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Measuring the entanglement of bipartite pure states
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The problem of the experimental determination of the amount of entanglement of a bipartite pure state is
addressed. We show that measuring a single observable does not suffice to determine the entanglement of a
given unknown pure state of two particles. Possible minimal local measuring strategies are discussed, and a
comparison is made on the basis of their best achievable precision.

PACS number~s!: 03.67.2a, 03.65.Bz
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I. INTRODUCTION

Quantum-mechanical states of multiparticle systems
be entangled, a fact well known since the early days of
formulation of the quantum theory@1#. However, the status
of this property has changed substantially in recent ye
Entanglement can also be viewed as a resource, and as
features in different processes of potential practical imp
tance, for example quantum teleportation@2#, quantum cryp-
tography@3# or even high precision measurements@4#. From
a theoretical point of view, entanglement of bipartite pu
states, and its properties under local quantum operations
reasonably well understood. There is a unique measur
entanglement for these systems, provided by the von N
mann entropy@5#, and optimal methods of entanglement m
nipulation are known@6#. However, there is a remainin
practical question which has not been addressed so far:
can one optimally measure the amount of entanglement o
unknown bipartite pure state?

At first sight, this question may seem obvious. Reco
structing the reduced density operator of any of the two s
systems will do the job. However, the essential point is t
we require the determination to be optimal and the rec
struction of the reduced density matrix may provide red
dant information, given that we are asking for just one fe
ture of the composite state: its entanglement. This is a sin
number, and the first question to be answered is whe
there exists a single operator whose experimental mea
may provide us with just the amount of entanglement of
state. Note that further details of the state itself are no
interest in the problem we are posing here@7#. We will prove
in the following that such an operator does not exist, a c
clusion that confirms what could initially be regarded as
educated guess. Knowing the impossibility of a test us
repeated measurements of a single observable, we will
cuss possible strategies aimed at being minimal, in the s
of involving the smallest number of observables. In order
avoid any ambiguity when counting the number of obse
ables involved in a given measurement protocol, we w
define such a number as the different number ofmeterseach
observer has to read out. Among different minimal stra
gies, ~that is, strategies involving the same number
meters!, we will call ‘‘optimal’’ the one providing the best
accuracy when supplied with the same resources. We
show that, in fact, measuring the reduced density ma
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turns out to be a minimal way to proceed. Moreover, t
protocol can be made optimal when involving projectio
along mutually orthogonal directions. It must be emphasiz
that our analysis, and its following conclusions, hold for pu
states. The problem of optimally determining the amount
entanglement of bipartite mixed states may require a co
pletely different approach. We have organized this pape
follows. In Sec. II we formally state the problem. Section
shows the impossibility of finding a single observable who
measure may allow the experimental determination of
amount of entanglement. Minimal local strategies are d
cussed in Sec. IV. When supplied with the same numbe
identically prepared bipartite pure states, we discuss the
formance of two classes of minimal measurements from
point of view of achievable precision in determining th
amount of entanglement. Sec. V is devoted to conclusion

II. EXPERIMENTAL SCENARIO

Let us imagine the following situation. We are provide
with a state preparer which creates pairs of two-level p
ticles ~qubits! in an unknown entangled state. These e
tangled pairs are distributed to two remote locations wh
two observers, Alice and Bob, may perform local measu
ments as well as interchange classical communication.
internal dynamics of the device is not specified and the o
thing Alice and Bob know is that, with high accuracy, th
state they share is pure. Therefore, the two-qubit state ca
written as

r5ucAB&^cABu, ~1!

where

uc&AB5a0u00&1a1u01&1a2u10&1a3u11&. ~2!

In this expression (u0&,u1&) refer to eigenvectors of operator
sz , the complex coefficientsai ,(i 50, . . . ,3), being com-
pletely unknown. In addition, we assume that the mach
may supply a large number of identical pairs. The aim is
use the resulting pairs for a quantum information task a
therefore, the only property we are interested in is its amo
of entanglement. Moreover, we require the measurem
aimed at determining the amount of entanglement to be
timal in the following sense. First, the protocol should i
volve the smallest possible number of observables. S
©2000 The American Physical Society03-1
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tests will be called minimal. Second, among minimal tes
we will define as optimal the class of protocols that yie
the best resolution when supplied with the same resour
i.e., the same number of identically prepared two-level s
tems. The problem is still rather general and, for simplici
three further assumptions will be made.

~1! The experimental situation is such that it only allow
one to act on one pair at a time. In other words, we rest
ourselves to incoherent measurements. Alice and Bob are
allowed to store a given number of particles and perform
joint measurements on them@8#.

~2! No ancillary systems are available, and the only
lowed incoherent measurements are projective ones.

~3! The adopted protocol is rigid, in the sense that we w
not accumulate information from a given set of initial me
surements and readjust our strategy afterwards.

In these conditions, we will show that no single opera
measurement allows one to determine the amount of
tanglement of an unknown bipartite pure state.

III. IMPOSSIBILITY OF A SINGLE-OBSERVABLE
MEASURING STRATEGY

The amount of entanglement of a bipartite pure state
given by its von Neumann entropy,

E~cAB!52tr~rA ln2 rA!52tr~rB log2 rB!, ~3!

whererA(B)5tr B(A)r is the reduced density matrix of eac
subsystem, andr is given by Eq.~1!. In terms of the con-
currenceC @9#, defined as

C2~cAB!5u^cusy^ syuc* &u2

5ua0a32a1a2u2

54 detrA54 detrB , ~4!

the amount of entanglement can be expressed in a com
form as follows:

E~cAB!52S 11A12C2

2 D ln2S 11A12C2

2 D
2S 12A12C2

2 D ln2S 12A12C2

2 D . ~5!

It should be noted that if all coefficientsai were real, the
concurrence could be obtain via the repeated measurem
single observablesy^ sy . We will now prove that, in gen-
eral, i.e., where noa priori information is provided about the
state of the bipartite system, it is not possible to evalu
C2(cAB) by means of measuring a set of orthogonal proj
tors Pi5uOi&^Oi u,( i 5o

3 Pi51, where theuOi& ’s form an or-

thonormal basis of a certain operatorÔ. This measuremen
would allow us to compute the four probabilitiespi
5u^Oi uc&u2, and therefore it provides three independent r
numbers. It is obvious that this will not be enough to fu
reconstruct the pure state,uc&, but one may still ask whethe
the resulting information may be enough to compute o
04230
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property of the state: its amount of entanglement. In orde
check this, let us first rewrite the concurrenceC in a more
convenient form. For that, we will express the stateucAB& in
terms of the eigenbasis of the operatorÔ as

ucAB&5(
i 50

3

^Oi uc&uOi&[(
i 50

3

mie
if iuOi&, ~6!

where the coefficientsmi are purely real, andc iP@0,2p).
ThenC2 can be written

C2~cAB!5U(
i 50

3

(
j 50

3

^Oi uc&* ^Oi usy^ syuOj* &^Oj uc&*U2

5U(
i 50

3

(
j 50

3

mimje
2 if ie2 if j

3^Oi usy^ syuOj* &U2

. ~7!

Let us define a new matrixK with elements given by

Ki j 5^Oi usy^ syuOj* &. ~8!

In terms of this quantity, the squared concurrence can
written as

C2~cAB!5 (
i , j ,k,l 50

3

mimjmkmle
i (fk1f l2f i2f j )Ki j Kkl* .

~9!

Looking at this expression one can already formulate
guess that it will not be possible to obtainC2 by just mea-
suring the probabilitiespi , given that no information abou
the relative phasesc i will be unveiled by the measuremen
In what follows we will prove explicitly thatC2, and there-
fore the amount of entanglement of the bipartite pure st
cannot be an univaluated function of the probabilitiespi on
~equivalently, of the coefficientsmi).

A. A useful lemma

Let us define two new auxiliary matricesS and s with
matrix elements given by

Si j 5^Oj* uOi& ~10!

and

s i j 5^Oi usy^ syuOj&. ~11!

It is easy to check that the following properties hold.
~1! The matrixK of Eq. ~8! satisfiesK5KT, as follows

immediately from the hermiticity of the operatorsy^ sy .
~2! If the uOi& ’s form an orthonormal basis, the corre

sponding conjugate vectorsuOi* & also form an orthonorma
basis. Then the matrixS defined above is just the change
basis matrix between the two representations, i.e.,

uOi&5(
j

Si j uOj* &, ~12!
3-2
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MEASURING THE ENTANGLEMENT OF BIPARTITE . . . PHYSICAL REVIEW A 61 042303
and thereforeS†S51 and udet(S)u51. In particular, this im-
plies that det(S†)Þ0. ~3! det(s)51.

We now have all the ingredients for proving the followin
lemma.

Lemma: det(K)Þ0 .
Proof: The matrix elements ofK can be written in terms

of those ofs andS as follows:

Ki j 5^Oi usy^ syuOj* &

5(
l 50

3

^Oi usy^ syuOl&^Ol uOj* &

5(
l 50

3

s i l Sjl* 5(
l 50

3

s i l Sl j
† .

Therefore,K5sS† and the lemma follows from propertie
~2! and ~3!.

B. Impossibility of a single-observable test

We will now prove that assuming that the measuremen
a single observable allows us to determine the concurre
of the state, and therefore its amount of entanglement, yi
a contradiction with the previous lemma. Given that the st
uc& is unknown, the test we are seeking must be univer
that is, the hypothetical observableÔ has to provide the
amount of entanglement of whatever input state. The i
underlying our proof is to show that there will always be
particular case yielding to a contradiction. Therefore, if noa
priori information is provided, the minimal test will nece
sarily require measuring more than one observable.

Consider the particular case wherem05m151/A2 and
m25m350. In this case, Eq.~9! takes the form

C25
1

4
~ uK00u21uK11u214uK01u212eif~K00K01* 1K01K11* !

12e2 if~K01K00* 1K11K01* !1e2ifK00K11*

1e22ifK11K00* !,

where we have setf5f12f0, and made use of propert
~1!. If we assume thatC2 is only a function of the rea
numbersmi , i.e., independent of the relative phasef, the
fact that the functions (1,eif,e2 if,e2if,e22if) are linearly
independent yields the set of equalities

C25
1

4
~ uK00u21uK11u214uK01u2!, ~13!

K00K01* 1K01K11* 50, ~14!

K00K11* 50. ~15!

Equation~15! implies that eitherK0050 and/orK1150. Tak-
ing Eq.~14! into account, this corresponds to the cases wh
K01Þ0 or K0150. In other words, we obtain that two out o
the three complex numbers (K00,K01,K11) must be zero.
04230
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If we repeat this argument for all the cases where any
of the coefficientsmi are equal to 1/A2, and the remaining
two equal to zero, we end up with the requirement that in
the sets of three complex numbers

~K00,K01,K11! ~K00,K02,K22! ~K00,K03,K33!,

~K11,K12,K22! ~K11,K13,K33!,

~K22,K23,K33!,

there must be at least two of them equal to zero in any
This fact imposes a certain symmetry for the allowedK ma-
trices. Explicitly,K can only be either

K15S K00 0 0 0

0 0 K12 K13

0 K12 0 K23

0 K13 K23 0

D ~16!

or

K25S 0 K01 K02 0

K01 0 K12 0

K02 K12 0 0

0 0 0 K33

D , ~17!

and analogous forms obtained when interchanging the r
of the indexes, or of the form

K35S 0 K01 K02 K03

K01 0 K12 K13

K02 K12 0 K23

K03 K13 K23 0

D . ~18!

It should be noted that many other cases could be obtaine
any of the matrix elements written as nonzero were ze
however, these additional cases are not of interest here
will become clear below.

Our proof ends by showing that, in any of the allowe
forms for K, some of the possibly nonzero coefficients in
turn out to be zero. Therefore, all the allowed forms f
K—i.e., all forms compatible with the requirement of th
concurrence being a univaluated function of the real numb
pi—will have a determinant equal to zero, which contradi
the lemma stated above

This can be easily shown for matrices of the formK1 or
K2, following an argument parallel to the one used abo
and choosing three of the coefficientsmi equal to 1/A3 and
the remaining one equal to zero. Here let us analyze the
of K matrices of the formK3. If we set themi coefficients to
the values m050 and mi51/A3 for (i 51, . . . ,3), the
squared concurrence given by Eq.~9! reads
3-3
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C25
4

3A3
~ uK12u21uK13u21uK23u21eiaK12K13* 1e2 iaK13K12*

1eibK12K23* 1e2 ibK23K12* 1eigK13K23* 1e2 igK23K13* !,

where we have introduced the relative phasesa5f32f2 ,
b5f32f1, andg5f22f1. Again using the argument in
voked in proving the allowed forms for the matrixK, we
obtain that the following equalities must hold:

K12K13* 50,

K12K23* 50,

K13K23* 50.

Therefore, within the three numbers (K12,K13,K23), two
must be zero. If we repeat the argument, each time ma
one of themi ’s zero and the other three equal toA3, we end
up with allowed forms forK3, with either four or two matrix
elements different from zero. For instance, an allowed fo
of K is given by

K3
15S 0 K01 0 0

K01 0 0 0

0 0 0 K23

0 0 K23 0

D . ~19!

However, now choosing all the coefficientsmi equal to 1/2
suffices to obtain the constraintK01K23* 50, which yields a
zero determinant forK. The same reasoning applies to t
other five possible cases. Therefore, assuming thatC2 is only
a function of the probabilitiespi yields the condition
det(K)50, but we proved in Sec. II that the orthonormali
of the vectorsOi demands the determinant ofK to be non-
zero. As a result, it is not possible to find a single operatoÔ
whose measurement allows us to determine the amoun
entanglement of the pure stateucAB&.

IV. MINIMAL TESTS

The previous analysis shows that a measuring stra
employing a single observable does not allow Alice and B
to know the amount of entanglement of the state they
sharing. Knowing this fact, the natural question to ask is h
to determine a minimal measuring strategy than may al
them to evaluateE(cAB). It is clear that if they measure tw
different observablesÔAB of the form analyzed above, the
will fully reconstruct the original pure state and can, the
fore, compute its amount of entanglement. It is a remarka
fact that, acting on the whole Hilbert space of the two p
ticles, we cannot isolate the information related to t
amount of entanglement alone by means of measurin
single observable. If no information is known about the sta
determining its amount of entanglement leads to a full rec
struction of the state. However, such a nonlocal implem
tation may not be the easiest strategy to implement exp
mentally, and local strategies are preferred. In this section
04230
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will discuss possible ways to proceed if one is constrained
act locally, and we will determine the expected precision
the protocols.

A. Local actions without exchange of classical communication

When Alice and Bob are constrained to act locally and
classical communication can be exchanged among them
minimal measuring strategy corresponds to the local rec
struction of the reduced density operators. For instance,
ice may reconstruct the operatorrA5tr BrAB , and at the end
of the protocol send a final message to Bob whose len
will depend on the required resolution.

To achieve this, Alice needs to perform three project
measurements along linearly independent directions. We
show in the following that measuring along three orthogo
directions is in fact optimal, in the sense that choosing t
configuration yields the smallest associated uncertainty in
experimental determination of the determinant of the redu
density operator@see Eq.~4!#.

Let us write the reduced density matrix in the gene
form

rA5
1

2
~11s•S!5

1

2 S 11Sz Sx2 iSy

Sx1 iSy 12Sz
D ~20!

in terms of the corresponding Bloch’s vector. With the abo
parametrization we have a one-to-one correspondence
tween directions in three-dimensional space and directi
within the Bloch sphere. Note that the determinant ofrA
only depends on the modulus of the Bloch’s vector. In oth
words, it is rotationally invariant. Suppose now we are pla
ning to measure the amount of entanglement projecting
reduced density matrix of a given state along three linea
independent directions. The uncertainty associated with
measurement will depend on~1! the modulus of the corre
sponding Bloch’s vector, as the amount of entanglem
does, and~2! the relative position of Bloch’s vector with
respect to the three projective directions.

Because of conditions~1! and ~2!, assuming the initial
distribution of states to be isotropic, the average uncerta
after measuring sufficiently many states will only depend
the relative position of the three directions we project alo
In particular, this implies we can choose a given direction
be thez axis. We will call the other two directions,n̂ andm̂
so that the angles they form with thez axis areun andum .
Then we can write the average uncertainty as

dav5 f ~un ,um ,fnm!.

Here fnm is the relative azimut anglefm2fn . Moreover,
because of condition~2!, the following equalities must hold

f ~un ,um ,fnm!5 f ~p2un ,um ,p2fnm!,

f ~un ,um ,fnm!5 f ~un ,p2um ,fnm2p!,

f ~un ,um ,fnm!5 f ~p2un ,p2um ,fnm!.
3-4
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This is equivalent to stating that we could redefine the th
positive axies~simultaneously or not! without changing the
average uncertainty. Finally, from the previous set of eq
tions one obtains that the functionf has to have an extremum
at

um5p/2, un5p/2, fnm5p/2.
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We have numerically calculated the average uncertaintydav
over 10.000 states of the composite system uniformly dist
uted over the complex four-dimensional joint Hilbert spac
and calculated this uncertainty for a series of different m
surements withum5p/2 andun5p/2, butfnm ranging from
0 to p. Results are shown in Fig. 1, where we show the me
uncertainty in determining the amount of entanglementdav ,
defined as
dav5KAU] det~ra!

]P0
U2

dP01U] det~ra!

]Pm
U2

dPm1U] det~ra!

]Pn
U2

dPnL , ~21!
as

ons
f

uth

ree
be
as a function of the relative differencefnm for a fixed value
of um5un . In the definition above,P0 ,Pm , andPn are the
probabilities to obtain aspin-upwhen measuring along di
rections ẑ,m̂, and n̂, respectively, and where eachdP de-
notes the squared variance given bydP5P(12P)/N. The
bracket means the average over the isotropic distributio
states. It is clear thatdav in fact reaches a minimum whe
fnm5p/2. Similar figures can be plotted, all of them su
porting that the minimum uncertainty is indeed achiev
when the three directions of projection are chosen to be
tually orthogonal.

B. Local actions with exchange of classical communication

Let us now assume that Alice and Bob agree to cooper
Then the amount of entanglement can be evaluated from
measurement of two Pauli operators on each side. If t
agree to measure different operators in each round,
again fully reconstruct the state. However, if one of the
always measures the same Pauli operator,~for instance, if
they choose to compute the observablessz^ 1 and 1^ sz
and, in a subsequent round, the observablessx^ 1 and 1
^ sz , for which they should read out threemeters!, they can
obtain the amount of entanglement, but they will neither o
tain full information about the state itself, nor about t
whole reduced density matrix. Indeed, if we denote byPi
~i50, 1, 2, and 3! the four probabilities associated with th
outcomes (11,12,21 and 22) when measuringsz
^ 1 and1^ sz , and byP11 ,P12 ,P21 , andP22 the cor-
responding probabilities when measuringsx^ 1 and 1^ sz ,
it can easily be shown that the probabilitiesPi j ( i , j 51,2)
can be written in terms of the probabilitiesPi as follows:

P115
1

2
~P01P112AP0P1 cosf01!,

P125
1

2
~P01P122AP0P1 cosf01!,

P215
1

2
~12P02P112AP3P2 cosf23!,
of

d
u-

te.
he
y

ey

-

P225
1

2
~12P02P122AP3P2 cosf23!, ~22!

where we have rewritten the amplitudes of the initial state
ai5mie

if i ( i 50, 1, 2, and 3!, and calledf i j 5f i2f j . From
the previous set of equations, we see that the functi
cos(f02f1) and cos(f22f3) can be expressed in terms o
measurable quantities in the forms

cos~f02f1!5
2P112P02P1

2AP0P1

,

~23!

cos~f22f3!5
2P211P01P1

2AP3P2

.

Noting that

FIG. 1. Average uncertainty as a function of the relative azim
anglefmn for a fixed value ofum5um . The average uncertainty in
determining the amount of entanglement is minimal when the th
linearly independent directions of the projection are chosen to
orthogonal.
3-5
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C254@P1P21P0P322AP0P1P2P3

3cos~f02f11f32f2!#, ~24!

we see that this measuring strategy suffices to determine
squared concurrence, and therefore the amount of entan
ment of the pure state but it does not allow a full reconstr
tion of the initial state. As we will show in Sec. IV C, thi
protocol is not optimal, in the sense of providing the b
accuracy when locally measuring a minimal set of obse
ables.

C. Which strategy yields the best resolution?

The measuring strategies described above are both m
mal, in the sense of involving the smallest number of met
to be read out. However, it is not obvious whether the p
cision achieved following these two strategies will be t
same. In fact, we will show in the following that it is no
When provided with the same resources,~that is, using the
same number of identically prepared entangled pairs!, we
can obtain the amount of entanglement with higher precis
by means of a local reconstruction of the reduced den
operator. If we denote byN the number of entangled pairs,N
being large in the statistical sense, a numerical simula
with 106 states from an isotropic initial distribution yields th
following results.

~1! The measurement procedure by means of the lo
reconstruction of the reduced density operator has an as
ated uncertainty which scales withN as

d loc5
0.3

AN
.

~2! The associated uncertainty with a local measurem
of the form described in Sec. IV B is substantially mu
larger @10#. More precisely,

d loc1cc5
2.3

AN
.

Note that, onceN is given, the resulting number of measur
ments in each measuring protocol is different. While in t
first case each single probability will scale asP'1/AN/3, the
larger number of measurements causes each probabili
the second procedure to scale asP'1/AN/2.

From these results one may be led to the conclusion
the best resolution will always be achieved by means of
constructing the reduced density operator. However,
may not be true. Imagine that, in the context of the sec
protocol, Bob measures a different Pauli operator. If the
rection of projection is orthogonal to thez axis, this proce-
dure will also allow him to reconstruct the initial state. W
the associated uncertainty now be reduced with respect to
case analyzed above? In the light of the results obtai
04230
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when measuring the reduced density operator, this shoul
the case. It should be noted, however, that the numbe
observables required in this measurement protocol is
longer minimal, as it would require the observer Bob to re
out an additional meter.

V. CONCLUSIONS

We have analyzed the problem of experimentally det
mining the amount of entanglement of bipartite pure sta
when one has a large supply of identically prepared syst
on which one is restricted to act by means of projective m
surements. We showed that, provided that the entangled
is totally unknown, no measuring strategy involving a sing
operator exists. Therefore, acting on the Hilbert space of
composite system does not allow one to single out
amount of entanglement without allowing one to determ
the state completely. When local actions are considered,
minimal protocol for determining the amount of entang
ment involves measuring three different observables. Th
we have analyzed two classes of minimal tests. In the fi
one, no exchange of classical communication is requir
and entails a local reconstruction of the reduced density
erator. The procedure is optimal, in the sense of it having
smallest associated uncertainty, when measuring along t
mutually orthogonal directions. The second class of proto
requires the use of classical communication. Here we h
analyzed a possible strategy, and showed that it suffice
determine the amount of entanglement of the pure state
not its full reconstruction. The associated resolution turns
to be worse than the one corresponding to the measurem
of the reduced density operator. The analyzed protocol is
necessarily the most precise among the whole class of m
suring strategies by means of local actions with the excha
of classical communication. However, an increase in
resolution would be made at the price of increasing the nu
ber of meters to be read out and the protocol would no lon
be minimal. Establishing the best accuracy that a proto
involving the exchange of classical communication, a
which allows the full reconstruction of the state, can achie
and analyzing how it compares to the precision associa
with the full reconstruction of the the reduced density ope
tor, is an interesting open question.
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