PHYSICAL REVIEW A, VOLUME 61, 042311
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| present a variety of results on the theory of quantum secret sharing. | show that any mixed state quantum
secret sharing scheme can be derived by discarding a share from a pure state scheme, and that the size of each
share in a quantum secret sharing scheme must be at least as large as the size of the secret. | show that the only
constraints on the existence of quantum secret sharing schemes with general access structures are monotonicity
(if a set is authorized, so are larger geiad the no-cloning theorem. | also discuss some aspects of sharing
classical secrets using quantum states. In this situation, the size of each share can sometimes be half the size
of the classical secret.

PACS numbd(s): 03.67.Dd

[. INTRODUCTION tum secret sharinf@], we could perhaps create joint check-
ing accounts containing quantum mor&y}, or share hard-

In a classical secret sharing scheme, some sensitive clat-create ancilla statg$], or perform a secure distributed
sical data are distributed among a number of people such thguantum computation. The authors of Ref| showed some
certain sufficiently large sets of people can access the dathasic results about quantum secret sharing schemes, includ-
but smaller sets can gain no information about the sharethg the existence of quantum threshold schemes. A quantum
secret. For instance, a possible application is to share the kd{k,n)) threshold scheméhe use of double parentheses dis-
for a joint checking account shared by many people. Ndinguishes it from a classical schemexists provided the
individual is able to withdraw money, but sufficiently large no-cloning theorem is satisfied — i.en/2<k=n. In this
groups can use the account. paper, | will prove some further results about quantum secret

One particularly symmetric variety of secret sharingsharing schemes with general access structures, including the
scheme is called ahreshold schemeA (k,n) classical fact that the no-cloning theorem and monotonicity provide
threshold scheme hasshares, of whiclany kare sufficient the only restriction on the existence of quantum secret shar-
to reconstruct the secret, while any setlof 1 or fewer ing schemes.

shares has no information about the secret. Blakg]yand Another possible application of quantum states to secret
Shamir[2] showed that threshold schemes exist for all valuesharing is to create secret sharing schemes sharing classical
of k andn with n=k. data using quantum stat¢g,8]. This could allow, for in-

It is also possible to consider more general secret sharingtance, for more secure distribution of the shares of the
schemes which have an asymmetry between the power of ttggheme. | will show below that it can also produce more
different shares. For instance, one might consider a schengfficient schemes: in any purely classical scheme, the size of
with four share\, B, C, andD. Any set containingh, B, and  each important share must be at least as large as the size of
C or AandD can reconstruct the secret, but any other set othe secret, whereas, using quantum states to share a classical
shares has no information. In this example, the presenée of secret, we can sometimes make each shaitthe size of
is essential to reconstructing the secret, but not sufficient —the secret.

A needs the help of eithd or bothB andC. This particular In the theory of classical secret sharing, one sometimes
scheme can be constructed by taking a (5,7) threshol@onsiders schemes which do not completely hide the secret
scheme, and assigning three shares, tiwo shares t®, and ~ from unauthorized groups of people, or from which the se-
one share to each & andC, but other schemes exist which cret cannot be perfectly reconstructed even by authorized
cannot be constructed by bundling together shares of &ets. | will not consider the quantum generalizations of such
threshold scheme. The list of which sets are able to recorschemes. | will only consider the theory of perfect secret
struct the secret is called artcess structurdor the secret sharing schemes, in which the data are either completely
sharing scheme. It turns out that a secret sharing schentevealed or completely hidden, with no middle ground.
exists for any access structure, provided it is monof@je
— i.e., if a setS can reconstruct the secret, so can all sets
containingS.

With the advent of quantum computation, it is possible | will begin by reviewing some results from Ref4]
that quantum information may someday be as commonplac&hich will form the basis of much of the later discussion. In
as classical information, and we may wish to protect it thea perfect quantum secret sharing scheme, any set of shares is
same ways as we protect classical information. Using quareither anauthorizedset, in which case someone holding all

of those shares can exactly reconstruct the original secret, or
an unauthorizedset, in which case someone holding just
*Electronic address: gottesma@microsoft.com those shares can acquire no information at all about the se-
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cret quantum statéhat is, the density matrix of an unautho-  TABLE I. Adding authorized sets to obtain a maximal access

rized set is the same for all encoded stat€®r a generic  structure. After addingD andCD, every subset oABCD either

state split up into a number of shares, most sets will beontains an authorized set or is contained in an unauthorized set.

neither authorized nor unauthorized — quantum secret shaf : -

ing schemes form a special set of states. Authorized Complementunauthorizey
Qne constraint on quantum secret sharing schemes is an g, ABC D

obvious one inherited from classical schemes. Any secret

B L . AD BC
sharing scheme must In@onotoneThat is, if we increase the
size of a set, it cannot switch from authorized to unautho-
. T . L . Add BD AC
rized (the indicator function which is 0 for unauthorized sets Add oD AB

and 1 for authorized sets is monotonic

As we shall see in Sec. lll, the only other constraint on
guantum secret sharing schemes is the no-cloning theorem
[9,10]. We cannot make two copies of an unknown quantum Corollary 2: In a pure state quantum secret sharing
state. Therefore, we cannot distribute the shares of quantugtheme, the authorized sets are precisely the complements of
secret sharing scheme into two disjoint authorized @ztsh  the unauthorized sets.
of which could produce a copy of the original stat8ince Proof: By the no-cloning theorem, the complement of an
every set is either authorized or unauthorized, this impliesuthorized set is always an unauthorized set. By theorem 1,
the complement of an authorized set is always an unauthder a pure state scheme, we can correct erasure errors on any

rized set. _ unauthorized set. This means we can reconstruct the secret in
A pure statequantum secret sharing scheme encodes purghe absence of those shares; that is, the complement is an
state secrets as pure statedien all of the shares are avail- guthorized set. [ ]

able. A mixed statequantum secret sharing scheme may | other words, in a pure state scheme, any division of the
encode some or all pure states of the secret as mixed stat@hares into two sets will produce one authorized set and one
Pure state schemes have some special properties, as a conggauthorized set. In a mixed state scheme, we could some-
quence of the following theorem, but the general quantumjmes obtain two unauthorized set¥he no-cloning theorem
secret sharing scheme is a mixed state scheme. Theoremehsures we never obtain two authorized $é¢tsome subdi-
and corollary 2 first appeared in Ré#]. vision gives us two unauthorized sets, we can define a new
Theorem 1:Let C be a subspace of a Hilbert spaté  access structure by making one of them authorized. Of
which can be written as tensor product of the Hilbert spacegourse, the new access structure should be monotone, which
of various coordinates. The@ corrects erasure errdren a may require us to create additional authorized sets at the

setK of coordinates iff same time.
For instance(see Table), if we started with the access
(B|E|p)=c(E) (1 structureABC or AD from Sec. I(any set containing\, B,

andC is authorized, as is any set containing béthndD),
(independent of¢) e C) for all operatorsE acting onK. A e could add the sé8D (so any set containing andD is
pure state encoding of a quantum secret is a quantum sectgko now authorized — this means tHR€D becomes au-
sharing scheme iff the encoded space corrects erasure err@fprized as wejl We wish to continue to satisfy the no-
on unauthorized sets and it corrects erasure errors on thﬂoning theorem, so we never add a new authorized set con-
complements of authorized sets. tained in the complement of an existing authorized set. For
Proof: The first equivalence follows from the theory of jnstance, in the example, we could not have ad8€das an

guantum error-cqrrecting codes. To recover the original seaythorized set, since its complemekb is already autho-
cret on an authorized set, we must be able to compensate fgge(.

the absence of the remaining shares, which is to say from an |y short, we start out with a list of authorized sets. We
erasure error on the complement of the authorized set. Cofinake a list of their complements; nothing on this list can
dition (1) implies that measuring any Hermitian operator onever pecome authorized without violating the no-cloning
the coordinateX gives us no information about which state thegrem. There will be a number of sets left over. We choose
in C we have. This means the density matrix lirdoes not  gne, put it on the authorized list, and put its complement on
depend on the state, which is precisely the condition we neeghe |ist of complements. We can keep doing this for a while,
an unauthorized set to satisfy. B but eventually, every set will be on one of the two lists, and
As a corollary, we find that pure state schemes are onlyye will be forced to stop. Thus an access structure where the
possible for a highly restricted class of access structures. authorized and unauthorized sets are complements of each
other is amaximalquantum access structure.
In the example, after addingD, we could addCD as an

IAn erasure error is a general error on a known coordinate. Foputhorized set. The authorized sets are now all sets contain-
instance, it replaces the coordinate with a stajeorthogonal to the  INg ABC, AD, BD, or CD. Now we must stop — every set
regular Hilbert space. Recall that a quantum error-correcting codéontains one of these four sets or is contained in the comple-
of distanced can correcd— 1 erasure errors ¢fd—1)/2| general ~ment of one of them. Pure state schemes and maximal access
errors. structures may seem like a very special situation, but in fact
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they play a central role in the theory of quantum secret sharfhen Alice sends just the shagto Bob. Bob now has an
ing because of the following theorem. authorized set, so he can reconstiyet Therefore, by theo-
Theorem 3:Every mixed state quantum secret sharingrem 5 below, shar& must have had dimension at leasis
scheme can be described as a pure state quantum secret sheg!. u
ing scheme with one share discarded. The access structure of The above proof depends on two theorems of interest out-
the pure state scheme is unique. side the theory of quantum secret sharing. The first is obvi-
Proof: Given a superoperator that maps the Hilbert spac®Us, and it is also true; it has not, to my knowledge, appeared
S of the secret to density operators &h(which is a tensor before in the literature.
product of the Hilbert spaces of the various sharee can Theorem 5Even in the presence of preexisting entangle-
extend the superoperator to a unitary map fréto He&  ment, sending an arbitrary state from a Hilbert space of di-
for some spacé. We assign this additional Hilbert space to mensions requires a channel of dimensisn
the extra share. In other words, we can “purify” the mixed ~ Proof: (This proof is due to Michael Nielseiill])
state encoding by adding an extra share. The original mixedssume that in addition to whatever entanglement is given,
state scheme is produced by discarding the extra share.Alice and Bob share a cat stat|i)ali)s of dimension
claim that the new pure state encoding is a quantum secrét Using a straightforward variant of superdense coding
sharing scheme. [12], Alice can encode one af classical states in this cat
Sets on the original shares remain authorized or unauthgtate. Now Alice transmits her half of the cat state to Bob,
rized, as they were before addifig Given a sefl including ~ using the preexisting entanglement if it helps. Bob can now
the extra share, look at the complemenfTofvhich is a set  reconstruct the classical state, so by the bounds on super-
not including€ and is thus either authorized or unauthorizeddense coding13], Alice must have used a channel of dimen-
(in the new scheme as well as the pl&or instance, if we SIONS. u
purify the schemeABC or AD) by adding a fifth sharé, The second theorem is more interesting. It says that if
the complement o€ DE is unauthorized, while the comple- Alice can read a piece of quantum data, she can also change
ment of DE is authorized. If the complement is authorized, it any way she likes, without disturbing any entanglement of
then we can correct for erasures Grand condition(1) holds the encoding with the outside. There will be no way to tell
for T — we can obtain no information about the secret fromthat the data has been changed.
T, andT is unauthorized. If the complement &fis unautho- Theorem 6:Suppose a superoperatsrmaps a Hilbert
rized, we can correct erasures on the complement. ThereforéPaceH to density operators oA® B, andsS restricted toA
we can reconstruct the state with jistand T is authorized. ~ (that is, traced oveB) is invertible (by quantum operatign
Thus the new scheme is secret sharing. It is clear from th&hen for any unitaryJ:H—H, there exists a unitary opera-
argument that any other purification of the mixed statetion V:A—A such thatveS=SeU.
scheme would produce the same access structure. B Proof: We can extend the superoperat®rto a unitary
In Ref.[4], we presented a class of quantum secret shaoperatorW and enlargeB with the necessary extra dimen-
ing schemes where every share had the same size as tgi@ns. IfV works forW, it will also work for S. SinceW is
secret. One might wonder if it is possible to do better. Forinvertible onA, the image subspace corrects erasure errors on
instance, can we make one share much smaller than the s8-and
cret, possibly at the cost of enlarging another share? The

answer is no, provided we only consider important shares (Y|E|¢)=c(E) (2
(unimportant shares never make a difference as to whether a ] o
set is authorized or unauthorized for any operatoE acting onB, wherec(E) is independent of

Theorem 4:The dimension of each important share of a|#) € W(H). Choose a basig)g for B. Given any statéy)
quantum secret sharing scheme must be at least as large iBghe image oW, we can write it as
the dimension of the secret.

Proof: We need only prove the result for pure state |¢>:2 1) ali) 3)
schemes. By theorem 3, the result for mixed state schemes i7all’e -
will follow.

Let Sbe an important share in a pure state quantum secréT he stategy;) are not necessarily orthogonal, although we
sharing scheme. Then there is an unauthorized sath that  could have made them orthogonal for any singk.) If we
TU{S} is authorized. Share the std® and give the shares let E be a projection on the basis statesBpfor a projection
of T to Bob and the remaining sharéscluding S) to Alice. on the basis states followed by a permutation of those basis
By corollary 2, Alice’s shares form an authorized set; shestates, Eq(2) implies that the inner productsy;|y;) are
can correct for erasures oi By theorem 6 below, this independent ofi). Therefore, there is a unitary operatign
means Alice can perform any operation she likes on the seacting on A that takes any set of statds;), for |)
cret without disturbing Bob’s shares. She can equally welle W(H) to the set of state§¢;), for any state|¢)
perform quantum interactions between the secret and othetr W(H). In fact, V will map |#) to | ¢).
guantum states held by her. In particular, if Alice has state More generally, and by the same logic, given any two
|) from a Hilbert space of dimensios (the size of the bases ofNV(H), there will be a unitary/ on A that takes one
secret, she can coherently swap it into her shares of thdo the other. Givetd:H—H, we can definéJ as mapping a
secret sharing scheme, which now encodes the $tgte  basis|v;) to basis|w;). Then define/:A—A as an operator
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that mapsW|v;) to W|w;), and the theorem follows. B  disjunctive normal form, which is the OR of a list of autho-
The theorem says, in a sense, that there is no such thing @ged sets. For our standard example, with authorized sets
a secure quantum ROM‘ead-only memory”). The obvi- ABC andAD, the normal form is A AND B AND C) OR
ous classical analog of this theorem is false: If Alice and BooyA AND D). This normal form provides a construction in
each has one copy of a piece of classical information, theferms of threshold schemes — the AND gate corresponds to
Alice can read the information, but cannot change it withouty (2 2) threshold schem@vhich has one authorized st
alerting Bob. The fact that she can in the quantum case cagnp B), while the OR gate corresponds to a (1,2) threshold
be seen as an aspect of no-cloning. If Alice has a Comple@cheme(for which A OR B is authorizedl Then by concat-

.‘ioﬁy of ;[]he qitha' ‘h/flfe cannot l?celanylltexttrha |r(1jfotrmz:1t|on alb?jlgnating the appropriate set of threshold schemes, we obtain a
It elsewnhere, thus Alice can sately alter the data. | ConCluae i ction for the original access structure.

this section with an easy theorem that will be needed in the In the quantum case, this construction fails, because by

construction of a general access structure. the no-cloning theorem, there is 1661,2)) quantum thresh-

Theorem 7:If S; and S, are quantum secret sharing . :
schemes, then the scheme formed by concatenating the d sc_heme. A single authorized gstich asA AND B AND
C) still corresponds to a quantum threshold schefae

(expanding each share 8f as the secret d,) is also secret ) ,
sharing. ((3,3))_scheme in thls_ cagebut to take th«_a OR_ of these
The reason this requires proof is that, due to some nonlo@uthorized sets, we will have to do something different. We
cal quantum effect, it might have been possible to get mor&Vill replace the((1,2)) scheme with((r,2r—1)) schemes
information from sets in two copies @&, than can be ac- (Which correspond to majority functions instead of JORof
cessed from just one of the sets. the shares will be the individual authorized sets of the de-
Proof: By theorem 3, we need only consider pure statesired access structure, and the otherl shares will be from
schemes. Then the concatenated sch&nig a pure state another access structure that is easier to construct.
scheme too. Suppose we have some set of sfard&e can The full construction is recursive. Given constructions of
write it as the unionJT;, whereT; is a set on theéth copy  access structures for— 1 shares, we will construct athaxi-
of S,. Consider the sety of copies on whichT; is autho- mal access structures far shares. From maximal access
rized. U is either an authorized or an unauthorized se50f  structures om shares we will be able to construct all access
If it is authorized, then our large se&tis certainly authorized structures om shares. We can start from the base case of 1
— we reconstruct the copies 8% in U, and useJ to recon-  share, which just has the trivi§l1,1)) access structure. The
struct the original secret. construction will assume we know how to create threshold
If U is unauthorized, we look at the complementTofit schemes, for instance using the construction in R&f.
can be written as a uniod T; , whereT; is the complement Given any maximal access structuseon n shares, con-
of T; in its copy of S,. T/ is authorized wheneveT; is  sider the access structu® obtained by discarding one
unauthorized. Therefore, the set of copies on whighis  share. Certainlys’ is still monotone and still satisfies the
authorized is the complement &, which is authorized. no-cloning theorem. Therefore, by the inductive hypothesis,
Thus the complement of is authorized, sdl is unautho-  \ve have a construction for the access structre Now,
rized. B following the proof of theorem 3, add an additional share to

Clearly the proof works equally well for more compli- o 1 ting it in an overall pure state. By the proof of theo-
cated concatenation schemes, with multiple levels or with 3em 3. we know the resulting scheme s in fact a quantum

e S0 ol L secret sharng scheme. I 1 not hard 10 see B ine
9 gning unigue access structure produced this way. For instance, the

same person the result is still a secret sharing scheme. maximal access structufeBC OR AD OR BD OR CD can
be formed by purifying thémixed stat¢ scheme with access
Iil. CONSTRUCTION OF A GENERAL ACCESS structureABC [just a((3,3)) threshold scheme
STRUCTURE Now suppose we are given a general quantum access

This section will be devoted to proving that monotonicity structureS on n shares. We describe this access structure by
and the no-cloning theorem provide the only restrictions orf list of its minimal authorized sets; ,A;, . .. /A; . As men-
the existence of quantum secret sharing schemes. The sariened aboveA; by itself defines a quantum access structure
result was shown by Smitfi4] by adapting a classical con- — a ((k,k)) threshold scheme, in fact, i; containsk
struction using monotone span programs. The constructioghares.
given here is far from optimal in terms of the share sizes of S has a total ofr minimal authorized sets. Let us take a

the resulting schemes. ((r,2r—1)) quantum threshold scheme, and expand each of
Theorem 8:A quantum secret sharing scheme exists forits shares using another secret sharing scheme. $htme
an access structur@iff Sis monotone and satisfies the no- i=1, ... 1, is expanded using the threshold scheme associ-

cloning theorenti.e., the complement of an authorized set isated with the sef;. Shares +1 through 2 —1 will all be

an unauthorized setFor any maximal quantum access struc-expanded using another secret sharing sch&me

ture S a pure state scheme exists. S’ will be a pure state scheme, with a maximal access
It will be helpful to first understand an analogous classicalstructure which can be achieved by adding authorized sets to

construction[3]. Any access structure can be written in a S That means wheA is an authorized set &(so it contains

042311-4



THEORY OF QUANTUM SECRET SHARING PHYSICAL REVIEW /1 042311

someA,), it is also an authorized set & . Therefore, we no rule against copying classical data, so, for instance)(
can reconstruct the last—1 shares of the((r,2r—1)) threshold schemes are allowed wkkin/2. We can write
scheme, as well as at least one of the firshares, sé\isan  down conditions for a pure state scheme of this sort to be
authorized set for the concatenated scheme. secret sharing, along the lines of theorem 1.

Conversely, if we have a sBtwhich does not include any Theorem 9:Suppose we have a set of orthonormal states
of the setsA;, we do not have an authorized set for any of|¢;) encoding a classical secret. Then aBét an unautho-
the schemes,; . B might be an authorized set for the schemerized set iff
S’, but that only gives us authorized sets for at mostl
shares of thd(r,2r —1)) scheme. Therefore is an unau- (i|F|¢iy=c(F) (5)
thorized set. This shows that the access structure of the con-
catenated scheme is exac8ycompleting the construction. (independent of) for all operatord= onT. T is authorized iff

As an example, consider this construction applied to the
access structurdBC OR AD. The three rows represent (WilEly))=0 (i#]) (6)
shares of &(2,3)) scheme, so authorized sets on any two
rows suffice to reconstruct the secret. Repeated letters implir all operatorsE on the complement of.
bundling, soA gets a share from each of the first two rows,  Note that only the basis statég;) appear in theorem 9,

as well as one from the third row. whereas in theorem 1, the condition had to hold fot#}lin
a Hilbert space. This is the source of the difference between
((3,3):A,B,C classical and quantum secrets — the former hides just a set
((2,3)) scheme{ ((2,2)):A,D (4) of orthogonal states, while the latter hides all superpositions

of those states.

Proof: On an unauthorized set, we should be able to ac-
quire no information about which stafter;) we have. This is
precisely condition(5). On an authorized set, we need to be
able to correct for the erasure of the qubits on the comple-
ment. This is equivalent to being able to distinguish the state

ORBD OR CD which we constructed earlier; or we could | .y from the statdy;) with an arbitrary operator applied to
Just ulse the trivial scheme with authorized B8t (give Athe  ihe complement off. That is, it is equivalent to condition
secrel 6 =

. . . (6).
I noted in Sec. I that this particular scheme can be easily “Note that purely classical secret sharing schemes can be
constructed directly from &(5,7)) threshold scheme. How- qnsidered as a particular special case of sharing classical

ever, not all access structures can t_)e made by bundling tQta with quantum states — every encoding in a purely clas-
gether shares of a threshold scheffioe instanceABCDOR  gjca| scheme is just a mixture of tensor products of basis
ADE OR BCD cannot be so constructed- E would have  states. Purely classical secret sharing schemes are always
to get more shares of the threshold scheme tBasince  mixed state schemes, since classically, there is no way to
ADE is authorized whileABD is not, butBCD is authorized  phide information without randomness.
while CDE is not), while the recursive construction always Superdense coding provided an example where using
works. quantum data allowed a factor of 2 improvement in space

over any classical scheme. It turns out that this is the best we

IV. SHARING CLASSICAL SECRETS can do.
Theorem 10The dimension of each important share of a

We can also use quantum states to share classical secreffyssical secret sharing scheme must be at least as large as
a process previously considered in R¢#.and[8]. Many of  hq square root of the dimension of the secret. The total size
the theorems proved above will fail in this situation. For of each authorized set must be at least as large as the secret.
instance, superdense codifite] provides an example of a  This means that arbit secret requires shares of at least
(2,2) threshold scheme where each share is a single q“pﬁ’qubits.
but the secret is two classical bits: the four Bell st4@) Proof: The proof is quite similar to the proof of theorem
+[11), |01)=+[10) encode the four possible two-bit num- 4 \yhich gives the corresponding result for quantum secret
bers, and for all four states, each qubit is completely randonsparing schemes. We create the quantum state corresponding
This (2,2) scheme is a pure state scheme, yet does not satisfy the shared secret 0. If it is a mixed state scheme, we
corollary 2, and the share size is smaller than the size of thgc|ude any extra qubits needed to purify(ihe result may
secret. Neither is possible for a purely classical scheme or fQigt pe a secret sharing scheme, however — theorem 3 need
a purely quantum scheme. Another difference is that there igq¢ hold. If Sis the share under consideration, ahis an
unauthorized set such th@tJ{S} is authorized, giveT to
Bob, and all the other sharémcluding S and the extra pu-
For quantum access structures, threshold schemes suffice f6ifying qubits) to Alice.
fewer than five shares, whereas for classical access structures, thereBob has no information about the secrét;|E| ;) is
are examples where they fail for four shares. This is because thindependent of. Therefore, as in the proof of theorem 6,
four-share classical examples would violate the no-cloning theoremAlice can perform, without access to Bob’s qubits, a trans-

S
The first two rows are threshold schem&s.is a maximal

access structure containingd,B,C} and {A,D}. For in-
stance, in this cas&’ could be the schem&BC OR AD
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formation betweem,) (the current stajeand|;) for anyi.  with support exactly on the s@tfor any sefT of sized. See,
Then she sends the she8do Bob, who now has an autho- for instance, Chap. 11 of Ref17] for a discussion of MDS
rized set, and can reconstructWe have sent a secret of codes.
dimensions using prior entanglement and the sh&evhich Quantum codes can frequently be described in terms of a
by the bounds on superdense codidg] must therefore stabilizer [18,19. The stabilizer of a code is an Abelian
have dimension at leasts. Those bounds also show the size group consisting of those tensor products of Pauli matrices
of the channel plus preexisting entanglement muss,te  which fix every quantum codeword. That is, the codewords
the size of the full authorized coalition is at least [ | live in an eigenspace of all elements of the stabilizer. If the
Note that we used an analogue of theorem 6 in the proofstabilizer contains 2elements, it is generated by jusele-
As | noted before, the general case of theorem 6 is not truements, and if we have qubits, the code encodes-a qu-
here: Since the secret is classical, we could make two copidats. We usually consider the 1 eigenspace of the stabilizer
of it. Then one copy is sufficient to read it, but both aregenerators, but we could instead associate an arbitrary sign to
needed to change it without leaving a trace. In fact, the vereach generator. Tensor products of Pauli matrices have ei-
sion of the theorem we have used is just the proof that pergenvaluest1, so each set of signs will specify a different
fect quantum bit commitment is impossill&5,16 — Bob  coding subspace of the same size.
has no information about the state, so Alice can change the Stabilizer codes can be easily generalized to work over
state to whatever she likes. higher-dimensional spacg20]. We replace the regular Pauli
Besides being an interesting result about secret sharingjatrices with their analogs forp-dimensional = states
schemes, this theorem is useful in analyzing other crypto? :[j)—=[i+1), Z:|j)—e'|j), and powers and products Xf
graphic concepts. For instance, it shows that there is no us@ndZ [arithmetic is now modul@, andw=exp(2ri/p)]. The

ful unconditionally secure cryptographic memory protocol,e'genvalues oK, Z, gnd their product_s _and tensor products
which can only be unlocked with a key, which we would are powers ofw, so instead of associating a sign with each

want to be much smaller than the stored data. Such a prot(g_enerator of the stabilizer, we should instead associate a

col would be a (2,2) secret sharing scheme, so the theoreR]ov.I\_'ﬁ;gwis a standard construction. known as the
requires that the key be at least half the size of the data. Calderbank-Shor-Stean€S9 constructioﬁ[Zl 22, which

Theorem .10 can be easily mpdlﬁed to show that in aMYakes two binary classical error-correcting codes and pro-
purely classical scheme, each important share must be

) ) . nE lices a quantum code. This construction generalizes easily
least dimensiors, not /s. This follows because if Alice and to qupits. Take the parity check matrix of the first cadg

Bob are just sending classical states back and forth, theynq replacg with X!, interpreting the rows as generators of
need a channel of dimensiarto send the secret rather than the stabilizer. Take the parity check matrix of the second
dimensiony/s. We have already seen one example where thigode C, and replacg with Z!, again interpreting rows as
improvement is achievable using quantum states. generators of the stabilizer. The stabilizer must be Abelian
When else can we get this factor of 2 improvement in the— this produces a constraint on the two classical codes,
number of qubits per share? | do not have a full answer tmamely thatC; CC,. If C, is an[n,k;,d;] code andC, is
this question. Certainly for a (1) threshold scheme, no im- an[n,k,,d,] code, the corresponding CSS code will be an
provement is possible, since each authorized coaligach [[n,k;+k,—n,min{d;,d,}]] quantum code.
single sharemust be as large as the secret. For many other Now consider the classical polynomial cole whose
threshold schemes, however, an improvement is possible. coordinates aréf(a;y), ... ,f(an)). a1, ... @, aren dis-
Theorem 11:A (k,n) threshold scheme exists sharing atinct elements of, (recall thatp=n), andf runs over poly-
classical secret of size= p? with one qupit(ap-dimensional nomials of degree up to.> There arer +1 coefficients to
quantum stateper share whenever<2k—2, p=n, andp  specifyf, soD, encodes +1 pits. Given the function evalu-
is prime. ated atr +1 locations, we can use polynomial interpolation
Before giving the proof, | will review some basic facts 10 reconstruct the polynomial. In other words, evennif
about quantum and classical error-correcting codes whici (F 1) coordinates of the code are missing, we can recon-
will be needed in the construction. A classical lingark,d] ~ Struct ther +1 coefficients specifying the polynomial. Thus
code encodeg bits in n bits and correctsl—1 erasure er- this is an[n,r + 1n—r] classical cod — a MDS code. Also
rors. Classical codes must satisfy the Singleton bateh ~ "0t€ thatD;CDyy. .
—k+1. A codeC where the bound is met exactly is called a The COd?SDf provide good examples of pu_rely clas_S|caI
MDS code (for “maximum distance separabl’ and has secret sharing schemgg]. If we choose the first coeffi-

some interesting properties. The d@l of C (composed of cients O'.c the poI_ynom?aI at rar)dom, any set of jusiqordi-
those words which have vanishing inner product with alnates will contain no information about the remaining coef-

words ofC) is also a MDS code. Whee is an[n,k,n—k ficient, so we get.anr(+ 1,n) threshold sicheme. Apply_ing
+1] code,C* is an[n,n—k,k+ 1] code. The codewords of the CSS construction to the codgs andD;_; [23,24] simi-
the dual code form the rows of the parity check matrix. By

measuring the parities specified by the parity check matrix,

we can detect errors — any parity which is nonzero signals 3For an appropriate choice of thes, D, is a Reed-Solomon code
an error. In addition, in a MDS code, there is a codewordor an extended Reed-Solomon code.
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larly produces good examples of quantum secret sharing quantum code. We are given two classical pisndb to

schemeq 4]. With this background, we are now ready to share among parties. Assign a phase® to the generatoR

tackle the construction. corresponding to rovR of D,_; and a phase?” to the gen-
Proof of theorem 11We will produce a class of secret eratorS corresponding to rovs of Dé . All the other gen-

sharing schemes which use one qupit for each share argtators have phasel. Create the density matrix formed by

encode two classical pits, whereas any purely classicad uniform mixture over states in the subspace specified by

scheme could only encode one pit. We will use the classicahis stabilizer. There arp? of these mixed states.

codesD, to createp? related CSS quantum codes with cer-  Claim: The set of mixed states described above define a

tain useful properties. The secret sharing scheme will encodg,n) threshold scheme encoding two classical pits, wkith

each of thep? classical states as the mixture of all states in=r + 1=n-q.

the corresponding code from this family. For instance, in the case=4, r=2, q=1, p=5, we
Lemma:The parity check matrix for the codB,_; in- obtain the stabilizers

cludes a rowR such that for any set of +1 coordinates,

there is a linear combination of rows 8f, _; with support X2 Xt X X3,

exactly on that set of coordinateR. appears in the linear

combination with coefficient 1. Similarly, the dual co

has, in its parity check matrix, a ro®which appears with

0 X3 1 X X,

coefficient 1 in a linear combination with support on any z z2 22
given set ofn—q coordinates. W |z 72 78 9)
For instance, we can take=4, r=2, q=1, p=5. D4
has generator matrix with w=exp(2mi/5). The claim is that this gives a (3,4)
secret sharing scheme. | now proceed to establish the claim,
(111 which will prove theorem 11.
“lo 1 2 3 @) For any sefT of k coordinates, there will be an element

MR of the stabilizer with support on that set of coordinates,
(generated by polynomials 1 ang, andD7 has generator WhereM contains no factors dR or S. This follows from the

matrix lemma: There is a linear combinatidi+ R of rows of the
parity check matrix ofD,_; with support onT. This linear

2 4 1 3 combination translates to an element of the stabilizer — the

G’=(3 0 1 1)- (8)  rows of the parity check matrix become generators of the

stabilizer, addition of two rows becomes multiplication of
the corresponding generators, and scalar multiplication of a
row becomes taking the corresponding generator to the ap-
opriate power.

Since MR has support ofT, we can measure its eigen-
value with access only td. M is a product of generators
which are notR or S so the state has eigenvaluel for M,

and it has eigenvalu@?® for MR. Thus the eigenvalue of

MR tells usa. Similarly, there is an elememMNS of the sta-
bilizer with support onT, with N having no factors oR or S

We can measure the eigenvalue M8, and it tells ushb.
Thus, any set of at leagtcoordinates is an authorized set.

A particular value of the secret is encoded as a uniform
distribution over states in the stabilizer code described
above. Thus, the density matrix corresponding to the secret is
the projection on the subspace which is left fixed by the
stabilizer. That is,

(The parity check matrix oD, is the generator matrix db;
and vice versa.By subtractingj times the first row ofG
from the second row o5, we obtain a vector with support pr
on the three-element set excluding coordirjat&milarly, by
adding some multiple of the first row @’ to the second
row of G’, we can obtain a vector with support on any three
coordinates.

Proof of lemma:The coded, and Dé are linear, so we
only need prove the coefficients of rosandS are nonzero
— then some rescaling will always give the result with co-
efficient 1.

SinceD, is a MDS code of distanca—r, its dual is a
MDS code of distance+ 2. Thus, the parity check matrix of
D, (which is also the generator matrix ") has a linear
combination of rows with support on any setrof 2 coor-
dinates, but no linear combination of rows has weigftl
or less. Sincd®, _4 is included inD, , but encodes one fewer ) -1
pit, the parity check matrix ob,_; is just the parity check p(ab)=]_i[ (I+Mi+Mi+- -+ M7 ) (10)
matrix of D, with one rowR added. That parity check matrix
has a linear combination of rows with support on any set of
r+1 coordinates. Since no linear combination of row®gf => M (11
has weightr +1, each of the weight +1 linear combina- Mes
tions must include a component of ra® A similar argu-  (normalized appropriately The M, are the generators of the
ment gives the result deé . B stabilizerS Assume the appropriate phase is includedvin

Now suppose we create the CSS code corresponding @ this sum(this means that if we wisM to have eigenvalue
the two classical codeB, _; and Dé. We require thai o, we include it asw ™M, which has eigenvalue-1).
=n—r—1, 2r=n. Thenq<r, soD,CD,_,, and we have SupposeT is a set ofk—1 or fewer coordinates. The
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density matrix ofT is the trace ofp(ab) over the comple-

ment of T. Now, X and Z, and all nontrivial products oK

PHYSICAL REVIEW A 61 042311

just the identity, regardless of the value @b. ThusT is

unauthorized, proving the theorem. |

and Z, have trace 0. Thus, the only terms in the expression

for p(ab) which contribute to the trace are those coming
from M with weight <k—1. But the parity check matrices
for D,_, and Dé contain no rows or linear combination of

rows of weight less thak. Thus the density matrix of is
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