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Dense coding for continuous variables
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A scheme to achieve dense quantum coding for the quadrature amplitudes of the electromagnetic field is
presented. The protocol utilizes shared entanglement provided by nondegenerate parametric down-conversion
in the limit of large gain to attain high efficiency. For a constraint in the mean number of photonsn̄ associated
with modulation in the signal channel, the channel capacity for dense coding is found to be ln(11n̄1n̄2), which
always beats coherent-state communication and surpasses squeezed-state communication forn̄.1. For n̄
@1, the dense coding capacity approaches twice that of either scheme.

PACS number~s!: 03.67.Hk, 42.50.Dv
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An important component of contemporary quantum inf
mation theory is the investigation of the classical informat
capacities of noisy quantum communication channels. H
classical information is encoded by the choice of one part
lar quantum state from among a predefined ensemble
quantum states by the sender Alice for transmission ov
quantum channel to the receiver Bob. If Alice and Bob a
allowed to communicate only via a one-way exchange al
such a noisy quantum channel, then the optimal amoun
classical information that can be reliably transmitted over
channel has recently been established@1,2#.

Stated more explicitly, if a classical signala taken from
the ensemblePa is to be transmitted as a quantum stater̂a ,
then Holevo’s bound for a bosonic quantum channel s
that the mutual informationH(A:B) between the senderA
~Alice! and receiverB ~Bob! is bounded by@1#

H~A:B!<S~ r̂ !2E d2aPaS~ r̂a!<S~ r̂ !, ~1!

whereS( r̂) is the von Neumann entropy associated with
density operatorr̂5*d2aPar̂a for the mean channel state

By contrast, if Alice and Bob share a quantum resource
the form if an ensemble of entangled states, then quan
mechanics enables protocols for communication that can
cumvent the aforementioned bound on channel capacity.
example, as shown originally by Bennett and Wiesner@3#,
Alice and Bob can beat the Holevo limit by exploiting the
shared entanglement to achieve dense quantum coding. H
the signal is encoded at Alice’s sending station and trans
ted via one component of a pair of entangled quantum sta
with then the second component of the entangled pair
ploited for decoding the signal at Bob’s receiving station.
this scheme, the cost of distributing the entangled state
Alice and Bob is not figured into the accounting of co
straints on the quantum channel~e.g., the mean energy!.
Such neglect of the distribution cost of entanglement is s
sible in some situations, as for example, if the entanglem
were to be sent during off-peak times when the commun
tion channel is otherwise under utilized, or if it had be
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conveyed by other means to Alice and Bob in advance~e.g.,
via a pair ofquantum CDswith stored, entangled quantum
states!. Note that in general, no signal modulation is appli
to the second~i.e., Bob’s! component of the entangled stat
so that it carries no information by itself.

Although quantum dense coding has most often been
cussed within the setting ofdiscretequantum variables~e.g.,
qubits! @3,4#, in this paper we show that highly efficien
dense coding is possible forcontinuousquantum variables.
As in our prior work on quantum teleportation@5–7#, our
scheme for achieving quantum dense coding expl
squeezed-state entanglement, and therefore should allowun-
conditionalsignal transmission with high efficiency, in con
trast to theconditional transmission with extremely low ef
ficiency achieved in Ref.@4#. More specifically, for signal
statesa associated with the complex amplitude of the ele
tromagnetic field, the channel capacity for dense coding
found to be ln(11n̄1n̄2), wheren̄ is the mean photon num
ber for modulation in the signal channel. The channel cap
ity for dense coding in our scheme thus always be
coherent-state communication and surpasses squeezed
communication forn̄.1. Forn̄@1, the dense coding capac
ity approaches twice that of either scheme.

As illustrated in Fig. 1, the relevant continuous variab
for our protocol are the quadrature amplitudes (x̂,p̂) of the
electromagnetic field, with the classical signala5^x̂&
1 i ^ p̂& then associated with the quantum stater̂a drawn
from the phase space for a single mode of the field. T
entangled resource shared by Alice and Bob is a pair of E
beams with quantum correlations between canonically c
jugate variables (x̂,p̂)(1,2) as were first described by Einstein
Podolsky, and Rosen~EPR@8#!, and which can be efficiently
generated via the nonlinear optical process of parame
down conversion, resulting in a highly squeezed two-mo
state of the electromagnetic field@9,10#. In the ideal case, the
correlations between quadrature-phase amplitudes for
two beams (1,2) are such that

^~ x̂12 x̂2!2&→0, ^~ p̂11 p̂2!2&→0, ~2!
©2000 The American Physical Society02-1
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albeit it with an concomitant divergence in the mean pho
numbern̄ in each channel.

Component 1 of this entangled pair of beams is input
Alice’s sending station, where the messageMa

a correspond-
ing to the classical signala in is encoded as the quantum sta
r̂a in

by a simple phase-space offset by way of the displa

ment operatorD̂(a in) applied to 1 @11#. The displacemen
D̂(a in) can be implemented in a straightforward fashion
amplitude and phase offsets generated by the~suitably nor-
malized! classical currents (i xa

,i pa
) as in Ref.@7#. The state

corresponding to Alice’s displacement of the EPR beam c
stitutes the quantum signal and is transmitted along the q
tum channel shown in Fig. 1 to Bob’s receiving station,~Fig.
2! where it is decoded with the aid of the second compon
2 of the original EPR pair of beams and the homodyne
tectors (dx ,dp). The resulting photocurrents (i xb

,i pb
) suit-

ably normalized to produceaout5 i xb
1 i i pb

constitute the

messageMb
a received by Bob. In the limitn̄→`, Eq. ~2!

ensuresaout5a in , so that the classical message would
perfectly recovered. However, even for finiten̄ as is relevant
to a channel constrained in mean energy, the finite corr
tions implicit in the EPR beams enable quantum dense c
ing with enhanced channel capacity relative to either coh
ent state or squeezed state communication, as we now s

Consider the specific case of EPR beams (1,2) appr
mated by the two-mode squeezed state with Wigner func

WEPR~a1 ,a2!5
4

p2
exp@2e22r~a12a2!R

22e2r~a12a2! I
2

2e2r~a11a2!R
22e22r~a11a2! I

2#, ~3!

where the subscriptsR andI refer to real and imaginary part

FIG. 1. Illustration of the scheme for achieving super-den
quantum coding for signal states over the complex amplitudea
5x1 ip of the electromagnetic field. The quantum resource t
enables dense coding is the EPR source that generates enta
beams (1,2) shared by Alice and Bob.
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of the field amplitudea, respectively~i.e., aR,I5x,p). Note
that for r→`, the field state becomes the ideal EPR state
described in Eq.~2!, namely,

WEPR~a1 ,a2!→Cd~a1R1a2R!d~a1I2a2I !. ~4!

As shown in Fig. 1, signal modulation is performed on
on mode 1, with mode 2 treated as an overall shared
source by Alice and Bob~and which could have been gen
erated by Alice herself!. The modulation scheme that w
choose is simply to displace mode 1 by an amounta in . This
leads to a displaced Wigner function given byWEPR(a1
2a in ,a2), corresponding to the field state that is sent via
quantum channel from Alice to Bob.

Upon receiving this transmitted state~consisting of the
modulated mode 1), the final step in the dense-coding p
tocol is for Bob to combine it with the shared resource~mode
2) and retrieve the original classical signala in with as high a
fidelity as possible. As indicated in Fig. 1, this demodulati
can be performed with a simple 50250 beam splitter that
superposes the modes (1,2) to yield output fields that are
sum and difference of the input fields and which we label
b1 and b2, respectively. The resulting state emerging fro
Bob’s beam splitter has Wigner function

Wsum/diff~b1 ,b2!5WEPR~~b11b2!/A22a,~b12b2!/A2!.

~5!

The classical signal that we seek is retrieved by homod
detection at detectors (dx ,dp), which measure the analogs o
position and momentum for the sum and difference fie
(b1 ,b2). For ideal homodyne detection the resulting ou
comes are distributed according to

e

t
gled

FIG. 2. Depiction of signal decoding at Bob’s receiving statio
~a! At Bob’s 50250 beam splittermb , the displaced EPR beam 1 i
combined with the component 2 to yield two independent squee
beams, with theb1,2 beams having fluctuations reduced below t
vacuum-state limit along (xb1

,pb2
). Homodyne detection a

(dx ,dp) ~Fig. 1! with LO phases set to measure (xb1
,pb2

), respec-
tively, then yields the complex signal amplitudeaout with variance
set by the associated squeezed states.~b! The net effect of the dense
coding protocol is the transmission and detection of states of c
plex amplitudea with an effective uncertainty below the vacuum
state limit ~indicated by the dashed circle!.
2-2
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P~bua!5
2e2r

p
exp~22e2r ub2a/A2u2!,

whereb5b1R1 ib2I and represents a highly peaked dist
bution about the complex displacementa/A2. For large
squeezing parameterr this allows us to extract the origina
signala which we choose to be distributed as

Pa5
1

ps2
exp~2uau2/s2!. ~6!

Note that mode 1 of this displaced state has a mean num
of photons given by

n̄5s21sinh2 r . ~7!

In order to compute the quantity of information that m
be sent through this dense coding channel we note the
conditioned probability for the homodyne statistics is giv
by

P~b!5
2

p~s21e22r !
expS 22ubu2

s21e22r D . ~8!

The mutual information describing the achievable inform
tion throughput of this dense coding channel is then given

Hdense~A:B!5E d2bd2aP~bua!Pa lnS P~bua!

P~b! D
5 ln~11s2e2r !. ~9!

For a fixedn̄ in Eq. ~7! this information is optimized when
n̄5ersinhr, i.e., whens25sinhr coshr so yielding a dense
coding capacity of

Cdense5 ln~11n̄1n̄2!, ~10!

which for large squeezingr becomes

Cdense;4r . ~11!

How efficient is this dense coding in comparison to sin
channel coding? Let us place a ‘‘common’’ constraint
having a fixed mean number of photonsn̄ which can be
modulated. For a single bosonic channel Drummond
Caves@12# and Yuen and Ozawa@13# have used Holevo’s
result to show that the optimal channel capacity is just t
given by photon counting from a maximum entropy e
semble of number states. In this case the channel cap
~the maximal mutual information! achieves the ensemble e
tropy, see Eq.~1!, so

C5S~r!5~11n̄!ln~11n̄!2n̄ ln n̄. ~12!

Substitutingn̄5ersinhr into this we find

C;2r , ~13!
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for large squeezingr. This is just one-half of the asymptoti
dense coding mutual information, see Eq.~11!. Thus asymp-
totically, at least, the dense coding scheme allows twice
much information to be encoded within a given state,
though it has an extra expense~not included within the
simple constraintn̄) of requiring shared entanglement.

It is worth noting that this dense coding scheme doesnot
always beat the optimal single channel capacity. Indeed,
small squeezing it is worse. The break-even squeezing
quired for dense coding to equal the capacity of the optim
single channel communication is

r break-even.0.7809, ~14!

which corresponds to roughly 6.78dB of two-mode squeez-
ing or to n̄.1.884. This break-even point takes into accou
the difficulty of making highly squeezed two-mode squeez
states. No similar difficulty has been factored into maki
ideal number states used in the benchmark scheme
which our dense coding scheme is compared.

A fairer comparison is against single-mode coherent s
communication with heterodyne detection. Here the chan
capacity is well known@14–16# for the mean photon numbe
constraint to be

Ccoh5 ln~11n̄!, ~15!

which is alwaysbeaten by the optimal dense coding sche
described by Eq.~10!.

An improvement on coherent state communication
squeezed state communication with a single mode. The c
nel capacity of this channel has been calculated@16# to be

Csq5 ln~112n̄!, ~16!

which is beaten by the dense coding scheme of Eq.~10! for
n̄.1, i.e., the break-even squeezing required is

r break-even
sq .0.5493, ~17!

which corresponds to 4.77dB.
In summary, we have shown how to perform dense qu

tum coding for continuous quantum variables by utilizin
squeezed state entanglement. For a constraint in the m
number of photons that may be modulatedn̄, the dense cod-
ing capacity is found to be ln(11n̄1n̄2). This scheme always
beats single-mode coherent-state communication and
passes single-mode squeezed-state communication fon̄
.1. Note that in terms of actual implementation, our pro
col should allow for high efficiency,unconditionaltransmis-
sion with encoded information sent every inverse bandwi
time. This situation is in contrast to implementations th
employ weak parametric down conversion, where transm
sion is achievedconditionally and relatively rarely. In fact
Mattle et al. @4# obtained rates of only 1 in 107 per inverse
bandwidth time@17#. By going to strong down conversio
and using a characteristically different type of entangleme
our scheme should allow information to be sent with mu
higher efficiency and should simultaneously improve t
2-3
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ability to detect orthogonal Bell states. Indeed, these adv
tages enabled the first experimental realization of unco
tional quantum teleportation within the past year@7#. Beyond
the particular setting of quantum communication discus
here, this research is part of a larger program to explore
potential for quantum information processing with contin
ous quantum variables. Such investigations are quite tim
in light of important recent progress concerning the pr
pects for diverse quantum algorithms with continuous va
ables, including universal quantum computation@18# and
quantum error correction@19–21#, with quantum teleporta-
tion being a prime example@5,22,23#. Although still in its
s.

nt

.J.

ev
.
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earliest stages, theoretical protocols have been develope
realistic physical systems that should allow a variety of
ementary processing operations for continuous quan
variables, including significantly quantum storage for EP
states.@24,25#
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