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Efficient implementation of coupled logic gates for quantum computation
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Most natural Hamiltonians do not couple specific pairs of quantum bits and spurious couplings occur along
with the intended one. We present an efficient scheme that couples any designated pair of spins in hetero-
nuclear spin systems. The scheme is based on the existence of Hadamard matrices. For a system ofn spins with
pairwise coupling, the scheme concatenatescn intervals of system evolution and uses at mostcn2 pulses where
c'1. Our results demonstrate that, in many systems, selective recoupling is possible with linear overhead,
contrary to common speculation that exponential effort is always required.

PACS number~s!: 03.67.Lx
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I. INTRODUCTION

Quantum computation requires the ability to perfo
coupled logic which can only originate from the natural co
plings in the quantum systems involved. However, natura
available interactions do not couple specific pairs of quan
bits ~qubits! as desired in most applications of quantum co
putation@1,2#. Rather, many couplings occur simultaneou
along with the intended one. Moreover, the problem gen
ally becomes worse with larger systems and stronger c
plings, which are essential for quantum computation to
useful. This fundamental task to turn off spurious evoluti
is so difficult that, coercing a complex system todo nothing
@3# – ceasing all evolution – can be just as difficult as ma
ing it do something computationally useful.

In this paper, we address a simpler instance of the ab
problem: how to stop the spurious coupling and to perfo
specific coupled logic gates when implementing quant
computation in nuclear spin systems using nuclear magn
resonance~NMR! techniques@4–7#. This is particularly rel-
evant because any two spins either couple all the time
never couple at all. The task of turning off all couplings
known in the art of NMR asdecoupling; doing this for all
but a select subset of couplings is known asselective recou-
pling. The basic idea is to interrupt the free evolution
carefully chosen pulses. These pulses are single qubit op
tions that transform the Hamiltonian in the time betwe
pulses in such a manner that unwanted couplings in cons
tive evolutions cancel out each other. Ingenious sche
have been found@8–11# but they do not address the pro
lems relevant to quantum computation. In usual NMR ap
cations, the structure of the spin systems is not knowa
priori . Therefore, pulse sequences are not designed to
dress individual spins. Moreover, the primary interest
these schemes is to reveal complex structures in the sp
rather than to achieve precise quantum evolutions. Quan
computation brings new requirements, and initial efforts@12#
have been made to develop pulse sequences to satisfy
needs; however, to-date, schemes have necessitate
sources~such as total number of pulses applied! exponential
in the number of spins being controlled. Schemes for se
tive recoupling are generally difficult to find for a large sy
1050-2947/2000/61~4!/042310~7!/$15.00 61 0423
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tem. Each pulse simultaneously affects many coupling te
in the Hamiltonian. To turn off all but one of the couplin
terms, these pulses have to satisfy many simultaneous
quirements.

In this paper, we presentefficientschemes for decoupling
and selective recoupling. For ann-spin system, in which any
pair of spins can be coupled, our schemes concatenatecn
time intervals and use fewer thancn2 pulses, wherec'1 for
mostn with a strict upper boundc<2. Our method exploits
simplifications in the couplings when the spins have ve
different Zeeman frequencies. In this case, we show that
conditions for decoupling and selective recoupling are s
cial orthogonality conditions, with solutions given by a cla
of well-known matrices calledHadamard matrices. These
are generalizations of the well-known Hadamard transform
tion in quantum computation. The efficiency of the sche
originates from the existence of general Hadamard matr
in many dimensions.

The paper is structured as follows. In Sec. II, we revie
relevant concepts in NMR quantum computing and res
the problems precisely. In Sec. III, we first motivate the co
struction of the decoupling scheme with examples, and t
derive conditions for decoupling and describe the gene
construction related to Hadamard matrices. Modifications
the decoupling scheme to perform selective recoupling
described. We conclude with various properties and lim
tions of the scheme. Important properties of Hadamard m
trices are summarized in the Appendices.

II. NMR QUANTUM COMPUTING AND THE STATEMENT
OF THE PROBLEM

In this section, we describe the NMR system and desc
how a universal set of~nonfault tolerant! operations@13–15#,
namely, the single qubit operations and the controlled-N
gate@16#, can be realized using basic NMR primitives.

We shall consider a physical system that consists o
solution of identical molecules. Each molecule hasn non-
magnetically equivalent nuclear spins that serve as qubit
static magnetic field is applied externally along the1 ẑ di-
rection. This magnetic field splits the energy levels of t
spin states aligned with and against it. This is described
©2000 The American Physical Society10-1
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the Hamiltonian by the Zeeman terms, which, in the ene
eigenbasis, are given by

HZ52
1

2 (
i

\v isz
( i ) , ~1!

wherei is the spin index,v i /2p is theZeeman frequencyfor
the i th spin, andsz

( i ) is the Pauli matrix operating on thei th
spin. The convention\51 is used for the rest of the pape
The spins have very different Zeeman frequencies, a si
tion loosely termed as ‘‘heteronuclear’’ in this paper.

Nuclear spins can interact via the dipolar coupling or
indirect coupling mediated by electrons@9,17#. If the mol-
ecules tumble fast and isotropically, dipolar coupling and
tensor part of the indirect coupling will be averaged aw
otherwise, the physics can be more complicated. Howeve
the presence of a strong external magnetic field, only
secularpart ~the energy conserving terms that commute w
HZ) is important@9,17#. For a heteronuclear system, the r
sulting coupling becomes

Hc5(
i , j

gi j sz
( i )

^ sz
( j ) , ~2!

independent of the exact form of the original coupling.
Eq. ~2!, gi j denotes the coupling constant between thei th
and thej th spin.

Single qubit operations are performed by applyingpulsed

radio frequency~RF! magnetic fields along some directionĥ
perpendicular to the static field. To address thei th spin, the
frequency of the RF field is tuned tov i /2p. When thev i ’s
are very different, very short pulses can be used, so
during each pulse, all other evolutions are negligible exc
for the rotation operatore2 i (u/2)sW ( i )

•ĥ, where u is propor-
tional to the pulse duration and the power. The Lie group
all single qubit operations can be generated by rotati
aboutx̂ and ŷ.

Coupled operations such as controlled phase shift
controlled-NOT acting on thei th and thej th spins can be
performed given the primitive

ZZi j 5e2 i (p/4)sz
( i )

^ sz
( j )

. ~3!

For instance, a controlled-NOT from thei th spin to thej th
spin can be implemented by compositing the ga

e2 i (p/4)sy
( i )

ei (p/4)sx
( i )

ei (p/4)sy
( i )

e2 i (p/4)sx
( j )

ei (p/4)sy
( j )

ZZi j e
2 i (p/4)sy

( j )
.

The ultimate goal is to be able to efficiently realize ar
trary quantum operations on ann-spin system with arbitrary
couplings. In this paper, we consider a more limited obj
tive, which can now be stated precisely, using the definiti
of Eqs.~1!–~3!: Given a heteronuclear system ofn spins with
free evolution e2 i (HZ1Hc)t, controlled using typical RF
pulses, how canZZi j be implemented efficiently? Following
NMR tradition, we refer to this task as ‘‘recoupling.’’

III. CONSTRUCTION OF THE SCHEMES

A problem closely related to recoupling is the followin
Given a heteronuclear system ofn spins with free evolution
04231
y

a-

e

e
;
in
e

at
pt

f
s

r

s

-
s

e2 iHct, controlled using typical RF pulses, how can the ide
tity I be implemented efficiently?

We refer to this task as ‘‘decoupling.’’ It is conceptual
easier to first construct a decoupling scheme. The schem
derived from Hadamard matrices, which will be reviewe
Modifications to implement selective recoupling will be d
scribed afterwards.

A. Decoupling scheme for two qubits

To motivate the general construction, we analyze the s
plest example of decoupling two spins. From Eq.~2!, the
evolution operator for an arbitrary durationt is given byt

5e2 ig12 tsz
(1)

^ sz
(2)

. We defineX to be the gatesx , super-
scripted by the spin index where appropriate. In the notat
defined in Sec. II,X is a rotation ofu5p along x̂ up to an
irrelevant overall phase.X( i ) is physically performed by an
RF pulse at frequencyv i . The important observation is

X(2)~sz
(1)

^ sz
(2)!X(2)52sz

(1)
^ sz

(2) ~4!

and therefore

X(2)tX(2) ~5!

5X(2)e2 ig12 tsz
(1)

^ sz
(2)

X(2) ~6!

5e2 ig12 tsz
(1)

^ (X(2)sz
(2)X(2)) ~7!

5e2 ig12 tsz
(1)

^ (2sz
(2)) ~8!

5t21, ~9!

where Eq.~7! is obtained using the Taylor series expansi
of the matrix exponents and the fact (X(2))25I . This obser-
vation implies that adding the gateX(2) before and after the
evolution t results int21, so that the sequence of even
X(2)tX(2)t5I has no net coupling although the spins a
actually coupled all the time. This is called refocusing
NMR, and clearly illustrates how single qubit operations c
transform the Hamiltonian so that unwanted couplings
consecutive evolutions cancel out each other@18#.

We now extract the essential features of the above dec
pling scheme by rewriting the sequenceX(2)tX(2)t as

e2 ig12 t(1sz
(1)) ^ (2sz

(2))e2 ig12 t(1sz
(1)) ^ (1sz

(2)), ~10!

and referring tot andX(2)tX(2) as time intervals. We note
the following facts.

~1! Since the matrix exponents commute, negating
coupling for exactly half of the total time is sufficient t
cancel out the coupling.

~2! Since the coupling is bilinear insz
(1) and sz

(2) , it is
unchanged~negated! when the signs ofsz

(1) andsz
(2) agree

~disagree!.
~3! The sign ofsz

( i ) is (2) or (1) depending on whethe
X( i ) gates are applied before and after the interval. In ot
words, the sign ofsz for each spin in each time interval i
controlled by insertingX gates for that spin before and afte
that interval.
0-2
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In summary, the most crucial point leading to decoupli
is that the signs of thesz matrices of the coupled spins
controlled by theX gates, disagree for half of the total tim
elapsed.

B. Sign matrix and decoupling criteria

Following the observations in the previous decoupli
scheme, we generalize the result ton qubits in this section.
We consider schemes that concatenate a certain numb
equal-time intervals and useX gates to control the signs o
sz for each spin. The essential information on the signs
be represented by a ‘‘sign matrix’’ defined as follows. T
sign matrix of a pulse scheme forn spins withm time inter-
vals is then3m matrix with the (i ,a) entry being thesignof
sz

( i ) in theath time interval. We denote any sign matrix forn
spins bySn . For example, the sequence in Eq.~10! can be
represented by the sign matrix

S25F1 1

1 2
G . ~11!

Each column represents a time interval and each row re
sents a sequence ofm intervals for a particular spin. The
entry ‘‘2 ’’ represents an interval that is preceded and f
lowed byX gates for the spin involved. Therefore, each s
matrix corresponds to a sequence of events for the wh
system. Following the discussion in Sec. III A, decoupling
achieved whenever any two rows in the sign matrix disag
in exactly half of the entries~all couplings are negated fo
exactly half of the time!. The general construction of th
decoupling scheme is now reduced to finding sign matri
satisfying the above criteria.

As an illustration, we construct a decoupling scheme
four spins. We first find a correct sign matrix and then der
the corresponding pulse sequence. For example, a pos
sign matrix is given by

S45F1 1 1 1

1 1 2 2

1 2 2 1

1 2 1 2

G , ~12!

in which any two rows disagree in exactly two entries. T
sequence corresponding toS4 can be obtained by convertin
each column to a time interval before and after whichX
pulses are applied to spins~rows! given by 2 ’s. No pulses
are applied to spins~rows! with 1 ’s. The resulting sequence

t~X(3)X(4)tX(3)X(4)!~X(2)X(3)tX(2)X(3)!

3~X(2)X(4)tX(2)X(4)!, ~13!

is the identity by construction and this can also be verifi
directly. Note thatHc in t5e2 iHct now denotes the sum o
six possible coupling terms for four spins. Note also Eq.~13!
is written in such a way that it corresponds visually to t
sign matrix, though the evolutions are actually in reve
04231
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time order relative toS4. However, such ordering is irrel
evant for commuting evolutions. SinceX( i )X( i )5I , Eq. ~13!
can be simplified to

t~X(3)X(4)tX(4)!~X(2)tX(3)!~X(4)tX(2)X(4)!. ~14!

This simplified pulse sequence can also be obtained dire
from Eq. ~12! by converting columns to time intervals an
inserting X( i ) between intervals whenever thei th row
changes sign or whenever a2 sign reaches either end of th
row. The relation between the sequences in Eq.~13! and Eq.
~14! andS4 is illustrated in Fig. 1.

The above scheme can be generalized to decouplen spins
with m time intervals as follows: Construct then3m sign
matrix Sn , with entries1 or 2, such thatany two rows
disagree in exacly half of the entries. For each2 sign in the
i th row and theath column, applyX( i ) before and after the
ath time interval.

Because of the pulses, the sign of thesz matrix for each
spin in each time interval is as given by the sign matrix. T
sz matrices of any two spins therefore have opposite si
for half of the time, during which their coupling is negate
and the evolution is always cancelled.

For n spins,n3m sign matrices that correspond to deco
pling schemes do not necessarily exist for arbitrarym, but
they always exist for large and special values ofm. A pos-
sible structure is

Sn53
1 ••• 1 1 ••• 1 1 ••• 1 1 ••• 1

1 ••• 1 1 ••• 1 2 ••• 2 2 ••• 2

••• ••• ••• •••

1 ••• 1 2 ••• 2 1 ••• 1 2 ••• 2

••• ••• ••• •••

1 ••• 2 1 ••• 2 1 ••• 2 1 ••• 2

4 ,

in which intervals are bifurcated when rows~spins! are
added. Such bifurcation takes place whenever it is imp
sible to add an extra row that is orthogonal to all the exist
ones~‘‘depletion’’ !. If such depletion occurs frequently, th
sign matrix will have an exponential number of columns, a

FIG. 1. ~a! Pulse sequence corresponding to Eq.~13!. FromS4,
each ‘‘2 ’’ sign in the i th row andath column translates to twoX
pulses atv i before and after theath time interval.~b! Pulse se-
quence obtained from simplifying~a!. This corresponds to Eq.~14!,
and can be constructed directly fromS4 by translating each chang
of sign in thei th row to anX pulse atv i . A ‘‘ 2 ’’ sign at the end
of the row also gives rise to anX pulse at end of the last time
interval.
0-3
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decoupling will take an exponential number of steps an
increases. The challenge is to find the correct sign matr
with a subexponential number of columns.

C. Equivalent decoupling criteria

The criteria for a sign matrixSn to represent a valid de
coupling scheme is that any two rows disagree in exa
half of the entries. It is useful to rephrase this complica
criteria concisely. Suppose6 is replaced by61 in Sn . If Sn
satisfies the decoupling criteria, any two rows have zero
ner product and thereforeSnSn

T5nI. Conversely, anyn3m
matrix M with entries61 satisfyingMMT5nI is a valid
sign matrix giving a decoupling scheme that requiresm time
intervals. We now present very efficient solutions to th
simple criteria, namely the Hadamard matrices.

D. Hadamard matrices and decoupling scheme

Hadamard matrices have applications in many areas s
as the construction of designs, error correcting codes,
Hadamard transformations@19–23#.

A Hadamard matrix of ordern, denoted byH(n), is an
n3n matrix with entries61, such that

H~n!H~n!T5nI. ~15!

The rows are pairwise orthogonal, therefore any two ro
agree in exactly half of the entries. Likewise columns a
pairwise orthogonal. We identify ‘‘61’’ with ‘‘ 6 ’’ through-
out the paper. It is immediate that eachH(n) is a valid sign
matrix giving a decoupling scheme forn spins using onlyn
time intervals.

For example,S2 andS4 in Eqs.~11! and~12! are possible
H(2) andH(4). An example ofH(12) is given by

H~12!5

l

1 1 1 1 1 1 2 1 1 1 1 1

1 1 1 2 2 1 1 2 1 2 2 1

1 1 1 1 2 2 1 1 2 1 2 2

1 2 1 1 1 2 1 2 1 2 1 2

1 2 2 1 1 1 1 2 2 1 2 1

1 1 2 2 1 1 1 1 2 2 1 2

2 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 2 1 2 2 2 1 1 2

1 1 2 1 2 2 2 2 2 2 1 1

1 2 1 2 1 2 2 1 2 2 2 1

1 2 2 1 2 1 2 1 1 2 2 2

1 1 2 2 1 2 2 2 1 1 2 2

m
.

~16!
WheneverH(n) exists, there is a decoupling scheme fon

spins concatenating onlyn time intervals. However,H(n)
may or may not exist for a givenn ~see Appendix A!. For an
arbitrary integern, let n̄ be the smallest integer that satisfi
n<n̄ with known H(n̄). To construct a decoupling schem
for n spins whenH(n) does not necessarily exist, we sta
04231
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with H(n̄) and takeSn to be anyn3n̄ submatrix ofH(n̄). In
other words,Sn is formed by choosingn rows from H(n̄),
which still achieves decoupling because subsets of row
H(n̄) are still pairwise orthogonal. The resulting decoupli
scheme forn spins requiresn̄ time intervals.

As an example,S9 can be chosen to be the first nine row
of H(12) in Eq.~16!:

S953
1 1 1 1 1 1 2 1 1 1 1 1

1 1 1 2 2 1 1 2 1 2 2 1

1 1 1 1 2 2 1 1 2 1 2 2

1 2 1 1 1 2 1 2 1 2 1 2

1 2 2 1 1 1 1 2 2 1 2 1

1 1 2 2 1 1 1 1 2 2 1 2

2 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 2 1 2 2 2 1 1 2

1 1 2 1 2 2 2 2 2 2 1 1

4 .

~17!

Note that the scheme is efficient ifn̄2n!n. A detailed
analysis of the efficiency will be given after we present t
recoupling scheme.

E. Recoupling scheme

Recall that we have to removeHZ along with the un-
wanted coupling in the recoupling scheme. We first constr
a scheme that freezes all evolution–removes bothHZ and
Hc . We need the following property of Hadamard matrice
Note that permutations or negations of rows or columns
Hadamard matrices leave the orthogonality condition inva
ant. Two Hadamard matrices are called equivalent if one
be transformed to the other by a series of such operati
Each Hadamard matrix is equivalent to anormalizedone,
which has only1 ’s in the first row and column. For in-
stance,H(12) in Eq.~16! can benormalizedby negating the
seventh row and column

H~12!5

l

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 2 2 1 2 2 1 2 2 1

1 1 1 1 2 2 2 1 2 1 2 2

1 2 1 1 1 2 2 2 1 2 1 2

1 2 2 1 1 1 2 2 2 1 2 1

1 1 2 2 1 1 2 1 2 2 1 2

1 2 2 2 2 2 2 1 1 1 1 1

1 2 1 2 2 1 1 2 2 1 1 2

1 1 2 1 2 2 1 2 2 2 1 1

1 2 1 2 1 2 1 1 2 2 2 1

1 2 2 1 2 1 1 1 1 2 2 2

1 1 2 2 1 2 1 2 1 1 2 2

m
.

~18!
0-4
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To remove bothHZ andHc , note that the Zeeman term
for the i th spin is linear insz

( i ) , and negatingsz
( i ) for half of

the time results in no net Zeeman evolution for thei th spin.
Therefore, Zeeman evolution for all spins can be remove
the sign matrix has identically zero row sum. Such a s
matrix can be constructed by starting with anormalized

H(n̄) and excluding the first row ofH(n̄) in the sign matrix.
Since a normalizedH(n̄) has only1 ’s in the first row, all
other rows have zero row sums by orthogonality. Such c
struction is possible unlessn5n̄, in which case construction
should start withH(n11). For instance, the last nine row
of the normalizedH(12) in Eq.~18! is a validS9.

To implement selective recoupling between thei th and
the j th spins, the sign matrix should have equali th and j th
rows but any other two rows should be orthogonal. The c
pling termgi j sz

( i )
^ sz

( j ) never changes sign and that coupli
is implemented selectively, while all other couplings are
moved. The sign matrix can be obtained from a normaliz
H(n̄) by first excluding the first row and taking the seco
row of H(n̄) to be thei th and j th row of Sn . The othern
22 rows ofSn can be chosen from the remainingn̄22 rows
of H(n̄). This scheme also removesHZ and requires no
more thann̄ time intervals. To implementZZi j , the duration
of each intervalt is chosen to satisfygi j n̄t5p/4. Note that
the total time used to implementZZi j is the shortest possible
since the coupling is always ‘‘on.’’

For example, starting from the normalizedH(12), S9 per-
forming ZZ34 can be chosen as

S953
1 1 1 1 2 2 2 1 2 1 2 2

1 2 1 1 1 2 2 2 1 2 1 2

1 1 1 2 2 1 2 2 1 2 2 1

1 1 1 2 2 1 2 2 1 2 2 1

1 2 2 1 1 1 2 2 2 1 2 1

1 1 2 2 1 1 2 1 2 2 1 2

1 2 2 2 2 2 2 1 1 1 1 1

1 2 1 2 2 1 1 2 2 1 1 2

1 1 2 1 2 2 1 2 2 2 1 1

4 .

~19!

F. Efficiency

The decoupling and recoupling schemes requiren̄ time
intervals. They require at mostnn̄ pulses, sinceXX5I and
the X pulses are only used in pairs. The remaining ques
is, how doesn̄ depend onn? If Hadamard matrices exist an
can be constructed for all orders,n̄5n. However, some Had
amard matrices are missing, either because no constru
methods are known or they simply cannot exist. Therefo
n̄5cn, wherec>1. We will use some facts about the exi
tence of Hadamard matrices in the following, leaving t
details in Appendix A for interested readers.H(n) exists
only for n51, n52, or n[0mod4. Hadamard conjecture
04231
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that H(n) exists for everyn[0mod4. This famous conjec

ture is verified for all n,428. Therefore, n̄2n<3
; n,428. We argue forarbitrary n that the schemes ar
still very efficient. First of all, we prove thatc,2. For each
n, there existsr such that 2r 21<n,2r . SinceH(2r) exists

by Sylvester’s construction,cn5n̄<2r,2n. We now show
that c is close to the ideal value 1 in most cases, due to
existence of Hadamard matrices of orders other than pow
of 2. This is why the full connection to Hadamard matrices

useful. First of all,n̄2n<31 ;n<10000. In Fig. 2,c as a
function of n is plotted for n<10000. Within this techno-
logically relevant range ofn, c deviates significantly from 1
only for a few exceptional values ofn when nis small. For
completeness, we present arguments forc'1 for arbitrarily
large n in Appendix B. This is based on Paley’s constructi
and the prime number theorem. Finally, if Hadamard’s co
jecture is proven,n̄2n<3 ;n.

FIG. 2. Plots ofc vs n, wherecn5n̄ is the minimun number of
time intervals required to perform decoupling or selective rec
pling for an n-spin system.c for n<100 and 101>n<10 000 are
plotted separately.
0-5
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IV. CONCLUSION

We reduce the problem of decoupling and selective rec
pling in heteronuclear spin systems to finding sign matric
which is further reduced to finding Hadamard matric
While the most difficult task of constructing Hadamard m
trices is not discussed in this paper, solutions already exis
the literature. Even more important is that the connection
Hadamard matrices results in very efficient schemes.

Some properties of the scheme are as follows. First of
the scheme is optimal in the following sense. The rows
Hadamard matrices and their negations form the codew
of the first-order Reed-Muller codes, which areperfect codes
@21,22#. It follows that, for each Hadamard matrix, it is im
possible to add an extra row that is orthogonal to all
existing ones. Therefore, for a givenn, n̄ is in fact the mini-
mum number of time intervals necessary for decoupling
recoupling, if one is restricted to the class of schemes c
sidered. Second, the scheme applies for arbitrary duratio
the time intervals. This is a consequence of the commuti
of all the terms in the Hamiltonian, which in turn come
from the large separations of the Zeeman frequencies c
pared to the coupling constants. Spin systems can be ch
to satisfy this condition. Finally, disjoint pairs of spins ca
be coupled in parallel.

We outline possible simplifications of the scheme for s
tems with restricted range of coupling. For example, a lin
spin system withn spins but onlyk-nearest neighbor cou
pling can be decoupled by a scheme fork spins only. Thei th
row of then3 k̄ sign matrix can be chosen to be ther th row
of H( k̄), where i[r modk. Selective recoupling can b
implemented using a decoupling scheme fork11 spins. The
sign matrix is constructed as in decoupling usingH(k11)
but the rows for the spins to be coupled are chosen to be
(k11)th row different from all existing rows@27#. This
method involving periodic boundary conditions generaliz
to other spatial structures. The size of the scheme depend
k and the exact spatial structure but not onn.

The schemes have a few limitations. First of all, it on
applies to systems in which spins can be individually a
dressed by short pulses and coupling has the simplified f
given by Eq.~2!. These conditions are essential to the si
plicity of the scheme. They can all be satisfied if the Zeem
frequencies have large separations. Second, generaliza
to include couplings of higher order than bilinear remain
be developed. Furthermore, in practice, RF pulses are ine
and have finite durations, leading to imperfect transform
tions and residual errors.

We have limited the discussion to quantum computat
in solution NMR. The schemes can be modified for cert
solid state NMR implementations@28#. In this case, compli-

FIG. 3. The gapdn between two existing orders of Hadama
matrices.
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cations arise from the extra couplings between differ
quantum computers in the ensemble. Such couplings are
homonuclear and heteronuclear in nature. Moreover,
transformed Hamiltonians in different time intervals do n
commute. However, traditional sequences such as W
@29,11# can still be combined with the current schemes, a
with rapid repetition of the combined sequence, spurio
couplings can be reduced.

The present discussion is only one example of a m
general issue, that the naturally occuring Hamiltonian in
system does not directly give rise to convenient quant
logic gates or other computations, such as simulation
quantum systems@30#. Efficient conversion of the given sys
tem Hamiltonian to a useful form is necessary and is
important challenge for future research.
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APPENDIX A: EXISTENCE PROPERTIES OF HADAMARD
MATRICES

The following is a list of useful facts about the existen
properties of Hadamard matrices.

1. Necessary conditions. H(n) exists only for n51,
n52, or n[0 mod 4. This is obvious if the matrix is nor
malized, and the columns are permuted so that the first th
rows become

F 1 ••• 1 1 ••• 1 1 ••• 1 1 ••• 1

1 ••• 1 1 ••• 1 2 ••• 2 2 ••• 2

1 ••• 1 2 ••• 2 1 ••• 1 2 ••• 2
G .

2. Hadamard’s conjecture@24#. H(n) exists for every
n[0 mod 4. This famous conjecture is verified for a
n,428.

3. Sylvester’s construction@25#. If H(n) andH(m) exist,
thenH(nm) can be constructed asH(n) ^ H(m). In particu-
lar, H(2r) can be constructed asH(2)^ r , which is propor-
tional to the matrix representation of the Hadamard trans
mation for r qubits.

4. Paley’s construction@26#. Let q be an odd prime
power. If q[3 mod4, thenH(q11) exists; ifq[1 mod 4,
thenH„2(q11)… exists.

5. Numerical facts@19#. For an arbitrary integern, let n

and n̄ be the largest and smallest integers that sat
n,n<n̄ with known H(n̄) andH(n). We define the ‘‘gap’’
dn to ben̄2n ~see Fig. 3!. For n<1000,H(n) is known for
every possible order except for six cases, and the maxim
0-6
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gap is eight. Forn<10 000,H(n) is unknown for 192 pos-
sible orders and the maximum gap is 32.

APPENDIX B: UPPER BOUNDS FOR n̄

An argument forc'1 for largen is presented using Pa
ley’s construction~mentioned in Appendix A!, known results
on primes in intervals and the prime number theorem
arithmetic progressions.

Let p(x) be the number of primes that satisfies 2<p
<x. For x,67, x/( ln x21/2),p(x),x/( ln x23/2) @31#. It
follows that there exists a prime betweenn andn(11e) for
e.2/lnn. Applying Paley’s construction,H(p11) or
H„2(p11)… exists depending on whetherp[3 mod 4 or
p[1 mod 4. Therefore,n̄<n~11e!11 or n̄<2@n~11e!11#,
r-
io

A

oc

on

-
-

s

in
d,

on

r-
ys

04231
r

respectively.

The worse of the upper boundsn̄<2@n(11e)11# result-
ing from p[1 mod 4 can be improved. Note that there are
least r primes betweenn and n(11e) r . If the primes that
equal 3mod4 and 1mod4 are randomly and uniformly d
tributed, the probability to find a prime which equals 3mo
betweenn andn(11e) r is larger than 1222r . This assump-
tion is true due to the prime number theorem for arithme
progressions@32#. Let p(x,a,q) denote the number o
primes in the arithmetic progression$a,a1q,a12q, . . . %
which satisfies 2<p<x. It is known that p(x,3,4)
'p(x,1,4). Therefore, with probability larger than
222r , n̄<n(11e) r11, implying c<(11e) r11/n'1 for
largen.
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