily it is pos-

surement and estimation strategy that minimize the meagjp|e 1q relax this condition. Here are just two of the many
value of the cost function cés/2, wherew is the angle results available.

between the estimated directiéh and the true directiofi). (a) First of all, if one is interested in averaging the mean
Expanding the cost function to second ordekirito obtain  cost over possible values @fwith respect to a given prior
the quadratic cost matrig), and averaging Eq10) over the  distribution A(¢), then there is a Bayesian version of the

e inequality meaning that the difference of the two sides is

sphere, one finds Crame-Rao inequality: the van Trees inequal[0,21]. In
1 1 the multivariate case, upon giving oneself a quadratic cost
E(cof w/2)=1— —+o| = (11) functlor] determined by a matri€(6), one can derive the
N N inequality
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_ N
Jdax(a)trcw)rl(a) pP(£l0)=trp™()M. (17)

f doN(6)tr C(O)VN(6)= N N2’ From the outcomet of the measurement one must guess

(16) what are the values of thp parametersg;. Call N the
estimated value of the parameter vector. We want to obtain

wherea is a positive number that depends 649), 1(6),  pounds on the MQE matrixN(6) of the estimatod™ when

andA(#6), but is independent adX. ) N/ e AN aN

(b) The second approach makes no reference to any pri&Pe true parameter value & thu_sVij(e)—E(,( 0~ 0.‘)(91'
distribution for ¢, but only holds in the limitN tending to )~ T0 proceed we temporarily make the slmpllfylng as-
infinity, and lays a mild restriction on the estimators consid-sumption that the estimators are unbiasgg§™= 6. Then

ered. Specifically, if the probability distribution ofN(§N W€ can apply the classical CrarRao inequality to the
— 6) converges uniformly ird toward a distribution depend- Probability distributionp(£|6) to obtain
ing continuously ond, say of a random vectaZ, then the Ne N 1
limiting scaled MQE matrix W(#) defined by W;;(6) VI=1T(M, 0) (18)
=Ey(Z,Z;) obeysw=1"1.

(3) Furthermore in the limit of arbitrarily large samples ©f
one can attain the Cram®ao bound. This is proven by

Ny—1 N
explicitly constructing an estimator that attains the bound in (V) "<1"(M, 0), (19
the extended sensé®a) (apart from the M? term) or (2b) ) ) )
just indicated: the maximum likelihood estimai®iLE). where the Fisher information matrl® for the measurement

Modern statistical theory contains many other results havM is defined by
ing the same flavor as poir®) above, namely, that the
Crame-Rao bound holds in an approximate sense for large INM, o) =S aip(&l0)a;p(&l0)
1] '

N, without the restriction to biased estimators. Re$RH) p(&l o)

applies to a larger class of estimators th@h), but only N N

gives a result on the average behavior over different values - tr(p iM)tr(p ;M) 20
of 6. On the other hand combining resu(® and (2b) tells - 7 tr(MgpN) '

us that the maximum likelihood estimator is for lariyean

optlrr_lal estimator for each va_lue_ ﬁseparately._The reason \yith p'}'I&g.pN. These expressions suggest the following
why in (2b) additional regularity is demanded is because quuestiéns '
the phenomenon of superefficienee Ref[22] for a recent ' . .
discussiol, whereby an estimator can have mean quadratic (.1) 's tthe a S|mpI§ bound for the M(_?EN of.unb|ase_d
error of smaller order than I/ at isolated points. Modern €Stimators¢™, or equivalently for the Fisher information
statistical theory(see again Refd22] or [23]) has concen- 1"(M, 6)7? _ o

trated on the more difficult problem of obtaining non-  (2) Is the bound also valid for sufficiently well behaved
Bayesian result§.e., pointwise rather than averageaking but possibly biased estimators—at least in the limit of large
much use of the technical tool of “local asymptotic normal- N . ) ) o

ity.” A major challenge in the quantum case is to obtain a (3) Can this bound be attained—at least in the limit of a

result of type(2b) when this technique is definitely not avail- large number of copiesl? _
able. Most of the work on this subject has been devoted to

answering the questiofil). We now recall what is known
about these questions.
Suppose first the parametéris one dimensionalp=1.
In this paper we show that results similar(fg, (2a), (2b), = The symmetric logarithmic derivativeSLD) A, of p is the
and(3) can be obtained when one must estimate the state dfermitian matrix defined implicitly by
an unknown quantum systep(6) of which one possessés
copies. This problem is most simply addressed, following Ngp+pNy
Ref. [14], by decomposing it into a firdiguantum step in pPo=—H - (21)
which one carries out a measurementh=p®---®p and
a secondclassical st_ep in which one uses the result of the |, a basis wherg is diagonal,p=3,p,|k)(K|, this can be
measurement to estimate the value of the paraméters inverted to yield
The most general way to describe the measurement is by
a positive operator-valued measuremeffPOVM) M )
=(M,), whose elements satisiy ,=0, % ;M .=1. (For sim- A= Pu——. (22
plicity we take the outcomes of the POVM to be discrete. TPkt R
The generalization to an arbitrary outcome space is just a
question of translating into measure-theoretic langyage. ~ 1hen we have the bound
Quantum mechanics tells us the probability to obtain out- N
comeé given statep(6): lpg(M,0)<Ntrp\ghg. 23

IIl. QUANTUM CRAME R-RAO BOUND
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Furthermore it was suggested in REE5] how to adapt the

classical MLE so as to attain, in the limit of lard¢ the
bound(23).

In the multiparameter case the bound based on the SLD
can be generalized in a natural way. Define the SLD along

direction 6, by

Nip+ P\
P,i:%, (24)
and Helstrom’s quantum information matik by
NiNj NN
HithFpT. (25

[This is the same matrix that was introduced for spipar-
ticles for a particular choice of parameters in E(®. and
(8)]. Then one can prove the bouf@

IN(M, 8)<NH(0). (26)

[This can be deduced directly from E®3), as proven in

[14]. Indeed since Eg23) holds for each path in parameter

space, it implies the matrix equatid26)].

However, this bound is in general not achievable. Anothe
bound has been proposed based on an asymmetric logarit
mic derivative(ALD) [16] which in some cases is better than

PHYSICAL REVIEW A1 042312

the classical CrameRao inequality in order to replace
IN(M, 6) by the inverse of the MQE/N(6):

trH 1(9)[NVN(9)] t<d—1. (29

Theorem I Whenp(6) is a mixed state, and if the mea-
surementM consists of separate measurements on each par-
ticle, then the Fisher information also satisfies E®7).
Hence for separable measurements on a mixed state, the
MQE matrix of an unbiased estimator satisfies E2§).

Theorem III (nonadditivity of optimal Fisher informa-
tion): In the case of mixed states, it is in general possible to
devise a collective measurement for which the Fisher infor-
mation does not satisfy inequalit27).

The second part of this paper consists of proving that
constraint(28) also holds for biased estimators under suit-
able additional conditions. We give two forms of this gener-
alized form of Eq.(28) corresponding to the two forma)
and(2b) of the generalized classical Crarsieao inequality.

ConsiderN copies of a state(6). If p is pure we can
make either collective or separable measurementsp. i
mixed we restrict ourselves to separable measurements
fsince theorem Il shows that in this case collective measure-
fents can beat E§27)]. Based on the outcome of the mea-
surement we estimate the value of the parameter vettor

Eq. (26). Holevo [10] proposed yet another bound that is Call 6 the estimator, and denote by"=VN(6) its MQE
stronger than both the SLD and ALD bounds, but this boundnatrix when the true value of the parametemiswe shall
is not explicit: it requires a further minimization. As far as prove the following generalization of result of tyfih) con-
we know no general achievable bound is known in the mulcerning the behavior of the mean quadratic error matriXl as

tiparameter case.

The difficulty in obtaining a simple bound in the multipa-

tends to infinity.
Theorem IV Suppose that the scaled MQ¥EVN(6) has

rameter case is that there are many inequivalent ways ifhe limit W(6#) as N—-c. Suppose that the convergence is

which one can minimize the MQE matrMi'\j'. That is, in

uniform in 6, and thatW is continuous at the poirg= ¢°.

order to build a good estimator one must make a choice ofurthermore we suppose that and its derivatives are
what one wants to estimate, and according to this choice theounded in a neighborhood of this point. Then we shall
measurement strategy followed will be different. Hence aProve in Sec. VI thaW/(6") must satisfy

bound in the form of a matrix inequality like E€R6) cannot
be expected to be tight.

IV. RESULTS

trH Y)W (8% =<(d-1). (29

This result gives a bound on the mean value of a quadratic

In this paper we obtain answers to the three questiongost function C as N tends to infinity. Indeed, using a
raised above in the multiparameter case. Our results are sumagrange multiplier to impose conditid29), the minimum

marized in this section.

We first discuss poin{l), that is bounds on the Fisher

information. We shall show the following.

Theorem 1 When p(60)=|4(6)){((6)| is a pure state,

then the Fisher information™(M, ) defined in Eq.(20)
must satisfy the relation

trH=Y(0)IN(M,0)<(d—1)N, (27

cost is readily found to be

lim N tr C(6°)VN(6°)= (tryH Y4 6°)C(6°)H Y2 6°))2.
N— oo

(30

In terms of a cost function, it is also possible to prove a
Bayesian version of the CramRao inequality which is the

whereH ! is the inverse of the quantum information matrix analog of the classical resu2a).

defined in Eq.(25), andd is the dimension of the Hilbert

space to whichp(6) belongs. Note that inequalit{27) is
invariant under change of parametrizatién 6’ (6).

Theorem V Suppose that one is given a quadratic cost
function C(#) and a prior distribution\(6) for the param-
etersé. If C, A\, andH are sufficiently smooth functions of

This result immediately gives an inequality for the mean(the continuity of the first derivatives is sufficienivhile \ is

guadratic error matrix ofinbiasedestimatorsg™ by invoking

zero outside a compact region with smooth boundary, then

042312-5
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1 necessity of an adaptive measurement strategy if one wants
f dﬁk(a)tfc(ﬁ)VN(ﬁPN to minimize the MQE was pointed out in R¢fL5].
When the unknown state belongs to a Hilbert space of
— @ dimensiond>2, then bound27) cannot be attained in gen-
Xf doN(Or(VH™ YA O)C(OH Y4 0))*~ N2 eral. Indeed we shall show in Sec. VF that &br 2, neither
Eq. (26) nor (27) implies the other.

31

V. NEW QUANTUM CRAME R-RAO INEQUALITY

where a is a constant independent bf but which depends
onC, A andH.

Theorems |, Il, 1V, and V put bounds on the MQE matrix
of an estimator of an unknown stgp€f) (for mixed states,
under the restriction that the measurement is separakie
third part of this paper is devoted to showing that in the case

In this section we prove theorems |, Il, and Ill. That is, we
prove Eq.(27) for general measurements in the case of pure
states and for separate measurements on each particle in the
case of mixed states.

of spin+ systems §=2) these bounds can be attained. We A. Preliminary results
first show that at any point® we can attain equality in Eq.  The first step in proving Eq27) is to show that one can
(27). restrict oneself to POVM’s whose elements are proportional

Theorem Vi Suppose one hall spin- particles in an  to one-dimensional projectors. Indeed, any POVM can al-
unknown(possibly mixed statep(6). Fix any point6®. Give  ways be refined to yield a POVM whose elements are pro-
yourself a matrixG° satisfying trH (%) G°<1. We call  portional to one-dimensional projectors. We call such a mea-
G the target scaled information matrix. Then there exists aurement exhaustive This yields a refined probability
measuremerit! (depending on the choice @P) acting on  distribution(p(¢, 6)). It is well known that under such refin-
each spin separately such thitm 00, #°)=NG°. This mea- ing of the probability distribution, the Fisher information can
surement is described in detail in Sec. VIIA. only increasg24]. , _ , ,

For largeN we can also approximately attain equality at | "€ Second step in proving E7) consists of increasing
all points # simultaneously. the number of_ parameters. Suppose t,b(a?b_depends orp

Theorem Vi Suppose one hal spint particles in an  Parameters;, i=1,..p. If p=|y(6))(¢(6)| is a pure state,
unknown pure staté{(6)), or suppose that one haspin- thenp<=2d-2 [smce|;p(0)> is normalized and'(je'flned up to
! particles in an unknown mixed stgiéd). In the latter case & Phasg If p is a mixed state,zthen Hermiticity and the
we also require that the state never be pure, i.(@y2  Ccondition tro=1 impose thap<d“—1. Suppose thap<v
<1 for all . Give oneself a smooth positive matrix function IS €SS than the maximum number of possible parameters
G(6) satisfying ttH1(6)G(9)<1 for all 6, the target (u=2d—2_ or v=d“—1 according to whether the state is
scaled information for each possible value @fDefine the ~ Pure or mixed. Then one can always increase the number of
corresponding target scaled MQE mathi¥(6)=G(6) 1. parameters up to the maximum. Indeed let us suppose that to
Suppose thaWV(6) is nonsingulari.e., G(6) never has a theP parameters, one adds independent paraméfersi”
zero eigenvalde Then there exists a measurembhacting = p+1,..p. We can now consider the quantum information

on each spin separately, and a corresponding estintator matrix H, and Fisher information matrix, for the com-
whose MQE matrix/N(6) satisfies pleted set of parameters. We shall show below that

trH=Y(0)INM,0)<tr H1(6)TN(M, 9). (33
N gy = VCO) . . .
VI(O) = — To(IN) (32 Therefore it will be sufficient to prove Eq27) in the case
when there are@ parameters.

To prove Eq.(33), fix a particular pointg®. At this point
for all values of¢ simultaneously. For this estimation strat- We have the derivative ; and SLD\; of p for i=1,...p.
egy VN(#— ) converges in distribution towafd(OW), the Introduc_ef a set of Hermitian matrices, with tr p(6°)\;/
normal distribution with mean zero and covarianbe The ~ — 0 fori’=p+1,..p, such that
measuremen¥l and estimation strategy is described in detail

. NiNirH N\
in Sec. VIIB. trp(0%) ———""1—0, i=1,..p, i'=p+1,..p.
It is interesting to note that the measurement strategy 2
which satisfies Eq(32) is an adaptive one. That is, one first (34)

carries out a measurement on a small fraction of the par- = | ) )

ticles. This gives a preliminary estimate of the quantum statd NiS is always possible because we can view B4) as a
which allows a fine tuning of the measurements that are caS¢alar product between, and;., and a Gram-Schmidt or-
ried out on the remaining particles. This is to be contrastedhogonalization procedure will then yield the matrides.
with previously proposed state estimation strategies in th&low define matrices ;+ by p i =(p(6°)\i+\i/p(6°))/2
case of finite-dimensional Hilbert spacg&6] in which the —and define additional parametefs satisfying, at6®: 9, ,p
same measurement is carried out on all the particles. The p,;,. The point of this construction is that because of Eq.
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(34), the quantum information matrikl is block diagonal
with the first block equal tH. Let T(M) be the Fisher in-
formation matrix for the enlarged set of parametgrst the and

same measureméntThen trH ~IT(M)=tr(H ~%);,01,(M) N

+tr(H ) 55l (M), where the indices 11 and 22 denote the tr p(6°) M= 2 (CHERCENSE v ky=k...121..1);
blocks of these matrices corresponding to the original and

trp(6°)M=lag _4? (42)

4
new parameters. But both terms are non-negative since all (43
matrices involved are nonnegative, arid ();;=H %, so  and similarly for trp(6°) M. Thus we obtain
we obtain Eq.(33) at 6, and for the particular parameters 0 ) 0 )
just introduced. But since the right-hand side of E2p) is (trp(67) ks M )"+ (trp(67) k-M )
invariant under reparametrization, it is true for any param- N
etrization, and at any. - 2 4|afl...1|2|agl...kp:k...1|2- (44)

B. Pure states . . .
Putting everything together yields

To proceed we shall consider a POVM whose elements
are proportional to one-dimensional projectors, and explicitly

calculate the left-hand side of E@7) in the case where the
number of parameters is the maximy2d—2 in a basis
whereH is diagonal. We fix a poin#°. At this point we
choose a basis such that

p(6%)=1)(1]. (35
Hence the density matrix of thé copies is
p=11)(1®- e |1)(1]. (36)
Consider now the @—2 Hermitian operators
e =Dk + k1], 1<k=d,
=1k —ilk)(1], 1<ks=d. (37)

We choose a parametrization such that in the vicinityQf
it has the formp=p(6°) +3 . (6s— 6. )p = With the
unknown parameterg, . ,k=2,...d. With this parametriza-
tion the derivatives op" are
Phs=pks®@p - @pt-tpR®py.. (38

One then calculates the SLD pf and hence the quantum
information matrixH. One verifies that in this basid is
diagonal:

Hki,k’t’:45kk’6ti" (39)

Consider any POVM whose elements are proportional to

one-dimensional projectors

d d
M=ol (Wel, =2 - 2 g, . kyl K-+ Kn)-
Ki=1  ky=1
(40)
The completeness relatici:M .= takes the form
Eg azkl._lkNagki "'kl,\l: 5klk;/[' . .5kal,\l. (41)

To proceed we need the formulas

tmﬂw>2n(mM Zgamwm,y

+(trp(6°) -Mp)?

d
=2
k=2

N

> > |a§l...kp:k...1|2:N(d_1):
1 ¢

(45)

which proves that equality holds in EQ7) for arbitrary
exhaustive measurements in the case of pure states.

C. One mixed state

Deriving Eq.(27) for mixed states is more complicated
than for pure states, and we shall proceed in two steps. First
we shall consider the case of one mixed state=(1), and
show that equality in Eq27) holds in this case for arbitrary
exhaustive measurements. Then we shall consider the case of
an arbitrary numbeN of mixed states.

We first diagonalize p at a point 6% p(6°)
=39 pk)(k|. We now introduce the following complete
set of Hermitian traceless matrices:

P =K+ (K], k<I,
paa- =ik =i[1)(K], k<, (46)
d
p'm=k§=:l cmdk)(K|, m=1,..d-1,
where the coefficients,,, obey
Ek kazor
(47)

1
2 —Cm'kCmk™ Sm'm -
k Pk

Let us denote the matricgs, . andp p, collectively asp ;.
[They constitute a set of generators of a(

We choose a parametrization such that in the vicinity of
¢°, it has the formp=p(6°)+3;(6,— 6°)p ;. One then cal-
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culates the SLD op, and from this the quantum information

matrix H. One verifies that in this basls is diagonal:

Hkli,k’l’i’: 5kk’5ll’5ti'v

Pkt P
Hy+ m=0, (48)

Hm,m’: 5mrm.

Consider any POVM whose elements are proportional to

one dimensional projectors

M=[e) (&,
(49

|he) = Ek: aglk).

The left-hand side of Eq27) can now be written as

_ 1 Pkt P
1 _ 2
trH |(M)—E§ —<¢//§|p|l//g>(k§<:| 2;4 4 (el pa=| e

+2 <¢g|p,m|¢g>2)- (50)
Using the expressions
(Pel p ol ) = Ek |agd *Cmk
(51

(el p i+ W) 2+ (Wl p - wey?=4lagl?lag|?,

one obtains

1
-1 N 204 |2
trH™ (M) 2; AR (k% (pxt PD)laad?lagl

2
33 |a§k|2cmk)
m k

1
_ 214 |2
_Ef: <¢§|P|¢g>(|§| Pdagdlal

+Ek 2 |a§k|2|a§||2§ kale)- (52
We now use the relation

% CmkCmI= SkiPk— PkPi 5 (53

which is derived from Eq.(47) as follows: definev

=Cmi/ Vp(m=1,...d— 1) andv 4= px. Then Eq(47) can

be rewritten as¥ v mi m'k= Ommy - The vectorsv ,, there-
fore are a complete orthonormal basis R¥; hence they
obeyS v mimk = Sk - Reexpressing in terms of,, yields

Eq. (53). Inserting this into Eq(52), we obtain

PHYSICAL REVIEW A61 042312

1
H U (M)=2, ———
THT M) =2

X Ek: §|: p(1—p)laal?agl?
:Ek: (1—pk)§§: |ag?

=2§ tr(1—p)M,=d—1, (54)

as announced.

Note that this has demonstrated that equality holds in Eq.
(27) wheneverN=1, p=d?—1, and the POVM is exhaus-
tive. It follows from the classical properties of the Fisher
information that equality also holds for arbitraxywhenever
the POVM can be considered as a sequenctl skparate
exhaustive measurements on each copy of the system. It also
holds if thenth measurement is chosen at random depending
on the outcomes of the previous measurements.

D. Separable measurements oiN mixed states

We shall now prove that if we posselsdentical mixed
states of spirg particles, and carry out separable measure-
ments, then

trH N (M)<N(d-1). (55)
We recall that a separable measurement is one that can be
carried out sequentially on separate particles, where the mea-
surement on one particle at any sta@sd indeed which
particle to measure: one is allowed to measure particles sev-
eral timeg can depend arbitrarily on the outcomes so far; see
Ref.[17] for a discussion. It is therefore more general than
the case considered at the end of Sec. V C, where the mea-
surement on thath particle could only depend on the mea-
surements carried out on time-1 previous particles.

If a POVM is separable, then its elemeris; can be
decomposed into a sum of terms proportional to projectors
onto unentangled states:

Mg:z | e )l
(56)
[y =1vg)®...0 ).

We call measurements having such a representatioen-
tangled (Note that there exist nonentangled POVM'’s which
are not separablgl8].)

By refining a separable measureménhich increases the
Fisher informatioi, one can restrict oneself to measurements
whose POVM elements are proportional to projectors onto
product states:

M=) (wel = e (il -yt (yll. (B
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We now evaluate the left-hand side of E§5) for mea-
surements of form(57). First recall that theN unknown
states have the form

d d
pN:p®...®p: 2 Z pkl"'pklel"'kN><kl"'kN|!
K=1  Ky=1
(58

and the derivatives gf" have the form
N
PT:P,i®P"‘®P+'“+P®'"®P,i:p§=:1 PR p i@,
(59
where in the second rewriting it is understood tpatis at
the pth position in the product.

Using the product form of measuremdt7), one finds
that

(el Mgy = (wilplwe) - (w¥lpl ),
(60)

N
(uelpllwe =22 (welplvdy(wllelvd) - (uElolvs).

Inserting these expressions into the Fisher information m

trix, one finds

< (Wil (ol )
IIJ(M)_Eé (el p™ g

-3
5

> (wilplwdy (ol vl

p#p’
X (R p | Ry (Lol )

(Blp,lvR)(wble,lvd)
(P8lplyk

+Z§ % (WHlplye)

Xy pl )

(Welpilye)(velpslvd)
(Welplyv?)

Xyl pl ), (61)

-3 3 (sl
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trH-1I<M>=§ 2 (wdpe e =po-oplyy

=N(d—1), (63

which is the sought for relation.

E. Inequality for more than one mixed state

We now provide a counterexample showing that if one
carries out a collective measurement Mi» 1 mixed states
one can violate Eq(27). We takeN=2, and suppose the
unknown states belong to a two-dimensional Hilbert space.
p(0)=3(1+2;6,0;) . We take as reference poifit=0 cor-
responding tg=31. At this pointH;; (6;=0)=&;; .

We consider as measurement on the two copies the fol-
lowing POVM:

M :{%lTxTx><TxTx|r%llxlx><lxlx|1%|TyTy><TyTy|i
%|lyly><lyly|a%|TZTZ><TZTZ|1%|lzlz><lzlz|a
%Hzlz_ lsz><Tzlz_lsz|}-

This POVM cannot be realized by separate measurements on
each patrticle, since the last term projects onto an entangled
state.

For this POVM one calculates thag (M, 6;=0)=6;; .
Hence the left-hand side of EQ(27) evaluates to
SiiHi H(6;=0)1;;(M,6,=0)=3>N(d—1)=2. This shows
that the optimal Fisher information is nonadditive.

(64)

a_

F. Comparison with other quantum Cramer-Rao bounds

An important question raised by bour{@7) is how it
compares to other quantum CramfRao bounds obtained in
the literature. In this respect, our most important result is that
Eq. (27) is both a necessary and sufficient condition that
I (M, 8) must satisfy when the dimensionality of the systm
equals 2 and the state is pure. This will be proven and dis-
cussed in detail in Sec. VII.

When d>2, Eq. (27) is not a sufficient condition that
I(M,0) must satisfy. To see this let us compare E2jy)
with the bound derived by Helstrom based on the SLD. This
bound is the matrix inequalityN(M,8)<NH(6); see Eq.
(26). The comparison is most easily carried out by defining
the matrixF = (1/N)H YANH - 12=3P_ y.f,®f;, wherey,
are the eigenvalues &f and f; its eigenvectors. Helstrom’s

where we have used the fact that the first term in the secongound can be reexpressedps<1 for all i, whereas bound

equality vanishes. Indeed it is equal to

§ > (Ylp®-®pi@-@p @ @pli). (62)
p#p’

The sum over¢ can be carried out in Eq62) to yield the

(27) states thak; y;<d— 1. From these expressions it results
that the bound27) is better than Helstrom’s bound fat
=2. Ford>2 andp=d-—1, Helstrom’'s bound is better than
Eqg. (27) as is seen by summing the inequalitigs<1 to
obtainY;y;<p. For p>d—1, neither Helstrom’s bound nor
bound(27) are better than the other.

identity matrix, and the resulting trace vanishes because Yuen and Lax16] proposed another matrix bound based

trp®-®p;®Qp;® - -®p=0.
We now insert Eq(61) into trH~1I(M). All the opera-

on an asymmetric logarithmic derivative. This bound is
known to be worse than the bound based on the SLD in the

tions from Eqgs.(50)—(54) can be carried out exactly as in case of one parameter, but it can be better, for some loss

Sec. VC, and one arrives at the expression

functions, in the case of two or more parameters. We have
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however not been able to make a detailed comparison be-

tween the bound based on the ALD and Ezy).
Although whend>2, bound(27) is not a sufficient con-

dition it can be complemented by additional constraints

based on partial traces &~ 1IN(M,6) which we now ex-

hibit. Consider a subsét=1,...p’'(p’ <p) of the parameters.

Let p i, be the corresponding derivatives gff). Let us de-

fine the effective dimensiod’ of the space in which these

parameters act at the poiét as follows. LetII be a projec-
tor that commutes witp (6°) ((I1,p(6°)]=0) and such that
pi,i'=1,.p" acts only within the eigenspace bf (that

is, [Ip ;/II=p /). Thend’ is the smallest dimension of the

eigenspace of such a projectr (d’=trII). To be more
explicit, let us reexpress the definition df in coordinates.
First we diagonalizep(6°) =3 py/k)(k|. If some p, are
equal this can be done in many ways. The projedtor
projects onto some of the eigenvectors of 11

=39, |k)(k|. Next we write the operatoys; in this basis:

p,i/=2ﬂ:|:1(p,i,)k||k)(l|, where the fact that the indicés|

go from one tad’ expresses the fact thay, acts only within

the eigenspace dl. Finally we choose the smallest sugh
We will show that

pl
> Hu I (ML) <N(d' - 1).
i"j'=1

(65

Before proving this result let us illustrate it by an ex-

ample. Consider an unknown pure statedidimensions. In

the neighborhood of a particular point we can parametrize

the state by

J=1)+(0+in)|2)+- -+ (04+ing)|d), (66

where the unknown parameters afgand »;, i=2,...d.
There are thus@—2 parameters. At the poit= =0, H is
diagonal in this parametrizatioht,,i 6= Sij, H, "= &, and
Hgi ,,j=0. Hence Eq(27) takes the form

ij

2 1M, 6=7=0)+1] (M,6=7=0)<N(d-1).

(67)
But using Eq.(65) we also find the constraints
15.9(M,0=7=0)+17  (M,6=7=0)<N, i=2,.d
(68)

PHYSICAL REVIEW A61 042312

tr(p, M tr(p, ;M)
tr(pM,)
:2 tr(plerMgl_[)tr(p,JrHMél_[)
7 tr(plIM IT) + tr(p(1— )M (1 —11))

LMY=,
I3

2 tr(pyerMgn)tr(pJ/HMgH)
- tr(pIIM IT) '

I

(69

Note that equality in Eq(69) holds when the measurement
consists of one-dimensional projectors and when the POVM
decomposes into the sum of two POVM'’s acting on the sub-
spaces spanned by and 1-1I separately(i.e., the POVM
elementsM ;= |)( | must commute witHI and 1—1II).
Third, we can increase the number of parameters fporto
d’?—1. We then introduce exactly as in E@6) a param-
etrization in which thep; are particularly simple, but in
place of Eq.(53) we use

Pk Py
E Cm’k’Cm’I’:‘sk’l’pk’_ (70)

1=m’'<d’ tr(Ilp)

After these preliminary steps the left-hand side of &) is
calculated exactly as in Secs. VB, VC, and VD.

VI. DROPPING THE CONDITION OF UNBIASED
ESTIMATORS

A. Quantum van Trees inequality

In Sec. V we proved a bound on the MQE of unbiased

estimatorsdN of N copies of the quantum systep(6) (with
the additional condition that i is mixed, the measurement
should be separablen this section we shall prove theorems
IV and V, that under additional conditions it is possible to
drop the hypothesis that the estimator is unbiased.

The starting point for the results in this section is a Baye-
sian form of the CranmeRao inequality, the van Trees in-
equality[20], and in particular the multivariate form of the
van Trees inequality proven in Ref21]. Adapted to the
problem of estimating a quantum state, this inequality takes

the following form. Letd" be an arbitrary estimator of the
paramete based on a measuremévitof the systenp™N(6).
Suppose it has MQE matri¥N(6), and Fisher information
matrix IN(M, ). Let \(#) be a smooth density supported on
a compact regiorfwith smooth boundapyof the parameter
space, and supposevanishes on the boundary. By, we
denote expectation over a random parameter véluwith
the probability density\(6). Let C(6) andD(6) be twop

X p matrix valued functions o, the former being symmet-
ric and positive definite. Then the multivariate van Trees
inequality reads

which are stronger than E¢7) since they must hold sepa-
rately, but by summing them one obtains Ej7).

The proof of Eq.(65) proceeds as in Sec. V. First we
restrict ourselves to POVM’'s whose elements are propor-
tional to one dimensional projectors. Second we restrict our-
selves to the subspatkin evaluating Eq(65). This follows
from the inequality

042312-10
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whereT denotes the transpose of the matrix, and

- 1 _
z<x)=j dem% Cij(0) 04 {Di(ON(0)} g,

X{Dj(O)N(0)}. (72

As a first application of this inequality we shall prove
theorem V, that is bound the minimum value averaged éver
of a quadratic cost function. L&Z(6) be the quadratic cost
function. Consider the matridV,,(¢) that minimizes for
each value off the cost tIC(8)W(6) under the condition
that trH(#) ~*W(6) '<d—1. One easily finds that

tryH~72CH 17
p=——g—g —H VAHTCTHTHTE (73
124 -101/2

d-1

and that
(tryH T2CH )2 (tr[CTPH ~ICT?)2
tr CWOpt: = .

d-1 d—-1

(79

In Eq. (71) we chooseD(6) =C(0)Wyp(6). Thus trD(6)
=tr C(9)Wop( 0) is given by Eq.(75). Note that

D(6)'C(6) D (8) =Wop( 8)C(0) W 0)
_ trC(6)Wop( 0)

-1 H(o) . (76
Thus
trD(0)'C(0) D(O)IN(M,H)
= —trc:(z)i/vlom(e) trH(8) " 1IN(M, 6)
<N tr C(6)Wp( 6). (77)

Inserting these expressions into E@l), one obtains

D)) 2
E)\tI’C(@)VN(@)Z (E)‘trc(®)wopl())

NE\tr C(®)Wep+Z(N)

_ E\rC(0)Wpy(©)® o -
N N2
where
_ )

“TE\rC(0)Wep(©) (79

is independent oN. This proves that upon averaging ouer
it is impossible(for large N) to improve over the minimum
cost[Eq. (30)].

PHYSICAL REVIEW /1 042312

B. Asymptotic version of the Crama-Rao inequality

We now prove theorem IV, that is an asymptotic version
of our main inequality(28) which is valid at every poin9
and does not make the assumption of unbiased estimators.
We must, however, slightly restrict the class of competing
estimators since otherwise by the phenomenon of supereffi-
ciency we can beat a given estimator at any specific value of
the parameter, though we pay for this by bad behavior closer
and closer to the chosen valuelddecomes larger.

The restriction on the class of estimators is tNatimes
their mean quadratic error matrix must converge uniformly
in a neighborhood of the true valu® of 6 to a limit W(#6),
continuous a¥’. We assume that botV(6°) andH(6°) are
nonsingular. Furthermore, we shall require some mild
smoothness conditions d#(#) in a neighborhood o#°: it
must be continuous a4° with bounded partial derivatives
with respect to the parameter in a neighborhoo@bfNote
that imposing regularity conditions dd is natural since it
corresponds to supposing that thesmoothly parametrize
the allowed density matrices.

Suppose that, a¥— oo,

NWN(8)—W(6)
uniformly in 6 in a neighborhood o#°, with W continuous

at 6% write WO=W(6°). Now in Eq.(71) let us make the
following choices for the matrix function€ andD:

C(H)=W° "H Y(ow° *,
D()=W° "H~ ().
Then Eq.(71) (multiplied throughout byN) and(72) become

E,tr W0 TH1(@)W° ‘NVN(@)
(E\tr WO 'H1(@))?

=

! E trH UN(M,0)+ 1~z(x)
J— r , J—
N N

_ (E\tr W0 "H™1(@))?

— (80
(d-1)+ T
and
100= [ 405055 S HiOa,HEONO)
X dg{H (ON(O)}, (81)

where we have used our central inequaly) to pass to Eq.
(80). Now suppose that quantityl) is finite (we will give
conditions for that in a momentBy the assumed uniform
convergence oNVN to W, upon lettingN—, Eq. (80)
becomes
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(E\tr WO "H™1(0))? G(6°) that satisfies tH~ (69 G(6°)<1, we can build a
(d—1) ' measuremenM =M, in general depending om°, such
(82 thatI(M? 6°)=G(6°. In the next sections we shall show

how to use this intermediate result to build a measurement

Now suppose the densityin this equatio_n(the probability 504 estimation strategy whose asymptotic MQE is equal to
density of®) is replaced by an elemeit” in a sequence of W(6)=G(6)"* for all .

densities, concentrating on smaller and smaller neighbor-
hoods of§° asm—o. Assume thaH(#) is continuous at
6°. Recall our earlier assumption that(6) is also continu-
ous at#°, with WO=W(6°. Then taking the limit asn

E rWe 'H L @)W 'W(®)=

Let us first consider the case of pure states.6At the
state ig #/°). We introduce a parametrizatiah , 8, such that
in the vicinity of | 4°), the unknown state is

— of Eq. (82) yields [p(0))=14°)+ (0111 6,)| ¢, (83
trw = (6O)H (%) =(trw H(6°)H 1(6%)%/(d—1). Thus the original point?® corresponds to the new,= 6,
h ired limiting f ¢ Ea(27: =0. In this parametrizatior{ is proportional to the identity
or the required limiting form of Eq(27): at 0,=6,=0: H9101(0)=H0292(0):1, Heloz(0)=0-
trwL(6°)H " 1(6%)=<(d—1). We now diagonalize the matrig. Thus there exist new

parameters); = cos\ 6, +sin\ 6, and 5= — sin\ 6, +CcosA 6,
It remains to discuss whether it was reasonable to assungich  that GHM(O)ZngO, Ggégé(0)=gz>0, and

that Z(\™) is finite (for eachm separately Note that this G, ,(0)=0.
qguantity only depends on the prior densityand onH (), oz
where \ is one of a sequence of densities supported b¥s
smaller and smaller neighborhoodsé ét. We already as-
sumed thatH(#) was continuous a#". It is certainly pos- 0y—1,,0 P IR EL
sible to specify prior densities™ concentrating on the ball WO =197)+(Brtiop)]y™), &9
of radius 1, say, satisfying the smoothness assumptions ir\‘/vhere| ¢1')=e‘*|¢1)
Ref.[21] and with, for eachm, finite Fisher information ma- o . )
trix The POVM M?" consists of measuring the observable
|2 (gt |+ | ) °] with probability g;, of measuring the
1 m m observablei(|¢°) (4 | — |4 ) (¥°) with probabilit ,
f da)\m( 0) &”k{)\ (0)}ﬁ9|{>\ (O} and of meaélulfirzéwnolthil:g)r%nlﬂela)suring tﬁe identi;/m/\%fh
probability 1—g,—g,. Itis straightforward to verify that the
Consideration of Eq(81) then shows that it suffices further Fisher information at?® in a measurement of the POVM
just to assume thai,gk{HiT(l(a)} is, for eachi andk, bounded  \;¢° ig equal toG(6°).
in a neighborhood ot°. Let us now turn to the case of mixed states. We suppose
In conclusion we have shown that under mild smoothnessghat there are three unknown parameters. We use a param-
conditions orH(#), the limiting mean quadratic error matrix etrization in which p(6)=(1/2)(1+ 6- o), with |6[<1.
W of a sufficiently regular but otherwise arbitrary sequencewithout loss of generality we can suppose thaf
of estimators must satisfy the asymptotic version of our cen=(0,0), so thatp(6° =(1/2+n/2)|1)(1]+ (1/2—n/2)|2)

In terms of the parametey and 6;, the unknown state
written

tral inequality tH "W~ *<d—1. X(2|=1/2(1+na,). The tangent space atis spanned by
) the Pauli matricep = o,(=p12:/2), py=0y(=p12-12),
VIl. ATTAINING THE CRAME R-RAO BOUND IN TWO andp ,=o,(=p 1y1—n%), where in parentheses we give the
DIMENSIONS relation to the basis used in Sec. VC. In this coordinate
systemH (6°) is diagonal with eigenvalues 1, 1, 14h?).
We shall now show that bound&7), (29), and(31) are Take any symmetric positive matrixG satisfying

sharp in the case of pure states of spisystems, and of trGH (¢#°)<1. Define the matrix F=H YGH 2
separable measurements in the case of mixed states of spi->;y;f;®f;, wherey, andf; are the eigenvalues and eigen-
1 systems. In particular, in the limit of a large number of vectors of F. The condition tGH 1(6°)<1 can then be
copiesN any target scaled MQE matri¥V that satisfies rewritten 3;v,<1. If we defineg,=HY?f;, then we can
trH W~ 1<1 can be attaine¢providedW is nonsingulax. ~ write G=3,y,g;®g; . Denotem;=g; /| gi|.

We shall show this by explicitly constructing a measurement Consider the measurement of the spin along the direction
strategy that attains the bound. In Sec. VI we have alreadyn;. This is the POVM consisting of the two projectors
shown that if tH ~*W~1>1, then it cannot be attained. Pim=12(+m;-0) andP_y =1/2( —m;- o). The infor-

mation matrix for this measurement is
A. Attaining the bound at a fixed point §°

The first step in the proof is to consider the case of one (P )= U(Pem o)W (Pem,o1) ~ () (),
tmi

copy of the unknown stateN(=1) and fix a particular point tr(P.mp) ~ (1-n*(my)3)
6°. Then we show that for any target information matrix (85
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where ;) is componentk of vector m;. Therefore this
information matrix is proportional t@;®g;. One verifies
that it obeys tH 1 (P+m)=1, as it must by our findings in
Sec. V since the measurement is exhaustiNe;1, andp
=d?—1. Therefore, the coefficient of proportionality is 1,
and
[(Pim)=0i®0;. (86)
We now combine such POVM'’s to obtain the POVM
whose element are
')’1P+ml- ')’1P—m1a

'}’2P+m2’ 72P—m2’

87

¥3Pimy  ¥3P-my (1= v1— 72— 7a).

The information matrix for this measurement is just the
sum 1l (Pem) + 72l (P2m) + 73l (Pem,) = 2i%9i®0;
=G. Thus POVM(87) attains the target informatid@ at the
point 6°.

B. Attaining the bound for every @ and arbitrary N by
separable measurements

We now prove theorem VII, that states that in the case o
spin half particles we can attain bou(®p) for every 6. Give
yourself a continuous matri¥v(6), the target-scaled MQE
matrix, satisfying Eq.(29) for every 6. Define G(0)
=W(6) !, the target-scaled information matrix, which
therefore satisfies Eq27). We will show that there exists a
separable measurement and an estimation stratedlamp-
ies of the statep(6) such that the MQE matrix/N of the
estimator satisfies

|

for all 6. In fact this holds uniformly ing in a sufficiently

W, 1

1(9)+ 1
N

VN(6);; =Ey((6;— 9i)(a’j_ 0;))= N

) (88)

PHYSICAL REVIEW A1 042312

have just shown how to construct. Note thitv?, )
=G(#) is only guaranteed whed is precisely equal td.
Write | (M, 8;6) for the Fisher information about based on
the measuremeri¥!?, optimal at®, while the true value of
the parameter is actuallg, based on the measuremevit’
optimal até, while the true value of the parameter is actually
6. Given's, each of theN’ second stage measurements rep-
resents one draw from the probability distributip(£| 6;9)
=trM{p(6). We use the classical MLE based on this data
only (with 6 fixed at its observed valjido estimate what is
the value ofé. Call this estimated valué.

Let e>0 be fixed, arbitrarily small. Le® denote the true
value of 6. For given5>0 let B(6° 6) denote the ball of
radius 8 about#°. Fix a convenient matrij-|. We have the
exponential bound

PO B(6°8))=1—Ce PNo® (89)
for some positive number€ and D (depending ors). The
reason we také\, proportional toN? for some G<a<1 is
fhat this ensures that—lCe*DNf):o(AllN).

Modern result§23] on the MLE 6 state that, under cer-
tain regularity conditions, the conditional MQE matrix of
satisfies(at 6= 6°, and conditional org)

1
+ —_—
ol
uniformly in 8°. However, for the next step in our argument

this same result must be true uniformly thfor given 6°.

This could be verified by careful reworking of the proof in
Ref. [23]. Rather than doing this, in Secs. VIIC and VIID
we will explicitly calculate the conditional MQE matrix of

C(M,6%8) 7!

N’ 50.7
VY (6% 0) N

(90

small neighborhood of any given point. This is proven by oyr estimator, and show that it satisfies E20) uniformly in

constructing explicitly a measurement and estimation strat-

egy that satisfies Eq88), following the lines of Ref[15].
The measurement and estimation strategy we propose
the following: first take a fractiotNy,=O(N?) of the states,

0

o’
IS

in a small enough neighborho@{ 6°, 5) of 6°. The “little
in Eq. (90) refers to the chosen matrix norm.

We will also need thak(M, 6°;8) ~* is continuous ird at

for some fixed @a<1, and on one-third of them measure 6= 6°, at which point by our construction it is equal to the

gy, on one-thirde, and on one-thirdr,. From each mea-
surement ofo, one obtains the outcome1 with probabili-

ties 1/2(1+ 0,), and similarly foro, and o,. Using these
data we make a first estimate @fcall it 9, for instance by
equating the observed relative frequencies:dfin the three

target-scaled MQBEN(6°). This is also established in Sec.
VII C. Therefore, replacing if necessafby a smaller value,

we can guarantee that(M,6%8)"! is within e of
(M, 6% 6% ~1=W(6° for all 9 B(6°5). If @ is outside
the domairB(6°, 5), then the norm o¥/N'(6°;6) is bounded

kinds of measurement to their theoretical values. If the stat@y 5 constanf since 8 belongs to a compact domain.

is pure this determines a first estimate of the direction of

polarization. If the state is mixed it is possible that the initial

estimate suggests that the Bloch vector lies outside the unit

sphere. This only occurs with exponentially small probability

(in Ng), and if this is the case the measurement is discarded.
As discussed below this only affects the mean quadratic error

by o(1IN).
On the remainingN’=N—N, states we carry out the
measuremenil =M ¢ such thatl (M ?,8)=G(6), which we

Putting everything together, we find that

IN"VNC6%) —W(6°)]]=

f(N'vN’wO;”a)—W(eO))dP(”e)’

<

=

f IN"VN'(6°;8)
B(6°,5)

—~W(6°)[dP(§)+AN'C’e PNo
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o1 oretical valuesp-; equal to their empirical counterparts
= waO 5)|||(|V|,9 ;0)"~+0o(1) (relative frequencies of-1 in the y,N’ observations of the
’ ith spin and solve the resulting three equations in three un-
—W(6%]dP(8)+0o(1) knowns.

To be explicit, definey;=2p.;—1=6-m;, and lety; be
its empirical counterpart. Recall that;=g;/||g;| and g;
=HY%f,, where f; are the orthonormal eigenvectors of
H~Y2GH~Y2 and whereH andG areH(8), G(6), andé is
lim sug|NWN(6%) —W( 8% <e. the preliminary estimate of. Then we can rewrite

N— oo

<e+o0(1l)+o(1).

It follows sinceN’/N—1 asN— that

7i=0-m=0-g;/|gil

Since e was arbitrary, we obtain Eq88).
= - HYZ (IR = (HY20) - £ /[ H28],

C. Analysis of the conditional mean quadratic error from which we obtain

We first consider the case of impure states, with the pa-
rametr'I i | e . P (HY20) - f;=|[HYf || 7,
ization
and hence
1 .
p=5(1+6-0) with > (6,)2<1, (91)
9:H_1/2§i: [GRSHEATE
where we have imposed that the state is never pure. This case
turns out to allow the most explicit and straightforward The same relation holds betweéhand 7 and yields the
analysis because the relation between the frequency of thg,ught for expression fat in terms of the empirical relative
outcomes and the parametetss linear. For other cases the frequencies.
analysis is more delicate, and is dlscgssed in Sec. VIID. In Observing that 7 are independent with variance
general, smoothness assumptions will have to be made 041 I(yiN")=(1— (6m)/(%N'), the MQE matrix
the parametrizatiop=p(#4). pjmip—mi. _ Y v Y L
We suppose thatV(6) is nonsingular and continuous in of ¢, conditional on the preliminary estimatg is
6. Consequentlyy, (defined in Sec. VII A depend continu-

. e ;o1 1 (6°-HY2f )2
ously oné, and are all strictly positive at the true valo® of WN'(6%6)= WZ 11— [ [HY2f,12
0. i i [
Given the initial estimate, the second state measurement XH Y2, ) H 2 92)

can be implemented as follows: for each of thé=N
— Ny observations, independently of one another, with probThere is noo(1/N’) term here, so we do not have to check
ability y;, measure the projectorB..,, in other words, uniform convergence: the limiting value is attained exactly.
measure the spin observable;-o. With probability 1  Actually we cheated by replacing;N’| by y;N’. This does
—3 9, do nothing. introduce ao(1/N") error into Eq.(92) uniformly in a neigh-

We emphasize thay; and m; all depend on the initial borhood of6° in which v, , which depend om, are bounded
estimated throughW(#@) and H(®). In the following, all away from zero, andi and its inverse are bounded.
probability calculations are conditional on a given value of One may verify that Eq(92) reduces tow/( 00)/N’ at’®
6. =¢° [indeed at#°="0, (6-HY?f)?>=[n?*f2/(1—n?)] and

For simplicity we will modify the procedure in the fol- ||41/2f,|2=(1—n2+n2f2)/(1—n?)). But this computation
lowing two ways: first, rather than taking a random numberis really superfluous since, at this point, we are computing
of each of the three types of measurements, we will take thehe MQE of the maximum likelihood estimator based on a
fixed (expectednumberg ¥ N"] (and neglect the difference measurement with, by our construction, Fisher information
betweer{ y;N'] andy;N']). Second, we will ignore the con- equal to the inverse o®(¢°). (The modifications to our
straint>(6;)°<1. These two modifications make the maxi- procedure do not alter the Fisher informajioThe two
mum likelihood estimator easier to analyze, but do notguantities must be equal by the classical large sample results
change its asymptotic MQE. Later we will sketch how to for the maximum likelihood estimator.
extend the calculations to the origir@nstrainedmaximum
likelihood estimator based arandomnumbers of measure- N/
ments of each observable.

Now measuringn; - o produces the values1 with prob-

We finally need to show the continuity i at §= 6° of
times the quantity in Eq92). This is evident ify; are all
different at #°. Both the eigenvalues and eigenvectors of

abilities p.;=3 (1+0-m,). Since our data consist of three H_MGhH_l/.Z are then .c?gt_ifr;uoijs ffunctions"éfat 60°. lHOW'
binomially distributed counts and we have three parameter§Ve’: there Is aopotentlr_al Ifficulty If somg are equal to one
01, 6,, and 63, the maximum likelihood estimator can be another atg=6". In this case, the eigenvectofs are not

described, using the invariance of maximum likelihood esticontinuous functions off at this point, and not even
mators under +1 reparametrization, as follows: set the the-uniquely defined there. We argue as follows that this does
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not destroy the continuity of the mean quadratic error. Conunknown parameters;, of parametrizatior(91). We shall
sider a sequence of poiné8 approaching®. This generates first analyze the mean quadratic error when the unknown
a sequence of eigenvectofs and eigenvalues;'. The ei- parameters are functiong;(6;) of the parameterg;. We
genvalues converge to the, but the eigenvectors need not shall then consider the important case when the state is pure
converge at all. However by compactness of the set of uniand depends on two unknown parameters, and finally the
vectors inR3, there is a subsequence along which the eigenease when the state is pure or mixed and depends on one
vectorsf{' converge; and they must converge to a possiblainknown parameter, or is mixed and depends on two un-
choice of eigenvectors a°. Thus along this subsequence known parameters.

the mean quadratic err¢®2) does converge to a limit given Our first result is that if the change of parametet$6;)

by the same formula evaluated at the limitihg etc. But s locally C*, then the MQE matrix of thep; is obtained

this limit is equal by construction to the inverse of the targetfrom the MQE of §; by the Jacobiam¢;/76; except even-
information matrixG(6). A standard argument now shows tyally at isolated points. This follows from the fact that under
that the limiting mean quadratic error is continuousédt 4 smooth(locally C!) parametrization, the® methodi(first-

=¢°. The MQE ofé given 6 (timesN’) therefore converges order Taylor expansignallows us to conclude a uniform

gni.formly' in a sufficiently_small n.eighborhoodoai0 to a convergence of the probability distribution gIN(HN— ¢)
limit continuous at that point, and is equal\t(¢") there. 4 5 normal limit with the target mean quadratic errorg|f

antljn'tgués?'(re‘r:ie\xlt%triotg g; Ilzg?).(i?j)evc\ilelsreqduri(;ed';hetr?:?or?]g:?ar'n nd their derivative®¢; /36; are bounded, then this proves
: : u - By dropping Mur claim. If there are points wherg; or their derivatives

on the length off we have ma_d_vertent.ly I9St this property. d¢ild6; are infinite, then convergence in distribution does
Suppose we replace our modified estimafidby the actual ¢ necessarily imply convergence of moments. However, a
maximum likelihood estimator respecting the constraint. The . . . . A ’
two only differ when the unconstrained estimator lies outsidéuncation device allows one to modify the eiuma‘ig re-

the unit sphere; but this event only occurs with an exponenPlacing it by 0 if any component is larger thah\® for given
tially small probability, uniformly ind, provided they; are ¢ _anda[use the m_eth_od of R_ele3], Lemma ”'8'2' t(_)gether
uniformly bounded away from 0 in the given neighborhood\"’.Ith t.he exppnenpal 'f‘eq“a"t@?’) fqr the multinomial d'.S'

of #°. From this it can be shown that the mean quadratic,mb“t'_on]' W|th th|s minor modn‘écatlon one can shofni-
error is altered by an amouo(1/N’) uniformly in . form in ¢ in a neighborhood o#") convergence of the mo-

If we had worked with random numbers of measurementgnents of the correspondingN(¢ — ¢) to the moments of its
of each spin variable, when computing the mean quadratiimiting distribution, and hence achievement of the bound in
error we would first have copied the computation above conthe sense of theorem IV. In particular, if the parametes
ditional on the numbers of measurements, ¥ay of each  bounded then the truncation is superfluous.
spinm; . These numbers are binomially distributed with pa- Now turn to the pure-state analog of mod@l). Obtain a
rametersN’ and ;. The conditional mean quadratic error prelimir)ary estimate of the location pfon the surface of the
would be the same as the expression above but witlPoincaresphere using the same method as in the mixed case,
1/(y;N") replaced by I{; (and special provision taken for but always projecting onto the surface of the sphere. Next,
the possible outcom®;=0). So to complete the argument after rotation to transform the preliminary estimate into
we must show thaE(1/X;)=1/(y;N")+0o(1/N") uniformly  “spin-up,” reparametrize top=1/2(1+ ¢- o), where the
in @. This can also be shown to be true, using the fact thaparameters to be estimated agg, (¢,) = (6; ,65) of the pa-

X;IN" only differs from its mean by more than a fixed rametrization(84) while ¢5=\(1— ¢3— $2). The prelimi-
amount with exponent~ially small probability & — o, and nary estimate is ai,= ¢, =0. The optimal measurement at
we restrict attention td@ in a neighborhood of® wherey;  this point according to Sec. VII A consists of measurements
are bounded away from zero. Inspection of our argumengf the spinso, and o, on specified proportions of the re-
shows that ghe convergence of the mean quadratic error haining copies. The resulting estimator of the parameter
uniform in 67, as long as we keep away from the boundary 4 4.} is a linear function of binomial counts, and hence
of the parameter space. . . ... its mean quadratic error can be studied exactly as in Sec.
By the convergence of the normalized binomial d|str|bu-V” C. Then we must transfer back to the originally specified

::?nna':grt\rl]vz n(:\?;a;gf\}gb;tslgn;ﬁgiﬁﬂzsﬁ r;;ag(;nn(])f ttorlfcaelIS)}Jarametrization, for instance polar coordinates. This is done
g ymp as in the preceeding paragraph. If the transformation is lo-

ggggﬂlg thdésttg%u;fgo\g:g nizymggtz)t(chgroevoavne?mii‘?( rrgztrlx cally C*, then uniform convergence'in distribution to the
the binomial(n, p) distribution, them4(X/n— p) cémverges normal law also transfers b_ack; thefe_ls also a convergence _of
in distribution’to the normal, with mean zero and variancethe mean quadra_tlc error if the orlgmal parameter space Is
o(1—p), uniformly in p. Thus the convergence in distribu- bounded. Other\le.e_a truncation mlght.be necessary. In any
NS ; . case, we can exhibit a procedure optimal in the sense of
tion is also uniform ing” as long as we keep away from the theorem IV.
boundary of the parameter space. It remains to consider one- and two-dimensional submod-
els of the full mixed model, and one-dimensional submodels
of the full pure model. We suppose that the model specifies a
Section VII C gave a complete analysis of the mean quasmooth curve or surface in the interior of the Poincare
dratic error, given the preliminary estimatefor the three  sphere, or a smooth curve on its surface, smoothly param-

D. Conditional mean quadratic error for other models
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etrized by a one- or two-dimensional parameter as approprihese, and still others that doubtless will occur to physicists
ate. The first stage of the procedure is just as before, finisland mathematicians, remain to be solved within the frame-
ing in projection of an estimated density matrix into the work of the quantum-mechanical theory.”

model. Then we reparametrize locally, augmenting the di- In the case of pure states of sgirparticles, the problem
mension of the parameter to convert the model into a fullhas been solved. The key result is that in the limit of laxge
mixed or pure model, respectively. The target informationthe variance of the estimate is bounded by &8), and the

for the extra parameters is zero. Compute as before the ojpound can be attained by separate von Neumann measure-
timal measurement at this point. Because of the zero valuements on each particle.

in the target information matrix, there will be zero eigenval- In the case of mixed states of spjnparticles the state

ues y; in the computation of Sec. VIIA. Thus the optimal estimation problem for larg®&l has been solved if one re-
measurement will involve specified fractions of the measurestricts oneself to separable measurements. However, if one
ment of spin in the same number of directions as the dimeneonsiders nonseparable measurements, then one can improve
sion of the model. Compute the maximum likelihood estima-the quality of the estimate, which shows that the Fisher in-
tor of the original parameters based on this data. If thdormation, which in classical statistics is additive, is no
parametrization is smooth enough, the estimator will yetonger so for quantum state estimation.

again achieve the bound of theorem IV. For the case of mixed states of sgirparticles, or for
higher spins, we do not know what the “outer” boundary of
VIIl. CONCLUSIONS AND OPEN QUESTIONS the set of(rescaledl achievable Fisher information matrices

) . based on arbitrarynonseparablemeasurements dil sys-

In this paper we have solved some of the theoretical probrems |ooks like. We have some indications about the shape
lems that arise when trying to estimate the state of a quantuig tnjs set(see Sec. VF and we know that it is convex and
system of which one possesses a large number of copiegempact.

This constitutes a preliminary step toward solving the ques-

tion with which Helstrom concluded his bo¢&]: “... math-

ematlce_ll statisticians are oftgn concerqed with asymptotic ACKNOWLEDGMENTS
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