PHYSICAL REVIEW A, VOLUME 61, 042310
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Most natural Hamiltonians do not couple specific pairs of quantum bits and spurious couplings occur along
with the intended one. We present an efficient scheme that couples any designated pair of spins in hetero-
nuclear spin systems. The scheme is based on the existence of Hadamard matrices. For a sysigTs with
pairwise coupling, the scheme concatenatemtervals of system evolution and uses at nwst pulses where
c~1. Our results demonstrate that, in many systems, selective recoupling is possible with linear overhead,
contrary to common speculation that exponential effort is always required.

PACS numbd(s): 03.67.Lx

[. INTRODUCTION tem. Each pulse simultaneously affects many coupling terms
in the Hamiltonian. To turn off all but one of the coupling
Quantum computation requires the ability to performterms, these pulses have to satisfy many simultaneous re-
coupled logic which can only originate from the natural cou-gquirements.
plings in the quantum systems involved. However, naturally In this paper, we preseefficientschemes for decoupling
available interactions do not couple specific pairs of quantun@nd selective recoupling. For arspin system, in which any
bits (qubits as desired in most applications of quantum com-Pair of spins can be coupled, our schemes concatesrate
putation[1,2]. Rather, many couplings occur simultaneouslytime intervals and use fewer tham” pulses, where~1 for
along with the intended one. Moreover, the problem genermostn with a strict upper bound<2. Our method exploits
ally becomes worse with larger systems and stronger cowsimplifications in the couplings when the spins have very
plings, which are essential for quantum computation to bdlifferent Zeeman frequencies. In this case, we show that the
useful. This fundamental task to turn off spurious evolutionconditions for decoupling and selective recoupling are spe-

is so difficult that, coercing a complex systemdo nothing ~ cial orthogonality conditions, with solutions given by a class
[3] — ceasing all evolution — can be just as difficult as mak-0f well-known matrices calledadamard matricesThese

ing it do something computationally useful. are generalizations of the well-known Hadamard transforma-

In this paper, we address a simpler instance of the abovéon in quantum computation. The efficiency of the scheme
problem: how to stop the spurious coupling and to performpriginates from the existence of general Hadamard matrices
specific coupled logic gates when implementing quantunmin many dimensions.
computation in nuclear spin systems using nuclear magnetic The paper is structured as follows. In Sec. Il, we review
resonancéNMR) techniqueg4—7]. This is particularly rel- relevant concepts in NMR quantum computing and restate
evant because any two spins either couple all the time o€ problems precisely. In Sec. Ill, we first motivate the con-
never couple at all. The task of turning off all couplings is struction of the decoupling scheme with examples, and then
known in the art of NMR aslecoupling doing this for all ~ derive conditions for decoupling and describe the general
but a select subset of couplings is knownsatective recou- construction related to Hadamard matrices. Modifications of
pling. The basic idea is to interrupt the free evolution bythe decoupling scheme to perform selective recoupling are
carefully chosen pulses. These pulses are single qubit operélescribed. We conclude with various properties and limita-
tions that transform the Hamiltonian in the time betweentions of the scheme. Important properties of Hadamard ma-
pulses in such a manner that unwanted couplings in consecirices are summarized in the Appendices.
tive evolutions cancel out each other. Ingenious schemes
have been foun@i8—11] but they do not address the prob- || NMR QUANTUM COMPUTING AND THE STATEMENT
lems relevant to quantum computation. In usual NMR appli- OF THE PROBLEM
cations, the structure of the spin systems is not kn@awn
priori. Therefore, pulse sequences are not designed to ad- IN this section, we describe the NMR system and describe
dress individual spins. Moreover, the primary interest innOW a universal set dhonfault tolerantoperationg13—15,
these schemes is to reveal complex structures in the specti@mely, the single qubit operations and the controlled-NOT
rather than to achieve precise quantum evolutions. Quantugate[16], can be realized using basic NMR primitives.
computation brings new requirements, and initial effgt] We shall consider a physical system that consists of a
have been made to develop pu|Se sequences to Satisfy the‘.‘ééution of identical molecules. Each molecule hmaon-
needs; however‘7 to_date, schemes have necessitated magnetically equivalent nuclear SpinS that serve a.SAquitS. A
sourcegsuch as total number of pulses appjiestponential  static magnetic field is applied externally along the di-
in the number of spins being controlled. Schemes for selecrection. This magnetic field splits the energy levels of the
tive recoupling are generally difficult to find for a large sys- spin states aligned with and against it. This is described in
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the Hamiltonian by the Zeeman terms, which, in the energya—i"t controlled using typical RF pulses, how can the iden-

eigenbasis, are given by tity | be implemented efficiently?
We refer to this task as “decoupling.” It is conceptually
Hy=— E 2 5w o® (1) eas_ier to first construct a decqupling s_chem_e. The sqheme is
25 e derived from Hadamard matrices, which will be reviewed.

Modifications to implement selective recoupling will be de-

wherei is the spin indexw;/27 is theZeeman frequendpr scribed afterwards

theith spin, andrrg') is the Pauli matrix operating on thé
spin. The conventiori =1 is used for the rest of the paper.
The spins have very different Zeeman frequencies, a situa-
tion loosely termed as “heteronuclear” in this paper. To motivate the general construction, we analyze the sim-
Nuclear spins can interact via the dipolar coupling or theplest example of decoupling two spins. From Eg), the
indirect coupling mediated by electrof8,17]. If the mol-  evolution operator for an arbitrary duratidris given by 7
ecules tumble fast and isotropically, dipolar coupling and the— g-i912tet"25'? \we defineX to be the gater,, super-
tensor part of the indirect coupling will be averaged away;scripted by the spin index where appropriate. In the notation
otherwise, the physics can be more complicqtec_i. However, iﬂefined in Sec. I1X is a rotation ofg= 1 anng§< up to an
the presence of a strong external magnetic field, only th?rrelevant overall phasex() is physically performed by an

secularpart (the energy conserving terms that commute withRF ; C
L ulse at frequency; . The important observation is
'Hz) is important[9,17]. For a heteronuclear system, the re- P a Yi P

sulting coupling becomes X (oWg aX@= - Vg ) (4)

HCZZ’] gjo @), (2  and therefore

A. Decoupling scheme for two qubits

X2 7rx(2) (5)
independent of the exact form of the original coupling. In
Eqg. (2), g;; denotes the coupling constant between itthe

and thejth spin. (

= X@g-igrpte ey (2) 6)

—i oD (x(2) 2% (2)
Single qubit operations are performed by applymdsed =g 912tz @0 XE) 0
radio frequencyRF) magnetic fields along some direction CigiyteWa(—o?)
perpendicular to the static field. To address itthespin, the =e “r z ®
frequency of the RF field is tuned t0;/27. When thew,’s — 1 ©)

are very different, very short pulses can be used, so that
during each pulse, all other evolutions are negligible excepivhere Eq.(7) is obtained using the Taylor series expansion
for the rotation operatoe™(#27"”-7 where 6 is propor- of the matrix exponents and the fact®)?=1. This obser-
tional to the pulse duration and the power. The Lie group ovation implies that adding the ga¥? before and after the
all single qubit operations can be generated by rotationgvolution 7 results in7~ !, so that the sequence of events
aboutx andy. X@7X@7r=| has no net coupling although the spins are

Coupled operations such as controlled phase shift ofctually coupled all the time. This is called refocusing in
controlled-NOT acting on théth and thejth spins can be NMR, and clearly illustrates how single qubit operations can

performed given the primitive transform the Hamiltonian so that unwanted couplings in
consecutive evolutions cancel out each offie].
77 = e i(@4)eeoD) 3) We now extract the essential features of the above decou-
ij .

pling scheme by rewriting the sequens€&)rX®r as

For instance, a controlled-NOT from théh spin to thejth
spin can be implemented by compositing the gates
e—i(w/4)a§,')ei (77/4)U§<I)ei (w/4)o§')e— i (77/4)0§<J)ei (77/4)0'§,J)Z” e—i(wm)a(y”

ij .

e i0nt(+oi)e(- o) g-igit(+ai) o (+al?) (10)

i (2) 7 x(2) ' i
The ultimate goal is to be able to efficiently realize arbi- and referring tor and X*I~X* as time intervals. We note

trary quantum operations on anaspin system with arbitrary the({;)llglr\igg tfr?gtsrﬁatrix exponents commute. negating the
couplings. In this paper, we consider a more limited objec, oupling for exactly half o? the total time is’suff?cien'? to
tive, which can now be stated precisely, using the definitions ©4P!INY y

. - : cancel out the coupling.
of Egs.(1)—(3): Given a heteronuclear systemro$pins with ) > . .
freeqevolution e i(Hz+Ht  controlled yusing t;)pical RF (2) Since the coupling is b|||_near m%i and Ug;’ Itis
pulses, how caiZz;; be implemented efficiently? Following unchangednegatedl when the signs of;~ and 0" agree

NMR tradition, we refer to this task as “recoupling.” (disagreg. . _

(3) The sign ofa{" is (=) or (+) depending on whether
X gates are applied before and after the interval. In other
words, the sign ofr, for each spin in each time interval is

A problem closely related to recoupling is the following: controlled by insertingX gates for that spin before and after
Given a heteronuclear system m&pins with free evolution that interval.

Ill. CONSTRUCTION OF THE SCHEMES
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In summary, the most crucial point leading to decoupling @ (b)
is that the signs of ther, matrices of the coupled spins, 1@ 4 @ 4@ 4 &, ol F L+ hme
controlled by theX gates, disagree for half of the total time > >
elapsed. o+ ] - ;l_ o o+ ] _ i F
. . . . 3 + -| - —F + w3+ -| - —[ +
B. Sign matrix and decoupling criteria > >
Following the observations in the previous decoupling i * ]_F M -I_ - @ F -I_[ M ]_F=
scheme, we generalize the resultrtqubits in this section. toot ot ot toot ot

We corjsidgr schemes that concatenate a certain _number of Fig. 1. (a) Pulse sequence corresponding to E@®). Froms,,
equal-time Intgrvals and u@é_ga?es to antrol the 3'9”3 of each “—" sign in the ith row andath column translates to twx
o, for each spin. The essential information on the signs capises atw, before and after thath time interval.(b) Pulse se-
be represented by a “sign matrix” defined as follows. The quence obtained from simplifying). This corresponds to Eq14),
sign matrix of a pulse scheme farspins withmtime inter-  and can be constructed directly fra8g by translating each change
vals is thenX m matrix with the {,a) entry being thesignof  of sign in theith row to anX pulse atw; . A “ —" sign at the end
a§'> in theath time interval. We denote any sign matrix for  of the row also gives rise to aK pulse at end of the last time
spins byS,,. For example, the sequence in Ef0) can be interval.

represented by the sign matrix

time order relative tdS,. However, such ordering is irrel-
evant for commuting evolutions. Sin¢€)X" =1, Eq. (13
can be simplified to

+ o+

o (11)

52:

7.()((3))((4)7.)((4))()((2)7)((3))()((4)7.)((2))((4))_ (14)
Each column represents a time interval and each row repre-
sents a sequence of intervals for a particular spin. The Thjs simplified pulse sequence can also be obtained directly
entry “—" represents an interval that is preceded and fol-from Eq. (12) by converting columns to time intervals and
lowed byX gates for the spin involved. Therefore, each signinserting X between intervals whenever thigh row
matrix corresponds to a sequence of events for the wholghanges sign or whenever-asign reaches either end of the
system. Following the discussion in Sec. IIl A, decoupling isyow. The relation between the sequences in (&8 and Eq.
achieved whenever any two rows in the sign matrix disagre@y4) ands, is illustrated in Fig. 1.
in exactly half of the entriegall couplings are negated for  The apove scheme can be generalized to decaupiens
exactly half of the timg The general construction of the yith m time intervals as follows: Construct thexm sign
decoupling scheme is now reduced to finding sign matriceg,ayrix S | with entries+ or —, such thatany two rows
satisfying the above criteria. disagree in exacly half of the entries. For eaelsign in the

As an illustration, we construct a decoupling scheme for i, row and theath column, applyXx® before and after the
four spins. We first find a correct sign matrix and then derive, i, time interval.

the corresponding pulse sequence. For example, a possible gocq1se of the pulses, the sign of thematrix for each

sign matrix is given by spin in each time interval is as given by the sign matrix. The
+ 4+ o+ o, matrices of any two spins therefore have opposite signs
for half of the time, during which their coupling is negated,
(12) and the evolution is always cancelled.
For n spins,nX m sign matrices that correspond to decou-
pling schemes do not necessarily exist for arbitragybut
they always exist for large and special valuesofA pos-

. . . . . sible structure is
in which any two rows disagree in exactly two entries. The

+ — —

S4: - . +

+ o+ + +

— J’_ —

sequence corresponding $3 can be obtained by converting M+ ...+ + .o+ o+ s s 4T
each column to a time interval before and after whixh

pulses are applied to spirieows) given by —’s. No pulses S A
are applied to spingows) with +’s. The resulting sequence,

H(XBIXA) X @)X @) (XDIK(3) (2% (3)) " A - F o B

X (XEIXAH X EIXA), (13 b — e — e — 4 =

is the identity by construction and this can also be verifiedn which intervals are bifurcated when rowsping are
directly. Note thatH, in 7=e™ "' now denotes the sum of added. Such bifurcation takes place whenever it is impos-
six possible coupling terms for four spins. Note also @@) sible to add an extra row that is orthogonal to all the existing
is written in such a way that it corresponds visually to theones(“depletion”). If such depletion occurs frequently, the
sign matrix, though the evolutions are actually in reversesign matrix will have an exponential number of columns, and
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decoupling will take an exponential number of stepsnas with H(n) and takeS, to be anynx n submatrix ofH(n). In

increases. The challenge is to find the correct sign matrice&ther words S, is formed by choosing) rows from H(F)
with a subexponential number of columns. which still achieves decoupling because subsets of rows of

H(F) are still pairwise orthogonal. The resulting decoupling

scheme fom spins requiresTtime intervals.

The criteria for a sign matri, to represent a valid de-  As an exampleSy can be chosen to be the first nine rows
coupling scheme is that any two rows disagree in exactlypf H(12) in Eq.(16):

half of the entries. It is useful to rephrase this complicated
criteria concisely. Suppose is replaced byt1 inS,,. If S, -
satisfies the decoupling criteria, any two rows have zero in-

ner product and therefoﬁénSI=nI. Conversely, anyiXm

matrix M with entries +1 satisfyingMMT=nl is a valid

sign matrix giving a decoupling scheme that requiresme
intervals. We now present very efficient solutions to this
simple criteria, namely the Hadamard matrices. So=

C. Equivalent decoupling criteria

+ + o+
+ + + +
|
|
_|_

+ 4+ + + + o+
!
!
+ o+ + o+
!
n
!
n
!

+ o+

D. Hadamard matrices and decoupling scheme

+ o+
_|_
+ + + 4+

Hadamard matrices have applications in many areas such
as the construction of designs, error correcting codes, and
Hadamard transformatio49—23. .+ + -+ - = == - - + +]

A Hadamard matrix of orden, denoted byH(n), is an a7
nxn matrix with entriest 1, such that

+
I

. Note that the scheme is efficient if—n<n. A detailed
H(n)H(n) =nl. (19  analysis of the efficiency will be given after we present the

o recoupling scheme.
The rows are pairwise orthogonal, therefore any two rows

agree in exactly half of the entries. Likewise columns are

pairwise orthogonal. We identify * 1" with ** =" through- E. Recoupling scheme

out the paper. It is immediate that eddlin) is a valid sign Recall that we have to removH; along with the un-
matrix giving a decoupling scheme farspins using onlyn ~ wanted coupling in the recoupling scheme. We first construct
time intervals. a scheme that freezes all evolution—removes Wdthand
For exampleS, andS, in Egs.(11) and(12) are possible  H.. We need the following property of Hadamard matrices.
H(2) andH(4). An example ofH(12) is given by Note that permutations or negations of rows or columns of
. u Hadamard matrices leave the orthogonality condition invari-
+ + + + + 4+ -+ + + + + ant. Two Hadamard matrices are called equivalent if one can
+ 4+ 4+ - — 4 4+ - 4+ - -+ be transformed to the other by a series of such operations.
Each Hadamard matrix is equivalent tonarmalizedone,
tr+t+ - -+ + =+ = = which has only+’s in the first row and column. For in-
+ — 4+ + + - 4+ = 4+ = + - stanceH(12) in Eq.(16) can benormalizedby negating the
4 o 4 o+ o4 o4 o 4 _ 4 seventh row and column
+ 4+ - — 4+ 4+ 4+ 4+ - - 4+ = .++++++++++++.
H(12)= o
- 4+ + 4+ 4+ 4+ = = = = - = + + + + + +
+ — 4+ - — + - - - 4+ + - + + + + - - + + -
+ + -+ - - - - - = + + + - 4+ + + - - - + - + -
+ - + - 4+ - — 4+ - - 4 + - -+ + + - - - 4+ - 4+
+ - — 4+ - 4 - 4+ 4+ - - = + + - - 4+ + - + - - 4+ -
H(12)=
+ 4+ - - 4 - - - 4 4+ = = + - - - - - - + + 4+ + +
_J L
(16) + -+ - -+ + - = + + -
WheneveH (n) exists, there is a decoupling schemerior + 4+ — 4 - - 4+ - - — 4+ 3
spins concatenating only time intervals. HoweverH(n)
may or may not exist for a givem (see Appendix A For an e S A
arbitrary integem, let n be the smallest integer that satisfies + - -+ -+ + + + - - -
n=n with known Hn). To construct a decoupling scheme L+t - -+ -+ -+ + - -/
for n spins whenH(n) does not necessarily exist, we start (18)
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To remove bottH, and ., note that the Zeeman term 17 L
for theith spin is linear ino{", and negatings{" for half of
the time results in no net Zeeman evolution for ttte spin. 168 o ]
Therefore, Zeeman evolution for all spins can be removed if
the sign matrix has identically zero row sum. Such a sign 1s
matrix can be constructed by starting with n@rmalized

H(F) and excluding the first row dﬂ(ﬁ) in the sign matrix. 141 ]
Since a normalizedH(n) has only+’s in the first row, all O |ooo
other rows have zero row sums by orthogonality. Such con- 31 ]
struction is possible unless=n, in which case construction °
should start withH(n+1). For instance, the last nine rows bl B i
of the normalizecH (12) in Eq.(18) is a valid S,. ° %%

To implement selective recoupling between itte and B R S R T I
the jth spins, the sign matrix should have equtl andjth ©%00665%%9%9 oo°oO°oo°oo°oo°oo%o°ovoo %%

1.0 A & L & L X h 2% Q. |

rows but any other two rows should be orthogonal. The cou- "5 5" 5" %% ~ a0 s 60 70 s 9 _ 100
pling termg;; a§'>® agj) never changes sign and that coupling n

is implemented selectively, while all other couplings are re- | g
moved. The sign matrix can be obtained from a normalized

H(F) by first excluding the first row and taking the second 1.oz0l, .
row of H(n) to be theith andjth row of S,. The othem :
— 2 rows ofS,, can be chosen from the remainiﬁgtz rows ‘-°25“;
of H(F). This scheme also removés; and requires no
more tham time intervals. To implementz;; , the duration

of each interval is chosen to satisfg;jnt=7/4. Note that 01'015_',’ ‘
the total time used to impleme®Z;; is the shortest possible, i
since the coupling is always “on.”

For example, starting from the normalizeld12), Sq per-
forming ZZ, can be chosen as

1.010

1.008

"+ + + + - - - + - + - -1

+ — + + + — — — + — + — 1.0000 1000 2000 3000 4000 6000 6000 7000 8000 9000 10000

n
+ + + - - + - - + - - +
+ + 4+ - — 4+ - - 4+ - - FIG. 2. Plots ofc vs n, wherecn=n is the minimun number of
time intervals required to perform decoupling or selective recou-
S=|+ -~ -+ + + - = -+ = +1. pling for ann-spin systemc for n<100 and 10&n<10000 are

+ o+ - - 4+ 4+ -+ - =y = plotted separately.

+ - - - - - + + + + +

L o 4 — x4 o a4 o thatH(n) exists for everyn=0mod4. This famous conjec-

. . __ S

4+ -+ - - - - - 44 ture is verified for all n<428. Therefore,n—n=<3

- V n<428. We argue fomrbitrary n that the schemes are
(19 still very efficient. First of all, we prove thai<2. For each
n, there existg such that 2-*<n<2". SinceH(2") exists

— by Sylvester's constructiomn=n<2"<2n. We now show

The decoupling and recoupling schemes requiréme  thatc is close to the ideal value 1 in most cases, due to the
intervals. They require at mosin pulses, sinceXX=1I1 and existence of Hadamard matrices of orders other than powers
the X pulses are only used in pairs. The remaining questiomf 2. This is why the full connection to Hadamard matrices is
is, how does1 depend om? If Hadamard matrices exist and useful. First of all,n—n<31 ¥n=<10000. In Fig. 2¢ as a
can be constructed for all orders=n. However, some Had- function of n is plotted forn=<10000. Within this techno-
amard matrices are missing, either because no constructidogically relevant range o, ¢ deviates significantly from 1
methods are known or they simply cannot exist. Thereforepnly for a few exceptional values of when nis small. For
n=cn, wherec=1. We will use some facts about the exis- cOmpleteness, we present argumentscferl for arbitrarily
tence of Hadamard matrices in the following, leaving thelarge nin Appendix B. This is based on Paley’s construction
details in Appendix A for interested readetd(n) exists ~and the prime number theorem. Finally, if Hadamard'’s con-
only forn=1, n=2, orn=0mod4. Hadamard conjectured jecture is provenn—n=<3 Vn.

F. Efficiency
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<«—Jn—> cations arise from the extra couplings between different
| | [ _ quantum computers in the ensemble. Such couplings are both
| I I > homonuclear and heteronuclear in nature. Moreover, the
n n n transformed Hamiltonians in different time intervals do not

o commute. However, traditional sequences such as WHH
FIG. 3. The gaps, between two existing orders of Hadamard [29 11] can still be combined with the current schemes, and

matrices. with rapid repetition of the combined sequence, spurious
couplings can be reduced.
IV. CONCLUSION The present discussion is only one example of a more

We red th bl fd i d selecti general issue, that the naturally occuring Hamiltonian in a
Ve reduce the problem of decoupling and sefective re.couéystem does not directly give rise to convenient quantum
pling in heteronuclear spin systems to finding sign matrices,

which is further reduced to finding Hadamard matrices ogic gates or other computations, such as simulation of
) e . ‘quantum system&30]. Efficient conversion of the given sys-
While the most difficult task of constructing Hadamard ma-q y ] 9 y

i . tdi din thi uti read . t.tem Hamiltonian to a useful form is necessary and is an
rices is not discussed in this paper, solutions already exis 'ﬂnportant challenge for future research.

the literature. Even more important is that the connection to
Hadamard matrices results in very efficient schemes.
Some properties of the scheme are as follows. First of all,

the scheme is optimal in the following sense. The rows of Thjs work was supported by DARPA under Contract No.
Hadamard matrices and their negations form the codewordsaaG55-97-1-0341 and Nippon Telegraph and Telephone
of the first-order Reed-Muller codes, which grerfect codes  corporation (NTT). D.L. acknowledges support from the
[21,22. 1t follows that, for each Hadamard matrix, it is im- g\ Fellowship Program. We thank Nino Yannoni and
possible to add an extra row that is orthogonal to all théyjark sherwood for useful discussions on NMR pulse se-
existing ones. Therefore, for a givenn is in fact the mini-  quences, Hoi-Fung Chau and Kai-Man Tsang for discussions
mum number of time intervals necessary for decoupling obon the prime number theorem for arithmetic progressions,
recoupling, if one is restricted to the class of schemes conand Hoi-Fung Chau, Hoi-Kwong Lo, Alex Pines, Xinlan
sidered. Second, the scheme applies for arbitrary duration ¢fhou, and Lieven Vandersypen for helpful comments.

the time intervals. This is a consequence of the commutivity

of all the terms in the Hamiltonian, which in turn comes APPENDIX A: EXISTENCE PROPERTIES OF HADAMARD

from the large separations of the Zeeman frequencies com- MATRICES

pared to the coupling constants. Spin systems can be chosen

to satisfy this condition. Finally, disjoint pairs of spins can  The following is a list of useful facts about the existence
be coupled in parallel. properties of Hadamard matrices.

We outline possible simplifications of the scheme for sys- 1. Necessary conditionsH(n) exists only forn=1,
tems with restricted range of coupling. For example, a linean=2, orn=0 mod 4. This is obvious if the matrix is nor-
spin system withn spins but onlyk-nearest neighbor cou- malized, and the columns are permuted so that the first three
pling can be decoupled by a schemeKapins only. Théth ~ rows become

row of then <k sign matrix can be chosen to be thé row

ACKNOWLEDGMENTS

of H(B, where i=r modk. Selective recoupling can be + tor ot ot +
implemented using a decoupling schemeKerl spins. The + + + + - - - -
sign matrix is constructed as in decoupling usk@k+1) + + - + + - _

but the rows for the spins to be coupled are chosen to be the

(k+ 1)th row different from all existing rOW$27] This 2. Hadamard’s Conjecturd24]_ H(n) exists for every

method involving periodic boundary conditions generalizesh=0 mod4. This famous conjecture is verified for all

to other spatial structures. The size of the scheme depends gn- 428

k'and the exact spatial structure but notron _ 3. Sylvester’s constructiof25]. If H(n) andH(m) exist,
The schemes have a few limitations. First of all, it only thenH(nm) can be constructed &$(n)® H(m). In particu-

applies to systems in which spins can be individually ad‘lar, H(2") can be constructed a$(2)®", which is propor-

dressed by short pulses and coupling has the simplified formiong to the matrix representation of the Hadamard transfor-

given by Eq.(2). These conditions are essential to the sim-ation forr qubits.

plicity of the scheme. They can all be satisfied if the Zeeman 4 Paley’s construction[26]. Let q be an odd prime

frequencies have large separations. Second, generalizatioaéwer_ If =3 mod4, therH(q+1) exists; ifq=1 mod 4,

to include couplings of higher order than bilinear remain tothenH(Z(qu 1)) exists.

be developed. Furthermore, in practice, RF pulses are inexact 5 Numerical factd19]. For an arbitrary integen, let n

and have finite durations, leading to imperfect transforma-  — . .
tions and residual errors. and n be the largest and smallest integers that satisfy

We have limited the discussion to quantum computatio?<n<n with known Hn) andH(n). We define the “gap”
in solution NMR. The schemes can be modified for certaind, to ben—n (see Fig. 3. Forn=<1000,H(n) is known for
solid state NMR implementatiorf28]. In this case, compli- every possible order except for six cases, and the maximum
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gap is eight. Fon<10000,H(n) is unknown for 192 pos- respectively.

sible orders and the maximum gap is 32. The worse of the upper boundss 2[n(1+€)+1] result-

ing from p=1 mod 4 can be improved. Note that there are at
leastr primes betweem andn(1+¢€)". If the primes that

An argument forc~1 for largen is presented using Pa- €dual 3mod4 and 1mod4 are randomly and uniformly dis-
ley’s constructionimentioned in Appendix A known results  tributed, the probability to find a prime which equals 3mod4
on primes in intervals and the prime number theorem foetweem andn(1+ €)" is larger than 27", This assump-
arithmetic progressions. tion is true due to the prime number theorem for arithmetic

Let m(x) be the number of primes that satisfiess@  progressions[32]. Let w(x,a,q) denote the number of
<X. Forx<67,x/(Inx—1/2)<m(x)<x/(Inx—3/2) [31]. It  primes in the arithmetic progressida,a+q,a+2q, ...}
follows that there exists a prime betweeandn(1+¢€) for  which satisfies Zp=x. It is known that m(x,3,4)
e>2/Inn. Applying Paley’s constructionH(p+1) or ~m(x,1,4). Therefore, with probability larger than 1
H(2(p+1)) exists depending on whethgg=3mod4 or 27" n<n(1+e¢)"+1, implying c<(1+e€) +1/n~1 for
p=1mod4. Thereforen<=n(1+e)+1 orn<2[n(1+e)+1], largen.

APPENDIX B: UPPER BOUNDS FOR n’

[1] D. DiVincenzo, Scienc®70, 255 (1995. University Press, Oxford, 1961

[2] A. Ekert and R. Jozsa, Rev. Mod. Ph$& 733(1996. [18] Refocusing has been used in many demonstrations of quantum

[3] R. Josza, irProceedings of First NASA International Confer- information processing, for instance, see |. Chuang, L. Vander-
ence on Quantum Computation and Quantum Communication,  sypen, X. Zhou, D. Leung, and S. Lloyd, Natt®ndon 393
Palm Springs, FL, 199&dited by C. WilliamgSpringer Ver- 143(1998; and M. Nielsen, E. Knill, and R. Laflamméid.
lag, New York, 1999 e-print quant-ph/9805086. 395, 52(1998.

[4] N. Gershenfeld and I. Chuang, Scier#5, 350(1997). [19] The CRC Handbook of Combinatorial Desigedited by C.

[5] D. Cory, A. Fahmy, and T. Havel, Proc. Natl. Acad. Sci. USA Colbourn and J. DinitZCRC Press, Boca Raton, FL, 1996
94, 1634(1997). [20] http://www.research.att.coifitjas/hadamard/index.ht-ml

[6] D. Cory, M. Price, and T. Havel, Physica T20, 82 (1998; [21] J. van Lint and R. WilsonA Course in Combinatoric€Cam-
e-print quant-ph/9709001. bridge University Press, Cambridge, 1992

[7] I. Chuang, N. Gershenfeld, M. Kubinec, and D. Leung, Proc.[22] F. MacWilliams and N. Sloane,The Theory of Error-
R. Soc. London, Ser. 454, 447 (1998. Correcting CodegNorth-Holland, Amsterdam, 1977

[8] R. R. Ernst, G. Bodenhausen, and A. WokaBninciples of  [23] For the Walsh-Hadamard transformation commonly used in
Nuclear Magnetic Resonance in One and Two Dimensions  quantum computation, see for instance, L. Grover, Phys. Rev.

(Oxford University Press, Oxford, 1994 Lett. 80, 4329(1998; and A. Steaneibid. 77, 793 (1996.
[9] C. Slichter,Principles of Magnetic Resonan¢8pringer, Ber-  [24] J. Hadamard, Bull. Sci. Math1,7, 240(1893.
lin, 1990. [25] J. Sylvester, Philos. Mag4, 461(1867).

[10] P. MansfieldPulsed NMR in SolidProgress in Nuclear Mag- [26] R. E. A. C. Paley, J. Math. Phy&2, 311(1933.
netic Resonance Spectroscopy Vol(Bergamon Press, Ox- [27] With a periodic sign matrix, setting thigh row to be theith

ford, 1971. row also recouples thgth and the {(+Kk)th spins whenj>i.
[11] M. Mehring, Principles of High Resolution NMR in Solids Similar problems occur whep<i. Therefore a row different
(Springer, Berlin, 1988 from all existing ones is used. This is not necessary in linear

[12] N. Linden, H. Barjat, R. Carbajo, and R. Freeman, e-print systems using a more complicated scheme, but it is necessary
quant-ph/9811043. Homonuclear systems were considered, in  for other structures such as a planar system.

contrast to the present discussion. [28] F. Yamaguchi and Y. Yamamoto, Appl. Phys. A: Mater. Sci.
[13] D. DiVincenzo, Phys. Rev. A1, 1015(1995. Process68, 1 (1999.
[14] A. Barenco, Proc. R. Soc. London, Ser4A9, 679 (1995. [29] J. Waugh, L. Huber, and U. Haeberlen, Phys. Rev. L2f.
[15] D. Deutsch, A. Barenco, and A. Ekert, Proc. R. Soc. London, 180 (1968.

Ser. A449, 669(1995. [30] B. Terhal and D. DiVincenzo, Phys. Rev. A1, 022301
[16] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Mar- (2000.

golus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Phys[31] J. Rosser and L. Schoenfeld, Ill. J. Ma#).64 (1962.

Rev. A52, 3457(1995. [32] H. Davenport, Multiplicative Number Theory(Springer-
[17] A. Abragam,The Principles of Nuclear Magnetisii©xford Verlag, New York, 196Y.

042310-7



