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The hypervirial and Hellmann-Feynman theorems are used in the methodi @xpansion to construct
Rayleigh-Schrdinger perturbation expansion for bound-state energy eigenvalues of spherical symmetric po-
tentials. An iteration procedure of calculating correction terms of arbitrarily high orders is obtained for any
kind of 1N expansion. The recurrence formulas for three variants of tNeekpansion are considered in this
work, namely, the 1 expansion and the shifted and unshifted\ J#xpansions which are applied to the
Gaussian and Patil potentials. As a result, their credibility could be reliably judged when account is taken of
high-order terms of the eigenenergies. It is also found that there is a distinct advantage in using the Bhifted 1/
expansion over the two other versions. However, the shiftdldekpansion diverges farstates and in certain
cases is not applicable as far as complicated potentials are concerned. In an effort to solve these problems we
have incorporated the principle of minimal sensitivity in the shifted &kpansion as a first step toward
extending the scope of applicability of that technique, and then we have tested the obtained approach to some
unfavorable cases of the Patil and Hellmann potentials. The agreement between our numerical calculations and
reference data is quite satisfactory.

PACS numbes): 03.65.Ge

[. INTRODUCTION (coupling constantperturbation theory23,31-39 and the
Rayleigh-Ritz variational methof®2,23,40—44 techniques.

A large number of important physical problems in variousAccurate results for physical observables have been obtained
branches of physics require using spherically symmetric pofrom these two predominant perturbative and variational
tentials. To be specific, many theoretical calculations havenethods. Because of their successes in quantum mechanics,
been carried out by various workers with the Hellmann po-they have also been extensively developed for application to
tential[1,2] to study the electron-cof@—5] or the electron- the more complicated problems of phase transitions and
ion [6,7] interactions, atomic inner-shell ionization problems quantum field theory. However, one of the shortcomings of
[8], alkali hydride molecule§9], other moleculaf10], and these approaches is that they involve, in general, quite elabo-
solid-state physic§2,11-14 problems. The Hulthe poten-  rate algebraic manipulations and require considerable com-
tial [15], one of the most important short-range potentialsputational time and effort. Furthermore, their applications
has been the subject matter of many studies in nuclear arltecome restricted due to nonavailability of compact analytic
particle physic§16—20, atomic physic§21,27, and solid- expressions of energy levels and bound-state wave functions.
state physic§23]. The exponential cosine screened CoulombThe limitations of these method# particular the coupling
potential and the celebrated Morse potenfi2d] have at- constant perturbation thegrjave become increasingly ap-
tracted considerable attention in solid-state phyE2&§ and  parent, for instance for solving the problems of critical phe-
chemical physic§26], respectively. The problem of accu- nomena and quantum chronodynamics. Thus, the devel-
rately determining the energy eigenvalues and eigenfunmpment of new computational metho@nalytical approxi-
tions for spherically symmetric potentials is, therefore, ofmation schemeshat provide at least the same order of ac-
considerable interest. curacy has become an important enterprise. A large number

Since only a handful of potentials are solvable analyti-of attempts in this direction have already been made in the
cally, one has to resort to direct numerical techniquegpast. The so-called l/ expansiongwith N referring to dif-
[22,25,27-3D or approximation methods. The most widely ferent objects in different theoripare one class of methods
investigated schemes involve the Rayleigh-Sdimger that have emerged in recent years as a very useful and pow-

erful technique of attack in nonrelativistic quantum mechan-
ics [45—-58, multicomponent model problems in quantum
*Present address: P.O. Box 7978, Yaounde, Cameroorfield theory[59—62, solid-state physic§63,64], and statis-
Electronic addresses: tical physics[65—-69. In quantum mechanics this approach,
nkwato@uycdc.uninet.cm and mnsangou@uycdc.uninet.cm which was physically motivated for power-law potentials,
TPermanent address: Laboratoire de Physique Atomique, Facultegas spawned a strong debate. For details see [Ref.in
des Sciences, Universitee Yaoundd, Boite Postale 812, Yaounde which the history of the development ofNL/expansions is
Cameroon. reflected. It should be noted that although the laxgech-
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nigue is itself a kind of perturbation theory, it can be used forever, the previous authors did not give explicit expressions
problems which do not manifestly involve a small coupling of their algorithm. We have completed that work on one
constant for performing the perturbation theory. hand in deriving in detail the recurrence relations for the
Because of the nonuniqueness of the passage to classicplantities of interest and on the other hand by comparing
mechanics different versions of this method resulting fromthese formulas with those obtained from the RSPT given in
different choices of the expansion parametek have been Appendix A. These formulas, which are given subsequently,
suggested in the context of Scdimger quantum mechanics. are convenient for numerical calculations. Recently Stepanov
Three of them, namely @/expansion, the unshifted expan- and Tutik [90] have constructed a remarkable approach
sion, and the shifted W expansion(denoted PINE, ULNE, based on a semiclassical interpretation of ti¢ éxpansion.
SLNE, respectively on which we focus our attention in this The proposed technique, which explicitly uses expansion in
paper, have been worked out in detail for problems withterms of Planck’s constarit, clarifies the complementarity
spherical or axial symmetrig®.g., hydrogen atom in mag- of the 1N approach and the WKB approximation and leads
netic and electric fields A=2n, wheren is principal quan-  to simple recursion relations for the discrete energy spectrum
tum number[71-78; A=D+2l, D and| are the spatial through Zwaan-Dunham quantization conditip8%,92. We
dimensionality and the orbital quantum number, respectivellhave compared our analytical results with the later ones and
[46]; A=D+2l—a, wherea is a suitable shift so as to re- found that they are identical. The RSPT formulas available
store exact results for the harmonic oscillator and Coulomige.g., up to order W?) are also reproduced. Thus it seems
potentials in the leading-order of the expansi6f,79-82.  that the Rayleigh-Schdinger series is generated by our set
This simple modification gives rise to dramatic conse-of recursion relations, which is also quite universal in the
quences. In particular it considerably improves the analytiGense that the passage to any variant of theedpansion is
simplicity and the convergence of the perturbation series foimplemented in its formulatiof@0]. Our procedure, which is
the energy eigenvalues in comparison with the unshiftéd 1/ equivalent to the version of Stepanov and Tutik as far as the
expansion. The procedure of the above-mentioned versiongcurrence relations are concerned, provides a satisfactory
consists of assuminD — or | —o (for a fixed radial quan- and simple way of avoiding the cumbersome sums over in-
tum numbey which is equivalent in quantum mechanics to termediate unperturbed states, and involves only simple al-
h—0 or M—oe. Then incorporating the finitdl corrections  gebraic equations which are easier to handle.
by taking into account the effects of quantum fluctuations The SLNE has already generated immense activities by
and anharmonicity leads to a systematic expansion in poweysroving its efficacy in quantum mechanics. The energy spec-
of 1/A. The physical values dD andl are substituted in the trum obtained by Imbo, Pagnamenta, and Sukhd8ighas
final formula. The Rayleigh-Schdinger and the logarithmic been discussed extensively and successfully applied to nu-
perturbation schemdseferred to as RSPT and LPT, respec-merous simple and smooth potentials, e.g., Yukawa
tively) have been used for the calculation of these correcf54,55,81,93 rotating harmonic oscillatdi52,94,93, expo-
tions. But their applications are restricted by serious difficul-nential cosine screened Coulorf@6—-9¢, Morse oscillator
ties. In the first case it is extremely laborious to advancdg99], Gaussian [55], power-law, and logarithmic
beyond the first few terms. In this connection, it should be[52,53,81,100 Applications have been made to deal with
mentioned that calculating and rearranging the sixth order ifaser-atom interactiongl01]. It has also been showi02]
power of 1A, we have obtained the next term for the energythat the SLNE is equally effective in the scattering domain.
spectrum to order V3. It should be noted that the previous The method is very useful in predicting low-energy scatter-
expression of the energy spectrum to ordek?/i.e., the ing lengths and phase shifts by spherically symmetric short-
first four terms of the expansion, was derived by Imborange potentials. However, the approximation used by these
Paanamenta, and Sukhatirf&l]. We have proceeded effi- authors is of too low order, so that the convergence of the
ciently by employingMATHEMATICA . However, the deriva- method could not be reliably judged. Dutt, Mukherji, and
tion is tediously long. The second caf&4,46,72,82—8b  Varshni[103] pointed out that although the accuracy of the
gives energy corrections for the ground state but complicaresults is in general extremely good for these smooth poten-
tions arise for excited states due to the separation of the zeradils, it is not a priori guaranteed that SLNE will work
of the wave function in the form of an individual factor. The equally well for the superposition of simple potentials. They
original study by Bender and W[B7] on the anharmonic investigated the case of the Hellmann potential which is the
oscillator gave rise to an entire industry of large-order persuperposition of two simple potentials of widely different
turbation theory{ 72,88 which led, in recent years, to con- ranges. The detailed analysis of the results reveals that for
siderable progress in the calculations of higher perturbatiorertain regions of values of parameters, not only is the con-
orders in quantum mechanics. Some algebraic recursiomergence of the series expansion for the energy eigenvalues
methods, allowing one to evaluate high orders, were proin serious trouble for certain quantum states, but the location
posed in the past, each order getting progressively mucbf the minimum of the effective potential also cannot be
more complicated47,52,54,86 In particular, Maluendes ascertained. Tang and Chft04] also observed that the ex-
et al. reported a powerful approach in which the coefficientspansion series is not valid in a certain region of the screening
of the shifted 1N expansion of arbitrarily high orders could parameter for the Hulfmepotential. Using the Coulomb po-
be generated by means of the hypervirigdV) and the tential perturbed by a polynomial im, Roychoudhury,
Hellmann-Feynman{HF) theorems[89], thereby providing Varshni, and Sengup{d05] also concluded that for compli-
an excellent check for the convergence of the method. Howeated potential shapes, SLNE can give poor or erroneous
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results. Varshn[106] and Sever and Tezcd®8] obtained tion for a central-field model in terms of the expansion pa-

from ULNE and SLNE eigenenergies of an atomic potentialrameterA is given by[90]

which represents the interaction experienced by the second

electron in a helium atom due to the nucleus and the first [ 1 d” N A (1+ a 43) Y _E

electron. That potential is of special interest being the proto- 2dr? " 8r? A A? (1) x()=Ex(r),

type of more general potentials used in atomic problems. (1)

They found that the SLNE offers a large improvement over

ULNE. However, they stressed that even with SLNE, caution"v'th

is necessary since large errors are possible. On the other 1

hand, these recurrence relations have been applied hitherto A%+

only to a narrow class of simple potentid®6,90. To the 4

best of our knowledge, such investigations with more com-, . .
Because of the nonuniqueness of passage to classical me-

plicated potentials have not been reported in the I|teraturechanics, the specific variant of theNLexpansion is deter-

Moreover, the SLNE and P1NE have not been compared SQiined by the choice of parameteks A, andB. This enables
far, even for simple potentials. In this paper we undertake ' .

this studv to show which of these two approaches is mOrone to describe within the same formalism any kind of the
y PP . TN expansion. In this paper we are interested in three of
accurate for the bound states of central potentials. For thi

purpose we have extended the above-mentioned works to (i).1/n expansionPINB

take into account large orders so as to assess their effects on

the accuracy of the SLNE, PINE, ULNE energy spectra. As _ __ _

a result it is found that SLNE surpasses the P1NE, but ex- A=2n, A=—(2n+1), B=nd(n+1),
hibits limitations concerning particularly trestates. Clearly

in that case it leads to asymptotically divergent series. The
choice of the physically motivated order-independent ShifRNherenr is the radial quantum number.

parameter is reexamined in the light of the numerical results. (i) Shifted 1N expansion(SLNE)

In an effort to improve the results obtained from the SLNE

algorithm we have applied the prescriptions for the choice of (D-a)(D—a—2)
an order-dependent shift parameter that has been claimed td=2I+D—-a, A=1—-D+a, B= 7 ,
be very powerful by Maluendest al. [86]. Moreover, it is @)
logical and meaningful to probe whether the range of appli-

cability of the modified SLNEdenoted HVHP-PMBmay 4 is the so-called shift parameter.

be W_ic_ie_ned by the incorpor_ation of the_ principle_of _minimal (iii) The unshifted M expansion can be deduced from
sensitivity(PMS). More details concerning that principle can ne S| NE delineated above in settiag- 0. The leading con-

be seen in Ref.107). , _ _tribution to the energy comes from the effective potential in
The organization of this paper is as follows. Section Iliha [imit of large A

describes the essentials of the HVHF method. We establish

A

5 A+B=1(1+1). 2

n=n,+1+1, 3

the hierarchy of equations for the corrections to the energy to A2
all orders and underline their reduction to RSPT and Vzﬁ(f)EVeﬁ(f):V(f)+8—rz- 5)

Stepanov-Tutik general expressions included in appendixes
A and B, respectively. The modified SLNE is presented. INone assume¥/(r) to be sufficiently well behaved so that

Sec. lll we carry out a detailed numerical §tudy of the d.if'v #(r) has a minimum at, and there are well-defined bound
ferent theoretical schemes. The calculations of the f'rsgtgtes Once, is determined from the equation

11-21 partial sums of the perturbation series for the energy
are displayed, using one simple and two more complicated
potentials. Only the states which are unfavorable with the A2—4r8V(’,=0, Vo=V(rg), V(=
Imbo et al. formulas[81] are considered in the context of the
HVHF-PMS. Finally, in Sec. IV we make some concluding
remarks.

dV 6
drg Vo (6)

the leading term is given by

2

E,=V =V,y+ )
0= Verl(ro) 0 8r2

()
Il. METHODS AND CALCULATIONS

The nonrelativistic formalism described in this section is aQuantum fluctuations around the minimugnare defined by
follow up to the work undertaken by Maluendesal. [86].
For the sake of brevity, we only report the essential steps
here. Unless otherwise indicated we use throughout this pa-
per atomic units in whiclhk=m=e=1. For simplicity of
notation, quantum number indices will be suppressed. Then on expanding around=0 and making use of Ed6)
The radial part of the time-independent Salinger equa- for r, Eq. (1) becomes

1
x=§(r/ro—1), g=1/A"2. 8
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2 @ o o o whose coefficients can be calculated recursively. They carry
T O + > (g% "2+ Bigix + &g ) | x(X) significant information about the behavior of bound-state en-

Xt i=0 ergies. The large-order behavior as well as the summability
of these series will be of interest. It is clear from the forego-

=Ex(), ©) ing that the starting point is the normalization condition and
where we have introduced the following notations: the harmonic-oscillator eigenvalues which write
_ i3 bt ovie?) xg)=1, x;'=0, k=1, (18
— 2.2 _ = — i 0 0
(10) EQ=(1+2n,)w+ B, (19
i+l . w=aiis the frequency of small vibrations about the equi-
= _ l_ .= _— I i . . O . . . -
Bi=(—1'——A &=(-D(i+1)B. A Jibrium orbit. By equating like powers of on both sides of

o Egs. (14) and (15) after substitution of the expansiols6)
It should be noted that there are some misprints in the corand(17), we readily find a set of coupled relations involving

responding formula in Ref86]. the termsE® andx®
Following the prescription of Maluende al., a dummy m
perturbation parametex is introduced in Eq(9) as shown k
below and is set equal to unity at the end of the calculation %m(m—l)(m—Z)xﬁT‘stJr ZmZB NE“)xﬁ]fj'l)
~ d?
Hx(x)=Ex(x), HZ—W'FU, (12 K

_go [(2m+i+2)a;g'x ) +(2m+i)BigxKD
where .
” o o S > em+igg D =0, (20)
U:E aigl)\lxl+2+ﬁigl)\lxl+§igl+2)\l+2xl. (13) i=0 : i+m-1
i=0

k
The use of quantum-mechanical HV and HF theorems to (4 1)Ek+D=" (+D)[ e X K50+ B, xK gt
i=0

generate perturbation expansions is well knd&,39,108— i+1
116]. It should be noted that McRae and VrsdadyL7] have k-1

exploited the classical versions of these useful quantum- T A(k— L2V git2yk—imD)
mechanical theorems to construct a classical perturbation ok 1)20 (1+2)&6977% '

theory without Fourier series for separable classical Hamil-
tonians. For a comprehensive review of the above theorems
and their applications in both classical and quantum mechan-

ics, see Ref[118]. The HV and HF theorems provide the where 6(x) is the He.a'V|S|de function. . .
To calculate explicitly the perturbed energies in a hierar-

relationships betweek and the various expectation values chical manner. we proceed by giving tovarious integer

(21)

of (x™) through the following equations: values starting with= 0. For example, we g¢k=0,1 in Eq.
1 (20)] the following expressions by setting
>m(m—1)(m- 2)(x™ 3+ 2mE(x™" 1) —2m(x™"1U) (i) k=0,
—(x™U’)=0, (14 =1, x{”=0, x{"=2E©¥, x{’=0, (22a
oE au (0)_ 1 1im_ _ —_ )50
X:<X>' (15) Xim 2ma0[2(m 1)(m=2)(m=3)Xpy” 5
The essence of the HVHF perturbative method is to assume +2(m— 1)§O)X§r?lz],
that the energy and the expectation values of position coor-
dinates tcr:;\n be expanded in power series of the perturbation E<0>:”E(0>_,30, m=4. (22b
parameten as
. (i) k=1
E=>, EM\K 16
go (18) xV=0, x{M'=-29(8;+3xy)), x5P=0, (233
o 1 o
(xTy= 2, X\ (17 X3 = G o (4B —5819%" ~Tangx” ], (23)
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Thus we can calculate theh perturbed energig® from the
knowledge ofx{) and E() with 0<j<k—1, Osm=k—|
+2. From Eqs(22)—(25) it is obvious that in general

xg}>—4m [(m—1)(m—2)(m-3)x¥,

+4(m-1)EOX ,—2(2m+1) ey gx0) |

() =
—2(2m=1)B19%y" 1], m=4. (239 Xm =0, m#0, (26)

if the parities of j and m are different. As a result
For k=2 a straightforward algebraic manipulation ShOWSE(l) EG) EO). .. vanish, that is
that ’ ’

’ E®=0, k odd. (27)
x4 =0,

Finally we obtain for the bound-state energy

k
1
(K= _ ) (kD) gix(k D ”
X3 2a0|§1<u ax$y+isx g S e 289
k=0

k—2
+0(k—3)20 igigi“x}ili”}, (249 with

1

E#-2 k=1, (28b)

. . i) i 2r
Xp'= goe | 2B 2 (et + (i +2)8x Vg o9

2 It is convenient to note that the calculation Bf?<~2) in-
2 i+2)6g ki 2)] (24b) volves the derivative¥! , 1<i<2k which is also the case
ig for the termE, in the semiclassical formalism of Stepanov
and Tutik. The algorithm for calculation of any order of per-
K turbed energy is thus fully described. Making use of
[ E 4E<i)x(1k—i) (i+4)B;9 X.(Iill)] MATHEMATICA, One can check without any difficulty that the
= different termsE are exactly those derived by Stepanov and
Ke2 Tutik (see Appendix B The expressions derived by Mlodi-
_ (k=i)_ . i+20(k—i—2) now and Shat£100] for the ground and first excited states
Z‘ (i+6)aig'xi’s Z‘o (469X ’ are also reproduced. Again with the help of a system with
(240 symbolic manipulation capabilities, it is easy to see that Eq.

(28) up to fourth order coincide with the analytic resuﬁﬁ

of the RSPT listed in Appendix Ai.e., E,=E,). Therefore
XET'f)zL[%(m—l)(m—Z)(m—S)xﬂfu the .H\./HF perturbatipn method. generat_es the Rayleigh-
2mag Schralinger perturbation expansions. This procedure thus
K eliminates the usual tedious calculations of sums over inter-
— DB B mediate states products of matrix elements which arise in the
+Z [2(m-1)EVx —(2m+i-2)8g X'*"‘ 2 nth order of RSPT and makes it a simple matter to calculate
high orders for energy levels. It is noteworthy that our
(k=i) i scheme of calculating is quite simple and straightforward in
_E (2m+i)eig'xis 20 (2m+i-2) comparison with thei-expansion method.
The largeN expansion method gives rise to one of the
) most elegant analytic approximations for obtaining eigenval-
x &g Ak 2 ’ m=4. (240 ues. Unfortunately, in certain cas@sg., ULNB the largeN
is asymptotically divergent, particularly farstates. To over-
come this difficulty, Sukhatme and Imbo proposed the SLNE
The HF relation provides the following connection betweenin which a proper order-independent shift is considered. This
the coefficients for the energy and expectation values, extra degree of freedom is chosen so as to make the first-
order contribution

1 [ K . Ev=

@
[EnN

ng) —

=

k k—2

k—1
E(k) |2 (I+1)[a X(k i— l)+,8 X(k i— l)]gi+1 1 . A
i+17+3 i+17+1 E1=§2—2E(0):?[(1+2nr)w+ﬂo] (29)
0

2 09

+ ﬂ(k—z)zo (i+2)6g" X 720 k=1 in Eq. (28a vanish, which means
(25) a=2-2(1+2n)o. (30)
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This simple choice yields the exact eigenvalues for the har- 2B

monic oscillator and Coulomb potentials in the leading term  V{Zg(r)= @D+

Ey. We have checked numerically and with the aid of

MATHEMATICA that higher-order correctioris; (i=2) van-

ish identically in these two cases. X
Maluendeset al. showed that SLNE could be improved

provided the shift value is properly set. They suggested agrol(r) is the polarizability potential

alternative prescription for the choice af which in their

412420 +27

2
219+ 11 + Br 5173

e A" (39

method becomes order dependent. In Sukhatme and Imbo’s (1 3 (Br)"
approach, one setk;(a)=0 in the infinite series(28a Vp°'(r):§{—4[1_e—ﬁr2 | }
which can be evaluated to arbitrary order, using our set of r n=o0 N
recurrence relations, whereas Maluendeal. have chosea g

to be a root of (0.8e7 1310227481} (40

24

Em(a)=0, (31

B=2(Z—-5/16), Z is the nuclear charge, ar@ the dipolar

and the eigenvalues are approximated by sequences of parti@larizability. The leading Coulomb penetration part of this

sums potential is of the same type as the interaction used by Sever
and Tezcam58] and Varshn[106]. It consists of a Coulomb

M M-1 .

term, a screened Coulomb term, and an exponential term.

E(a):i:EO Ei(a)= izzo Ei(a). (32 (iii) The Coulomb perturbed by a polynomial iif120]

Since the energy is independent of the shift, the appropriated
a=a,, which depends oM leads to the smallest value of
|0E/dal. We omit the technical details of the calculations
referring the reader to Ref121]. This criterion is an ex- (iv) The Hellmann potentigl103]
ample of the principle of minimal sensitivity discussed by

4
V(r):$+i§1 pir'. (42)

Stevensor{107]. In practice we proceed in determinimg A B
from Eq. (31) in which the following equations are substi- v(r)=- ?+ e (42)
tuted:

A=2 /rSV(’), a=3+2|—A. (33 I1l. NUMERICAL RESULTS AND DISCUSSION

As discussed in the Introduction, one of the prime moti-

vations of the present study is to explore the credibility of the

(34) S_LNE, PINE, and ULNE versions v_vhen account i_s taken of
high orders of perturbation theory in the calculation of the

We have applied the methods described above to foupnerdy eigenvalues. The fact that we are able to evaluate
physically interesting potentials that have been investigatef1€m using the recurrence relations presented above provides
by a number of workers. Among these are one simple poteri S with the poss!blhty to examine the applicability of these
tial and three others that are a superposition of simple poterschemes for a wide range of quantum numbeend|. For

Clearly, Eq.(31) becomes

Em(ro)=0.

tials. the sake of discussing this important point we consider by
(i) The Gaussian potentifbs] way of examples two simple and three more complicated
potentials defined in Eq$36)—(43). For any given choice of
V(r)= —Ae " (35) n an(_j I, I_Eq._(6) becomes a transcende_ntal equation WhiCh
can, in principle, be easily solved numericdly21] to obtain
(i) The Patil potentia]119] ro. We have searched with great care this most crucial pa-
rameter for the different energy levels of the five potentials
V(r)=VCoP(r)+Ve*qr)+VPol(r), (36)  investigated in this paper. It has turned out that in several
circumstances Eq6) leads to more than one minimum. In
in which V°®(r) is the Coulomb-penetration potential Table | are displayed several such cases concerning the Cou-

lomb potential perturbed by a polynomial irfor which we

2—-7 (2 i i
VeOR(r) = | Ziple 37) hgve found two roots. Curiously the energy elgenvalues
r r given by Roychoudhuret al. [105] (see column 9, first en-

try) correspond to the smallest value of the two roots and are
VE&*(r) is the exchange potential seriously in error. We suspect that this happened because
these authors did not advance beyond the first root encoun-

VEXS(r)=pB{[53—3Br—3B%r2+2Z(B%r>—pr—1)le A" tered in the search of the minima of the lafgesffective

potential. It is clear that unless great care is exercised, the

+(3+3pr)e P, (38 search ofr, can lead to erroneous conclusions. It is impor-
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TABLE I. Minima of the effective potentialcolumn 8§ and corresponding energy eigenvaltesumn 9
calculated from the shifted N/expansior81]. Data sets for the Coulomb perturbed by a polynomial ame
listed in columns 3—7. In the last column are given the exact supersymmetric values. The asterisks denote the
values of roots used by Roychoudhuwetal. (Ref.[119)]).

State « P1 P, o P4 o E? Ref. data
1s -1 —2.846 05 281623 —-1.0 0.1 1.3748% —121.80718 —4.99342
5.004 47 —5.00574
1s -5 —-9.17061 408114 -1.0 0.1 0.39200 —23.44323 —10.99342
3.58354 —10.717 33
2p -1 —4.74342 10.15811 -2.0 0.1 1.026 82 8.514 29 —9.096 09

10.09277 —28.52268

3d -1 —6.008 33 4420541 —-42 0.1 0.758 45 38.86042 —73.07639
21.02162 —73.07565

4f -1 —7.27324 129.67906 -7.2 0.1 0.64169 94.29426 —148.01022
36.00736 —148.00613

2p -1 —15.00000 100.50000 —20.0 1.0 0.536 71 37.34510 —90.062 50
10.02992 —90.06078

3d -1 —19.00000 441.33333 —420 1.0 0.41803 133.51683 —231.02778
21.00683 —231.03580

4f -1 —23.00000 1296.25000 —72.0 1.0 0.35756 309.51596 —468.01562
36.00232 —468.01544

aE:E0+ E2+ E3 (E1=0)

tant to mention at this point that the three schemes SLNEynshifted 1N expansion start decreasing but then increase
P1NE, and ULNE in their formulations do not give a crite- rather rapidly especially for thes4state. The successive con-
rion for choosing the appropriate root among the both intributions from the perturbation series become substantial
each case. This problem has not been pointed out so fand the perturbation expansion breaks down. Figure 2 shows
owing to the fact that the above situation did not occur in thethat SLNE>ULNE>P1NE for the Patil potential. However,
previous works reported. It should be noted that for eachiPAINE and ULNE are not at all workable. The energy values
energy level presented in Tables II-VII we have searched fohave very large errors and are of the wrong sign for ssme
a possible second roop value, but the result was negative. and p states(see, e.g., Tables VI and VIl The correction
Once this most crucial parameter is determined, the task atrms dominate over the leading teEy. SLNE yields good
obtaining energies becomes fairly straightforward. results only for the 7 state for which the percent error val-
We compare in Tables 1I-VII our predicted values calcu-ues become stabilized fo¥= 15 within 0.002—0.006 %.
lated from the SLNE, P1NE, and ULNE schemes to those Now we examine the states in detail for three specific
obtained from high-precision numerical techniques by Crancases.
dall [30] and Lindgad and Nielser{28,29 concerning, re- (a) First of all we consider the case for which the princi-
spectively, the Gaussian and Patil potentials. The progressigsal quantum number is fixed, i.en=8 for the Gaussian
of the energy series is shown in the tables so as to see thgtential andn=6 for the Patil potential. Figures 3 and 4
convergence of the threeN/expansion series. In order to clearly depict the features and tendencies mentioned above,
illustrate how closely our results agree with the referenceespectively, for these two potentials. A few other relevant
data (RD) and be more informative, we have plotted the features become apparent. Figure 3 shows that for SLNE and
percent errors|Erp— E|/|Erp|) of our computations in the P1NE the limit of previous workéd\=4 is insufficient for
three schemes in Figs. 1-7. The following clearly arisedow values ofl. Higher-order terms are needed to get better
from these figures. It is obvious from Fig. 1 that SLNE re-accuracy. In this connection Chatterjib] underlined that
sults are always superior to those of P1NE&e., when only the terms up th=4 are kept in the energy series,
SLNE>PINE and these latter are substantially better thanthe shifted IN expansion predicts wrongly that the 8tate
the ULNE corresponding ones (P1NEILNE). One ob- for instance is a continuum state. As shown in Table I, if
serves that SLNE and P1NE converge rapidly and the degreasigher-order terms are included in the calculation the SLNE
of agreement with RD is striking. In the case of the Gaussianreatment yields that thesSstate close to the continuum is a
potential the first four terms of the eigenenergies., the  bound state and the numerical result obtained is good. Hence
limit of previous workN=4 (denoted LPW]| are not suffi-  to improve the situation for the bound states lying close to
cient to guarantee the convergence of the SLNE and P1NEe continuum one should include higher-order terms. Thus,
expansion series. For thgp@nd & states it seems that there caution is necessary in using the formalism based on a four-
exists an overlap regiorN\>>21) in which the two methods term recurrence relatiof81]. These two procedures seem to
agree with each other quite closely. For tredtate, they are  converge whatevdr As expected for SLNE and ULNE, for
stabilized in the domailN=15. The percent errors in the a given principal quantum numbay the results improve ds
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TABLE II. Predicted partial sums of energy eigenvalues in atomic {@tsussian potentipbf the 4s to 8s states for thé =0 fixed value. First entry, SLNE; second entry, P1NE;:
third entry, ULNE. In the last column are given the values obtained by Craffefl [30]). The numbers in square brackets indicate the powers of 10 by which the values are to be
multiplied, e.g., 7.26g9+ 1]=7.2689%x 10" .

N2 Ref. data

State 3 5 7 9 11 13 15 17 19 21

—7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1]

4s  —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1]
7.1824+1] —7.2657+1] —7.268+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.369+1] —7.3171+1] —1.018¢+2]
—4.6985+1] —4.7228+1] —4.7229+1] —4.7229+1] —4.7229+1] —4.7229+1] —-4.7229+1] —4.7229+1] —4.7229+1] —4.7229+1]

5s  —4.673[+1] —4.7206+1] —4.7227+1] —4.7229+1] —4.7229+1] —4.7229+1] —4.7229+1] —4.7229+1] —4.7229+1] —4.7229+1] —4.7229+1]
—45005+1] —4.7073+1] -4.7209+1] —4.7226+1] —4.722§+1] -4.7229+1] —4.7229+1] —4.7327+1] -5.6679+1] —8.578(+2]
—25503+1] —2.6067+1] —2.607F+1] —2.6072+1] —2.6072+1] —2.607F+1] —2.6072+1] —2.6072+1] —2.607F+1] —2.6072+1]

6s —2.490%+1] -2.5977+1] -—2.6059+1] —2.607Q+1] —2.6071+1] -2.6072+1] -2.6072+1] -—2.6072+1] —2.6072+1] —2.6072+1] —2.6073+1]
—-2.1297+1] -2.5519+1] -2.5960+1] -2.6043+1] —2.6064+1] -—2.6069+1] —-2.6072+1] -—2.7117+1] -1.455Q0+2] —1.2070+4]
—8.774Q0+0] —9.92740] —9.9726+0] —9.980%+0] —9.982%+0] —9.9830+0] —9.98310] —9.9831+0] —9.9831+0] —9.9831+0]

7s  —7.3887+0] —9.61340] —9.8966+0] —9.9583+0] —9.975{+0] —9.9804+0] —9.9821{0] —9.982§+0] —9.9830+0] —9.9831+0] —9.9832+0]
—~7.0060—1] —8.30640] —9.4679+0] —9.7882+0] —9.9003+0] —9.9441+0] —9.96250] —1.8415+1] —1.222+3] —1.8723+5]
2.153§+0] —1.7280-1] —4.9010-1] —-5.9497-1] -6.1987-1] —6.5410-1] —6.5497—1] -6.676§—1] —6.7014—1] —6.7130—1]

8s 5.3190+0] 9.0007-1] —2.647§-2] —3.5440—1] -4.9951-1] —-5.725{-1] —6.1241-1] -6.3547-1] —6.4935-1] —6.5794—1] —6.7365—1]
1.6785+1] 4.2152+0] 1.565%+0] 5.6491—1] 0.859+0] —1.7082—1] —0.2295+0] -4.913F+1] —1.031{+4] —1.843]+6]

E=3N E .
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TABLE Ill. Predicted partial sums of energy eigenvalues in atomic y@tussian potentipbf the 4s to 8g states for then, = 3 fixed value. First entry, SLNE; second entry, P1NE;
third entry, ULNE. In the last column are given the values obtained by Craffefl [30]). The numbers in square brackets indicate the powers of 10 by which the values are tdTpe
multiplied.

EN30 ¥o4d SNoisNvdxa Nt

N2 Ref. data

State 3 5 7 9 11 13 15 17 19 21

—7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1]

4s  —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1]
7.1824+1] —7.2657+1] —7.268+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.2689+1] —7.369+1] —7.3171+1] —1.018¢+2]
—-5.9087+1] —5.9192+1] -5.9193+1] —-5.9192+1] —5.9192+1] -5.9193+1] —-5.9192+1] —59192+1] -5.9193+1] —5.9192+1]

" STVILNTLOd 1vd

5p —5.8970+1] -5.9186+1] —5.9192+1] —-59197+1] -5.9193+1] —-5.9192+1] —-59192+1] -5.9193+1] —-5.9192+1] —59192+1] -5.919F+1]
~5.820§+1] —5.9149+1] -5.9187+1] —5.9192+1] —-59192+1] -5.919F+1] —-5.9192+1] —59192+1] -5.9193+1] —5.9214+1]
—4.6315+1] —4.6439+1] -4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.643§+1]

6d —4.6175+1] —4.6431+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1]
—45306+1] —4.638]+1] —4.6434+1] —4.643§+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1] —4.6439+1]
—3.4349+1] —3.4491+1] —3.4493+1] —3.4492+1] —3.4492+1] —3.4493+1] —3.4492+1] —3.4492+1] —3.4493+1] —3.4492+1]

7f  —3.4171+1] -3.448Q+1] —3.4491+1] —3.4493+1] —3.4492+1] —3.4492+1] -3.4493+1] —3.4492+1] —3.4492+1] -3.4493+1] —3.4492+1]
—3.3163+1] —3.4409+1] —3.4483+1] —3.4490+1] —3.4492+1] —3.4493+1] —3.4492+1] —3.4492+1] -3.4493+1] —3.4492+1]
—2.3274+1] —2.3433+1] -2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1]

8g —2.3035+1] —2.3417+1] —2.3433+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1]
—2.184Q0+1] —2.3310+1] —2.3417+1] —2.3431+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1]

E=3N E .
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TABLE IV. Predicted partial sums of energy eigenvalues in atomic @taissian potentipbf the 8s to 8f states for then=8 fixed values. First entry, SLNE; second entry, PINE;-
third entry, ULNE. In the last column are given the values obtained by Cra(Rlefl [30]). The numbers in square brackets indicate the powers of 10 by which the values are to be
multiplied.

N& Ref. data

State 3 5 7 9 11 13 15 17 19 21

2.153§+0] —1.7280-1] —4.9010-1] -5.9497—1] -6.1987-1] —6.5410-1] —6.5497—1] -6.676§—1] —6.7014—1] —6.7130—1]

8s  5.3190+0] 9.0007—1] —2.647§—2] -3.5440-1] —-4.995[—1] -5.7251—1] -6.1241-1] —6.3547—1] —6.4935-1] -6.5794-1] —6.7365—1]
1.6785+1] 4.2152+0] 1.565%+0] 5.6491—1] 0.859+0] —1.7082—1] —0.2295+0] -4.913F+1] —1.031{+4] —1.843]+6]
—2.5733+0] —3.9116+0] —4.010§+0] —4.0329+0] —4.0389+0] —4.0407+0] —4.0413+0] —4.0415+0] —4.0416+0] —4.0416+0]

8p —6.6617—1] —3.4356+0] —3.8664+0] —3.9801+0] —4.0176+0] —4.031+0] —4.0373+0] —4.0397+0] —4.040§+0] —4.0413+0] —4.0417+0]
7.0523+0] —1.610{+0] —3.148¢+0] —3.6400+0] —3.8395+0] —3.9322+0] —3.3790+0] —3.9961+0] —3.9014+0] —5.9941+1]
—8.4549+0] —9.1882+0] —9.2154+0] —9.2193+0] —9.2200+0] —9.2203+0] —9.2202+0] —9.2202+0] —9.2203+0] —9.2202+0]

8d —7.3870+0] —8.9995+0] —9.1766+0] —9.2097+0] —9.2174+0] —9.2194+0] —9.2200+0] —9.2201+0] —9.2202+0] —9.2202+0] —9.2203+0]
—2.5944+0] —8.1115+0] —8.9017+0] —9.1067+0] —9.1745+0] —9.2003+0] —9.2110+0] —9.215§+0] —9.2177+0] —9.2325+0]
~15385+1] —1.5754+1] -1.576Q+1] —1576Q+1] —1.5761+1] -1.5761+1] —1576f+1] —15761+1] -1.5761+1] —1.5761+1]

8f —1.4843+1] -1.5690+1] —1.5753+1] —1.5759+1] -1.576Q+1] —1.576Q+1] —1.5761+1] —1.5761+1] —1.576{+1] —1.5761+1] —1.576]+1]
—1.2204+1] —1.533%+1] -1.5670+1] -1.573¢+1] —15753+1] —1.575§+1] -1.5760+1] —1.576Q+1] —1.576Q+1] —1.567¢+1]
—2.3274+1] —2.3433+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1]

89 —2.3035+1] —2.3417+1] —2.3433+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1]
—2.1840+1] —2.3310+1] -2.3417+1] —2.343{+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1] —2.3434+1]
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TABLE V. Predicted partial sums of energy eigenvalues in atomic (Risil potential of the 2s to 6s states for thé=0 fixed values. First entry, SLNE; second entry, P1NE; thlrd""I
entry, ULNE. In the last column are given the values obtained by rthgad Nielser{Ref.[29]). The numbers in square brackets indicate the powers of 10 by which the values %e
to be multiplied.

N2 Ref. data

State 3 5 7 9 11 13 15 17 19 21

—-1.1369—1] 1.5265+0] —6.3929+1] 3.169§+3] —1.8233+5] 8.2696+6]  1.118{+9] -7.5700+1] —3.3161+14] -1.4579+17)

2s —1.1594—1] 1.445§+0] —5.4747+1] 2.2589+3] —8.1944+4] -4.0300+6] 2.6848+9] —9.0319+11] —2.9895+14] —1.0579+17] —1.9814—1]
—0.3008+0] —6.958G+0] —3.5054—2] —1.8919+5] —1.0884+6] -5.6310+7] 6.8032+9]  7.8271+12] —5.5895+15]  4.109+1]
—5.5846—2] —5.7026—2] —6.0062—2] —4.0984—2] 3.14210] 8.2991+1] -1.5994+3]  2.2645+4] —4.6883+5] 8.8346+6]

"TSTVILNTLOd TV

3s —5.5845—2] —5.7020—2] —6.0048—2] —4.1917—2] 3.05020] 8.2341+1] -1518{+3] 2.1653+4] —4.463]+5] 8.5242+6] —7.4182—2]
—-1.768Q0+0] —1.0022+2] —2.9831+3] 7.7236+5] 1.1477+8] -5.3169+9] —4.1293+12] —7.1613+14] —1.31103+17] —8.129§+19]
—3.1281-2] —3.1416-2] —3.1780—2] —3.2541—2] —3.3929-2] —3.6270—2] —3.9924—2]  7.6835-3]  9.7561+0] 7.9801+2]

4s —3.128[-2] —3.1416-2] —3.1779—2] 3.2540—2] —3.3927-2] —3.6266—2] —3.9920—2] 7.0364—3]  6.654¢+0] 7.9187+2] —3.8615-2]
—4.5159+0] —4.5844+2] 1.0719+3] 1.6211+7] —2.418§+8] —1.4864+12] —3.1695+13] 1.8264+17] 2.3537+19] —2.0012+22]
—2.0005—2] —2.0030-2] 2.0099-2] —2.0245-2] —2.0513-2] -2.0995-2] —2.1641-2] -2.2664-2] —2.4157-2] —2.6301—2]

5s —2.0005-2] —2.0030—2] 2.0099-2] —2.0245-2] —2.0513—2] —2.0995-2] -2.1641-2] -2.2663-2] -2.4156-2] -2.6310-2] —2.3637—2]
—8.5445+0] —1.363%+3] 7.0151+4] —1.2805+8] —3.0831+10] —2.7943+13] 1.3219+16] 8.4287+18] —5.771§+21] —3.1400+24]
1.3890-2] —1.3896—2] —1.3914—2] —1.3952—2] —1.402]-2] —1.4137-2] -1.4317-2] -1.4580—2] -1.4952—-2] —1.5466—2]

6s —1.3890—2] —1.3896—2] —1.3914-2] —1.3957—2] —1.402]—2] -1.4137-2] -1.4317—2] -1.4580-2] -1.4953—-2] —1.5465—2] —1.5945-2]
—1.3854+1] —3.2002+3] 3.7823+6] 6.3944+8] —3.573§+11] —2.4323+14] 3.3695+17] 7.7586+19] —3.2322+23]  2.6029+25]

aE:EEl
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TABLE VI. Predicted partial sums of energy eigenvalues in atomic uRitdil potential of the 2s to 6g states for then, =1 fixed values. First entry, SLNE; second entry, PINE;2
third entry, ULNE. In the last column are given the values obtained by rthgad Nielsern(Ref.[29]). The numbers in square brackets indicate the powers of 10 by which the values
are to be multiplied.

ga Ref. data

State 3 5 7 9 11 13 15 17 19 21

—-3.1281-2] —3.1416-2] —3.1780—2] —3.2541—2] —3.3929-2] —3.6270—2] —3.9924—2]  7.6835-3]  9.7561+0]  7.9801+2]

4s -3.1281-2] -3.1416-2] —3.1779-2] —3.2540—2] —3.3927-2] —3.6266—2] —3.9920-2]  7.0364-3]  6.6540+0]  7.9183+2] —3.8615-2]
—451590] —4.5844+2] 1.0719+3] 1.621{+7] —2.418§+8] —1.4864+12] —3.1695+13] 1.8264+17] 2.3537+19] —2.0012+22]
—2.0004—2] —2.0014—2] —2.003{—2] —2.0054—2] —2.008{—2] —2.0109—2] —2.0137-2] -2.0164-2] -2.0189-2] —2.0213-2]

5p —2.0004—2] —2.0014—2] —2.003[—2] —2.0054—2] —2.008{—2] —2.0109—2] —2.0137—-2] -2.0164-2] -2.0189—-2] —-2.0211-2] —2.0373—2]
-1.6002-1] —-2.3969—1] —3.2364—1] —3.3723—1] —1.3187+0] 6.5883+0]  9.0122+1]  3.8741+3]  8.8073+4] —4.2055+6]
-1.3890-2] —1.3891-2] —1.3897—2] —1.3894—2] —1.3895-2] —1.3895—2] -1.3896—2] -1.3896—2] —1.3897—2] —1.3897—2]

6d —1.3890—-2] —1.3891-2] —-1.3892-2] —1.3894-2] —1.389%-2] —1.389%-2] —1.389¢—-2] —1.389¢-2] —1.3897-2] —1.3897-2] —1.3896—2]
—4.4984-2] —3.860§—2] —3.1011-2] —2.4924-2] —2.0691-2] —-1.7983-2] -—1.6852—2] 1.217%-3] —3.5582-1] 6.2833+0]
—1.0204-2] —1.0204-2] —1.020%-2] —1.0209-2] —1.0205—-2] —1.0205-2] -—1.0205-2] -—1.0205-2] -—1.0205-2] —1.0205-2]

7f  —1.020§—2] —1.020§—2] —1.0205-2] —1.0205-2] —1.0205-2] —1.0205-2] —1.0205-2] —1.0205—2] —1.0205—2] —1.0205—2] —1.0204—2]
—2.0119-2] —1.4945-2] -1.2186—2] —1.0976—2] —1.0492—2] —1.0309—2] —-1.0242-2] -1.021§-2] -1.0137-2]  4.6453-3]
—7.8125-3] —7.8126—3] —7.8126—3] —7.8126—3] —7.8126—3] —7.8126—3] —7.8126—3] -7.8126-3] -7.8126-3] —7.8126-3]

8g -—7.8125-3] —7.8126—3] —7.8126-3] —7.8126—3] —7.8126—3] —7.8126—3] -7.8126—3] —7.8126-3] —7.8126-3] —7.8126-3] —7.8125-3]
—1.174§—2] —9.0667—3] —8.1628—3] —7.903—3] —7.8354—3] —7.818]—3] -7.8139—3] -7.812§—3] —-7.8096—3] —7.6871—3]

E=3N E .
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TABLE VII. Predicted partial sums of energy eigenvalues in atomic Uil potential of the 6s to 6g states for then=6 fixed values. First entry, SLNE; second entry, PINE;
third entry, ULNE. In the last column are given the values obtained by rthgad Nielser(Ref.[29]). The numbers in square brackets indicate the powers of 10 by which the val

are to be multiplied.

ga Ref. data

State 3 5 7 9 11 13 15 17 19 21
1.3890—-2] —1.389¢—2] —1.3914-2] —1.3953—2] —1.402]-2] -1.4137-2] -1.4317-2] -1.458(0-2] -—1.4953—2] —1.5466—2]

6s —1.3890—-2] —1.389—2] —1.3914—2] —1.3952—-2] —1.4021—-2] —1.4137-2] —-1.4317—-2] —1.4580—2] —1.4952—-2] -—1.546%—2] —1.594%-2]
—1.3854+1] —3.2002+3] 3.7823+6] 6.3944+8] —3.573§+11] —2.4322+14] 3.369%+17] 7.758¢+19] —3.2322+23] 2.6029+25]
—1.3889—-2] —1.3893-2] —1.3899-2] —1.3907—-2] —-1.3819—-2] —1.3930—2] -—1.3943-2] -1.3957-2] -1.3970-2] -1.3983-2]

6p —1.3890-2] —1.3893-2] —1.3899-2] —1.3907-2] —1.391§-2] -—1.3930—2] -1.3943-2] -—1.3956—2] —1.3970—2] —1.3982-2] —1.4106—2]
—3.2630—1] —9.8261—1] —2.6073+0] —6.3825+0] —1.506(0+1] —4.2156+1] —2.6876+1] —4.178¢+2]  4.6992+4]  2.4542+5]
—1.3890—2] —1.3891—-2] —1.3892—2] —1.3894—2] —1.389%—2] —1.389%5—2] —1.389¢—2] —1.389—2] —1.3897—2] —1.3897-2]

6d —1.3890—2] —1.3891—2] —1.3892—2] —1.3894—2] —1.389%—2] —1.389%—2] —1.389¢—2] —1.3896—2] —1.3897—2] —1.3897—2] —1.389¢—2]
—4.4984—-2] —3.860%—2] —3.1011—2] —2.4924-2] —2.0691—-2] —-1.7983—-2] —1.6852—2] 1.217%—-3] —3.5582—-1] —6.28330]
—1.3889—2] —1.3890—2] —1.3890—2] —1.3890—2] —1.3890—2] —1.3890—2] -—1.3890—2] —1.3890—2] —1.3890—2] —1.3890—2]

6f —1.3889—2] —1.3890—2] —1.3890—2] —1.3890—2] —1.3890—2] -—1.3890-2] -1.3890—2] —1.3890—-2] —1.3890—2] -—1.3890—2] —1.3889—2]
—1.6462-2] —1.432§-2] —1.395¢6—2] —1.3899—2] —1.3891—-2] —1.3890—2] —1.3890—-2] —1.3890—2] —1.388§—-2] —1.3612—2]
—1.3889—-2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—-2] —1.3889—2] —1.3889—-2] —1.3889—2]

6g —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] -—1.3889—2] —1.3889—2] —1.3889—2] —1.3889-2]
—1.3934—-2] —1.3890—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889—2] —1.3889-2]

E=3N E .
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FIG. 1. Plot of the percentage difference between our shifted
1/N expansionSLNE), largeN expansionfULNE), 1/n expansion
(PINB eigenenergies, and Crandall reference d&ef. [30]) vs

the number of firsiN terms of the perturbation series for various [29]) vs the number of firsN terms of the perturbation series for

values_ of guantum numbenrs_ fqr in th(_e case of the Gaussian various values of quantum numberdor | in the case of the Patil
potential. LPW denotes the limit of previous works and curves are

d i ide th Th b % axi f 1é)otential. LPW denotes the limit of previous works and curves are
drawn to guide the eye._3 € NUMDETS On 70 axis are POWers ot 14y awn to guide the eye. The numbers on % axis are powers of 10,
i.e., for example—3=10"".

i.e., for example—3=10"%,

FIG. 2. Plot of the percentage difference between our shifted
1/N expansionSLNE), largeN expansiofULNE), 1/n expansion
(PINB eigenenergies, and Linghand Nielsen reference dafef.

increases since the expansion parameter decreases. The use-

fulness of SLNE is brought out more clearly férand g (b) Let us now consider the case for which the orbital
levels. One sees in Fig. 3 that for higher angular-momentunguantum number is fixed &&= 0, for the two potentials. Fig-
states the energy values of our shifted laljeoemputations ures 5 and 6 show in general the same trends as previously
match the relative differend&kD) extremely well(the RD is  with, however, some marked differences. As evident for the
less than 10°% in the domairN=17) with a nice conver- ULNE scheme, the energies get worse wherincreases
gence of the series expansion. In fact, the series expansigince all partial sums contain terms which, for larmyebe-
converges so quickly that the correction terms could be nehave at least liken. A has non dependence to diminish the
glected. GiverN, the 1h expansion gets worse whérde-  effects of the powers oh in the numerator of the partial
creases despite the fact that=8 is relatively high. The sums. This large deviation indicates that we are out of the
ULNE method asymptotically diverges. A perusal of the dif- limit of applicability of ULNE. Likewise, the Id expansion
ferent curves reveals that the starting point of the divergencbecomes less accuraterascreases. The observations seem
(i.e., the threshold ordeN,,,, beyond which the expansion to confirm the study of asymptotic of large orders of the 1/
ceases to converg@creases with. Switching our attention expansion in Ref[78]. As a result Popov and Sergeev found
to Fig. 4, one sees that the percent errors increase in genethht the large orders increases as factorials which explains
beyondN=20; in other words, the expansion diverges forwhy in many quantum-mechanical problerfesg., the Patil
any kind of 1N expansion. potentia) a divergence occurs in the summation of the en-
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FIG. 4. An illustration of the behavior of the percentage differ-
ence between our SLNE, ULNE, and P1NE eigenenergies and Lin-
gad and Nielsen reference datRef. [29]) as a function of the
orbital quantum numbek and the number of firsN terms of the
perturbation series for the fixat=6 principal quantum number in
the case of the Gaussian potential. Curves are drawn to guide the

- / “5 Goussian eye. The numbers on % axis are powers of 10, i.e., for example
%—xﬂ:ﬁk\\ porentil ~3=10".
/ -7

) . ] _ expansion still predicts superior results.

FIG. 3. An illustration of the behavior of the percentage differ- (c) We turn to the case for which the radial quantum
ence between our SLNE, ULNE, and P1NE eigenenergies anﬂumber is fixed an.=3 whenn and | increase simulta-
Crandall reference dat&ef.[30]) as a function of the orbital quan- neously Comparingrour computations for SLNE and P1NE
tum number and the number of firs terms of the perturbation with reférence data., it clearly appears in Fig. 7 that giXen
series for the fixech=28 principal quantum number in the case of the results are moré and mo):e iF:f;ccurate V\?Ith rovmig d
the Gaussian potential. Curves are drawn to guide the eye. Thle i e n effects are superior to those beoweve? theagor-
numbers on % axis are powers of 10, i.e., for exampi8 T . P !
=102 rections improve the accuracy of the energy. On the other
hand, for ULNE n effects manifest themselves gradually
ergy series. From Figs. 5 and 6 we can see that, unlike theith the increase olN and the decrease df As already
Patil potential, the percent errors for the Gaussian potentialescribed above, ULNE ceases to converge beyond the limit
increase witm in the shifted expansion. Hence, it seems thatN pax.
the effects of the shift parameter ik, for s states particu- From what precedes, it is observed that the SLNE expan-
larly, depend on the potential considered. The shifted 1/ sion always shows an improvement over PINE and ULNE.
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FIG. 5. An illustration of the behavior of the percentage differ- ] ) ] )
ence between our SLNE, ULNE, and P1NE eigenenergies and Lin- FIG. 6. An illustration of the behavior of the percentage differ-
gad and Nielsen reference datRef. [29]) as a function of the €nce between our SLNE, ULNE, and PINE eigenenergies and

principal quantum numbet and the number of firdi terms of the ~ Crandall reference datéRef. [30]) as a function of the principal
perturbation series for the fixdé=0 principal quantum number in duantum numben and the number of firsl terms of the perturba-
the case of the Patil potential. Curves are drawn to guide the eydion series for the fixed=0 principal quantum number in the case

The numbers on % axis are powers of 10, i.e., for examp® of the Gaussian potential. Curves are drawn to guide the eye. The
=103 numbers on % axis are powers of 10, i.e., for exampié

=103

As far as the Patil potential is concerned the former approach

in the case o andp states is in trouble for loviN values and have applied for concreteness to the Patil and Hellmann po-
fails completely whenN increases, whereas P1NE and tentials the shifted N expansion in which the principle of
ULNE are inapplicable. This explains that in what follows, minimal sensitivity(PMS) is incorporated. More precisely,
we confine ourselves to a modification of the SLNE tech-we have restricted ourselves to bound states that cannot be
nique to solve the problem of divergence for such unfavor-adequately described by the SLNE scheme, i.e., the most
able states. It is known that one could make use of approprinfavorable cases. To our knowledge, no explicit case study
ate methods of divergent series such as Paglmoximants  Of this type has been undertaken to substantiate this claim. It
[36,109,111,113,114and PadéHermite approximantgl22] should be noted that one of the shortcomings of the HVHF-
to increase the precision of the results. In this paper we resoRMS method is that the computation time rapidly increases
to the order-dependent HVHF-PMS method described irwith increasing the number of terms. The calculatiorEgf
some detail in Sec. Il. Our aim here is to test the claim byinvolves the derivative¥/§) with 1<i<2k. Thus, it is ob-
Maluendeset al. [86] of the accuracy and utility of this ap- vious that if one is not careful significant roundoff errors can
proach for complicated potentials that are a superposition abccur, for instance as early as the eighth term in the case of
smoothly changing spherically potentials. To this end, wethe Patil potential. We have employe@ATHEMATICA to
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FIG. 7. An illustration of the behavior of the percentage differ- ¢ & SO Nd ©mM NO W<
ence between our SLNE, ULNE, and PINE eigenenergies an@ 2 T e 9? YT 99
Crandall reference dat&ef.[30]) as a function of the orbital quan- z ',
tum number and the number of firsh terms of the perturbation &, @ B~~~ i~~~ =~
series for the fixedh, = 3 radial quantum number in the case of the © g vl« ;& Pjy klﬁ el* \lF P\* th ‘Jy E]{F
Gaussian potential. Curves are drawn to guide the eye. The numbe@ c o |93 2% V¥ ¥F 59
on % axis are powers of 10, i.e., for exampt&€=10"3. o2 ¥ O SN NO 9 ®
oF TOTY TT Y U
=
. . (o]
avoid roundoff errors. Only the first several terms that are2 o R F T RS O
not affected by roundoff errors are quoted in Tables VIl and3 [T P - -
IX. From the sequences so obtained one sees that the larggr ~ §“ g g?: "§ E“ g § ‘?8* "8'* :;':
the order the more accurate our results and the less accurded MM 08 md 08 I M
those of SLNE if this latter is applicable. The numerical S 2 T e T YT 79
magnitude of the HVHF-PMS calculated energies are quite2 5
. . . O =
satisfactory. Clearly, the order-dependent shift considerabls 90 N AN AN NN
enhances the accuracy of the energy eigenvalues. Finally, S’_Hia b ey e ey
would be instructive to check if, as suspected by [tal.  _ £ 0 § § g § § &: g § % %
[103], the discrepancies happen because the Ibrgffective > 3, “ - Www mm NN - ||
potential becomes shallow and its minimum shifts appreciaj 3 ! |
bly from the minimum of the through potential. To see itQ 2 @ Zmﬂ
more clearly, we have plotted in Fig. 8 the laiyeeffective g % & a 2 8 8 [
potential for the 2 ground state of the Patil potential for © #
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TABLE IX. Predicted partial sums of energy eigenvalues in atomic uhislimann potential as a
function of the screening parametérfor B= —5. First entry, HVHF-PMS; second entry, SLNE. In the last
column are given the variational results of Adamow@kéf. [43]) converted to our scale of units. Asterisks
in the second entry correspond to divergent results and the abbreviétiansndicate nonapplicability of

the SLNE method.

N2& Ref. data
C State 4 6 8 10 12 14
0.5 4s —-0.3232 -0.0238 —-0.0851 —0.1077 —-0.1184 —0.1208 —0.1215
—0.2498 —-0.3521 —-0.6607 —1.5740 —4.3660 —13.1900
4p 0.3812 0.6287 —0.4808 —0.8708 —0.9919 —0.1021 —-0.1031
-0.1311 —-0.1375 —-0.1420 -0.1733 -0.1771 —0.3658
4f —-0.0316 —0.0326 —0.0332 —-0.0335 —0.0338 —0.0340 —0.0340
n.a n.a n.a n.a n.a n.a
2 2p 0.8750 0.0743 —1.0250 —0.1204 —0.1373 —-0.1939 —0.1910
* * * * * *
3p —0.0537 —0.0553 —0.0555 —0.0557 —0.0584 —-0.0764 —0.0727
* * * * * *
3d —0.0534 —0.0553 —0.0555 —0.0556 —0.0556 —0.0559 —0.0557
n.a n.a n.a n.a n.a n.a
ad —-0.0311 —-0.0313 —-0.0314 -0.0311 —0.0317 —0.0318 —-0.0313
n.a n.a n.a n.a n.a n.a
4f -0.0311 -0.0312 —-0.0313 —0.0313 —0.0312 —-0.0312 —-0.0312
n.a n.a n.a n.a n.a n.a
E=3N E .

several values dfl corresponding t&,,(ry) =0. The behav-
ior of the diagrams seems to indicate that the poor resultsecond to test the effectiveness of the HVYHF-PMS approach.

may not be attributed to that situation contrary to what wasTo this end, we have derived explicitly algebraic recursion
suspected in Ref103].

IV. CONCLUDING REMARKS

orders of the perturbation theory are taken into account, and

relations for the coefficient& by applying the hypervirial
1/N expansion together with the Hellmann-Feynman theo-
rem. These recurrence formulas, convenient for computer
calculations, make it possible to evaludtefor arbitrarily

_The purpose of this work was first to explore the credibil- i, orgers for any kind of N expansion. The analytic ex-
ity of the three schemes SLNE, P1NE, and ULNE when hlgrbressions for these coefficients coincide with those obtained
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by Stepanov and Tutik from a method based on a semiclas-
sical interpretation of the W expansion. Then we have used
these formulas to study the applicability of each scheme con-
cerning the Gaussian and Patil potentials, which are a
smoothly changing potential and a superposition of simple
potentials, respectively. Owing to limited computational fa-
cilities and order increasing roundoff errors, we have been
able to handle no more than 21 perturbation corrections. We
find that the shifted M expansion offers in general a large
improvement over PLINE and ULNE for energy eigenvalues.
In other words, there is a distinct advantage in using SLNE
over the latter. The #/expansion is found to be useful only
for the simple Gaussian potential. The iteration procedure
converges and the correction terms improve considerably the
numerical results. In the case of the Patil potential, the coef-
ficients E;, grow sharply and P1NE is not applicable. This

FIG. 8. Schematic diagrams of the behavior of the Patil potentiafPparently raises doubt about the applicability of that tech-
(right-hand scale and the largeN effective potential(left-hand
side corresponding to the appropriated roots Bf;(ro) =0 (M
=2,5,13,19) for the ground states.2Both V(r) andr are in atomic

units.

nigue to complicated potentials. It also emerges from the
computations that ULNE diverges whatever the type of po-
tential considered—however, less strongly than P1NE for the
Patil potential. Large-order cal-
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culations here are useless unless an appropriate resummati@ayleigh-Schrdinger perturbation theory to Eq9) trun-
technique is used. SLNE results compare remarkably weltated to calculate the energy eigenvalueOi@?). In as
with those of Crandall. The situation is reversed and appremuch as the formulas up to and includi@{g®) have long
ciable discrepancy of the SLNE results occurs forgla@dp  been known81], we present explicitly only the next addi-
states. Particularly for the states, SLNE fails completely, tional terms. We consider the Schinger equation

from which it follows that caution is necessary in using e

SLNE. To solve the problem of divergence, we have incor- 2 0 e

porated in the shifted I¥ expansion the principle of minimal ( T2 g T 2@ X Teot W) x(X)=Ex(x), (A1)
sensitivity as suggested by Maluendgsl. In order to bring _

out the improvement of this approach, we have applied thavhere terms of ordeg' (i<6) are retained in the perturba-
formulas thus derived to the Patil and Hellmann potentialstion potential,

leaving the other cases for later investigations. The energ 3 ) ) 4

values obtained are in good agreement with reference datd/(X)=0(£1X+e3x") +9%(e2x"+£4X")

which proves the usefulness of the HYHF-PMS approach for + Q35X+ 553+ 55x5) + GH( 8,2+ 8, + 8x®)
such unfavorable cases. These results are quite encouraging. ! 3 > 2 4 6
We are at present using that modified shiftel &xpansion +0%(yax3+ yex3+ yox7) + g8y x*+ yexB+ yx8),

for extensive applications to central potentials especially for

low-lying states. We are also performing the summability (A2)
studies of the expansions presented in this paper as well ggth the following notations:
the acceleration of their convergen/c23]. This work will
be reported later in a forthcoming paper. g0=3Bo+b?, bO=3&, e,=3B1, £,=38,,
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E=r2g?(E- EO)~k§‘,l E®, (AB)

APPENDIX A

For purposes of comparison with the analytical resultsThe calculation which is carried out to sixth order in the
derived from our HVYHF method, we apply the conventional potential, using the general formulas, yields

EOQ=¢gy+(n,+1/2w, (A7)
EV=W,,=g?b®+ g%V +gbd?, (A8)
ER= W“‘W‘“:gzb(2>+g4c<2>+ged<z>1 (A9)
i#n )\ni
col s W s Wl P19
iT#n  Anikpj izn (Nnj
- WhiWi Wi Wy o WhiWi Wi, o WhiWin o WhiWin
E@ — il WikWkn 521 iYin g2 _E@ — g%t gbd@
i,j,;sﬁn AniNnjiNnk i,jzsﬁn (Mni)“Npj ( )i;n Ani izn (Nni) g 9
(A1)
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£ _ Wi WicWieWin_ 1) 5 W(i+i
iL,j.KI#n )\m)\njhnk)\nl i,j,k#n )\m)\nj)\nk Nni )\nj
S WniWZin 260> Wi W Wi, (1 1 L (ED)2 W, W, W, ( 2 1 )
i#n ()\ni) i,j#n )\nl)\nj Nni )\nj iL,j#n )\ni)\nj ( ) (}\nj)
+2EWE@Y M1 WoiWin E1H3D Wn'W"ln
I#n ( ni) 1#n ni)
—g8d®®), (A12)
E6)_ Wi Wiy Wi Wi WimWmn £ Wi Wiy Wi Wi Wi, i+i+i
i,j.kI,m#n )\nl)\nj)\nkknl)\nm ikl #n )\nl)\njknk)\nl Mni Npj Ak
_go s WoilWgWillo (1 1 1) gy WolWin_ g 2
i,J,k#n )\ni)\njhnk Ani )\nj Ak i#n (Am) izn (i)
—E® Y M(iJri +(EW)2 Whi WWJka“( 2 + 2 5+ ! 5+ ! )
i,j#n )\ni)\nj Ani )\nj i,j,k#n )\m)\nj)\nk ( ) ()\nj) ()\nk) )\ni)\nj
N W,,i\Wi, W,iWi; Wi 2 2 1 A W, W,
+(E(@)2 _3_ EME®@) ey Jn( + + )+2E(1)E(3) neon
( )i?ﬁn Ani |12¢n )\ni)\nj ()\ni)3 ()\nj)2 )\ni)\nj HﬁEn ni)
LEWES WniWijon( 2 . 1 o+ : )—3(E 282 WLle“
i,j#n )\ni)\nj ()\ni) ()\nj) ()\nj) Ani i#n ()\ni)
=g%d®, (A13)

with A;;=E(O—E{®, W,;=(i|Wlj). Substituting these expressions in E46) and rearranging in powers gfwe arrive at

4
E=>, E, (A14)
k=0
where
— — 1
Eo=Ej, E1=W[(l+2nr)w+,80], (A15)
0

2 4 6
2 b, E3=g—22 ), E (A16)
> 2 >

OMl =
Ol\)lm-b

The coefficientd® andc”) (i=1) are listed in Ref[124]. Omitting the algebraic complexities the sought new coefficients
in the contributionE, are

dM=3(1+2n,+2n?)%,+5(3+8n,+6n%+4n3)%s+ 353+ 8n,+ 10n°+ 4n3+2n) s, (A17)

1
2= —[210(5+ 160, + 2207+ 1207+ 6n)E577+ 10(1+2n,) (13+ 14n, + 14nf)E 57

+6(142n,) 6,83+ 2(11+ 300, + 3002)E5¥53+ 12(1+ 2N, + 2n?)E 4 6, + 257
+70(1+2n,)(3+2n,+2n%)8 57+ 2(1+2n,)8 8, + 30( 1+ 2n, + 2n?)E 75
+12(1+2n,+2n%)E 16, + 6(1+2n,)E,F5+ 30(1+2n,)(3+ 2N, +2n?)F , 5
+4(142n,)(21+ 170, + 17n?)8 48, + 60(12+ 350, + 4607+ 22n3+ 11n})3 164
+30(1+2n,+2n2)8; 55+ (11+30n, +30n%) 55+ 10(1+ 2n,) (13+ 14n, + 14n?) 5,55

+(449+ 140, + 203M? + 1263+ 630n7) 551, (A18)
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1 - - - -
d<3>:;2-[45§32+ 8818,01+24(1+2n,)3764+ 36(1+2n,)818,6,+ 2(1+2n,)85+ 36(1+2n,),836,

where

+36(1+2n,)F 836, +48(1+2n,)F 1840, + 1801+ 2n, + 2n?) 254
+240(1+2n,+2n?)813 , 05+ 48(1+ 2N, + 2n?)E2E 4 + 16( 11+ 30N, + 30n?)E 18 305
+8(11+30n,+30n%)E25,+ 8(31+ 780, + 78n2)8 1 304+ 8(31+ 780, + 7812)% 5 4 55
+8(31+ 780, + 781?38 46, + 1001+ 2N, ) (13+ 14n, + 14n?)E 8 355
+20(1+2n,)(21+ 170, + 17n?)E 82+ 36(1+ 2n,) (19+ 25n, + 25n2)E34,
+72(1+2n,)(19+ 250, + 25n2)F 38 403+ 60( 1+ 2n, ) (35+ 34n, + 34n%)E 5 356
+12(111+ 347, + 47207+ 2503+ 125nH)E3+ 40(1 + 2n, ) (47+ 450, + 45n2) 13 , 05

+20(323+ 1125, + 16687+ 108>+ 543783 56 + 24(474+ 1625, + 24302+ 1613+ 805n1)E 5845,
(A19)

4 1 2\~ ~27% 2~2 2\~ ~ ~2
d )Z—;g[l44(11+3mr+3mr)818353+1651824'24(1+an)(561+685’]r+6851r)818384

+32(31+ 780, + 7802282+ 80(1+ 2n,)F3 55+ 2161+ 2n,)F 28 365+ 1801+ 2n,)F 15285
+8836,+216(1+2n,)8,336, +48(11+ 300, + 30n2)E385+ 2401+ 2N, )E2% 184
+40(49+ 1140, + 11402 E28 355+ 96(31+ 780, + 78n2)E B 18 38 4+ 24625 361
+120(142n,)(122+ 1450, + 145?)8 3565+ 48(11+ 300, + 30n2)E3 4,
+504(1+2n,)(19+ 250, + 25n?)8 828 4+ 1201+ 2N, ) (31+ 47n, + 4Tn?)E3 5,

+4(11 827+ 43479, + 68 42472+ 49 890>+ 24945145252

+8(4517+ 16 815, + 26 582+ 19 530>+ 9765 ) 8355 ], (A20)

1
d<5>=m[965§'5283+ 76811+ 300, +30n?)8 3,85+ 1056 1+ 2N, )88 58, + 168184

+288(53+ 138, + 1382) 52525 ,+ 48(1+2n,) (1817+ 2519, + 25152)8 T3¢,
+48(1+2n,)(1817+ 2519, + 251512)8F 364+ 5401+ 2N, ) (31+ 47n, + 47n%)E 585
+15121+2n,)37,85+ 12(15 169+ 59 385, + 98 16M2+ 77 55>+ 38775549841, (A21)

1
d'®=— —5[ 144125+ 3024 1+ 2n,)E 53+ 2304 11+ 300, + 30n)E 773

+324Q 1+ 2n,)(31+47n,+47n%)E B3+ 4(39 709+ 16 240%), + 27 81607
+231510°+11575%)33], (A22)

O e S R |
ST e 20

As an illustration with the class of power-law potentidls’, we display below the result of the foregoing equatiéii4) in
the case of the shifted N/expansion
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k(v+2) (v+1)(v—2)

8v 12%k2\ v +2

—(7v?—31r—62)n,— (5v°— 29v—58)(3+2n,)n?—

E=kK"2/r+2) (g4 p) 2 +2) 12(1+6n,+6n?) v+ 2k—(v+1)(v—2)

1
———(317v*—166°
32400

12
Kyv+2
1
—19232-15364—17 164 + 4—8(y+ 1)(v—2)(3v2—19v—6)n,

1 4 3 2 2 1 4 3 2
+ — (74" —1147v>+ 183P°+ 9332+ 7892 n; + —— (161" — 3598,°+ 7041y
580 2160

+35348+31028(2+n,)nd| | +O| —

K

] : (A23)

APPENDIX B

For the sake of comparison with the formulas of our HVHF method and those of the RSPT, we recall here the set of
recursion relations derived by Stepanov and T{®@] in the framework of their semiclassical approach for the computation
of the energy eigenvalues. We set hare 1. The# expansion for the bound energy is represented in the form

:go Efi%, (B1)
where
Eo=V A Ey=>1{ 5.+ (1+2n,) =2 B2
0= 0+8_r0’ 175 (14 nr)ﬁ, (B2
1 1 k—=1 2k—2 2k—-2

E= 2[7k+ Chlo IE 2 CCzk 2-j 22 Coczk 2- J}, k=2 (B3)

where the coefficienté:} are expressed as follows:

wod
Cg:_wa ng_ 2 1’ (B4a)
ZCO(ZE cicl - 8)2—w%ai), i=2p

co= (B4b)

200( 2 c?c?j—wgai), i=2p+1, p=12,....

It should be noted that in their paper Stepanov and T@@ have omitted the global factor 1/2 in E@3) which corresponds
to Eq. (B4b),

Lo, 1 1 ' _
Co=pov Ci= =3¢8 (1+i)](-1)"5 _EC 22 clclt, i=123... (B5a)
. P
1 (2i-3 o
50 122 CCy I (Ch?], i=2p
. 2Co\ To j=1
Ci= _ ) (B5h)
1 [(2i-3 N
— cil-2> cichl|, i=2p+1, p=12,...
2Cq\ To j=1
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Finally

Ch_,=0, (B6a)

1 4 1 : -1 ‘
C}zz—icé[(3+j—2i)[(—1)16(j—2i+2)3/i—EC}_l —2521 ccl - > EO cicitdt, =2, j=123....

q=1 s=
(B6b)
The quantitiesy;, oy, anda, are written as follows:

_ AN _ B _ )

Tz Va7 ¥i=0, =3, (B79)
4 2

“"2):2V2+3V1:_2_r0 w?, (B7h)

2 Kk+3 reve’
a=—3| Vit (=15 Va|, Vim——, k=12,.... (B70)

wy !

In Ref.[90] there is a misprint in the expressionayf, i.e.,V, should be replaced by, . The first coefficientsy are related
to the parameteg,, 6, andy, by

1
a,=mne3, a;=mney, a3=7n0s, =1, As=NY7, A= NYVs, 1= A2 (B8)
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