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Dominant gate imperfection in Grover’s quantum search algorithm
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It is found that systematic errors in phase inversions and random errors in Hadmard-Walsh transformations
are the dominant gate imperfection in Grover's quantum search algorithm. They lead to reductions in the
maximum probability of the marked state and affect the efficiency of the algorithm. Given the degree of
inaccuracy, we find that to guarantee a half-rate of success, the size of the database should be on the order of
0O(1/6%), whereé is the uncertainty.
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[. INTRODUCTION limitation is due to the intrinsic vulnerability of the algorithm
to imperfect gate operation. Fault tolerant quantum compu-
Grover's quantum search algorithm is a remarkabletation can reduce gate imperfection and decoherence. This
achievement in quantum computifig]. There has been in- Will ease the demand on gate perfection. However, quantum
tense interest in Grover's quantum search algorithm recentlrror correction also uses useful resources. In practice, one
[2-18]. It uses only two simple gate operations, controlledhas to take into account the balance between available re-
phase rotations and Hadamard transformations. It has be&gurces and the size of the database.
successfully demonstrated in solution NMR bulk quantum The paper is organized as follows. Section Il is devoted to
computers with a few qubitg2,3]. However, the inevitable the description of different error models in phase mismatch-
quantum state decoherence and gate inaccuracies can inti6g and the corresponding simulation results. In Sec. Ill, we
duce errord18,19, which accumulate throughout the com- Present the consequences of imperfect Hadamard transforma-
putation and make long computation unreliable, while in or-tions. Section IV gives a short summary.
der to find the marked state with high probability, it still
requires an exponential number of iterations. Thus, the error ||, EFFECTS OF IMPERFECT PHASE INVERSIONS
probability of the complete algorithm may be as exponen- ) ] ] .
tially large as the error probability of each iteration. In other ~ Grover's algorithm consists of essentially four steps in an
words, even with small imperfection per step, large scaldteration[5]: (1) a Walsh-Hadamard transformatiah=W;
quantum search may be difficult. (2) a phase inversion of the prepared st;itya),l =
Fortunately, recent study of quantum error correction— 2|¥){¥|, where usuallyy)=|0); (3) a phase inversion of
shows that in principle, whenever the noise rates are below te marked stat¢r),| ,=1—2|7)(7|; and (4) an inverse of
constant threshold, an arbitrarily long quantum operation cathe Walsh-Hadamard transformatidh™*=W (W is self-
be performed reliably througfault-tolerant quantum com- inverse. The operator for one Grover iteration i®
putation [20]. Experimentally, different types of faults can =—1,U "I, U.
occur with different rates and will affect the efficiencies of  In this section, we focus on the imperfections in phase
the algorithm differently. For example, the effects of quan-inversions and therefore choosketo be the ideal Hadamard
tum state decoherence and operational errors on the effiransformation. We consider the imperfections in the phase
ciency of quantum algorithms have been studiefitj with ~ inversion to besystematicthat is,
ion trap quantum computers. A good understanding of the

effect on the algorithms from different noise can help us look L=1=(1=€%]y)(4l,
for specific potential physical realizations of quantum com- _ (1)
puters. l.=1—(1—€®)|7r)(7],

In this paper, we address the problem of influences of
different imperfect gate operations in the quantum searclwhere 8=+ 6y, =7+ ¢y With 6, and ¢, constantand
algorithm, in the absence of decoherence and error correemall. Whend,= ¢,=0, we recover the original Grover's
tions. We have found that systematic phase mismatching arelgorithm. The generalized quantum search algorithm is a
random errors in the Walsh-Hadmard transformation are theotation in a two-dimensional space spanned fyand|7).
dominant gate imperfections affecting the algorithm. Theyin the following orthonormal basis:
lead to exponential reduction in the maximum success prob-
ability. To ensure a large success rate in a quantum searching " (ly)=U,, U~ )
machine, the size of the database should be limited. This = '

N1- | u T’)/|2
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whereU .,=(7|U|y)=1/\N, the operatoQ is represented
by
_ei0_|UTy|2(1_ei€) (1_ei0)UT7 1_|U77|2
e¥(1-e' ) UL VI-[U, )7 —e“[1-(1-€e")|U )]/
()

Let 6=60—¢=0y— ¢o. It has been shown that to con-

struct an efficient quantum search algorithm, the phase

matching requiremenf= ¢ must be observef22,23 [it is
much easier to see this phase matching condition in a8)SO
picture[24] ]. However due to imperfections in gate opera-

tions, this phase matching requirement cannot be strictly sat

isfied. In the following, we show that nonzero constant
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results in exponential reduction in the maximum success

probability of Grover's algorithm asymptotically.
Since bothf, and ¢4 are small, by dropping off an over-
all phase, we approximat@ as
Q=cosél +isindo,+ip ay+0(B'), (4)

whereo,, oy, ando, are Pauli operators arids the iden-
tity operator in dimension 2.8'=2B+0(6,8)=28
+o(B) with B=(\N—1)/N. For small §, we can further
simplify operatorQ as

Q~1+iG~¢e'C,

with G=sin o+ B’ oy. Using G*= (8%+ B’'?)1, we obtain

~_8sinj\ B'sinjA
| COSjA +i X N )
Q= B'sinj\ o ssinj\ | ©
X cosjA—i—

with A= /6°+ B’2. Then, starting from the prepared state
|y)=V1=1U,,I?[1)+U_,|2)=cospl1)+sing|2)~|1), after

FIG. 1. The maximum probability of finding the marked state
vs n=log,N for EM2 where only random errors exist. The standard
deviations=0.01. Thecentral line is the average over 500 simu-
lations for each point.

size of the database. If a half-rate of success is required, that
iS Pmay=1/2, N cannot exceed 8F.

So far, we have assumed that the errors in the phase in-
versions are systematic such tlats constant. We now ex-
tend this simple error modd[EM1) to another two error
models. The second error mod@&M?2) assumes thab in
each step is a Gaussian random variable with m&gn0
and standard deviatios. Such an error is conventionally
defined asrandom error. Finally, we lets be a Gaussian
random variable with mead,# 0 and standard deviation
(EM3). The exact effects of EM2 and EM3 are difficult to
compute analytically due to their randomness. Hence, we
only present the simulation results. We varylog,N and
run the algorithm with sufficient number of iterations so that
a maximum probability is found. Sinc& in EM2 and EM3
are random variables, we adopt trendom samplingech-
nique in the simulation. The relationships between the maxi-

j number of iterations, the norm of the amplitude of themum success rate and the size of the database are shown in

marked state in the quantum computer is

B
|By|~~sin(j) ()
and the maximum probability of the marked state in the al-
gorithm is
:8,2
Pmax~ m<1 (7

Therefore, for largeN, Grover's algorithm is efficient only
when 6=0. Whensé+#0, we find

BrZ 4

— 8
8 N& @®

max>

Thus, P,,,.x decreases linearly witN or exponentially with

Fig. 1 and Fig. 2 for EM2 and EM3, respectively. For com-
parison, we also provide the simulation result from EM1 in
Fig. 3.
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n=log,N. This concludes our proof that systematic phase FIG. 2. The same as Fig. 1 for EM3 where both random and
mismatching results in exponential reduction in the successystematic errors exists=0.01. Solid line for §,b=0.01, short
probability and consequently gives an upper bound on théashed line fors,=0.001, and dotted line fof,=0.0001.
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transformation, let us také=0 in Eq. (5). Then the maxi-
mum probability for finding the marked state is approxi-
mately sif(2jB) for perfect unitary transformation. For a
perfect Hadamard-Walsh transformatiof=arcsin(U,,)),
and |U,,|=J1IN. For systematic errors in the Hadmard-
Walsh transformation, the matrix elements Of are no
longer equal toy1/N. If |U | is larger thany1/N, then the
algorithm will require fewer steps in reaching the desired
state compared with the standard Grover's algorithm. If
|U.,| is smaller thany1/N, the algorithm will require more
steps of iteration. In this case, the searching algorithm can
still give a probability quite close to unity. But if one makes
a measurement at the normal optimal number of iterations,
one gets a reduction in the success rate. This difficulty can be
overcome by using the algorithm several times with mea-
'surements made around the optimal number of iterations,
which is similar to the method used in R¢L2].

Here, we give a simple interpretation of why Grover’'s
algorithm is optimal. The rigorous proof has been given in

Our simulation results are consistent with mathematicaRef.[11]. Grover’s algorithm can be seen as a rotation of the
predictions. First, both systematic and random errors causgfate vector in a two-dimensional space spannefirpyand
reduction in the maximum probability. Second, the succes$y). Each iteration rotates an angle= 8’ =2 sin@2)B. 6
probability drops quickly after a transition point, which is = ¢ = gives the largest angle2=2 arcsin(U,,|). So one
determined by the error parametefg ands. Whenn is  has to choose phase inversions to make the algorithm effi-
large, the probability decreases exponentially. Third, the difcient. As for the unitary transformatids, at first glance one
ferent effects of systematic errors and random errors alsghay be tempted to think that a largs .| will constitute a
meet our expectations. Mathematically, systematic errorggster search algorithm. However, sirldds unitary, its ma-
cause the error amp_litudes to grow exponentially with theyix elements satisfy the normalization fe|at@1r|Um|2
number of gates applied; while random errors cause the errar 1, wherer runs through all thé\ basis states. The mean

probabilities to grow linearly. This difference is clearly dem- value of the matrix element i§/N. If some of the matrix

onstrated in our simulation results. Figure 1 shows that rans aments are larger than this average. some other matrix el-
dom errors give a much larger transition point than system- ; 9 . 9¢, .

. . ements will be less than this average. In other words, while
atic errors. Figure 2 shows that the average success

probability from EM3 is nearly identical to that of EM1 ex- maki_r!g the segrch forSome marked Salesin fewer steps, the
cept for some small fluctuations modified algorithm has to search the rest of the basis states in

It is shown in this section that systematic errors in the1ore steps. In contrast, the original Grover's algorithm

phase inversions lead to reduction in the maximum probabil-SearCheS a_II po_55|ble marked states W"Fh the same optimal
! L .number of iterations. Together with its simpleness and ease
ity of finding the marked state. Random errors also affect this

. . (])f implementation, the Walsh-Hadamard transformation is
success rate, but in a lesser degree. In practice, we shou

make 5, as small as possible. However, due to imperfection,t e best choice.

nonzerod, inevitably occur. For instance, systematic errors
arise from imperfect calibration and inhomogeneity in the
radio frequency puls_es in NMR reallz_atlon. Random errorsI'hough in each iteration, the operator can be approximately
are always present in a realistic environment. These eITOIS o as
will reduce the maximum probability of the algorithm. To

make an estimate of the combined effect of systematic and

random errorEMS3), we assume that random errors affect

the algorithm just like the systematic errors. Then we can

treatA =26 as the uncertainty due to both systematic errors

and random errors and use this to derive an upper bound fqpe pasis states in each iteration have been changed, that is,

the size of a quantum databasety phase inversion opera- the two-dimensional space in each iteration is no longer the

tion is imperfect, there is an uncertainty, and this uncertaintysame. This is apparent from inspecting the expressions in Eq.

sets an upper bound on the size of the databas&d¥ a (2). Suppose in the first iteration that the unitary transforma-

half-rate of success, the dimension of the database should Bgy, is U and in the following iteration the operator becomes

less than 644°. V. Then after the first iteration, the state vector of the quan-
tum computer is
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FIG. 3. The same as Fig. 1 for EM1 where only systematic erro
in the phase inversions existd.is the size of the database apd
=1/yN. Solid line for §,=0.01, short dashed line faf,=0.001
and dotted line ford,=0.0001.

We discuss the effects of random errors in the Walsh-
Hadamard transformation in a simple model. In this case, the
algorithm is no longer a simple rotation in two dimensions.

(€)

cosf sinB)

—sinB cosp

Ill. IMPERFECT HADAMARD TRANSFORMATION

Hadmard-Walsh transformations are also subject to er- |¢,)=cospB|1)—sinB|2)~cosB|1’')—singU 1V|2'),
rors. To study the effect of the imperfect Hadmard-Walsh (10
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where|1’) and|2’) are obtained from Eq2) by substitut- 1(a) of [21] (the results with only random errors in both
ing U with V. BecausdJ #V,U 1V is no longer the identity phase inversions and Hadmard transformatiove see that
operator. ExpandingJ "1V|2')=(U"1V),J2')+---, we the peak in the probability curve drops down as random er-
see that the Grover search operator acts only on the subspawgs grow. But the position of the peak is relatively fixed.
spanned byl’) and|2’), and the other terms are leaked out Random errors in the phase inversion do not affect the algo-
of the two-dimensional space. To make an estimate, let udthm very seriously. Random errors in the Hadmard trans-
assume that in each iteratior) (1V),]2')~(1—8)|2) + formation reduce the maximum probability. The optimal it-
higher order terms. Then in this model, the matrix for aeration number remains more or less the same. When there

Grover search operator becomes are only systematic errors as shown in Figh)2f Ref.[21],
we see a drop in the maximum probability and also a shifting
cosB  sinB(1-&,) of _the peak position to the Ieft. The drop_ in max_imum prob-_
= ) . (11) ability is caused by systematic phase mismatching. The shift
—sing  cosp(1-4,) of the peak position is due to the systematic errors in the

Walsh-Hadmard transformation.
Starting from initial statéy)~|1), afterj iterations, the am- These gate inaccuracies set an upper bound on the size of
plitude of the staté2) becomes the database. We estimate that the upper bound is inversely
proportional to the quadrature of the uncertainty in the phase
mismatching or in the Walsh-Hadmard transformation. In
, (12 real quantum computation, imperfect gate operations exist all
the time at a constant rate while decoherence increases rap-
idly with computing time. At the early stage of a quantum
where only first order ind, is retained. With the optimal computation, gate imperfection is dominant in affecting a
number of iterationsj~ /N/4,sin(8)~1, the success rate quantum algorithm. As the computation continues, decoher-

j—1 o
(1—T5l>5m(],3)

is ence increases and then dominates. Suitable quantum correc-
tion codes and in particular fault-tolerant quantum computa-

~Ns, 2 NS, tion can red_uce the de_coherence and gate ina(_:curacies_al_wd

P~< - ) ~l-—p— (13)  ease the stringent requirement on gate accuracies. The limi-

tations on the quantum data size can then be greatly relieved.
However, quantum error correction also uses useful re-
For a half-success rate, one must hale4/7252, which is  sources. In pratice, one has to make a balance between the
similar to the limitation on the size of the database in theextent of quantum error correction and the size of the quan-
phase inversion inaccuracies. However, the mechanism isim database.

different. Here the random errors play a more important role

than the systematic errors, whereas in the phase inversion

case, it is just the opposite.
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