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Dominant gate imperfection in Grover’s quantum search algorithm
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It is found that systematic errors in phase inversions and random errors in Hadmard-Walsh transformations
are the dominant gate imperfection in Grover’s quantum search algorithm. They lead to reductions in the
maximum probability of the marked state and affect the efficiency of the algorithm. Given the degree of
inaccuracy, we find that to guarantee a half-rate of success, the size of the database should be on the order of
O(1/d2), whered is the uncertainty.
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I. INTRODUCTION

Grover’s quantum search algorithm is a remarka
achievement in quantum computing@1#. There has been in
tense interest in Grover’s quantum search algorithm rece
@2–18#. It uses only two simple gate operations, controll
phase rotations and Hadamard transformations. It has b
successfully demonstrated in solution NMR bulk quant
computers with a few qubits@2,3#. However, the inevitable
quantum state decoherence and gate inaccuracies can
duce errors@18,19#, which accumulate throughout the com
putation and make long computation unreliable, while in
der to find the marked state with high probability, it st
requires an exponential number of iterations. Thus, the e
probability of the complete algorithm may be as expon
tially large as the error probability of each iteration. In oth
words, even with small imperfection per step, large sc
quantum search may be difficult.

Fortunately, recent study of quantum error correct
shows that in principle, whenever the noise rates are belo
constant threshold, an arbitrarily long quantum operation
be performed reliably throughfault-tolerant quantum com
putation @20#. Experimentally, different types of faults ca
occur with different rates and will affect the efficiencies
the algorithm differently. For example, the effects of qua
tum state decoherence and operational errors on the
ciency of quantum algorithms have been studied in@21# with
ion trap quantum computers. A good understanding of
effect on the algorithms from different noise can help us lo
for specific potential physical realizations of quantum co
puters.

In this paper, we address the problem of influences
different imperfect gate operations in the quantum sea
algorithm, in the absence of decoherence and error cor
tions. We have found that systematic phase mismatching
random errors in the Walsh-Hadmard transformation are
dominant gate imperfections affecting the algorithm. Th
lead to exponential reduction in the maximum success p
ability. To ensure a large success rate in a quantum searc
machine, the size of the database should be limited. T
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limitation is due to the intrinsic vulnerability of the algorithm
to imperfect gate operation. Fault tolerant quantum com
tation can reduce gate imperfection and decoherence.
will ease the demand on gate perfection. However, quan
error correction also uses useful resources. In practice,
has to take into account the balance between available
sources and the size of the database.

The paper is organized as follows. Section II is devoted
the description of different error models in phase mismat
ing and the corresponding simulation results. In Sec. III,
present the consequences of imperfect Hadamard transfo
tions. Section IV gives a short summary.

II. EFFECTS OF IMPERFECT PHASE INVERSIONS

Grover’s algorithm consists of essentially four steps in
iteration @5#: ~1! a Walsh-Hadamard transformationU5W;
~2! a phase inversion of the prepared stateug&,I g5I
22ug&^gu, where usuallyug&5u0&; ~3! a phase inversion o
the marked stateut&,I t5I 22ut&^tu; and ~4! an inverse of
the Walsh-Hadamard transformationU215W (W is self-
inverse!. The operator for one Grover iteration isQ
52I gU21I tU.

In this section, we focus on the imperfections in pha
inversions and therefore chooseU to be the ideal Hadamard
transformation. We consider the imperfections in the ph
inversion to besystematic, that is,

I g5I 2~12eiu!ug&^gu,
~1!

I t5I 2~12eiw!ut&^tu,

where u5p1u0 ,w5p1w0 with u0 and w0 constantand
small. Whenu05w050, we recover the original Grover’s
algorithm. The generalized quantum search algorithm i
rotation in a two-dimensional space spanned byug& andut&.
In the following orthonormal basis:

u1&5
~ ug&2Utg U21ut&)

A12uUtgu2
,

~2!
u2&5U21ut&,
©2000 The American Physical Society05-1
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whereUtg5^tuUug&51/AN, the operatorQ is represented
by

S 2eiu2uUtgu2~12eiu! ~12eiu!UtgA12uUtgu2

eiw~12eiu!Utg* A12uUtgu2 2eiw@12~12eiu!uUtgu2#
D .

~3!

Let d5u2w5u02w0. It has been shown that to con
struct an efficient quantum search algorithm, the ph
matching requirementu5w must be observed@22,23# @it is
much easier to see this phase matching condition in an S~3!
picture @24# #. However due to imperfections in gate oper
tions, this phase matching requirement cannot be strictly
isfied. In the following, we show that nonzero constantd
results in exponential reduction in the maximum succ
probability of Grover’s algorithm asymptotically.

Since bothu0 andw0 are small, by dropping off an over
all phase, we approximateQ as

Q8cosdI 1 isindsz1 ib8sy1o~b8!, ~4!

wheresx , sy , andsz are Pauli operators andI is the iden-
tity operator in dimension 2.b852b1O(u0b)52b
1o(b) with b5(AN21)/N. For smalld, we can further
simplify operatorQ as

Q'I 1 iG'eiG,

with G5sindsz1b8sy . UsingG25(d21b82)I , we obtain

Qj5F cosj l1 i
d sin j l

l

b8sin j l

l

2
b8sin j l

l
cosj l2 i

d sin j l

l

G , ~5!

with l5Ad21b82. Then, starting from the prepared sta
ug&5A12uUtgu2u1&1Utgu2&5cosbu1&1sinbu2&'u1&, after
j number of iterations, the norm of the amplitude of t
marked state in the quantum computer is

uBj u'
b8

l
sin~ j l! ~6!

and the maximum probability of the marked state in the
gorithm is

Pmax'
b82

b821d2
<1. ~7!

Therefore, for largeN, Grover’s algorithm is efficient only
whend50. WhendÞ0, we find

Pmax'
b82

d2
;

4

Nd2
. ~8!

Thus,Pmax decreases linearly withN or exponentially with
n5 log2N. This concludes our proof that systematic pha
mismatching results in exponential reduction in the succ
probability and consequently gives an upper bound on
04230
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size of the database. If a half-rate of success is required,
is Pmax>1/2, N cannot exceed 8/d2.

So far, we have assumed that the errors in the phase
versions are systematic such thatd is constant. We now ex-
tend this simple error model~EM1! to another two error
models. The second error model~EM2! assumes thatd in
each step is a Gaussian random variable with meand050
and standard deviations. Such an error is conventionall
defined asrandom error. Finally, we letd be a Gaussian
random variable with meand0Þ0 and standard deviations
~EM3!. The exact effects of EM2 and EM3 are difficult t
compute analytically due to their randomness. Hence,
only present the simulation results. We varyn5 log2N and
run the algorithm with sufficient number of iterations so th
a maximum probability is found. Sinced in EM2 and EM3
are random variables, we adopt therandom samplingtech-
nique in the simulation. The relationships between the ma
mum success rate and the size of the database are sho
Fig. 1 and Fig. 2 for EM2 and EM3, respectively. For com
parison, we also provide the simulation result from EM1
Fig. 3.

FIG. 1. The maximum probability of finding the marked stateP
vs n5log2N for EM2 where only random errors exist. The standa
deviations50.01. Thecentral line is the average over 500 sim
lations for each point.

FIG. 2. The same as Fig. 1 for EM3 where both random a
systematic errors exist.s50.01. Solid line for d050.01, short
dashed line ford050.001, and dotted line ford050.0001.
5-2
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Our simulation results are consistent with mathemat
predictions. First, both systematic and random errors ca
reduction in the maximum probability. Second, the succ
probability drops quickly after a transition point, which
determined by the error parametersd0 and s. When n is
large, the probability decreases exponentially. Third, the
ferent effects of systematic errors and random errors
meet our expectations. Mathematically, systematic er
cause the error amplitudes to grow exponentially with
number of gates applied; while random errors cause the e
probabilities to grow linearly. This difference is clearly dem
onstrated in our simulation results. Figure 1 shows that r
dom errors give a much larger transition point than syste
atic errors. Figure 2 shows that the average succ
probability from EM3 is nearly identical to that of EM1 ex
cept for some small fluctuations.

It is shown in this section that systematic errors in t
phase inversions lead to reduction in the maximum proba
ity of finding the marked state. Random errors also affect
success rate, but in a lesser degree. In practice, we sh
maked0 as small as possible. However, due to imperfecti
nonzerod0 inevitably occur. For instance, systematic erro
arise from imperfect calibration and inhomogeneity in t
radio frequency pulses in NMR realization. Random err
are always present in a realistic environment. These er
will reduce the maximum probability of the algorithm. T
make an estimate of the combined effect of systematic
random errors~EM3!, we assume that random errors affe
the algorithm just like the systematic errors. Then we c
treatD52d as the uncertainty due to both systematic err
and random errors and use this to derive an upper bound
the size of a quantum database:any phase inversion opera
tion is imperfect, there is an uncertainty, and this uncertai
sets an upper bound on the size of the database N. For a
half-rate of success, the dimension of the database shou
less than 64/D2.

III. IMPERFECT HADAMARD TRANSFORMATION

Hadmard-Walsh transformations are also subject to
rors. To study the effect of the imperfect Hadmard-Wa

FIG. 3. The same as Fig. 1 for EM1 where only systematic e
in the phase inversions exists.N is the size of the database andb
51/AN. Solid line for d050.01, short dashed line ford050.001
and dotted line ford050.0001.
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transformation, let us taked50 in Eq. ~5!. Then the maxi-
mum probability for finding the marked state is approx
mately sin2(2jb) for perfect unitary transformation. For
perfect Hadamard-Walsh transformation,b5arcsin(uUtgu),
and uUtgu5A1/N. For systematic errors in the Hadmar
Walsh transformation, the matrix elements ofU are no
longer equal toA1/N. If uUtgu is larger thanA1/N, then the
algorithm will require fewer steps in reaching the desir
state compared with the standard Grover’s algorithm.
uUtgu is smaller thanA1/N, the algorithm will require more
steps of iteration. In this case, the searching algorithm
still give a probability quite close to unity. But if one make
a measurement at the normal optimal number of iteratio
one gets a reduction in the success rate. This difficulty can
overcome by using the algorithm several times with m
surements made around the optimal number of iteratio
which is similar to the method used in Ref.@12#.

Here, we give a simple interpretation of why Grover
algorithm is optimal. The rigorous proof has been given
Ref. @11#. Grover’s algorithm can be seen as a rotation of
state vector in a two-dimensional space spanned byut& and
ug&. Each iteration rotates an anglel5b852 sin(u/2)b. u
5f5p gives the largest angle 2b52 arcsin(uUtgu). So one
has to choose phase inversions to make the algorithm
cient. As for the unitary transformationU, at first glance one
may be tempted to think that a largeruUtgu will constitute a
faster search algorithm. However, sinceU is unitary, its ma-
trix elements satisfy the normalization relation(tuUtgu2
51, wheret runs through all theN basis states. The mea
value of the matrix element isA1/N. If some of the matrix
elements are larger than this average, some other matri
ements will be less than this average. In other words, w
making the search for some marked states in fewer steps
modified algorithm has to search the rest of the basis state
more steps. In contrast, the original Grover’s algorith
searches all possible marked states with the same opt
number of iterations. Together with its simpleness and e
of implementation, the Walsh-Hadamard transformation
the best choice.

We discuss the effects of random errors in the Wal
Hadamard transformation in a simple model. In this case,
algorithm is no longer a simple rotation in two dimension
Though in each iteration, the operator can be approxima
written as

Q5S cosb sinb

2sinb cosb D , ~9!

the basis states in each iteration have been changed, th
the two-dimensional space in each iteration is no longer
same. This is apparent from inspecting the expressions in
~2!. Suppose in the first iteration that the unitary transform
tion is U and in the following iteration the operator becom
V. Then after the first iteration, the state vector of the qu
tum computer is

uc1&5cosbu1&2sinbu2&'cosbu18&2sinbU21Vu28&,
~10!

r

5-3
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whereu18& and u28& are obtained from Eq.~2! by substitut-
ing U with V. BecauseUÞV,U21V is no longer the identity
operator. ExpandingU21Vu28&5(U21V)22u28&1•••, we
see that the Grover search operator acts only on the subs
spanned byu18& andu28&, and the other terms are leaked o
of the two-dimensional space. To make an estimate, le
assume that in each iteration, (U21V)22u28&'(12d1)u2&1
higher order terms. Then in this model, the matrix for
Grover search operator becomes

Q5S cosb sinb~12d1!

2sinb cosb~12d1!
D . ~11!

Starting from initial stateug&'u1&, after j iterations, the am-
plitude of the stateu2& becomes

US 12
j 21

2
d1D sin~ j b!U, ~12!

where only first order ind1 is retained. With the optima
number of iterations,j 'pAN/4,sin(jb)'1, the success rat
is

P'S 12
pANd1

8 D 2

'12
pANd1

4
. ~13!

For a half-success rate, one must haveN<4/p2d1
2, which is

similar to the limitation on the size of the database in
phase inversion inaccuracies. However, the mechanism
different. Here the random errors play a more important r
than the systematic errors, whereas in the phase inver
case, it is just the opposite.

IV. SUMMARY

In summary, we find that the dominating gate imperfe
tions in Grover’s algorithm are the systematic phase m
matching and the random errors in the Walsh-Hadm
transformation. Using the results obtained in this work, it
easy to understand the simulation results of Ref.@21#. In Fig.
et

2.
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1~a! of @21# ~the results with only random errors in bot
phase inversions and Hadmard transformation!, we see that
the peak in the probability curve drops down as random
rors grow. But the position of the peak is relatively fixe
Random errors in the phase inversion do not affect the a
rithm very seriously. Random errors in the Hadmard tra
formation reduce the maximum probability. The optimal
eration number remains more or less the same. When t
are only systematic errors as shown in Fig. 2~b! of Ref. @21#,
we see a drop in the maximum probability and also a shift
of the peak position to the left. The drop in maximum pro
ability is caused by systematic phase mismatching. The s
of the peak position is due to the systematic errors in
Walsh-Hadmard transformation.

These gate inaccuracies set an upper bound on the si
the database. We estimate that the upper bound is inver
proportional to the quadrature of the uncertainty in the ph
mismatching or in the Walsh-Hadmard transformation.
real quantum computation, imperfect gate operations exis
the time at a constant rate while decoherence increases
idly with computing time. At the early stage of a quantu
computation, gate imperfection is dominant in affecting
quantum algorithm. As the computation continues, decoh
ence increases and then dominates. Suitable quantum co
tion codes and in particular fault-tolerant quantum compu
tion can reduce the decoherence and gate inaccuracies
ease the stringent requirement on gate accuracies. The
tations on the quantum data size can then be greatly relie
However, quantum error correction also uses useful
sources. In pratice, one has to make a balance between
extent of quantum error correction and the size of the qu
tum database.
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