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Dense coding for continuous variables
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A scheme to achieve dense quantum coding for the quadrature amplitudes of the electromagnetic field is
presented. The protocol utilizes shared entanglement provided by nondegenerate parametric down-conversion
in the limit of large gain to attain high efficiency. For a constraint in the mean number of ph%mmnciated
with modulation in the signal channel, the channel capacity for dense coding is found to baf@), which
always beats coherent-state communication and surpasses squeezed-state communicatidn feor n
>1, the dense coding capacity approaches twice that of either scheme.

PACS numbd(s): 03.67.Hk, 42.50.Dv

An important component of contemporary quantum infor-conveyed by other means to Alice and Bob in adva(ecg.,
mation theory is the investigation of the classical informationvia a pair ofquantum CDswith stored, entangled quantum
capacities of noisy quantum communication channels. Herestate$. Note that in general, no signal modulation is applied
classical information is encoded by the choice of one particuto the secondi.e., Bob’s component of the entangled state,
lar quantum state from among a predefined ensemble afo that it carries no information by itself.
guantum states by the sender Alice for transmission over a Although quantum dense coding has most often been dis-
qguantum channel to the receiver Bob. If Alice and Bob arecussed within the setting afiscretequantum variablege.g.,
allowed to communicate only via a one-way exchange alongjubity [3,4], in this paper we show that highly efficient
such a noisy quantum channel, then the optimal amount afense coding is possible faontinuousquantum variables.
classical information that can be reliably transmitted over theAs in our prior work on quantum teleportatigb—7], our
channel has recently been establishe@]. scheme for achieving quantum dense coding exploits

Stated more explicitly, if a classical signaltaken from  squeezed-state entanglement, and therefore should altew

the ensembl@,, is to be transmitted as a quantum state  conditionalsignal transmission with high efficiency, in con-
then Holevo's bound for a bosonic quantum channel say§ast to theconditional transmission with extremely low ef-

that the mutual information (A:B) between the sendek ficiency achieved in Refl4]. More specifically, for signal
(Alice) and receiveB (Bob) is bounded by1] statesa associated with the complex amplitude of the elec-

tromagnetic field, the channel capacity for dense coding is

. , . . found to be In(¥n-+n?), wheren is the mean photon num-
H(A:B)ﬁs(P)_J d°aPS(p.)=S(p), (1) per for modulation in the signal channel. The channel capac-
ity for dense coding in our scheme thus always beats

whereS(p) is the von Neumann entropy associated with thecoherent-state communication and surpasses squeezed-state

density operatof)zfdzaPaZ)a for the mean channel state. communication fon>1. Forn>1, the dense coding capac-

By contrast, if Alice and Bob share a quantum resource irl'ty Zg Fi)lrl3iltcr::l(tae?dt\?rqCISi th?lt ct)kfw? I:Qg\/z%?irgr?finuous variables
the form if an ensemble of entangled states, then quantum 9- &

mechanics enables protocols for communication that can cif©r our protocol are the quadrature amplitudesp) of the
cumvent the aforementioned bound on channel capacity. F@lectromagnetic field, with the classical signal=(x)
example, as shown originally by Bennett and Wiesf8r  +i(p) then associated with the quantum state drawn
Alice and Bob can beat the Holevo limit by exploiting their from the phase space for a single mode of the field. The
shared entanglement to achieve dense quantum coding. Hegtangled resource shared by Alice and Bob is a pair of EPR
the signal is encoded at Alice’s sending station and transmitheams with quantum correlations between canonically con-

te.d via one component of a pair of entangled quantum S,tateﬁjgate variablesX| 5)(1 » as were first described by Einstein,
with then the second component of the entangled pair ©%podolsky, and RosefEPR[8]), and which can be efficiently
ploited for decoding the signal at Bob’s receiving station. Ingenerated via the nonlinear optical process of parametric
thi; scheme, thg cost qf distril_auting the entangled states tgown conversion, resulting in a highly squeezed two-mode
Alice and Bob is not figured into the accounting of con- giate of the electromagnetic fidl, 10. In the ideal case, the

straints on the quantum chann@.g., the mean energy qrrelations between quadrature-phase amplitudes for the
Such neglect of the distribution cost of entanglement is seng, 5 peams (1,2) are such that

sible in some situations, as for example, if the entanglement
were to be sent during off-peak times when the communica- o L
tion channel is otherwise under utilized, or if it had been ((X1—X2)?)—0, {(p1+p2)?)—0, 2)
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(a) At Bob’s 50— 50 beam splittem,,, the displaced EPR beam 1 is
FIG. 1. lllustration of the scheme for achieving super-densecombinm_With the component? to yield tV\_’O independent squeezed
quantum coding for signal states over the complex amplitade beams, with th%l,? beams having fluctuations reduced b.elow the
=x+ip of the electromagnetic field. The quantum resource thatvacuum-st_ate ||m|t along )<(81'pﬁz)' Homodyne detection at
enables dense coding is the EPR source that generates entanglé€ddp) (Fig. 1) with LO phases set to measunes(,pg,), respec-
beams (1,2) shared by Alice and Bob. tively, then yields the complex signal amplitudg,, with variance
set by the associated squeezed sté®slhe net effect of the dense
albeit it with an concomitant divergence in the mean photon(:oding protocol is the transmission and detection of states of com-
ey plex amplitudea with an effective uncertainty below the vacuum-
numbern in each channel. state limit(indicated by the dashed cirgle
Component 1 of this entangled pair of beams is input to
Alice’s sending station, where the messa@g correspond-  of the field amplitudex, respectively(i.e., ag |, =x,p). Note
ing to the classical signat;, is encoded as the quantum statethat forr —o, the field state becomes the ideal EPR state as

f;a_n by a simple phase-space offset by way of the displacedescribed in Eq(2), namely,

ment operatoD («;,) applied to 1[11]. The displacement
D(aj;,) can be implemented in a straightforward fashion by
amplitude and phase offsets generated by(¢hgtably nor- As shown in Fig. 1, signal modulation is performed only
malized classical currentsi¢ ,ip, ) as in Ref[7]. The state o mode 1, with mode 2 treated as an overall shared re-
corresponding to Alice’s displacement of the EPR beam consource by Alice and Boltand which could have been gen-
stitutes the quantum signal and is transmitted along the quarrated by Alice herself The modulation scheme that we
tum channel shown in Fig. 1 to Bob's receiving stati@ffig. ~ choose is simply to displace mode 1 by an amaugt This
2) where it is decoded with the aid of the second componenfeads to a displaced Wigner function given BVepe @y
2 of the original EPR pair of beams and the homodyne de-- «;,,a,), corresponding to the field state that is sent via the
tectors @, ,d,). The resulting photocurrentsxg,ipb) suit-  quantum channel from Alice to Bob.
ably normalized to producer,,=iy, +ii, constitute the LJPIOI’; [jecei\gngl;hifhtfé;USflnitted .stataeorcljsisting oé'the

o . L= modulated mode 1), the final step in the dense-coding pro-
messageVlj, received by Bob. In th.e limin—c, Eq. (2) tocol is for Bob to combine it with tﬁe shared resoummd%p
ensuresa,,=aip, SO that the classical message would beyy o vetrieve the original classical signaj with as high a
perfectly recovered. However, even for finiteas is relevant fidelity as possible. As indicated in Fig. 1, this demodulation
to a channel constrained in mean energy, the finite correlasgn pe performed with a simple 50 beam splitter that

tions implicit in the EPR beams enable quantum dense codsyperposes the modes (1,2) to yield output fields that are the
ing with enhanced channel capacity relative to either cohers,m and difference of the input fields and which we label as

ent state or squeezed state communication, as we now show, and 3, respectively. The resulting state emerging from

mated by the two-mode squeezed state with Wigner function
Waumait B1:82) =Wepr((B1+ B2) N2 = a,(B1— B2)IN2).
)

The classical signal that we seek is retrieved by homodyne
detection at detectorsl{,d,), which measure the analogs of
position and momentum for the sum and difference fields
(B1,B2). For ideal homodyne detection the resulting out-
where the subscrip® andl refer to real and imaginary parts comes are distributed according to

Wepd @1,a5) — Co(ajrt azr) 8(ay — ay). 4

— 4 —2r 2 2r 2
Wepd a1,a2) = —exd —e “(a;—az)g—e (a1~ ay)j
aa

—e?(ay+ az)é—e_zr(al-i- az)lz], 3
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2e%" ) ) for large squeezing. This is just one-half of the asymptotic
exp(— 26| B—al\2]?), dense coding mutual information, see Etfl). Thus asymp-
totically, at least, the dense coding scheme allows twice as

where 8= B1r+i 85 and represents a highly peaked distri- Much information to be encoded within a given state, al-

bution about the complex displacemeaty2. For large though it has an extra expengnot included within the

squeezing parameterthis allows us to extract the original Simple constrainh) of requiring shared entanglement.

signal @ which we choose to be distributed as It is worth noting that this dense coding scheme doais

always beat the optimal single channel capacity. Indeed, for
1 small squeezing it is worse. The break-even squeezing re-
P.=——exp —|a|’/o?). (6)  quired for dense coding to equal the capacity of the optimal
o single channel communication is

P(Bla)=

™

Note that mode 1 of this displaced state has a mean number I break.ever= 07809, (14)
of photons given by

which corresponds to roughly 6.d®8 of two-mode squeez-

n=o?+sintfr. () ing or ton=1.884. This break-even point takes into account
) . ) the difficulty of making highly squeezed two-mode squeezed
In order to compute the quantity of information that may gtates. No similar difficulty has been factored into making

be sent through this dense coding channel we note the Ufges| number states used in the benchmark scheme with
conditioned probability for the homodyne statistics is given,yhich our dense coding scheme is compared.

by A fairer comparison is against single-mode coherent state
communication with heterodyne detection. Here the channel

P(B)= 2 ox —2|BJ? ® capacity is well knowri14—16 for the mean photon number
(o2 +e 2 o24e 2] constraint to be
The mutual information describing the achievable informa- CoM=In(1+n), (15

tion throughput of this dense coding channel is then given by = . ,
which is alwaysbeaten by the optimal dense coding scheme

P(B| a)) described by Eq(10).

Hde”S?AZB)ZJ d2ﬁd2aP(ﬁ|a)Paln( An improvement on coherent state communication is

P(A) squeezed state communication with a single mode. The chan-
=In(1+ o%e?). (9)  nel capacity of this channel has been calculdtig] to be
For a fixedn in Eq. (7) this information is optimized when CS%=In(1+2n), (16)

n=e'sinhr, i.e., wheno?=sinhr coshr so yielding a dense

coding capacity of which is beaten by the dense coding scheme of(EQ). for

n>1, i.e., the break-even squeezing required is

dense_ +n+n?
CUensen(1+n+n?), (10 ro%, ceves=0.5493, 17)

which for large squeezing becomes which corresponds to 4.7,
cdense_ 4y (11) In summary, we h_ave shown how to pgrform densg quan-
tum coding for continuous quantum variables by utilizing
How efficient is this dense coding in comparison to Smg|esqueezed state entanglement. For a constraint in the mean
channel coding? Let us place a “common” constraint of number of photons that may be modulatecthe dense cod-

having a fixed mean number of photonswhich can be ing capacity is found to be In¢dn+n?). This scheme always
modulated. For a single bosonic channel Drummond and#eéats single-mode coherent-state communication and sur-
Caves[12] and Yuen and Ozawpl3] have used Holevo's passes single-mode squeezed-state communicatiom for
result to show that the optimal channel capacity is just that>1. Note that in terms of actual implementation, our proto-
given by photon counting from a maximum entropy en-col should allow for high efficiencyynconditionaltransmis-
semble of number states. In this case the channel capacitjon with encoded information sent every inverse bandwidth
(the maximal mutual informatigrachieves the ensemble en- time. This situation is in contrast to implementations that
tropy, see Eq(1), so employ weak parametric down conversion, where transmis-
. L sion is achievectonditionally and relatively rarely. In fact
C=S(p)=(1+n)in(1+n)—nInn. (12 Mattle et al. [4] obtained rates of only 1 in IQper inverse
- bandwidth time[17]. By going to strong down conversion
Substitutingn=e"sinhr into this we find and using a characteristically different type of entanglement,
our scheme should allow information to be sent with much
C~2r, (13 higher efficiency and should simultaneously improve the
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ability to detect orthogonal Bell states. Indeed, these advarearliest stages, theoretical protocols have been developed for
tages enabled the first experimental realization of uncondirealistic physical systems that should allow a variety of el-
tional quantum teleportation within the past ygak Beyond ementary processing operations for continuous quantum
the particular setting of quantum communication discussedariables, including significantly quantum storage for EPR
here, this research is part of a larger program to explore thstates[24,25

potential for quantum information processing with continu-

ous quantum variables. Such investigations are quite timely S.L.B. was supported in part by the UK Engineering and
in light of important recent progress concerning the pros-Physical Sciences Research Council and the Royal Academy
pects for diverse quantum algorithms with continuous vari-of Engineering. The work of H.J.K. is supported by DARPA
ables, including universal quantum computatid8] and via the QUIC Institute which is administered by ARO, by the
quantum error correctionl9—-21], with quantum teleporta- Office of Naval Research, and by the National Science Foun-
tion being a prime examplgs,22,23. Although still in its  dation.
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