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Measuring the entanglement of bipartite pure states
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The problem of the experimental determination of the amount of entanglement of a bipartite pure state is
addressed. We show that measuring a single observable does not suffice to determine the entanglement of a
given unknown pure state of two particles. Possible minimal local measuring strategies are discussed, and a
comparison is made on the basis of their best achievable precision.

PACS numbdps): 03.67—a, 03.65.Bz

I. INTRODUCTION turns out to be a minimal way to proceed. Moreover, the
protocol can be made optimal when involving projections
Quantum-mechanical states of multiparticle systems caalong mutually orthogonal directions. It must be emphasized
be entangled, a fact well known since the early days of théhat our analysis, and its following conclusions, hold for pure
formulation of the quantum theor]. However, the status States. The problem of optimally determining the amount of
of this property has changed substantially in recent year€ntanglement of bipartite mixed states may require a com-
Entanglement can also be viewed as a resource, and as sudigtely different approach. We have organized this paper as
features in different processes of potentiaj practica| impor.fO”OWS. In Sec. Il we forma”y state the prOblem. Section Ill
tance, for example quantum teleportat[@), quantum cryp- shows the impossibility of finding a single observable whose
tography[3] or even high precision measuremefty From  Mmeasure may allow the expe_rimental determingtion of t_he
a theoretical point of view, entanglement of bipartite puredmount of entanglement. Minimal local strategies are dis-
states, and its properties under local quantum operations, af&issed in Sec. IV. When supplied with the same number of
reasonably well understood. There is a unique measure dflentically prepared bipartite pure states, we discuss the per-
entanglement for these systems, provided by the von Nedormance of two classes of minimal measurements from the
mann entropy5], and optimal methods of entanglement ma-point of view of achievable preqision in determining_the
nipulation are known[6]. However, there is a remaining amount of entanglement. Sec. V is devoted to conclusions.
practical question which has not been addressed so far: How
can one optimally measure the amount of entanglement of an Il. EXPERIMENTAL SCENARIO

unknown bipartite pure state? . . . . .
At first sight, this question may seem obvious. Recon- Let us imagine the following situation. We are provided

structing the reduced density operator of any of the two sub\-'.\’Ith a state preparer which creates pairs of two-level par-

systems will do the job. However, the essential point is tha{'def quub|_ts§ in acr;_ gﬂt')‘”to‘g”t etntangled tSt?te' t'_l'hese hen-
we require the determination to be optimal and the recon:angled parrs are distributed 1o two remote locations where

struction of the reduced density matrix may provide redunWo observers, Al|pe and Bob, may _perform Iocaj measure-
ments as well as interchange classical communication. The

dant information, given that we are asking for just one fea ternal dynamics of the device is not specified and the only
re of th mposite state: its entanglement. This i ingle . . . . .
ture of the composite state: Its entangleme S 1S asing ing Alice and Bob know is that, with high accuracy, the

number, and the first question to be answered is whethé

there exists a single operator whose experimental measu?éate they share is pure. Therefore, the two-qubit state can be

may provide us with just the amount of entanglement of the'Vrten as

state. Note that further details of the state itself are not of
interest in the problem we are posing hgré We will prove

in the following that such an operator does not exist, a conypere
clusion that confirms what could initially be regarded as an
educated guess. Knowing the impossibility of a test using | ) ag= a0|00) +a,|01) + a,| 10y + a5|11). (2
repeated measurements of a single observable, we will dis-

cuss possible strategies aimed at being minimal, in the senge this expression|Q),|1)) refer to eigenvectors of operators
of involving the smallest number of observables. In order too,, the complex coefficients; ,(i=0,...,3), being com-
avoid any ambiguity when counting the number of observpletely unknown. In addition, we assume that the machine
ables involved in a given measurement protocol, we willmay supply a large number of identical pairs. The aim is to
define such a number as the different numbemeterseach  use the resulting pairs for a quantum information task and,
observer has to read out. Among different minimal stratetherefore, the only property we are interested in is its amount
gies, (that is, strategies involving the same number ofof entanglement. Moreover, we require the measurement
meters, we will call “optimal” the one providing the best aimed at determining the amount of entanglement to be op-
accuracy when supplied with the same resources. We willimal in the following sense. First, the protocol should in-
show that, in fact, measuring the reduced density matrixolve the smallest possible number of observables. Such

p=|¥ae){¥nsl, (1)
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tests will be called minimal. Second, among minimal testsproperty of the state: its amount of entanglement. In order to

we will define as optimal the class of protocols that yieldscheck this, let us first rewrite the concurren€dan a more

the best resolution when supplied with the same resourcespnvenient form. For that, we will express the stagg) in

i.e., the same number of identically prepared two-level systerms of the eigenbasis of the operaras

tems. The problem is still rather general and, for simplicity,

three further assumptions will be made. 3 3 .
(1) The experimental situation is such that it only allows [as)= >, (Oi]$)|0))=2, me'¥|0y), (6)

one to act on one pair at a time. In other words, we restrict =0 =0

ourselves to incoherent measurements. Alice and Bob are n@fhere the coefficientsn; are purely real, ands; e [0,2).

allowed to store a given number of particles and perform arhenC2 can be written

joint measurements on thef8].
(2) No ancillary systems are available, and the only al-

lowed incoherent measurements are projective ones. C%(Ynp) =
(3) The adopted protocol is rigid, in the sense that we will

not accumulate information from a given set of initial mea-

surements and readjust our strategy afterwards. =
In these conditions, we will show that no single operator

2

3, 3, (0l)*(0llay2 3|07 Oy )"

M o

3
> mme Yie ¥
0 =0

measurement allows one to determine the amount of en- 2
tanglement of an unknown bipartite pure state. x(0Oj|loy®a,|O0F)]| . 7
Il. IMPOSSIBILITY OF A SINGLE-OBSERVABLE Let us define a new matrik with elements given by
MEASURING STRATEGY
- ={0: *
The amount of entanglement of a bipartite pure state is Kij=(Oiloy® Uylol )- ®)
given by its von Neumann entropy, In terms of this quantity, the squared concurrence can be
written as
E(¢ap)=—tr(palnz pa) = —tr(pglog; pg), 3
3
where pag)=1rgayp is the reduced density matrix of each  C%(ypg)= >, mmmgmie! (bt @ a4 DK, K, .
subsystem, ang is given by Eq.(1). In terms of the con- hikl=0 g
currenceC [9], defined as ©
) B N Looking at this expression one can already formulate the
C(¢ne) =K (¥loy@ ay|y*)| guess that it will not be possible to obta@f by just mea-

suring the probabilitiep;, given that no information about
the relative phaseg; will be unveiled by the measurement.
=4 detpp,=4 detpg, (4) In what follows we will prove explicitly thaC?, and there-
fore the amount of entanglement of the bipartite pure state,
the amount of entanglement can be expressed in a compagénnot be an univaluated function of the probabilifesn

= |aoas_alaz|2

form as follows: (equivalently, of the coefficientsy,).
E(Yng) = 1+ Vl_Cz)ln 1+ Vl_CZ) A. A useful lemma
AB) — 2
2 2 Let us define two new auxiliary matric&sand o with
(1_ m) 1— m matrix elements given by
— Inz( ) (5)
2 2 Sij=(O0) (10

It should be noted that if all coefficients were real, the and
concurrence could be obtain via the repeated measurement a —0 o 11
single observabler,® o, . We will now prove that, in gen- 7ij =( i|0y® UV' i (1D
state of the bipartite system, it is not possible to evaluate (1) The matrixK of Eq. (8) satisfiesk =K, as follows
C*(4a8) by means of measuring a set of orthogonal projecimmediately from the hermiticity of the operato,® o .

) 3 ) ’ ) y
tors P;=[0;)(O;|,%{_ oI’ =1, where the|O;)’s form an or- (2) If the |O;)’s form an orthonormal basis, the corre-
thonormal basis of a certain operator This measurement sponding conjugate vectot®;) also form an orthonormal
would allow us to compute the four probabilitiep; basis. Then the matri$ defined above is just the change of
=|(0i])|?, and therefore it provides three independent reabasis matrix between the two representations, i.e.,
numbers. It is obvious that this will not be enough to fully
reconstruct thg pure s?aﬂe/;), but one may still ask whether |0;) = 2 S |0,*>, (12)
the resulting information may be enough to compute one ]
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and therefores'S=1 and|det(S)|=1. In particular, this im- If we repeat this argument for all the cases where any two
plies that detg") #0. (3) det(o)=1. of the coefficientam, are equal to Iy2, and the remaining

We now have all the ingredients for proving the following two equal to zero, we end up with the requirement that in all
lemma. the sets of three complex numbers

Lemma det(K)#0 .

Proof. The matrix elements dk can be written in terms (Koo Koz K1) (Koo:Koz Koo (Koo:Koss Ksa),

of those ofc and S as follows:

Ki;=(Oiloy® 0| OF) (K11,K12,K22)  (Ky1,Ky3,K33),

(K22,K23,K33),

.20 (Oiloy®a,|0;)(0||O})

3 there must be at least two of them equal to zero in any set.

_ i o S — 2 o SIT This fact imppses a certain symmetry for the allovikedha-
&y T e S trices. Explicitly, K can only be either
Therefore,K =S and the lemma follows from properties Koo O 0 0
(2) and(3). 0 0 Ky Ky
Ki= (16)

B. Impossibility of a single-observable test

We will now prove that assuming that the measurement of
a single observable allows us to determine the concurrence
of the state, and therefore its amount of entanglement, yield3'
a contradiction with the previous lemma. Given that the state

| ) is unknown, the test we are seeking must be universal; 0 Ko Kgp O

that is, the hypothetical observab@ has to provide the Koy 0 Ky O

amount of entanglement of whatever input state. The idea Ky= Ko K 0 E 17
underlying our proof is to show that there will always be a 02 ™12

particular case yielding to a contradiction. Therefore, ifano 0 0 0 Ksxz

priori information is provided, the minimal test will neces-

sarily require measuring more than one observable. and analogous forms obtained when interchanging the roles

Consider the particular case whemy=m;=1/12 and  of the indexes, or of the form
m,=my=0. In this case, Eq(9) takes the form
1 . 0 KOl KOZ KOS
Cz:z(|Koo|2+|K11|2+4|K01|2+ 2€' (KooK g+ Ko1K ) Koy 0 Kp Ky

Koz Kiz 0 Ky’
Koz Kiz Kyz O

+2e (KK o+ K 11Ky +e2 KooKty

+e 2K Ky,
h h B d mad ¢ It should be noted that many other cases could be obtained if
where we have sep=¢,— ¢o, and made use of property any of the matrix elements written as nonzero were zero;

2 . -
(1). If we assume thaC* is only a function of the real p,yever, these additional cases are not of interest here, as
numbersm;, i.e., independent of the relative phagethe il become clear below.

fact that the functions (éi'¢'e_i¢'62i,q5_*e_2i¢) are linearly Our proof ends by showing that, in any of the allowed
independent yields the set of equalities forms for K, some of the possibly nonzero coefficients in K
1 turn out to be zero. Therefore, all the allowed forms for
C2==(|K g2+ | K192+ 4|Kgl2), (13 K—ie., all forms compatible with the requirement of the

4 concurrence being a univaluated function of the real numbers

p;i—will have a determinant equal to zero, which contradicts

KodKg1+ KoiKi;=0, (14)  the lemma stated above
This can be easily shown for matrices of the fokim or
KooK¥,=0. (15 K,, following an argument parallel to the one used above

and choosing three of the coefficiems equal to 143 and
Equation(15) implies that eitheK oo=0 and/ork;=0. Tak-  the remaining one equal to zero. Here let us analyze the case
ing Eq.(14) into account, this corresponds to the cases wheref K matrices of the fornik ;. If we set them; coefficients to
Ko1#0 orKq;=0. In other words, we obtain that two out of the valuesmy,=0 and m;=1/{/3 for (i=1,...,3), the
the three complex number& gy,Kq1,K11) must be zero. squared concurrence given by EE) reads
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4 _ _ will discuss possible ways to proceed if one is constrained to
C2=——(|K 5%+ |K g%+ |K g 2+ €' 9K KE+ e 1K KT,  act locally, and we will determine the expected precision of

3V3 the protocols.

+€'PK 1 KEs+ e PR oK+ €1 7K 1 K5+ e 17K oK %),

A. Local actions without exchange of classical communication

where we have introduced the relative phagesd;— @5,
B=¢3— ¢pq, and y= ¢, — ¢4. Again using the argument in-
voked in proving the allowed forms for the matrik, we
obtain that the following equalities must hold:

When Alice and Bob are constrained to act locally and no
classical communication can be exchanged among them, the
minimal measuring strategy corresponds to the local recon-
struction of the reduced density operators. For instance, Al-

Ky K*=0, ice may reconstruct the qperat,o,(:tr sPag, and at the end
of the protocol send a final message to Bob whose length

K1K%=0, will depen_d on th_e required resolution. o
To achieve this, Alice needs to perform three projective
K 15K%=0. measurements along linearly independent directions. We will

show in the following that measuring along three orthogonal

Therefore, within the three numberK{,Kq3,K,9), two  directions is in fact optimal, in the sense that choosing this
must be zero. If we repeat the argument, each time makingonfiguration yields the smallest associated uncertainty in the
one of them;’s zero and the other three equal\}.’é we end E€xperimental determination of the determinant of the reduced
up with allowed forms fol 5, with either four or two matrix ~ density operatofsee Eq(4)]. _ o

elements different from zero. For instance, an allowed form L€t us write the reduced density matrix in the general

of K is given by r

1

1
pa=5(1+0-9=3

1+S, S-iS,
S+is, 1-S,

0 Ky O O

K 0 0 0
Ki= 001 0 o0 Kol (19)
23 in terms of the corresponding Bloch’s vector. With the above
0 0 Ky O parametrization we have a one-to-one correspondence be-
tween directions in three-dimensional space and directions
However, now choosing all the coefficients equal to 1/2  within the Bloch sphere. Note that the determinantpf
suffices to obtain the constraifity;K5;=0, which yields a only depends on the modulus of the Bloch’s vector. In other
zero determinant foK. The same reasoning applies to thewords, it is rotationally invariant. Suppose now we are plan-
other five possible cases. Therefore, assuming@fas only  ning to measure the amount of entanglement projecting the
a function of the probabilitiesp; yields the condition reduced density matrix of a given state along three linearly
det(K) =0, but we proved in Sec. Il that the orthonormality independent directions. The uncertainty associated with this
of the vectorsO; demands the determinant Kfto be non- measurement will depend dii) the modulus of the corre-
zero. As a result, it is not possible to find a single operéor Sponding Bloch’s vector, as the amount of entanglement
whose measurement allows us to determine the amount &0es, and(2) the relative position of Bloch's vector with

) (20

entanglement of the pure stdigsg). respect to the three projective directions.
Because of conditiongl) and (2), assuming the initial
V. MINIMAL TESTS distribution of states to be isotropic, the average uncertainty

after measuring sufficiently many states will only depend on
The previous analysis shows that a measuring strategghe relative position of the three directions we project along.
employing a single observable does not allow Alice and Boln particular, this implies we can choose a given direction to

to know the amount of entanglement of the state they arge thez axis. We will call the other two directions, andm
sharing. Knowing this fact, the natural question to ask is howsg that the angles they form with tizeaxis ared, and 6,,.
to determine a minimal measuring strategy than may allowrhen we can write the average uncertainty as

them to evaluat&(i,p). It is clear that if they measure two

different observable®,g of the form analyzed above, they Sar="F(00,0m,bnm)-

will fully reconstruct the original pure state and can, there-

fore, compute its amount of entanglement. It is a remarkablgjere ¢, . is the relative azimut angley,,— #,,. Moreover,

fact that, acting on the whole Hilbert space of the two paryecause of conditiof), the following equalities must hold
ticles, we cannot isolate the information related to the

amount of entanglement alone by means of measuring a f(0. 0 —f

. . . . 1 H - 7T_0 !0 yTT— l
single observable. If no information is known about the state, (On 6. bom) =T( neem $nm)
determining its amount of entanglement leads to a full recon-

struction of the state. However, such a nonlocal implemen- f(0n, Om, bam) =F(On, 7= O, bom— ),
tation may not be the easiest strategy to implement experi-
mentally, and local strategies are preferred. In this section we f(0n,0m  Pam)=F(7—0,,7— O, Prm) -
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This is equivalent to stating that we could redefine the thre&Ve have numerically calculated the average uncertaiqty
positive axies(simultaneously or ngtwithout changing the over 10.000 states of the composite system uniformly distrib-
average uncertainty. Finally, from the previous set of equauted over the complex four-dimensional joint Hilbert space,
tions one obtains that the functiémas to have an extremum and calculated this uncertainty for a series of different mea-
at surements withd,,= 7/2 and6,= /2, but ¢, ranging from
0 to . Results are shown in Fig. 1, where we show the mean
uncertainty in determining the amount of entanglemgpt,
On=m12, O=mI2, Pnm="7/2. defined as

A

2 2

ddetp,)
dPq

ddet(p,)

m

ddet(p,)

n

ot m

2
5Pn> , (21

as a function of the relative differenek,,, for a fixed value 1
of 6= 0,. In the definition aboveP,,P,,, andP, are the P__=5(1=-Po=P1=2JP3P; 0S¢, (22
probabilities to obtain a&pin-upwhen measuring along di-

rectionsz,m, andn, respectively, and where eadP de- where we have rewritten the amplitudes of the initial state as
notes the squared variance given &y =P(1—P)/N. The P

bracket means the average over the isotropic distribution of Ie mervilo(L:s g’ej’ozf’ 2n(3|§ti322 Ce\llleedfge t(f{at qtsﬁe Ffrt?rzgtions
states. It is clear thad,, in fact reaches a minimum when X q '

énm= /2. Similar figures can be plotted, all of them sup- COS{ho— o) and cosf, ;) can be expressed in terms of

porting that the minimum uncertainty is indeed achievedmeasur‘f’lble quantities in the forms
when the three directions of projection are chosen to be mu-

tually orthogonal. 2P, ,—Py—Py
cof o= p1)=—(F=—,
2\PoP4
B. Local actions with exchange of classical communication (23)
Let us now assume that Alice and Bob agree to cooperate. 2P . +P.+P
-+ 0 1
Then the amount of entanglement can be evaluated from the COg pp— ¢pg) = —————.
measurement of two Pauli operators on each side. If they 2\P3P;

agree to measure different operators in each round, they
again fully reconstruct the state. However, if one of themnoting that
always measures the same Pauli operdfor, instance, if

they choose to compute the observable1 and I® o, 1.0
and, in a subsequent round, the observalte® !l and I

®a,, for which they should read out threeeters, they can

obtain the amount of entanglement, but they will neither ob-

tain full information about the state itself, nor about the

whole reduced density matrix. Indeed, if we denote Ry

(i=0, 1, 2, and Bthe four probabilities associated with the
outcomes {+,+—,—+ and ——) when measuringr, 205 &
®l andl®o,, and byP, . ,P,_,P__, andP__ the cor- "
responding probabilities when measurioge | and1® o,

it can easily be shown that the probabilitieg(i,j=+,—)

can be written in terms of the probabiliti€s as follows:

1
P++:§(P0+P1+2\/P0P1COS¢01), 0.0 . . |
0.0 0.5 1.0 15 2.0 25 3.0

1 P
Py :E( PotP1=2VPoP1C0S¢oy), FIG. 1. Average uncertainty as a function of the relative azimuth

angle ¢, for a fixed value off,,= 6,,,. The average uncertainty in
determining the amount of entanglement is minimal when the three

P, :%(1_ Po—P+2 /_P3P2 COS¢o3), I;r:tehac\)rgl;gri]r;?ependent directions of the projection are chosen to be
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C2=4[P,P,+P,P;—2\P,P,P,P; when measuring the reduced density operator, this should be
the case. It should be noted, however, that the number of
X cog po— P1+ d3— Po)], (29 observables required in this measurement protocol is no

_ _ _ _ longer minimal, as it would require the observer Bob to read
we see that this measuring strategy suffices to determine thgt an additional meter.

squared concurrence, and therefore the amount of entangle-
ment of the pure state but it does not allow a full reconstruc- V. CONCLUSIONS

tion of the initial state. As we will show in Sec. IV C, this )
protocol is not optimal, in the sense of providing the best W€ have analyzed the problem of experimentally deter-
accuracy when locally measuring a minimal set of obsery/ining the amount of entanglement of bipartite pure states
ables. when one has a large supply of identically prepared systems
on which one is restricted to act by means of projective mea-
surements. We showed that, provided that the entangled state
is totally unknown, no measuring strategy involving a single
The measuring strategies described above are both mingperator exists. Therefore, acting on the Hilbert space of the
mal, in the sense of involving the smallest number of metergomposite system does not allow one to single out the
to be read out. However, it is not obvious whether the preamount of entanglement without allowing one to determine
cision achieved following these two strategies will be thethe state completely. When local actions are considered, the
same. In fact, we will show in the following that it is not. minimal protocol for determining the amount of entangle-
When provided with the same resourcébat is, using the ment involves measuring three different observables. There
same number of identically prepared entangled pai®  we have analyzed two classes of minimal tests. In the first
can obtain the amount of entanglement with higher precisioone, no exchange of classical communication is required,
by means of a local reconstruction of the reduced densitynd entails a local reconstruction of the reduced density op-
operator. If we denote by the number of entangled paid,  erator. The procedure is optimal, in the sense of it having the
being large in the statistical sense, a numerical simulatiogsmallest associated uncertainty, when measuring along three
with 10° states from an isotropic initial distribution yields the mutually orthogonal directions. The second class of protocol
following results. requires the use of classical communication. Here we have
(1) The measurement procedure by means of the locadnalyzed a possible strategy, and showed that it suffices to
reconstruction of the reduced density operator has an assoeletermine the amount of entanglement of the pure state but

C. Which strategy yields the best resolution?

ated uncertainty which scales withas not its full reconstruction. The associated resolution turns out
to be worse than the one corresponding to the measurement

03 of the reduced density operator. The analyzed protocol is not
5'00_\/_ﬁ' necessarily the most precise among the whole class of mea-

suring strategies by means of local actions with the exchange
(2) The associated uncertainty with a local measuremen@f classical communication. However, an increase in the
of the form described in Sec. IVB is substantially much resolution would be made at the price of increasing the num-

larger[10]. More precisely, ber of meters to be read out and the protocol would no longer
be minimal. Establishing the best accuracy that a protocol

2.3 involving the exchange of classical communication, and

5|oc+cc=\/—N- which allows the full reconstruction of the state, can achieve,

and analyzing how it compares to the precision associated

Note that, once\ is given, the resulting number of measure- with.the fqll recoqstruction of thg the reduced density opera-
ments in each measuring protocol is different. While in thetOrs IS an interesting open question.
first case each single probability will scaleRs 1/\/N/3, the
larger number of measurements causes each probability in
the second procedure to scaleRas 1/\/N/2. The authors thank M.B. Plenio, P. Hayden, D. Jonathan,

From these results one may be led to the conclusion thag. Vidal, A.K. Ekert, D.P DiVincenzo, and J.I. Cirac for
the best resolution will always be achieved by means of rediscussions on the subject of this paper. J.M.G.S. also ac-
constructing the reduced density operator. However, thiknowledges M. Ferrero for continuous encouragement and
may not be true. Imagine that, in the context of the secondiseful discussions. This work was supported by The Lever-
protocol, Bob measures a different Pauli operator. If the di-hulme Trust, the European Science Foundation, The Engi-
rection of projection is orthogonal to tteaxis, this proce- neering and Physical Sciences Research CoR&ISRQ,
dure will also allow him to reconstruct the initial state. Will and DGICYT Project No. PB-95-059%pain, and benefited
the associated uncertainty now be reduced with respect to tfeom the participation in the ESF-QIT workshop in Cam-
case analyzed above? In the light of the results obtainebridge.
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