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Theory of quantum secret sharing

Daniel Gottesman*
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~Received 18 October 1999; published 16 March 2000!

I present a variety of results on the theory of quantum secret sharing. I show that any mixed state quantum
secret sharing scheme can be derived by discarding a share from a pure state scheme, and that the size of each
share in a quantum secret sharing scheme must be at least as large as the size of the secret. I show that the only
constraints on the existence of quantum secret sharing schemes with general access structures are monotonicity
~if a set is authorized, so are larger sets! and the no-cloning theorem. I also discuss some aspects of sharing
classical secrets using quantum states. In this situation, the size of each share can sometimes be half the size
of the classical secret.

PACS number~s!: 03.67.Dd
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I. INTRODUCTION

In a classical secret sharing scheme, some sensitive
sical data are distributed among a number of people such
certain sufficiently large sets of people can access the d
but smaller sets can gain no information about the sha
secret. For instance, a possible application is to share the
for a joint checking account shared by many people.
individual is able to withdraw money, but sufficiently larg
groups can use the account.

One particularly symmetric variety of secret shari
scheme is called athreshold scheme. A (k,n) classical
threshold scheme hasn shares, of whichany kare sufficient
to reconstruct the secret, while any set ofk21 or fewer
shares has no information about the secret. Blakely@1# and
Shamir@2# showed that threshold schemes exist for all valu
of k andn with n>k.

It is also possible to consider more general secret sha
schemes which have an asymmetry between the power o
different shares. For instance, one might consider a sch
with four sharesA, B, C, andD. Any set containingA, B, and
C or A andD can reconstruct the secret, but any other se
shares has no information. In this example, the presenceA
is essential to reconstructing the secret, but not sufficien
A needs the help of eitherD or bothB andC. This particular
scheme can be constructed by taking a (5,7) thresh
scheme, and assigning three shares toA, two shares toD, and
one share to each ofB andC, but other schemes exist whic
cannot be constructed by bundling together shares o
threshold scheme. The list of which sets are able to rec
struct the secret is called anaccess structurefor the secret
sharing scheme. It turns out that a secret sharing sch
exists for any access structure, provided it is monotone@3#
— i.e., if a setS can reconstruct the secret, so can all s
containingS.

With the advent of quantum computation, it is possib
that quantum information may someday be as commonp
as classical information, and we may wish to protect it
same ways as we protect classical information. Using qu
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tum secret sharing@4#, we could perhaps create joint chec
ing accounts containing quantum money@5#, or share hard-
to-create ancilla states@6#, or perform a secure distribute
quantum computation. The authors of Ref.@4# showed some
basic results about quantum secret sharing schemes, in
ing the existence of quantum threshold schemes. A quan
„(k,n)… threshold scheme~the use of double parentheses d
tinguishes it from a classical scheme! exists provided the
no-cloning theorem is satisfied — i.e.,n/2,k<n. In this
paper, I will prove some further results about quantum se
sharing schemes with general access structures, includin
fact that the no-cloning theorem and monotonicity provi
the only restriction on the existence of quantum secret s
ing schemes.

Another possible application of quantum states to se
sharing is to create secret sharing schemes sharing clas
data using quantum states@7,8#. This could allow, for in-
stance, for more secure distribution of the shares of
scheme. I will show below that it can also produce mo
efficient schemes: in any purely classical scheme, the siz
each important share must be at least as large as the si
the secret, whereas, using quantum states to share a cla
secret, we can sometimes make each sharehalf the size of
the secret.

In the theory of classical secret sharing, one sometim
considers schemes which do not completely hide the se
from unauthorized groups of people, or from which the s
cret cannot be perfectly reconstructed even by authori
sets. I will not consider the quantum generalizations of su
schemes. I will only consider the theory of perfect sec
sharing schemes, in which the data are either comple
revealed or completely hidden, with no middle ground.

II. QUANTUM SECRET SHARING

I will begin by reviewing some results from Ref.@4#
which will form the basis of much of the later discussion.
a perfect quantum secret sharing scheme, any set of sha
either anauthorizedset, in which case someone holding a
of those shares can exactly reconstruct the original secre
an unauthorizedset, in which case someone holding ju
those shares can acquire no information at all about the
©2000 The American Physical Society11-1
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DANIEL GOTTESMAN PHYSICAL REVIEW A 61 042311
cret quantum state~that is, the density matrix of an unautho
rized set is the same for all encoded states!. For a generic
state split up into a number of shares, most sets will
neither authorized nor unauthorized — quantum secret s
ing schemes form a special set of states.

One constraint on quantum secret sharing schemes i
obvious one inherited from classical schemes. Any se
sharing scheme must bemonotone. That is, if we increase the
size of a set, it cannot switch from authorized to unaut
rized ~the indicator function which is 0 for unauthorized se
and 1 for authorized sets is monotonic!.

As we shall see in Sec. III, the only other constraint
quantum secret sharing schemes is the no-cloning theo
@9,10#. We cannot make two copies of an unknown quant
state. Therefore, we cannot distribute the shares of quan
secret sharing scheme into two disjoint authorized sets~each
of which could produce a copy of the original state!. Since
every set is either authorized or unauthorized, this imp
the complement of an authorized set is always an unau
rized set.

A pure statequantum secret sharing scheme encodes p
state secrets as pure states~when all of the shares are avai
able!. A mixed statequantum secret sharing scheme m
encode some or all pure states of the secret as mixed st
Pure state schemes have some special properties, as a c
quence of the following theorem, but the general quant
secret sharing scheme is a mixed state scheme. Theor
and corollary 2 first appeared in Ref.@4#.

Theorem 1:Let C be a subspace of a Hilbert spaceH
which can be written as tensor product of the Hilbert spa
of various coordinates. ThenC corrects erasure errors1 on a
setK of coordinates iff

^fuEuf&5c~E! ~1!

~independent ofuf&PC) for all operatorsE acting onK. A
pure state encoding of a quantum secret is a quantum s
sharing scheme iff the encoded space corrects erasure e
on unauthorized sets and it corrects erasure errors on
complements of authorized sets.

Proof: The first equivalence follows from the theory o
quantum error-correcting codes. To recover the original
cret on an authorized set, we must be able to compensat
the absence of the remaining shares, which is to say from
erasure error on the complement of the authorized set. C
dition ~1! implies that measuring any Hermitian operator
the coordinatesK gives us no information about which sta
in C we have. This means the density matrix onK does not
depend on the state, which is precisely the condition we n
an unauthorized set to satisfy. j

As a corollary, we find that pure state schemes are o
possible for a highly restricted class of access structures

1An erasure error is a general error on a known coordinate.
instance, it replaces the coordinate with a stateue& orthogonal to the
regular Hilbert space. Recall that a quantum error-correcting c
of distanced can correctd21 erasure errors orb(d21)/2c general
errors.
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Corollary 2: In a pure state quantum secret shari
scheme, the authorized sets are precisely the complemen
the unauthorized sets.

Proof: By the no-cloning theorem, the complement of
authorized set is always an unauthorized set. By theorem
for a pure state scheme, we can correct erasure errors on
unauthorized set. This means we can reconstruct the sec
the absence of those shares; that is, the complement i
authorized set. j

In other words, in a pure state scheme, any division of
shares into two sets will produce one authorized set and
unauthorized set. In a mixed state scheme, we could so
times obtain two unauthorized sets.~The no-cloning theorem
ensures we never obtain two authorized sets.! If some subdi-
vision gives us two unauthorized sets, we can define a n
access structure by making one of them authorized.
course, the new access structure should be monotone, w
may require us to create additional authorized sets at
same time.

For instance~see Table I!, if we started with the acces
structureABC or AD from Sec. I~any set containingA, B,
andC is authorized, as is any set containing bothA andD),
we could add the setBD ~so any set containingB andD is
also now authorized — this means thatBCD becomes au-
thorized as well!. We wish to continue to satisfy the no
cloning theorem, so we never add a new authorized set c
tained in the complement of an existing authorized set.
instance, in the example, we could not have addedBC as an
authorized set, since its complementAD is already autho-
rized.

In short, we start out with a list of authorized sets. W
make a list of their complements; nothing on this list c
ever become authorized without violating the no-cloni
theorem. There will be a number of sets left over. We cho
one, put it on the authorized list, and put its complement
the list of complements. We can keep doing this for a wh
but eventually, every set will be on one of the two lists, a
we will be forced to stop. Thus an access structure where
authorized and unauthorized sets are complements of
other is amaximalquantum access structure.

In the example, after addingBD, we could addCD as an
authorized set. The authorized sets are now all sets con
ing ABC, AD, BD, or CD. Now we must stop — every se
contains one of these four sets or is contained in the com
ment of one of them. Pure state schemes and maximal ac
structures may seem like a very special situation, but in f

or

e

TABLE I. Adding authorized sets to obtain a maximal acce
structure. After addingBD andCD, every subset ofABCD either
contains an authorized set or is contained in an unauthorized s

Authorized Complement~unauthorized!

Start ABC D
AD BC

Add BD AC
Add CD AB
1-2
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THEORY OF QUANTUM SECRET SHARING PHYSICAL REVIEW A61 042311
they play a central role in the theory of quantum secret sh
ing because of the following theorem.

Theorem 3:Every mixed state quantum secret shari
scheme can be described as a pure state quantum secre
ing scheme with one share discarded. The access structu
the pure state scheme is unique.

Proof: Given a superoperator that maps the Hilbert sp
S of the secret to density operators onH ~which is a tensor
product of the Hilbert spaces of the various shares!, we can
extend the superoperator to a unitary map fromS to H^ E
for some spaceE. We assign this additional Hilbert space
the extra share. In other words, we can ‘‘purify’’ the mixe
state encoding by adding an extra share. The original mi
state scheme is produced by discarding the extra sha
claim that the new pure state encoding is a quantum se
sharing scheme.

Sets on the original shares remain authorized or unau
rized, as they were before addingE. Given a setT including
the extra share, look at the complement ofT, which is a set
not includingE and is thus either authorized or unauthoriz
~in the new scheme as well as the old!. For instance, if we
purify the scheme (ABC or AD) by adding a fifth shareE,
the complement ofCDE is unauthorized, while the comple
ment ofDE is authorized. If the complement is authorize
then we can correct for erasures onT, and condition~1! holds
for T — we can obtain no information about the secret fro
T, andT is unauthorized. If the complement ofT is unautho-
rized, we can correct erasures on the complement. There
we can reconstruct the state with justT, andT is authorized.
Thus the new scheme is secret sharing. It is clear from
argument that any other purification of the mixed st
scheme would produce the same access structure. j

In Ref. @4#, we presented a class of quantum secret sh
ing schemes where every share had the same size a
secret. One might wonder if it is possible to do better. F
instance, can we make one share much smaller than th
cret, possibly at the cost of enlarging another share?
answer is no, provided we only consider important sha
~unimportant shares never make a difference as to wheth
set is authorized or unauthorized!.

Theorem 4:The dimension of each important share of
quantum secret sharing scheme must be at least as lar
the dimension of the secret.

Proof: We need only prove the result for pure sta
schemes. By theorem 3, the result for mixed state sche
will follow.

Let Sbe an important share in a pure state quantum se
sharing scheme. Then there is an unauthorized setT such that
Tø$S% is authorized. Share the stateu0& and give the share
of T to Bob and the remaining shares~includingS) to Alice.
By corollary 2, Alice’s shares form an authorized set; s
can correct for erasures onT. By theorem 6 below, this
means Alice can perform any operation she likes on the
cret without disturbing Bob’s shares. She can equally w
perform quantum interactions between the secret and o
quantum states held by her. In particular, if Alice has st
uc& from a Hilbert space of dimensions ~the size of the
secret!, she can coherently swap it into her shares of
secret sharing scheme, which now encodes the stateuc&.
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Then Alice sends just the shareS to Bob. Bob now has an
authorized set, so he can reconstructuc&. Therefore, by theo-
rem 5 below, shareS must have had dimension at leasts as
well. j

The above proof depends on two theorems of interest
side the theory of quantum secret sharing. The first is ob
ous, and it is also true; it has not, to my knowledge, appea
before in the literature.

Theorem 5:Even in the presence of preexisting entang
ment, sending an arbitrary state from a Hilbert space of
mensions requires a channel of dimensions.

Proof: ~This proof is due to Michael Nielsen@11#.!
Assume that in addition to whatever entanglement is giv
Alice and Bob share a cat state(u i &Au i &B of dimension
s. Using a straightforward variant of superdense cod
@12#, Alice can encode one ofs2 classical states in this ca
state. Now Alice transmits her half of the cat state to Bo
using the preexisting entanglement if it helps. Bob can n
reconstruct the classical state, so by the bounds on su
dense coding@13#, Alice must have used a channel of dime
sion s. j

The second theorem is more interesting. It says tha
Alice can read a piece of quantum data, she can also cha
it any way she likes, without disturbing any entanglement
the encoding with the outside. There will be no way to t
that the data has been changed.

Theorem 6:Suppose a superoperatorS maps a Hilbert
spaceH to density operators onA^ B, andS restricted toA
~that is, traced overB) is invertible~by quantum operation!.
Then for any unitaryU:H→H, there exists a unitary opera
tion V:A→A such thatV+S5S+U.

Proof: We can extend the superoperatorS to a unitary
operatorW and enlargeB with the necessary extra dimen
sions. IfV works for W, it will also work for S. SinceW is
invertible onA, the image subspace corrects erasure error
B, and

^cuEuc&5c~E! ~2!

for any operatorE acting onB, wherec(E) is independent of
uc&PW(H). Choose a basisu j &B for B. Given any stateuc&
in the image ofW, we can write it as

uc&5( uc j&Au j &B . ~3!

~The statesuc j& are not necessarily orthogonal, although w
could have made them orthogonal for any singleuc&.) If we
let E be a projection on the basis states ofB, or a projection
on the basis states followed by a permutation of those b
states, Eq.~2! implies that the inner productŝc i uc j& are
independent ofuc&. Therefore, there is a unitary operationV
acting on A that takes any set of statesuc j&A for uc&
PW(H) to the set of statesuf j&A for any state uf&
PW(H). In fact, V will map uc& to uf&.

More generally, and by the same logic, given any tw
bases ofW(H), there will be a unitaryV on A that takes one
to the other. GivenU:H→H, we can defineU as mapping a
basisuv i& to basisuwi&. Then defineV:A→A as an operator
1-3
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DANIEL GOTTESMAN PHYSICAL REVIEW A 61 042311
that mapsWuv i& to Wuwi&, and the theorem follows. j
The theorem says, in a sense, that there is no such thin

a secure quantum ROM~‘‘read-only memory’’!. The obvi-
ous classical analog of this theorem is false: If Alice and B
each has one copy of a piece of classical information, t
Alice can read the information, but cannot change it witho
alerting Bob. The fact that she can in the quantum case
be seen as an aspect of no-cloning. If Alice has a comp
copy of the data, there cannot be any extra information ab
it elsewhere; thus Alice can safely alter the data. I conclu
this section with an easy theorem that will be needed in
construction of a general access structure.

Theorem 7: If S1 and S2 are quantum secret sharin
schemes, then the scheme formed by concatenating t
~expanding each share ofS1 as the secret ofS2) is also secret
sharing.

The reason this requires proof is that, due to some no
cal quantum effect, it might have been possible to get m
information from sets in two copies ofS2 than can be ac-
cessed from just one of the sets.

Proof: By theorem 3, we need only consider pure st
schemes. Then the concatenated schemeS is a pure state
scheme too. Suppose we have some set of sharesT. We can
write it as the unionøTi , whereTi is a set on thei th copy
of S2. Consider the setU of copies on whichTi is autho-
rized.U is either an authorized or an unauthorized set ofS1.
If it is authorized, then our large setT is certainly authorized
— we reconstruct the copies ofS2 in U, and useU to recon-
struct the original secret.

If U is unauthorized, we look at the complement ofT. It
can be written as a unionøTi8 , whereTi8 is the complement
of Ti in its copy of S2 . Ti8 is authorized wheneverTi is
unauthorized. Therefore, the set of copies on whichTi8 is
authorized is the complement ofU, which is authorized.
Thus the complement ofT is authorized, soT is unautho-
rized. j

Clearly the proof works equally well for more compl
cated concatenation schemes, with multiple levels or wit
different schemeS2 for each share ofS1. Also note that if we
bundle shares together~assigning two or more shares to th
same person!, the result is still a secret sharing scheme.

III. CONSTRUCTION OF A GENERAL ACCESS
STRUCTURE

This section will be devoted to proving that monotonic
and the no-cloning theorem provide the only restrictions
the existence of quantum secret sharing schemes. The
result was shown by Smith@14# by adapting a classical con
struction using monotone span programs. The construc
given here is far from optimal in terms of the share sizes
the resulting schemes.

Theorem 8:A quantum secret sharing scheme exists
an access structureS iff S is monotone and satisfies the n
cloning theorem~i.e., the complement of an authorized set
an unauthorized set!. For any maximal quantum access stru
ture S, a pure state scheme exists.

It will be helpful to first understand an analogous classi
construction@3#. Any access structure can be written in
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disjunctive normal form, which is the OR of a list of autho
rized sets. For our standard example, with authorized
ABC andAD, the normal form is (A AND B AND C) OR
(A AND D). This normal form provides a construction i
terms of threshold schemes — the AND gate correspond
a (2,2) threshold scheme~which has one authorized setA
AND B), while the OR gate corresponds to a (1,2) thresh
scheme~for which A OR B is authorized!. Then by concat-
enating the appropriate set of threshold schemes, we obta
construction for the original access structure.

In the quantum case, this construction fails, because
the no-cloning theorem, there is no„(1,2)… quantum thresh-
old scheme. A single authorized set~such asA AND B AND
C) still corresponds to a quantum threshold scheme@a
„(3,3)… scheme in this case#, but to take the OR of these
authorized sets, we will have to do something different. W
will replace the„(1,2)… scheme with„(r ,2r 21)… schemes
~which correspond to majority functions instead of OR!. r of
the shares will be the individual authorized sets of the
sired access structure, and the otherr 21 shares will be from
another access structure that is easier to construct.

The full construction is recursive. Given constructions
access structures forn21 shares, we will construct allmaxi-
mal access structures forn shares. From maximal acces
structures onn shares we will be able to construct all acce
structures onn shares. We can start from the base case o
share, which just has the trivial„(1,1)… access structure. Th
construction will assume we know how to create thresh
schemes, for instance using the construction in Ref.@4#.

Given any maximal access structureS on n shares, con-
sider the access structureS8 obtained by discarding one
share. CertainlyS8 is still monotone and still satisfies th
no-cloning theorem. Therefore, by the inductive hypothe
we have a construction for the access structureS8. Now,
following the proof of theorem 3, add an additional share
S8, putting it in an overall pure state. By the proof of the
rem 3, we know the resulting scheme is in fact a quant
secret sharing scheme. It is not hard to see thatS is the
unique access structure produced this way. For instance
maximal access structureABC OR AD OR BD OR CD can
be formed by purifying the~mixed state! scheme with acces
structureABC @just a „(3,3)… threshold scheme#.

Now suppose we are given a general quantum acc
structureS on n shares. We describe this access structure
a list of its minimal authorized setsA1 ,A2 , . . . ,Ar . As men-
tioned above,Ai by itself defines a quantum access structu
— a „(k,k)… threshold scheme, in fact, ifAi contains k
shares.

S has a total ofr minimal authorized sets. Let us take
„(r ,2r 21)… quantum threshold scheme, and expand eac
its shares using another secret sharing scheme. Sharei, for
i 51, . . . ,r , is expanded using the threshold scheme ass
ated with the setAi . Sharesr 11 through 2r 21 will all be
expanded using another secret sharing schemeS8.

S8 will be a pure state scheme, with a maximal acce
structure which can be achieved by adding authorized se
S. That means whenA is an authorized set ofS~so it contains
1-4
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THEORY OF QUANTUM SECRET SHARING PHYSICAL REVIEW A61 042311
someAi), it is also an authorized set ofS8. Therefore, we
can reconstruct the lastr 21 shares of the„(r ,2r 21)…
scheme, as well as at least one of the firstr shares, soA is an
authorized set for the concatenated scheme.

Conversely, if we have a setB which does not include any
of the setsAi , we do not have an authorized set for any
the schemesAi . B might be an authorized set for the schem
S8, but that only gives us authorized sets for at mostr 21
shares of the„(r ,2r 21)… scheme. Therefore,B is an unau-
thorized set. This shows that the access structure of the
catenated scheme is exactlyS, completing the construction.

As an example, consider this construction applied to
access structureABC OR AD. The three rows represen
shares of a„(2,3)… scheme, so authorized sets on any t
rows suffice to reconstruct the secret. Repeated letters im
bundling, soA gets a share from each of the first two row
as well as one from the third row.

„~2,3!… schemeH „~3,3!…:A,B,C

„~2,2!…:A,D

S8.

~4!

The first two rows are threshold schemes.S8 is a maximal
access structure containing$A,B,C% and $A,D%. For in-
stance, in this case,S8 could be the schemeABC OR AD
OR BD OR CD which we constructed earlier; or we cou
just use the trivial scheme with authorized set$A% ~give A the
secret!.

I noted in Sec. I that this particular scheme can be ea
constructed directly from a„(5,7)… threshold scheme. How
ever, not all access structures can be made by bundling
gether shares of a threshold scheme~for instance,ABCD OR
ADE OR BCD cannot be so constructed2 — E would have
to get more shares of the threshold scheme thanB since
ADE is authorized whileABD is not, butBCD is authorized
while CDE is not!, while the recursive construction alway
works.

IV. SHARING CLASSICAL SECRETS

We can also use quantum states to share classical se
a process previously considered in Refs.@7# and@8#. Many of
the theorems proved above will fail in this situation. F
instance, superdense coding@12# provides an example of a
(2,2) threshold scheme where each share is a single q
but the secret is two classical bits: the four Bell statesu00&
6u11&, u01&6u10& encode the four possible two-bit num
bers, and for all four states, each qubit is completely rand
This (2,2) scheme is a pure state scheme, yet does not sa
corollary 2, and the share size is smaller than the size of
secret. Neither is possible for a purely classical scheme o
a purely quantum scheme. Another difference is that ther

2For quantum access structures, threshold schemes suffic
fewer than five shares, whereas for classical access structures,
are examples where they fail for four shares. This is because
four-share classical examples would violate the no-cloning theor
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no rule against copying classical data, so, for instance, (k,n)
threshold schemes are allowed withk,n/2. We can write
down conditions for a pure state scheme of this sort to
secret sharing, along the lines of theorem 1.

Theorem 9:Suppose we have a set of orthonormal sta
uc i& encoding a classical secret. Then a setT is an unautho-
rized set iff

^c i uFuc i&5c~F ! ~5!

~independent ofi ) for all operatorsF on T. T is authorized iff

^c i uEuc j&50 ~ iÞ j ! ~6!

for all operatorsE on the complement ofT.
Note that only the basis statesuc i& appear in theorem 9

whereas in theorem 1, the condition had to hold for alluc& in
a Hilbert space. This is the source of the difference betw
classical and quantum secrets — the former hides just a
of orthogonal states, while the latter hides all superpositi
of those states.

Proof: On an unauthorized set, we should be able to
quire no information about which stateuc i& we have. This is
precisely condition~5!. On an authorized set, we need to
able to correct for the erasure of the qubits on the comp
ment. This is equivalent to being able to distinguish the st
uc i& from the stateuc j& with an arbitrary operator applied t
the complement ofT. That is, it is equivalent to condition
~6!. j

Note that purely classical secret sharing schemes ca
considered as a particular special case of sharing clas
data with quantum states — every encoding in a purely c
sical scheme is just a mixture of tensor products of ba
states. Purely classical secret sharing schemes are al
mixed state schemes, since classically, there is no wa
hide information without randomness.

Superdense coding provided an example where us
quantum data allowed a factor of 2 improvement in spa
over any classical scheme. It turns out that this is the bes
can do.

Theorem 10:The dimension of each important share of
classical secret sharing scheme must be at least as larg
the square root of the dimension of the secret. The total
of each authorized set must be at least as large as the se

This means that a 2n-bit secret requires shares of at lea
n qubits.

Proof: The proof is quite similar to the proof of theorem
4, which gives the corresponding result for quantum sec
sharing schemes. We create the quantum state correspon
to the shared secret 0. If it is a mixed state scheme,
include any extra qubits needed to purify it~the result may
not be a secret sharing scheme, however — theorem 3 n
not hold!. If S is the share under consideration, andT is an
unauthorized set such thatTø$S% is authorized, giveT to
Bob, and all the other shares~including S and the extra pu-
rifying qubits! to Alice.

Bob has no information about the secret;^c i uEuc i& is
independent ofi. Therefore, as in the proof of theorem
Alice can perform, without access to Bob’s qubits, a tra

for
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DANIEL GOTTESMAN PHYSICAL REVIEW A 61 042311
formation betweenuc0& ~the current state! anduc i& for any i.
Then she sends the shareS to Bob, who now has an autho
rized set, and can reconstructi. We have sent a secret o
dimensions using prior entanglement and the shareS, which
by the bounds on superdense coding@13# must therefore
have dimension at leastAs. Those bounds also show the si
of the channel plus preexisting entanglement must bes, so
the size of the full authorized coalition is at leasts. j

Note that we used an analogue of theorem 6 in the pr
As I noted before, the general case of theorem 6 is not
here: Since the secret is classical, we could make two co
of it. Then one copy is sufficient to read it, but both a
needed to change it without leaving a trace. In fact, the v
sion of the theorem we have used is just the proof that p
fect quantum bit commitment is impossible@15,16# — Bob
has no information about the state, so Alice can change
state to whatever she likes.

Besides being an interesting result about secret sha
schemes, this theorem is useful in analyzing other cryp
graphic concepts. For instance, it shows that there is no
ful unconditionally secure cryptographic memory protoc
which can only be unlocked with a key, which we wou
want to be much smaller than the stored data. Such a pr
col would be a (2,2) secret sharing scheme, so the theo
requires that the key be at least half the size of the data

Theorem 10 can be easily modified to show that in a
purely classical scheme, each important share must b
least dimensions, not As. This follows because if Alice and
Bob are just sending classical states back and forth, t
need a channel of dimensions to send the secret rather tha
dimensionAs. We have already seen one example where
improvement is achievable using quantum states.

When else can we get this factor of 2 improvement in
number of qubits per share? I do not have a full answe
this question. Certainly for a (1,n) threshold scheme, no im
provement is possible, since each authorized coalition~each
single share! must be as large as the secret. For many ot
threshold schemes, however, an improvement is possibl

Theorem 11:A (k,n) threshold scheme exists sharing
classical secret of sizes5p2 with one qupit~a p-dimensional
quantum state! per share whenevern<2k22, p>n, andp
is prime.

Before giving the proof, I will review some basic fac
about quantum and classical error-correcting codes wh
will be needed in the construction. A classical linear@n,k,d#
code encodesk bits in n bits and correctsd21 erasure er-
rors. Classical codes must satisfy the Singleton boundd<n
2k11. A codeC where the bound is met exactly is called
MDS code ~for ‘‘maximum distance separable’’!, and has
some interesting properties. The dualC' of C ~composed of
those words which have vanishing inner product with
words ofC) is also a MDS code. WhenC is an @n,k,n2k
11# code,C' is an@n,n2k,k11# code. The codewords o
the dual code form the rows of the parity check matrix.
measuring the parities specified by the parity check mat
we can detect errors — any parity which is nonzero sign
an error. In addition, in a MDS code, there is a codewo
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with support exactly on the setT for any setT of sized. See,
for instance, Chap. 11 of Ref.@17# for a discussion of MDS
codes.

Quantum codes can frequently be described in terms
stabilizer @18,19#. The stabilizer of a code is an Abelia
group consisting of those tensor products of Pauli matri
which fix every quantum codeword. That is, the codewo
live in an eigenspace of all elements of the stabilizer. If t
stabilizer contains 2a elements, it is generated by justa ele-
ments, and if we haven qubits, the code encodesn2a qu-
bits. We usually consider the11 eigenspace of the stabilize
generators, but we could instead associate an arbitrary sig
each generator. Tensor products of Pauli matrices have
genvalues61, so each set of signs will specify a differe
coding subspace of the same size.

Stabilizer codes can be easily generalized to work o
higher-dimensional spaces@20#. We replace the regular Pau
matrices with their analogs forp-dimensional states
X:u j &°u j 11&, Z:u j &°v j u j &, and powers and products ofX
andZ @arithmetic is now modulop, andv5exp(2pi/p)]. The
eigenvalues ofX, Z, and their products and tensor produc
are powers ofv, so instead of associating a sign with ea
generator of the stabilizer, we should instead associa
power ofv.

There is a standard construction, known as
Calderbank-Shor-Steane~CSS! construction@21,22#, which
takes two binary classical error-correcting codes and p
duces a quantum code. This construction generalizes e
to qupits. Take the parity check matrix of the first codeC1
and replacej with Xj , interpreting the rows as generators
the stabilizer. Take the parity check matrix of the seco
code C2 and replacej with Zj , again interpreting rows as
generators of the stabilizer. The stabilizer must be Abel
— this produces a constraint on the two classical cod
namely thatC2

'#C1. If C1 is an @n,k1 ,d1# code andC2 is
an @n,k2 ,d2# code, the corresponding CSS code will be
†@n,k11k22n,min$d1,d2%#‡ quantum code.

Now consider the classical polynomial codeDr whose
coordinates are„f (a1), . . . ,f (an)…. a1 , . . . ,an are n dis-
tinct elements ofZp ~recall thatp>n), andf runs over poly-
nomials of degree up tor.3 There arer 11 coefficients to
specifyf, soDr encodesr 11 pits. Given the function evalu
ated atr 11 locations, we can use polynomial interpolatio
to reconstruct the polynomial. In other words, even ifn
2(r 11) coordinates of the code are missing, we can rec
struct ther 11 coefficients specifying the polynomial. Thu
this is an@n,r 11,n2r # classical code — a MDS code. Also
note thatDr,Dr 11.

The codesDr provide good examples of purely classic
secret sharing schemes@2#. If we choose the firstr coeffi-
cients of the polynomial at random, any set of justr coordi-
nates will contain no information about the remaining co
ficient, so we get an (r 11,n) threshold scheme. Applying
the CSS construction to the codesDr andDr 21

' @23,24# simi-

3For an appropriate choice of thea is,Dr is a Reed-Solomon code
or an extended Reed-Solomon code.
1-6
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larly produces good examples of quantum secret sha
schemes@4#. With this background, we are now ready
tackle the construction.

Proof of theorem 11:We will produce a class of secre
sharing schemes which use one qupit for each share
encode two classical pits, whereas any purely class
scheme could only encode one pit. We will use the class
codesDr to createp2 related CSS quantum codes with ce
tain useful properties. The secret sharing scheme will enc
each of thep2 classical states as the mixture of all states
the corresponding code from this family.

Lemma:The parity check matrix for the codeDr 21 in-
cludes a rowR such that for any set ofr 11 coordinates,
there is a linear combination of rows ofDr 21 with support
exactly on that set of coordinates.R appears in the linea
combination with coefficient 1. Similarly, the dual codeDq

'

has, in its parity check matrix, a rowS which appears with
coefficient 1 in a linear combination with support on a
given set ofn2q coordinates.

For instance, we can taken54, r 52, q51, p55. D1
has generator matrix

G5S 1 1 1 1

0 1 2 3D ~7!

~generated by polynomials 1 andx), andD1
' has generator

matrix

G85S 2 4 1 3

3 0 1 1D . ~8!

~The parity check matrix ofD1 is the generator matrix ofD1
'

and vice versa.! By subtractingj times the first row ofG
from the second row ofG, we obtain a vector with suppor
on the three-element set excluding coordinatej. Similarly, by
adding some multiple of the first row ofG8 to the second
row of G8, we can obtain a vector with support on any thr
coordinates.

Proof of lemma:The codesDr andDq
' are linear, so we

only need prove the coefficients of rowsR andSare nonzero
— then some rescaling will always give the result with c
efficient 1.

SinceDr is a MDS code of distancen2r , its dual is a
MDS code of distancer 12. Thus, the parity check matrix o
Dr ~which is also the generator matrix ofDr

') has a linear
combination of rows with support on any set ofr 12 coor-
dinates, but no linear combination of rows has weightr 11
or less. SinceDr 21 is included inDr , but encodes one fewe
pit, the parity check matrix ofDr 21 is just the parity check
matrix of Dr with one rowR added. That parity check matri
has a linear combination of rows with support on any se
r 11 coordinates. Since no linear combination of rows ofDr

'

has weightr 11, each of the weightr 11 linear combina-
tions must include a component of rowR. A similar argu-
ment gives the result forDq

' . j

Now suppose we create the CSS code correspondin
the two classical codesDr 21 and Dq

' . We require thatq
5n2r 21, 2r>n. Thenq,r , soDq#Dr 21, and we have
04231
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a quantum code. We are given two classical pitsa andb to
share amongn parties. Assign a phaseva to the generatorR
corresponding to rowR of Dr 21 and a phasevb to the gen-
eratorS corresponding to rowS of Dq

' . All the other gen-
erators have phase11. Create the density matrix formed b
a uniform mixture over states in the subspace specified
this stabilizer. There arep2 of these mixed states.

Claim: The set of mixed states described above defin
(k,n) threshold scheme encoding two classical pits, withk
5r 115n2q.

For instance, in the casen54, r 52, q51, p55, we
obtain the stabilizers

X2 X4 X X3,

va X3 I X X,

Z Z Z Z,

vb I Z Z2 Z3, ~9!

with v5exp(2pi/5). The claim is that this gives a (3,4
secret sharing scheme. I now proceed to establish the cl
which will prove theorem 11.

For any setT of k coordinates, there will be an eleme
MR of the stabilizer with support on that set of coordinate
whereM contains no factors ofR or S. This follows from the
lemma: There is a linear combinationM1R of rows of the
parity check matrix ofDr 21 with support onT. This linear
combination translates to an element of the stabilizer —
rows of the parity check matrix become generators of
stabilizer, addition of two rows becomes multiplication
the corresponding generators, and scalar multiplication o
row becomes taking the corresponding generator to the
propriate power.

Since MR has support onT, we can measure its eigen
value with access only toT. M is a product of generator
which are notR or S, so the state has eigenvalue11 for M,
and it has eigenvalueva for MR. Thus the eigenvalue o
MR tells usa. Similarly, there is an elementNS of the sta-
bilizer with support onT, with N having no factors ofR or S.
We can measure the eigenvalue ofNS, and it tells usb.
Thus, any set of at leastk coordinates is an authorized set

A particular value of the secret is encoded as a unifo
distribution over states in the stabilizer code describ
above. Thus, the density matrix corresponding to the secr
the projection on the subspace which is left fixed by t
stabilizer. That is,

r~ab!5)
i

~ I 1Mi1Mi
21•••1Mi

p21! ~10!

5 (
MPS

M ~11!

~normalized appropriately!. TheMi are the generators of th
stabilizerS. Assume the appropriate phase is included inM
in this sum~this means that if we wishM to have eigenvalue
v, we include it asv21M , which has eigenvalue11).

SupposeT is a set ofk21 or fewer coordinates. The
1-7
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DANIEL GOTTESMAN PHYSICAL REVIEW A 61 042311
density matrix ofT is the trace ofr(ab) over the comple-
ment of T. Now, X and Z, and all nontrivial products ofX
and Z, have trace 0. Thus, the only terms in the express
for r(ab) which contribute to the trace are those comi
from M with weight <k21. But the parity check matrice
for Dr 21 and Dq

' contain no rows or linear combination o
rows of weight less thank. Thus the density matrix ofT is
04231
n

just the identity, regardless of the value ofab. Thus T is
unauthorized, proving the theorem. j
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