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1ÕN expansions for central potentials revisited in the light of hypervirial and Hellmann-Feynman
theorems and the principle of minimal sensitivity
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The hypervirial and Hellmann-Feynman theorems are used in the methods of 1/N expansion to construct
Rayleigh-Schro¨dinger perturbation expansion for bound-state energy eigenvalues of spherical symmetric po-
tentials. An iteration procedure of calculating correction terms of arbitrarily high orders is obtained for any
kind of 1/N expansion. The recurrence formulas for three variants of the 1/N expansion are considered in this
work, namely, the 1/n expansion and the shifted and unshifted 1/N expansions which are applied to the
Gaussian and Patil potentials. As a result, their credibility could be reliably judged when account is taken of
high-order terms of the eigenenergies. It is also found that there is a distinct advantage in using the shifted 1/N
expansion over the two other versions. However, the shifted 1/N expansion diverges fors states and in certain
cases is not applicable as far as complicated potentials are concerned. In an effort to solve these problems we
have incorporated the principle of minimal sensitivity in the shifted 1/N expansion as a first step toward
extending the scope of applicability of that technique, and then we have tested the obtained approach to some
unfavorable cases of the Patil and Hellmann potentials. The agreement between our numerical calculations and
reference data is quite satisfactory.

PACS number~s!: 03.65.Ge
us
po
av
o

s

ls
a

-
n
o

ti
e

ly

ined
nal
nics,

n to
and
of
bo-

om-
ns
tic

ons.

-
e-
vel-

c-
ber
the

s
ow-
n-

m

h,
ls,

oo

cu
I. INTRODUCTION

A large number of important physical problems in vario
branches of physics require using spherically symmetric
tentials. To be specific, many theoretical calculations h
been carried out by various workers with the Hellmann p
tential @1,2# to study the electron-core@3–5# or the electron-
ion @6,7# interactions, atomic inner-shell ionization problem
@8#, alkali hydride molecules@9#, other molecular@10#, and
solid-state physics@2,11–14# problems. The Hulthe´n poten-
tial @15#, one of the most important short-range potentia
has been the subject matter of many studies in nuclear
particle physics@16–20#, atomic physics@21,22#, and solid-
state physics@23#. The exponential cosine screened Coulom
potential and the celebrated Morse potential@24# have at-
tracted considerable attention in solid-state physics@25# and
chemical physics@26#, respectively. The problem of accu
rately determining the energy eigenvalues and eigenfu
tions for spherically symmetric potentials is, therefore,
considerable interest.

Since only a handful of potentials are solvable analy
cally, one has to resort to direct numerical techniqu
@22,25,27–30# or approximation methods. The most wide
investigated schemes involve the Rayleigh-Schro¨dinger
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~coupling constant! perturbation theory@23,31–39# and the
Rayleigh-Ritz variational method@22,23,40–44# techniques.
Accurate results for physical observables have been obta
from these two predominant perturbative and variatio
methods. Because of their successes in quantum mecha
they have also been extensively developed for applicatio
the more complicated problems of phase transitions
quantum field theory. However, one of the shortcomings
these approaches is that they involve, in general, quite ela
rate algebraic manipulations and require considerable c
putational time and effort. Furthermore, their applicatio
become restricted due to nonavailability of compact analy
expressions of energy levels and bound-state wave functi
The limitations of these methods~in particular the coupling
constant perturbation theory! have become increasingly ap
parent, for instance for solving the problems of critical ph
nomena and quantum chronodynamics. Thus, the de
opment of new computational methods~analytical approxi-
mation schemes! that provide at least the same order of a
curacy has become an important enterprise. A large num
of attempts in this direction have already been made in
past. The so-called 1/N expansions~with N referring to dif-
ferent objects in different theories! are one class of method
that have emerged in recent years as a very useful and p
erful technique of attack in nonrelativistic quantum mecha
ics @45–58#, multicomponent model problems in quantu
field theory@59–62#, solid-state physics@63,64#, and statis-
tical physics@65–69#. In quantum mechanics this approac
which was physically motivated for power-law potentia
has spawned a strong debate. For details see Ref.@70# in
which the history of the development of 1/N expansions is
reflected. It should be noted that although the large-N tech-
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M. G. KWATO NJOCK et al. PHYSICAL REVIEW A 61 042105
nique is itself a kind of perturbation theory, it can be used
problems which do not manifestly involve a small coupli
constant for performing the perturbation theory.

Because of the nonuniqueness of the passage to clas
mechanics different versions of this method resulting fr
different choices of the expansion parameter 1/L have been
suggested in the context of Schro¨dinger quantum mechanics
Three of them, namely 1/n expansion, the unshifted expan
sion, and the shifted 1/N expansion~denoted P1NE, ULNE,
SLNE, respectively!, on which we focus our attention in thi
paper, have been worked out in detail for problems w
spherical or axial symmetries~e.g., hydrogen atom in mag
netic and electric fields!: L52n, wheren is principal quan-
tum number@71–78#; L5D12l , D and l are the spatial
dimensionality and the orbital quantum number, respectiv
@46#; L5D12l 2a, wherea is a suitable shift so as to re
store exact results for the harmonic oscillator and Coulo
potentials in the leading-order of the expansion@59,79–82#.
This simple modification gives rise to dramatic cons
quences. In particular it considerably improves the anal
simplicity and the convergence of the perturbation series
the energy eigenvalues in comparison with the unshiftedN
expansion. The procedure of the above-mentioned vers
consists of assumingD→` or l→` ~for a fixed radial quan-
tum number! which is equivalent in quantum mechanics
\→0 or M→`. Then incorporating the finiteN corrections
by taking into account the effects of quantum fluctuatio
and anharmonicity leads to a systematic expansion in pow
of 1/L. The physical values ofD and l are substituted in the
final formula. The Rayleigh-Schro¨dinger and the logarithmic
perturbation schemes~referred to as RSPT and LPT, respe
tively! have been used for the calculation of these corr
tions. But their applications are restricted by serious diffic
ties. In the first case it is extremely laborious to advan
beyond the first few terms. In this connection, it should
mentioned that calculating and rearranging the sixth orde
power of 1/L, we have obtained the next term for the ener
spectrum to order 1/L3. It should be noted that the previou
expression of the energy spectrum to order 1/L2, i.e., the
first four terms of the expansion, was derived by Im
Paanamenta, and Sukhatime@81#. We have proceeded effi
ciently by employingMATHEMATICA . However, the deriva-
tion is tediously long. The second case@34,46,72,82–85#
gives energy corrections for the ground state but compl
tions arise for excited states due to the separation of the z
of the wave function in the form of an individual factor. Th
original study by Bender and Wu@87# on the anharmonic
oscillator gave rise to an entire industry of large-order p
turbation theory@72,88# which led, in recent years, to con
siderable progress in the calculations of higher perturba
orders in quantum mechanics. Some algebraic recur
methods, allowing one to evaluate high orders, were p
posed in the past, each order getting progressively m
more complicated@47,52,54,86#. In particular, Maluendes
et al. reported a powerful approach in which the coefficie
of the shifted 1/N expansion of arbitrarily high orders coul
be generated by means of the hypervirial~HV! and the
Hellmann-Feynman~HF! theorems@89#, thereby providing
an excellent check for the convergence of the method. H
04210
r

ical

h

ly

b

-
ic
r

ns

s
rs

-
-

-
e
e
in
y

-
os

-

n
on
-

ch

s

-

ever, the previous authors did not give explicit expressio
of their algorithm. We have completed that work on o
hand in deriving in detail the recurrence relations for t
quantities of interest and on the other hand by compar
these formulas with those obtained from the RSPT given
Appendix A. These formulas, which are given subsequen
are convenient for numerical calculations. Recently Stepa
and Tutik @90# have constructed a remarkable approa
based on a semiclassical interpretation of the 1/N expansion.
The proposed technique, which explicitly uses expansion
terms of Planck’s constant\, clarifies the complementarity
of the 1/N approach and the WKB approximation and lea
to simple recursion relations for the discrete energy spect
through Zwaan-Dunham quantization conditions@91,92#. We
have compared our analytical results with the later ones
found that they are identical. The RSPT formulas availa
~e.g., up to order 1/L2! are also reproduced. Thus it seem
that the Rayleigh-Schro¨dinger series is generated by our s
of recursion relations, which is also quite universal in t
sense that the passage to any variant of the 1/N expansion is
implemented in its formulation@90#. Our procedure, which is
equivalent to the version of Stepanov and Tutik as far as
recurrence relations are concerned, provides a satisfac
and simple way of avoiding the cumbersome sums over
termediate unperturbed states, and involves only simple
gebraic equations which are easier to handle.

The SLNE has already generated immense activities
proving its efficacy in quantum mechanics. The energy sp
trum obtained by Imbo, Pagnamenta, and Sukhatme@81# has
been discussed extensively and successfully applied to
merous simple and smooth potentials, e.g., Yuka
@54,55,81,93#, rotating harmonic oscillator@52,94,95#, expo-
nential cosine screened Coulomb@96–98#, Morse oscillator
@99#, Gaussian @55#, power-law, and logarithmic
@52,53,81,100#. Applications have been made to deal wi
laser-atom interactions@101#. It has also been shown@102#
that the SLNE is equally effective in the scattering doma
The method is very useful in predicting low-energy scatt
ing lengths and phase shifts by spherically symmetric sh
range potentials. However, the approximation used by th
authors is of too low order, so that the convergence of
method could not be reliably judged. Dutt, Mukherji, an
Varshni @103# pointed out that although the accuracy of t
results is in general extremely good for these smooth po
tials, it is not a priori guaranteed that SLNE will work
equally well for the superposition of simple potentials. Th
investigated the case of the Hellmann potential which is
superposition of two simple potentials of widely differe
ranges. The detailed analysis of the results reveals tha
certain regions of values of parameters, not only is the c
vergence of the series expansion for the energy eigenva
in serious trouble for certain quantum states, but the loca
of the minimum of the effective potential also cannot
ascertained. Tang and Chan@104# also observed that the ex
pansion series is not valid in a certain region of the screen
parameter for the Hulthe´n potential. Using the Coulomb po
tential perturbed by a polynomial inr, Roychoudhury,
Varshni, and Sengupta@105# also concluded that for compli
cated potential shapes, SLNE can give poor or errone
5-2
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1/N EXPANSIONS FOR CENTRAL POTENTIALS . . . PHYSICAL REVIEW A 61 042105
results. Varshni@106# and Sever and Tezcan@58# obtained
from ULNE and SLNE eigenenergies of an atomic poten
which represents the interaction experienced by the sec
electron in a helium atom due to the nucleus and the
electron. That potential is of special interest being the pro
type of more general potentials used in atomic proble
They found that the SLNE offers a large improvement o
ULNE. However, they stressed that even with SLNE, caut
is necessary since large errors are possible. On the o
hand, these recurrence relations have been applied hith
only to a narrow class of simple potentials@86,90#. To the
best of our knowledge, such investigations with more co
plicated potentials have not been reported in the literat
Moreover, the SLNE and P1NE have not been compared
far, even for simple potentials. In this paper we underta
this study to show which of these two approaches is m
accurate for the bound states of central potentials. For
purpose we have extended the above-mentioned work
take into account large orders so as to assess their effec
the accuracy of the SLNE, P1NE, ULNE energy spectra.
a result it is found that SLNE surpasses the P1NE, but
hibits limitations concerning particularly thes states. Clearly
in that case it leads to asymptotically divergent series. T
choice of the physically motivated order-independent s
parameter is reexamined in the light of the numerical resu
In an effort to improve the results obtained from the SLN
algorithm we have applied the prescriptions for the choice
an order-dependent shift parameter that has been claime
be very powerful by Maluendeset al. @86#. Moreover, it is
logical and meaningful to probe whether the range of ap
cability of the modified SLNE~denoted HVHP-PMS! may
be widened by the incorporation of the principle of minim
sensitivity~PMS!. More details concerning that principle ca
be seen in Ref.@107#.

The organization of this paper is as follows. Section
describes the essentials of the HVHF method. We estab
the hierarchy of equations for the corrections to the energ
all orders and underline their reduction to RSPT a
Stepanov-Tutik general expressions included in append
A and B, respectively. The modified SLNE is presented.
Sec. III we carry out a detailed numerical study of the d
ferent theoretical schemes. The calculations of the fi
11–21 partial sums of the perturbation series for the ene
are displayed, using one simple and two more complica
potentials. Only the states which are unfavorable with
Imbo et al. formulas@81# are considered in the context of th
HVHF-PMS. Finally, in Sec. IV we make some concludin
remarks.

II. METHODS AND CALCULATIONS

The nonrelativistic formalism described in this section i
follow up to the work undertaken by Maluendeset al. @86#.
For the sake of brevity, we only report the essential st
here. Unless otherwise indicated we use throughout this
per atomic units in which\5m5e51. For simplicity of
notation, quantum number indices will be suppressed.

The radial part of the time-independent Schro¨dinger equa-
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tion for a central-field model in terms of the expansion p
rameterL is given by@90#

H 2
1

2

d2

dr2 1
L2

8r 2 S 11
2A

L
1

4B

L2D1V~r !J x~r !5Ex~r !,

~1!

with

1

4
L21

A

2
L1B5 l ~ l 11!. ~2!

Because of the nonuniqueness of passage to classical
chanics, the specific variant of the 1/N expansion is deter-
mined by the choice of parametersL, A, andB. This enables
one to describe within the same formalism any kind of t
1/N expansion. In this paper we are interested in three
them.

~i! 1/n expansion~P1NE!

L52n, A52~2nr11!, B5nr~nr11!,

n5nr1 l 11, ~3!

wherenr is the radial quantum number.
~ii ! Shifted 1/N expansion~SLNE!

L52l 1D2a, A512D1a, B5
~D2a!~D2a22!

4
,

~4!

a is the so-called shift parameter.
~iii ! The unshifted 1/N expansion can be deduced fro

the SLNE delineated above in settinga50. The leading con-
tribution to the energy comes from the effective potential
the limit of largeL

Veff
` ~r ![Veff~r !5V~r !1

L2

8r 2 . ~5!

One assumesV(r ) to be sufficiently well behaved so tha
Veff(r) has a minimum atr 0 and there are well-defined boun
states. Oncer 0 is determined from the equation

L224r 0
3V0850, V05V~r 0!, V085

d

dr0
V0 , ~6!

the leading term is given by

E05Veff~r 0!5V01
L2

8r 0
2 . ~7!

Quantum fluctuations around the minimumr 0 are defined by

x5
1

g
~r /r 021!, g51/L1/2. ~8!

Then on expanding aroundx50 and making use of Eq.~6!
for r, Eq. ~1! becomes
5-3
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H 2
d2

dx2 1(
i 50

`

~a ig
ixi 121b ig

ixi1j ig
i 12xi !J x~x!

5Ẽx~x!, ~9!

where we have introduced the following notations:

Ẽ52r 0
2g2~E2E0!, a i5~21! i

i 13

4
1

r 0
i 11

2~ i 12!!

V0
~ i 12!

V08
,

~10!

b i5~21! i
i 11

2
A, j i5~21! i~ i 11!B. ~11!

It should be noted that there are some misprints in the
responding formula in Ref.@86#.

Following the prescription of Maluendeset al., a dummy
perturbation parameterl is introduced in Eq.~9! as shown
below and is set equal to unity at the end of the calculat

Hx~x!5Ẽx~x!, H52
d2

dx2 1U, ~12!

where

U5(
i 50

`

a ig
il ixi 121b ig

il ixi1j ig
i 12l i 12xi . ~13!

The use of quantum-mechanical HV and HF theorems
generate perturbation expansions is well known@36,39,108–
116#. It should be noted that McRae and Vrscay@117# have
exploited the classical versions of these useful quant
mechanical theorems to construct a classical perturba
theory without Fourier series for separable classical Ham
tonians. For a comprehensive review of the above theor
and their applications in both classical and quantum mech
ics, see Ref.@118#. The HV and HF theorems provide th
relationships betweenẼ and the various expectation value
of ^xm& through the following equations:

1

2
m~m21!~m22!^xm23&12mẼ^xm21&22m^xm21U&

2^xmU8&50, ~14!

]Ẽ

]l
5 K ]U

]l L . ~15!

The essence of the HVHF perturbative method is to ass
that the energy and the expectation values of position c
dinates can be expanded in power series of the perturba
parameterl as

Ẽ5 (
k50

`

Ẽ~k!lk, ~16!

^xm&5 (
k50

`

xm
~k!lk, ~17!
04210
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whose coefficients can be calculated recursively. They ca
significant information about the behavior of bound-state
ergies. The large-order behavior as well as the summab
of these series will be of interest. It is clear from the foreg
ing that the starting point is the normalization condition a
the harmonic-oscillator eigenvalues which write

x0
~0!51, x0

~k!50, k>1, ~18!

Ẽ~0!5~112nr !v1b0 , ~19!

v5a0
1/2 is the frequency of small vibrations about the eq

librium orbit. By equating like powers ofl on both sides of
Eqs. ~14! and ~15! after substitution of the expansions~16!
and~17!, we readily find a set of coupled relations involvin
the termsẼ(k) andxm

(k)

1
2 m~m21!~m22!xm23

~k! 12m(
i 50

k

Ẽ~ i !xm21
~k2 i !

2(
i 50

k

@~2m1 i 12!a ig
ixi 1m11

~k2 i ! 1~2m1 i !b ig
ixm21

~k2 i !#

2(
i 50

k

~2m1 i !j ig
i 12xi 1m21

~k2 i ! 50, ~20!

~k11!Ẽ~k11!5(
i 50

k

~ i 11!@a i 11xi 13
~k2 i !1b i 11xi 11

~k2 i !#gi 11

1u~k21!(
i 50

k21

~ i 12!j ig
i 12xi

~k2 i 21! ,

~21!

whereu(x) is the Heaviside function.
To calculate explicitly the perturbed energies in a hier

chical manner, we proceed by giving tok various integer
values starting withk50. For example, we get@k50,1 in Eq.
~20!# the following expressions by setting

~i! k50,

x0
~0!51, x1

~0!50, x2
~0!52Ē~0!, x3

~0!50, ~22a!

xm
~0!5

1

2ma0
@ 1

2 ~m21!~m22!~m23!xm22
~0!

12~m21!Ē~0!xm22
~0! #,

Ē~0!5Ẽ~0!2b0 , m>4. ~22b!

~ii ! k51

x0
~1!50, x1

~1!522g~b113a1x2
~0!!, x2

~1!50, ~23a!

x3
~1!5

1

6a0
@4Ē0x1

~1!25b1gx2
~0!27a1gx4

~0!#, ~23b!
5-4
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xm
~1!5

1

4ma0
@~m21!~m22!~m23!xm24

~1!

14~m21!Ē~0!xm22
~1! 22~2m11!a1gxm11

~0!

22~2m21!b1gxm21
~0! #, m>4. ~23c!

For k>2 a straightforward algebraic manipulation sho
that

x0
~k!50,

x1
~k!52

1

2a0
H (

i 51

k

~ i 12!@a ixi 11
~k2 i !1 ib ixi 21

~k21!#gi

1u~k23!(
i 50

k22

i j ig
i 12xi 21

~k2 i 22!J , ~24a!

x2
~k!5

1

4a0
H 2Ẽ~k!2(

i 51

k

~ i 14!@a ixi 12
~k2 i !1~ i 12!b ixi

~k2 i !#gi

2 (
i 50

k22

~ i 12!j ig
i 12xi

~k2 i 22!J , ~24b!

x3
~k!5

1

6a0
H (

i 51

k

@4Ẽ~ i !x1
~k2 i !2~ i 14!b ig

ixi 11
~k2 i !#

2(
i 51

k

~ i 16!a ig
ixi 13

~k2 i !2 (
i 50

k22

~ i 14!j ig
i 12xi 11

~k2 i 22!J ,

~24c!

xm
~k!5

1

2ma0
H 1

2 ~m21!~m22!~m23!xm24
~k!

1(
i 50

k

@2~m21!Ẽ~ i !xm22
~k2 i !2~2m1 i 22!b ig

ixi 1m22
~k2 i ! #

2(
i 51

k

~2m1 i !a ig
ixi 1m

~k2 i !2 (
i 50

k22

~2m1 i 22!

3j ig
i 12xi 1m22

~k2 i 22!J , m>4. ~24d!

The HF relation provides the following connection betwe
the coefficients for the energy and expectation values,

Ẽ~k!5
1

k H (
i 50

k21

~ i 11!@a i 11xi 13
~k2 i 21!1b i 11xi 11

~k2 i 21!#gi 11

1u~k22!(
i 50

k22

~ i 12!j ig
i 12xi

~k2 i 22!J , k>1.

~25!
04210
Thus we can calculate thekth perturbed energyẼ(k) from the
knowledge ofxm

( j ) and Ẽ( j ) with 0< j <k21, 0<m<k2 j
12. From Eqs.~22!–~25! it is obvious that in general

xm
~ j !50, mÞ0, ~26!

if the parities of j and m are different. As a result
Ẽ(1),Ẽ(3),Ẽ(5),... vanish, that is,

Ẽ~k!50, k odd. ~27!

Finally we obtain for the bound-state energy

E5 (
k50

`

Ek , ~28a!

with

Ek5
1

2r 0
2g2 Ẽ~2k22!, k>1. ~28b!

It is convenient to note that the calculation ofẼ(2k22) in-
volves the derivativesV0

( i ) , 1< i<2k which is also the case
for the termEk in the semiclassical formalism of Stepano
and Tutik. The algorithm for calculation of any order of pe
turbed energy is thus fully described. Making use
MATHEMATICA , one can check without any difficulty that th
different termsEk are exactly those derived by Stepanov a
Tutik ~see Appendix B!. The expressions derived by Mlod
now and Shatz@100# for the ground and first excited state
are also reproduced. Again with the help of a system w
symbolic manipulation capabilities, it is easy to see that
~28! up to fourth order coincide with the analytic resultsĒk

of the RSPT listed in Appendix A~i.e., Ek5Ēk!. Therefore
the HVHF perturbation method generates the Raylei
Schrödinger perturbation expansions. This procedure th
eliminates the usual tedious calculations of sums over in
mediate states products of matrix elements which arise in
nth order of RSPT and makes it a simple matter to calcu
high orders for energy levels. It is noteworthy that o
scheme of calculating is quite simple and straightforward
comparison with the\-expansion method.

The large-N expansion method gives rise to one of t
most elegant analytic approximations for obtaining eigenv
ues. Unfortunately, in certain cases~e.g., ULNE! the large-N
is asymptotically divergent, particularly fors states. To over-
come this difficulty, Sukhatme and Imbo proposed the SL
in which a proper order-independent shift is considered. T
extra degree of freedom is chosen so as to make the fi
order contribution

E15
1

2r 0
2g2 Ẽ~0!5

L

2r 0
2 @~112nr !v1b0# ~29!

in Eq. ~28a! vanish, which means

a5222~112nr !v. ~30!
5-5
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This simple choice yields the exact eigenvalues for the h
monic oscillator and Coulomb potentials in the leading te
E0 . We have checked numerically and with the aid
MATHEMATICA that higher-order correctionsEi ( i>2) van-
ish identically in these two cases.

Maluendeset al. showed that SLNE could be improve
provided the shift value is properly set. They suggested
alternative prescription for the choice ofa, which in their
method becomes order dependent. In Sukhatme and Im
approach, one setsE1(a)50 in the infinite series~28a!
which can be evaluated to arbitrary order, using our se
recurrence relations, whereas Maluendeset al.have chosena
to be a root of

EM~a!50, ~31!

and the eigenvalues are approximated by sequences of p
sums

E~a!5(
i 50

M

Ei~a!5 (
i 50

M21

Ei~a!. ~32!

Since the energy is independent of the shift, the appropria
a5aM which depends onM leads to the smallest value o
u]E/]au. We omit the technical details of the calculatio
referring the reader to Ref.@121#. This criterion is an ex-
ample of the principle of minimal sensitivity discussed
Stevenson@107#. In practice we proceed in determiningr 0
from Eq. ~31! in which the following equations are subst
tuted:

L52Ar 0
3V08, a5312l 2L. ~33!

Clearly, Eq.~31! becomes

EM~r 0!50. ~34!

We have applied the methods described above to
physically interesting potentials that have been investiga
by a number of workers. Among these are one simple po
tial and three others that are a superposition of simple po
tials.

~i! The Gaussian potential@55#

V~r !52Ae2r 2
. ~35!

~ii ! The Patil potential@119#

V~r !5Vcop~r !1Vexc~r !1Vpol~r !, ~36!

in which Vcop(r ) is the Coulomb-penetration potential

Vcop~r !5
22Z

r
2S 2

r
1b De2br , ~37!

Vexc(r ) is the exchange potential

Vl 50
exc~r !5b$@ 1

2 2 9
2 br 23b2r 212Z~b2r 22br 21!#e2br

1~ 5
2 1 3

2 br !e2br%, ~38!
04210
r-

f

n

o’s

f

tial

ed

ur
d

n-
n-

VlÞ0
exc~r !5

2b

~2l 11!~ l 12!

3S 2l 2111l 1br
4l 2120l 127

2l 13 De2br , ~39!

Vpol(r ) is the polarizability potential

Vpol~r !5
ã

2 H 1

r 4 F12e2br (
n50

3
~br !n

n! G
2

b4

24
~0.8e21.3br10.2e24.8br !J , ~40!

b52(Z25/16), Z is the nuclear charge, andã the dipolar
polarizability. The leading Coulomb penetration part of th
potential is of the same type as the interaction used by S
and Tezcan@58# and Varshni@106#. It consists of a Coulomb
term, a screened Coulomb term, and an exponential term

~iii ! The Coulomb perturbed by a polynomial inr @120#

V~r !5
a

r
1(

i 51

4

pir
i . ~41!

~iv! The Hellmann potential@103#

V~r !52
A

r
1

B

r
e2Cr. ~42!

III. NUMERICAL RESULTS AND DISCUSSION

As discussed in the Introduction, one of the prime mo
vations of the present study is to explore the credibility of t
SLNE, P1NE, and ULNE versions when account is taken
high orders of perturbation theory in the calculation of t
energy eigenvalues. The fact that we are able to evalu
them using the recurrence relations presented above prov
us with the possibility to examine the applicability of the
schemes for a wide range of quantum numbersn and l. For
the sake of discussing this important point we consider
way of examples two simple and three more complica
potentials defined in Eqs.~36!–~43!. For any given choice of
n and l, Eq. ~6! becomes a transcendental equation wh
can, in principle, be easily solved numerically@121# to obtain
r 0 . We have searched with great care this most crucial
rameter for the different energy levels of the five potenti
investigated in this paper. It has turned out that in seve
circumstances Eq.~6! leads to more than one minimum. I
Table I are displayed several such cases concerning the
lomb potential perturbed by a polynomial inr for which we
have found two roots. Curiously the energy eigenvalu
given by Roychoudhuryet al. @105# ~see column 9, first en-
try! correspond to the smallest value of the two roots and
seriously in error. We suspect that this happened beca
these authors did not advance beyond the first root enco
tered in the search of the minima of the large-N effective
potential. It is clear that unless great care is exercised,
search ofr 0 can lead to erroneous conclusions. It is impo
5-6
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TABLE I. Minima of the effective potential~column 8! and corresponding energy eigenvalues~column 9!
calculated from the shifted 1/N expansion@81#. Data sets for the Coulomb perturbed by a polynomial inr are
listed in columns 3–7. In the last column are given the exact supersymmetric values. The asterisks de
values of roots used by Roychoudhuryet al. ~Ref. @119#!.

State a p1 p2 p3 p4 r 0 Ea Ref. data

1s 21 22.846 05 2.816 23 21.0 0.1 1.374 84* 2121.807 18 24.993 42
5.004 47 25.005 74

1s 25 29.170 61 4.081 14 21.0 0.1 0.392 00* 223.443 23 210.993 42
3.583 54 210.717 33

2p 21 24.743 42 10.158 11 22.0 0.1 1.026 82* 8.514 29 29.096 09
10.092 77 228.522 68

3d 21 26.008 33 44.205 41 24.2 0.1 0.758 45* 38.860 42 273.076 39
21.021 62 273.075 65

4 f 21 27.273 24 129.679 06 27.2 0.1 0.641 69* 94.294 26 2148.010 22
36.007 36 2148.006 13

2p 21 215.000 00 100.500 00 220.0 1.0 0.536 71* 37.345 10 290.062 50
10.029 92 290.060 78

3d 21 219.000 00 441.333 33 242.0 1.0 0.418 03* 133.516 83 2231.027 78
21.006 83 2231.035 80

4 f 21 223.000 00 1296.250 00 272.0 1.0 0.357 56* 309.515 96 2468.015 62
36.002 32 2468.015 44
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tant to mention at this point that the three schemes SL
P1NE, and ULNE in their formulations do not give a crit
rion for choosing the appropriate root among the both
each case. This problem has not been pointed out so
owing to the fact that the above situation did not occur in
previous works reported. It should be noted that for ea
energy level presented in Tables II–VII we have searched
a possible second rootr 0 value, but the result was negativ
Once this most crucial parameter is determined, the tas
obtaining energies becomes fairly straightforward.

We compare in Tables II–VII our predicted values calc
lated from the SLNE, P1NE, and ULNE schemes to tho
obtained from high-precision numerical techniques by Cr
dall @30# and Lindgård and Nielsen@28,29# concerning, re-
spectively, the Gaussian and Patil potentials. The progres
of the energy series is shown in the tables so as to see
convergence of the three 1/N expansion series. In order t
illustrate how closely our results agree with the referen
data ~RD! and be more informative, we have plotted t
percent errors (uERD2Eu/uERDu) of our computations in the
three schemes in Figs. 1–7. The following clearly aris
from these figures. It is obvious from Fig. 1 that SLNE r
sults are always superior to those of P1NE~i.e.,
SLNE.P1NE! and these latter are substantially better th
the ULNE corresponding ones (P1NE.ULNE!. One ob-
serves that SLNE and P1NE converge rapidly and the de
of agreement with RD is striking. In the case of the Gauss
potential the first four terms of the eigenenergies@i.e., the
limit of previous workN54 ~denoted LPW!# are not suffi-
cient to guarantee the convergence of the SLNE and P1
expansion series. For the 6p and 8d states it seems that ther
exists an overlap region (N.21) in which the two methods
agree with each other quite closely. For the 4s state, they are
stabilized in the domainN>15. The percent errors in th
04210
,

n
far
e
h
or

of

-
e
-

on
he

e

s

n

ee
n

E

unshifted 1/N expansion start decreasing but then incre
rather rapidly especially for the 4s state. The successive con
tributions from the perturbation series become substan
and the perturbation expansion breaks down. Figure 2 sh
that SLNE.ULNE.P1NE for the Patil potential. However
P1NE and ULNE are not at all workable. The energy valu
have very large errors and are of the wrong sign for soms
and p states~see, e.g., Tables VI and VII!. The correction
terms dominate over the leading termE0 . SLNE yields good
results only for the 7f state for which the percent error va
ues become stabilized forN>15 within 0.002–0.006 %.

Now we examine the states in detail for three spec
cases.

~a! First of all we consider the case for which the princ
pal quantum number is fixed, i.e.,n58 for the Gaussian
potential andn56 for the Patil potential. Figures 3 and
clearly depict the features and tendencies mentioned ab
respectively, for these two potentials. A few other releva
features become apparent. Figure 3 shows that for SLNE
P1NE the limit of previous worksN54 is insufficient for
low values ofl. Higher-order terms are needed to get bet
accuracy. In this connection Chatterjee@55# underlined that
when only the terms up toN54 are kept in the energy serie
the shifted 1/N expansion predicts wrongly that the 8s state
for instance is a continuum state. As shown in Table II,
higher-order terms are included in the calculation the SL
treatment yields that the 8s state close to the continuum is
bound state and the numerical result obtained is good. He
to improve the situation for the bound states lying close
the continuum one should include higher-order terms. Th
caution is necessary in using the formalism based on a f
term recurrence relation@81#. These two procedures seem
converge whateverl. As expected for SLNE and ULNE, fo
a given principal quantum numbern, the results improve asl
5-7



TABLE II. Predict states for thel 50 fixed value. First entry, SLNE; second entry, P1NE;
third entry, ULNE. In square brackets indicate the powers of 10 by which the values are to be
multiplied, e.g., 7.26

State

Ref. data

3 15 17 19 21

27.2689@11# 89@11# 27.2689@11# 27.2689@11# 27.2689@11#

4s 27.2689@11# 89@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11#

7.1824@11# 89@11# 27.3696@11# 27.3171@11# 21.0180@12#

24.6985@11# 29@11# 24.7229@11# 24.7229@11# 24.7229@11#

5s 24.6731@11# 29@11# 24.7229@11# 24.7229@11# 24.7229@11# 24.7229@11#

24.5005@11# 29@11# 24.7327@11# 25.6679@11# 28.5780@12#

22.5503@11# 72@11# 22.6072@11# 22.6072@11# 22.6072@11#

6s 22.4905@11# 72@11# 22.6072@11# 22.6072@11# 22.6072@11# 22.6072@11#

22.1297@11# 72@11# 22.7117@11# 21.4550@12# 21.2070@14#

28.7740@10# 31@0# 29.9831@10# 29.9831@10# 29.9831@10#

7s 27.3887@10# 21@0# 29.9828@10# 29.9830@10# 29.9831@10# 29.9832@10#

27.0060@21# 25@0# 21.8415@11# 21.2226@13# 21.8723@15#

2.1538@10# 97@21# 26.6768@21# 26.7014@21# 26.7130@21#

8s 5.3190@10# 41@21# 26.3547@21# 26.4935@21# 26.5794@21# 26.7365@21#

1.6785@11# 95@10# 24.9132@11# 21.0311@14# 21.8431@16#
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042105-8
ed partial sums of energy eigenvalues in atomic units~Gaussian potential! of the 4s to 8s
the last column are given the values obtained by Crandall~Ref. @30#!. The numbers in

89@11#57.268931011.

Na

5 7 9 11 13

27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.26
27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.26
27.2657@11# 27.2687@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.26
24.7228@11# 24.7229@11# 24.7229@11# 24.7229@11# 24.7229@11# 24.72

24.7206@11# 24.7227@11# 24.7229@11# 24.7229@11# 24.7229@11# 24.72
24.7073@11# 24.7209@11# 24.7226@11# 24.7228@11# 24.7229@11# 24.72
22.6067@11# 22.6072@11# 22.6072@11# 22.6072@11# 22.6072@11# 22.60

22.5977@11# 22.6059@11# 22.6070@11# 22.6071@11# 22.6072@11# 22.60
22.5519@11# 22.5960@11# 22.6043@11# 22.6064@11# 22.6069@11# 22.60
29.9274@0# 29.9726@10# 29.9805@10# 29.9825@10# 29.9830@10# 29.98

29.6134@0# 29.8966@10# 29.9583@10# 29.9751@10# 29.9804@10# 29.98
28.3064@0# 29.4679@10# 29.7882@10# 29.9003@10# 29.9441@10# 29.96
21.7280@21# 24.9010@21# 25.9497@21# 26.1987@21# 26.5410@21# 26.54

9.0007@21# 22.6478@22# 23.5440@21# 24.9951@21# 25.7251@21# 26.12
4.2152@10# 1.5655@10# 5.6491@21# 0.8596@10# 21.7082@21# 20.22



TABLE III. Predi states for thenr53 fixed value. First entry, SLNE; second entry, P1NE;
third entry, ULNE. I square brackets indicate the powers of 10 by which the values are to be
multiplied.

State

Ref. data

3 15 17 19 21

27.2689@11# 89@11# 27.2689@11# 27.2689@11# 27.2689@11#

4s 27.2689@11# 89@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11#

7.1824@11# 89@11# 27.3696@11# 27.3171@11# 21.0180@12#

25.9087@11# 92@11# 25.9192@11# 25.9192@11# 25.9192@11#

5p 25.8970@11# 92@11# 25.9192@11# 25.9192@11# 25.9192@11# 25.9192@11#

25.8208@11# 92@11# 25.9192@11# 25.9192@11# 25.9214@11#

24.6315@11# 39@11# 24.6439@11# 24.6439@11# 24.6439@11#

6d 24.6175@11# 39@11# 24.6439@11# 24.6439@11# 24.6439@11# 24.6439@11#

24.5306@11# 39@11# 24.6439@11# 24.6439@11# 24.6439@11#

23.4349@11# 92@11# 23.4492@11# 23.4492@11# 23.4492@11#

7 f 23.4171@11# 92@11# 23.4492@11# 23.4492@11# 23.4492@11# 23.4492@11#

23.3163@11# 92@11# 23.4492@11# 23.4492@11# 23.4492@11#

22.3274@11# 34@11# 22.3434@11# 22.3434@11# 22.3434@11#

8g 22.3035@11# 34@11# 22.3434@11# 22.3434@11# 22.3434@11# 22.3434@11#

22.1840@11# 34@11# 22.3434@11# 22.3434@11# 22.3434@11#
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042105-9
cted partial sums of energy eigenvalues in atomic units~Gaussian potential! of the 4s to 8g
n the last column are given the values obtained by Crandall~Ref. @30#!. The numbers in

Na

5 7 9 11 13

27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.26
27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.26
27.2657@11# 27.2687@11# 27.2689@11# 27.2689@11# 27.2689@11# 27.26
25.9192@11# 25.9192@11# 25.9192@11# 25.9192@11# 25.9192@11# 25.91

25.9186@11# 25.9192@11# 25.9192@11# 25.9192@11# 25.9192@11# 25.91
25.9149@11# 25.9187@11# 25.9192@11# 25.9192@11# 25.9192@11# 25.91
24.6439@11# 24.6439@11# 24.6439@11# 24.6439@11# 24.6439@11# 24.64

24.6431@11# 24.6439@11# 24.6439@11# 24.6439@11# 24.6439@11# 24.64
24.6381@11# 24.6434@11# 24.6438@11# 24.6439@11# 24.6439@11# 24.64
23.4491@11# 23.4492@11# 23.4492@11# 23.4492@11# 23.4492@11# 23.44

23.4480@11# 23.4491@11# 23.4492@11# 23.4492@11# 23.4492@11# 23.44
23.4409@11# 23.4482@11# 23.4490@11# 23.4492@11# 23.4492@11# 23.44
22.3433@11# 22.3434@11# 22.3434@11# 22.3434@11# 22.3434@11# 22.34

22.3417@11# 22.3433@11# 22.3434@11# 22.3434@11# 22.3434@11# 22.34
22.3310@11# 22.3417@11# 22.3431@11# 22.3434@11# 22.3434@11# 22.34



TABLE IV. Predic states for then58 fixed values. First entry, SLNE; second entry, P1NE;
third entry, ULNE. In square brackets indicate the powers of 10 by which the values are to be
multiplied.

State

Ref. data

3 15 17 19 21

2.1538@10# 97@21# 26.6768@21# 26.7014@21# 26.7130@21#

8s 5.3190@10# 41@21# 26.3547@21# 26.4935@21# 26.5794@21# 26.7365@21#

1.6785@11# 95@10# 24.9132@11# 21.0311@14# 21.8431@16#

22.5733@10# 13@10# 24.0415@10# 24.0416@10# 24.0416@10#

8p 26.6617@21# 73@10# 24.0397@10# 24.0408@10# 24.0412@10# 24.0417@10#

7.0523@10# 90@10# 23.9961@10# 23.9014@10# 25.9941@11#

28.4549@10# 02@10# 29.2202@10# 29.2202@10# 29.2202@10#

8d 27.3870@10# 00@10# 29.2201@10# 29.2202@10# 29.2202@10# 29.2202@10#

22.5944@10# 10@10# 29.2158@10# 29.2177@10# 29.2325@10#

21.5385@11# 61@11# 21.5761@11# 21.5761@11# 21.5761@11#

8 f 21.4843@11# 61@11# 21.5761@11# 21.5761@11# 21.5761@11# 21.5761@11#

21.2204@11# 60@11# 21.5760@11# 21.5760@11# 21.5670@11#

22.3274@11# 34@11# 22.3434@11# 22.3434@11# 22.3434@11#

8g 22.3035@11# 34@11# 22.3434@11# 22.3434@11# 22.3434@11# 22.3434@11#

22.1840@11# 34@11# 22.3434@11# 22.3434@11# 22.3434@11#
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042105-10
ted partial sums of energy eigenvalues in atomic units~Gaussian potential! of the 8s to 8f
the last column are given the values obtained by Crandall~Ref. @30#!. The numbers in

Na

5 7 9 11 13

21.7280@21# 24.9010@21# 25.9497@21# 26.1987@21# 26.5410@21# 26.54
9.0007@21# 22.6478@22# 23.5440@21# 24.9951@21# 25.7251@21# 26.12
4.2152@10# 1.5655@10# 5.6491@21# 0.8596@10# 21.7082@21# 20.22

23.9116@10# 24.0108@10# 24.0329@10# 24.0389@10# 24.0407@10# 24.04

23.4356@10# 23.8664@10# 23.9801@10# 24.0176@10# 24.0316@10# 24.03
21.6101@10# 23.1486@10# 23.6400@10# 23.8395@10# 23.9322@10# 23.37
29.1882@10# 29.2154@10# 29.2193@10# 29.2200@10# 29.2202@10# 29.22
28.9995@10# 29.1766@10# 29.2097@10# 29.2174@10# 29.2194@10# 29.22
28.1115@10# 28.9017@10# 29.1067@10# 29.1745@10# 29.2003@10# 29.21
21.5754@11# 21.5760@11# 21.5760@11# 21.5761@11# 21.5761@11# 21.57

21.5690@11# 21.5752@11# 21.5759@11# 21.5760@11# 21.5760@11# 21.57
21.5332@11# 21.5670@11# 21.5736@11# 21.5753@11# 21.5758@11# 21.57
22.3433@11# 22.3434@11# 22.3434@11# 22.3434@11# 22.3434@11# 22.34

22.3417@11# 22.3433@11# 22.3434@11# 22.3434@11# 22.3434@11# 22.34
22.3310@11# 22.3417@11# 22.3431@11# 22.3434@11# 22.3434@11# 22.34



TABLE V. Predi tes for thel 50 fixed values. First entry, SLNE; second entry, P1NE; third
entry, ULNE. In the bers in square brackets indicate the powers of 10 by which the values are
to be multiplied.

State

Ref. data

3 5 17 19 21

21.1369@21# 1@19# 27.5700@11# 23.3161@114# 21.4579@117#

2s 21.1594@21# 8@19# 29.0319@111# 22.9895@114# 21.0579@117# 21.9814@21#

20.3008@10# 2@19# 7.8271@112# 25.5895@115# 4.1091@11#

25.5846@22# 4@13# 2.2645@14# 24.6883@15# 8.8346@16#

3s 25.5845@22# 1@13# 2.1652@14# 24.4631@15# 8.5242@16# 27.4182@22#

21.7680@10# 3@112# 27.1612@114# 21.31103@117# 28.1298@119#

23.1281@22# 4@22# 7.6835@23# 9.7561@10# 7.9801@12#

4s 23.1281@22# 0@22# 7.0364@23# 6.6540@10# 7.9182@12# 23.8615@22#

24.5159@10# 5@113# 1.8264@117# 2.3537@119# 22.0012@122#

22.0005@22# 1@22# 22.2664@22# 22.4157@22# 22.6301@22#

5s 22.0005@22# 1@22# 22.2663@22# 22.4156@22# 22.6310@22# 22.3637@22#

28.5445@10# 9@116# 8.4287@118# 25.7718@121# 23.1400@124#

1.3890@22# 7@22# 21.4580@22# 21.4952@22# 21.5466@22#

6s 21.3890@22# 7@22# 21.4580@22# 21.4952@22# 21.5465@22# 21.5945@22#

21.3854@11# 5@117# 7.7586@119# 23.2322@123# 2.6029@125#
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042105-11
cted partial sums of energy eigenvalues in atomic units~Patil potential! of the 2s to 6s sta
last column are given the values obtained by Linga˚rd and Nielsen~Ref. @29#!. The num

N a

5 7 9 11 13 1

1.5265@10# 26.3929@11# 3.1698@13# 21.8233@15# 8.2696@16# 1.118
1.4458@10# 25.4747@11# 2.2589@13# 28.1944@14# 24.0300@16# 2.684

26.9586@10# 23.5054@22# 21.8919@15# 21.0884@16# 25.6310@17# 6.803
25.7026@22# 26.0062@22# 24.0984@22# 3.1421@0# 8.2991@11# 21.599

25.7020@22# 26.0048@22# 24.1917@22# 3.0502@0# 8.2341@11# 21.518
21.0022@12# 22.9831@13# 7.7236@15# 1.1477@18# 25.3169@19# 24.129
23.1416@22# 23.1780@22# 23.2541@22# 23.3929@22# 23.6270@22# 23.992
23.1416@22# 23.1779@22# 3.2540@22# 23.3927@22# 23.6266@22# 23.992
24.5844@12# 1.0719@13# 1.6211@17# 22.4188@18# 21.4864@112# 23.169
22.0030@22# 2.0099@22# 22.0245@22# 22.0513@22# 22.0995@22# 22.164

22.0030@22# 2.0099@22# 22.0245@22# 22.0513@22# 22.0995@22# 22.164
21.3635@13# 7.0151@14# 21.2805@18# 23.0831@110# 22.7943@113# 1.321
21.3896@22# 21.3914@22# 21.3952@22# 21.4021@22# 21.4137@22# 21.431

21.3896@22# 21.3914@22# 21.3952@22# 21.4021@22# 21.4137@22# 21.431
23.2002@13# 3.7823@16# 6.3944@18# 23.5738@111# 22.4322@114# 3.369



TABLE VI. Pred tates for thenr51 fixed values. First entry, SLNE; second entry, P1NE;
third entry, ULNE. umbers in square brackets indicate the powers of 10 by which the values
are to be multiplied

State

Ref. data

3 17 19 21

23.1281@22# 22# 7.6835@23# 9.7561@10# 7.9801@12#

4s 23.1281@22# 22# 7.0364@23# 6.6540@10# 7.9182@12# 23.8615@22#

24.5159@0# 113# 1.8264@117# 2.3537@119# 22.0012@122#

22.0004@22# 22# 22.0164@22# 22.0189@22# 22.0213@22#

5p 22.0004@22# 22# 22.0164@22# 22.0189@22# 22.0211@22# 22.0373@22#

21.6002@21# 11# 3.8741@13# 8.8073@14# 24.2055@16#

21.3890@22# 22# 21.3896@22# 21.3897@22# 21.3897@22#

6d 21.3890@22# 22# 21.3896@22# 21.3897@22# 21.3897@22# 21.3896@22#

24.4984@22# 22# 1.2175@23# 23.5582@21# 6.2833@10#

21.0204@22# 22# 21.0205@22# 21.0205@22# 21.0205@22#

7 f 21.0204@22# 22# 21.0205@22# 21.0205@22# 21.0205@22# 21.0204@22#

22.0119@22# 22# 21.0218@22# 21.0137@22# 4.6453@23#

27.8125@23# 23# 27.8126@23# 27.8126@23# 27.8126@23#

8g 27.8125@23# 23# 27.8126@23# 27.8126@23# 27.8126@23# 27.8125@23#

21.1748@22# 23# 27.8128@23# 27.8096@23# 27.6871@23#
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042105-12
icted partial sums of energy eigenvalues in atomic units~Patil potential! of the 2s to 6g s
In the last column are given the values obtained by Linga˚rd and Nielsen~Ref. @29#!. The n
.

Ea

5 7 9 11 13 15

23.1416@22# 23.1780@22# 23.2541@22# 23.3929@22# 23.6270@22# 23.9924@
23.1416@22# 23.1779@22# 23.2540@22# 23.3927@22# 23.6266@22# 23.9920@
24.5844@12# 1.0719@13# 1.6211@17# 22.4188@18# 21.4864@112# 23.1695@
22.0014@22# 22.0031@22# 22.0054@22# 22.0081@22# 22.0109@22# 22.0137@

22.0014@22# 22.0031@22# 22.0054@22# 22.0081@22# 22.0109@22# 22.0137@
22.3969@21# 23.2364@21# 23.3723@21# 21.3187@10# 6.5883@10# 9.0122@
21.3891@22# 21.3892@22# 21.3894@22# 21.3895@22# 21.3895@22# 21.3896@

21.3891@22# 21.3892@22# 21.3894@22# 21.3895@22# 21.3895@22# 21.3896@
23.8605@22# 23.1011@22# 22.4924@22# 22.0691@22# 21.7983@22# 21.6852@
21.0204@22# 21.0205@22# 21.0205@22# 21.0205@22# 21.0205@22# 21.0205@

21.0204@22# 21.0205@22# 21.0205@22# 21.0205@22# 21.0205@22# 21.0205@
21.4945@22# 21.2186@22# 21.0976@22# 21.0492@22# 21.0309@22# 21.0242@
27.8126@23# 27.8126@23# 27.8126@23# 27.8126@23# 27.8126@23# 27.8126@

27.8126@23# 27.8126@23# 27.8126@23# 27.8126@23# 27.8126@23# 27.8126@
29.0667@23# 28.1628@23# 27.9038@23# 27.8354@23# 27.8181@23# 27.8139@



TABLE VII. Pre tates for then56 fixed values. First entry, SLNE; second entry, P1NE;
third entry, ULNE. umbers in square brackets indicate the powers of 10 by which the values
are to be multiplie

State

Ref. data

3 5 17 19 21

1.3890@22 @22# 21.4580@22# 21.4952@22# 21.5466@22#

6s 21.3890@22 @22# 21.4580@22# 21.4952@22# 21.5465@22# 21.5945@22#

21.3854@11 @117# 7.7586@119# 23.2322@123# 2.6029@125#

21.3889@22 @22# 21.3957@22# 21.3970@22# 21.3983@22#

6p 21.3890@22 @22# 21.3956@22# 21.3970@22# 21.3982@22# 21.4106@22#

23.2630@21 @11# 24.1786@12# 4.6992@14# 2.4542@15#

21.3890@22 @22# 21.3896@22# 21.3897@22# 21.3897@22#

6d 21.3890@22 @22# 21.3896@22# 21.3897@22# 21.3897@22# 21.3896@22#

24.4984@22 @22# 1.2175@23# 23.5582@21# 26.2833@0#

21.3889@22 @22# 21.3890@22# 21.3890@22# 21.3890@22#

6 f 21.3889@22 @22# 21.3890@22# 21.3890@22# 21.3890@22# 21.3889@22#

21.6462@22 @22# 21.3890@22# 21.3888@22# 21.3612@22#

21.3889@22 @22# 21.3889@22# 21.3889@22# 21.3889@22#

6g 21.3889@22 @22# 21.3889@22# 21.3889@22# 21.3889@22# 21.3889@22#

21.3934@22 @22# 21.3889@22# 21.3889@22# 21.3889@22#
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042105-13
dicted partial sums of energy eigenvalues in atomic units~Patil potential! of the 6s to 6g s
In the last column are given the values obtained by Linga˚rd and Nielsen~Ref. @29#!. The n
d.

Ea

5 7 9 11 13 1

# 21.3896@22# 21.3914@22# 21.3952@22# 21.4021@22# 21.4137@22# 21.4317
# 21.3896@22# 21.3914@22# 21.3952@22# 21.4021@22# 21.4137@22# 21.4317
# 23.2002@13# 3.7823@16# 6.3944@18# 23.5738@111# 22.4322@114# 3.3695
# 21.3893@22# 21.3899@22# 21.3907@22# 21.3819@22# 21.3930@22# 21.3943

# 21.3893@22# 21.3899@22# 21.3907@22# 21.3918@22# 21.3930@22# 21.3943
# 29.8261@21# 22.6073@10# 26.3825@10# 21.5060@11# 24.2156@11# 22.6876
# 21.3891@22# 21.3892@22# 21.3894@22# 21.3895@22# 21.3895@22# 21.3896

# 21.3891@22# 21.3892@22# 21.3894@22# 21.3895@22# 21.3895@22# 21.3896
# 23.8605@22# 23.1011@22# 22.4924@22# 22.0691@22# 21.7983@22# 21.6852
# 21.3890@22# 21.3890@22# 21.3890@22# 21.3890@22# 21.3890@22# 21.3890

# 21.3890@22# 21.3890@22# 21.3890@22# 21.3890@22# 21.3890@22# 21.3890
# 21.4328@22# 21.3956@22# 21.3899@22# 21.3891@22# 21.3890@22# 21.3890
# 21.3889@22# 21.3889@22# 21.3889@22# 21.3889@22# 21.3889@22# 21.3889

# 21.3889@22# 21.3889@22# 21.3889@22# 21.3889@22# 21.3889@22# 21.3889
# 21.3890@22# 21.3889@22# 21.3889@22# 21.3889@22# 21.3889@22# 21.3889
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increases since the expansion parameter decreases. Th
fulness of SLNE is brought out more clearly forf and g
levels. One sees in Fig. 3 that for higher angular-momen
states the energy values of our shifted large-N computations
match the relative difference~RD! extremely well~the RD is
less than 1025% in the domainN>17! with a nice conver-
gence of the series expansion. In fact, the series expan
converges so quickly that the correction terms could be
glected. GivenN, the 1/n expansion gets worse whenl de-
creases despite the fact thatn58 is relatively high. The
ULNE method asymptotically diverges. A perusal of the d
ferent curves reveals that the starting point of the diverge
~i.e., the threshold orderNmax beyond which the expansio
ceases to converge! increases withl. Switching our attention
to Fig. 4, one sees that the percent errors increase in ge
beyondN520; in other words, the expansion diverges f
any kind of 1/N expansion.

FIG. 1. Plot of the percentage difference between our shi
1/N expansion~SLNE!, large-N expansion~ULNE!, 1/n expansion
~P1NE! eigenenergies, and Crandall reference data~Ref. @30#! vs
the number of firstN terms of the perturbation series for variou
values of quantum numbersn for l in the case of the Gaussia
potential. LPW denotes the limit of previous works and curves
drawn to guide the eye. The numbers on % axis are powers o
i.e., for example23[1023.
04210
use-

m

ion
e-

e

ral
r

~b! Let us now consider the case for which the orbi
quantum number is fixed atl 50, for the two potentials. Fig-
ures 5 and 6 show in general the same trends as previo
with, however, some marked differences. As evident for
ULNE scheme, the energies get worse whenn increases
since all partial sums contain terms which, for largen, be-
have at least liken. L has non dependence to diminish th
effects of the powers ofn in the numerator of the partia
sums. This large deviation indicates that we are out of
limit of applicability of ULNE. Likewise, the 1/n expansion
becomes less accurate asn increases. The observations see
to confirm the study of asymptotic of large orders of the 1n
expansion in Ref.@78#. As a result Popov and Sergeev foun
that the large orders increases as factorials which expl
why in many quantum-mechanical problems~e.g., the Patil
potential! a divergence occurs in the summation of the e

d

e
0,

FIG. 2. Plot of the percentage difference between our shif
1/N expansion~SLNE!, large-N expansion~ULNE!, 1/n expansion
~P1NE! eigenenergies, and Linga˚rd and Nielsen reference data~Ref.
@29#! vs the number of firstN terms of the perturbation series fo
various values of quantum numbersn for l in the case of the Pati
potential. LPW denotes the limit of previous works and curves
drawn to guide the eye. The numbers on % axis are powers of
i.e., for example23[1023.
5-14
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ergy series. From Figs. 5 and 6 we can see that, unlike
Patil potential, the percent errors for the Gaussian poten
increase withn in the shifted expansion. Hence, it seems t
the effects of the shift parameter inL, for s states particu-
larly, depend on the potential considered. The shifted 1N

FIG. 3. An illustration of the behavior of the percentage diffe
ence between our SLNE, ULNE, and P1NE eigenenergies
Crandall reference data~Ref. @30#! as a function of the orbital quan
tum numberl and the number of firstN terms of the perturbation
series for the fixedn58 principal quantum number in the case
the Gaussian potential. Curves are drawn to guide the eye.
numbers on % axis are powers of 10, i.e., for example23
[1023.
04210
he
al
t

expansion still predicts superior results.
~c! We turn to the case for which the radial quantu

number is fixed atnr53 when n and l increase simulta-
neously. Comparing our computations for SLNE and P1
with reference data, it clearly appears in Fig. 7 that givenN,
the results are more and more inaccurate with growingn and
l, i.e., n effects are superior to those ofl. However, the cor-
rections improve the accuracy of the energy. On the ot
hand, for ULNE n effects manifest themselves gradua
with the increase ofN and the decrease ofl. As already
described above, ULNE ceases to converge beyond the
Nmax.

From what precedes, it is observed that the SLNE exp
sion always shows an improvement over P1NE and ULN

d

he

FIG. 4. An illustration of the behavior of the percentage diffe
ence between our SLNE, ULNE, and P1NE eigenenergies and
gård and Nielsen reference data~Ref. @29#! as a function of the
orbital quantum numberl and the number of firstN terms of the
perturbation series for the fixedn56 principal quantum number in
the case of the Gaussian potential. Curves are drawn to guide
eye. The numbers on % axis are powers of 10, i.e., for exam
23[1023.
5-15



ac

d
s,
h
or
p

so
i

b
-
n
w

po-
f
,
t be
ost

udy
. It
F-

ses

an
e of

r-
Li

ey

r-
and
l

e
The

M. G. KWATO NJOCK et al. PHYSICAL REVIEW A 61 042105
As far as the Patil potential is concerned the former appro
in the case ofs andp states is in trouble for low-N values and
fails completely whenN increases, whereas P1NE an
ULNE are inapplicable. This explains that in what follow
we confine ourselves to a modification of the SLNE tec
nique to solve the problem of divergence for such unfav
able states. It is known that one could make use of appro
ate methods of divergent series such as Pade´ approximants
@36,109,111,113,114#, and Pade´-Hermite approximants@122#
to increase the precision of the results. In this paper we re
to the order-dependent HVHF-PMS method described
some detail in Sec. II. Our aim here is to test the claim
Maluendeset al. @86# of the accuracy and utility of this ap
proach for complicated potentials that are a superpositio
smoothly changing spherically potentials. To this end,

FIG. 5. An illustration of the behavior of the percentage diffe
ence between our SLNE, ULNE, and P1NE eigenenergies and
gård and Nielsen reference data~Ref. @29#! as a function of the
principal quantum numbern and the number of firstN terms of the
perturbation series for the fixedl 50 principal quantum number in
the case of the Patil potential. Curves are drawn to guide the
The numbers on % axis are powers of 10, i.e., for example23
[1023.
04210
h

-
-
ri-

rt
n
y

of
e

have applied for concreteness to the Patil and Hellmann
tentials the shifted 1/N expansion in which the principle o
minimal sensitivity~PMS! is incorporated. More precisely
we have restricted ourselves to bound states that canno
adequately described by the SLNE scheme, i.e., the m
unfavorable cases. To our knowledge, no explicit case st
of this type has been undertaken to substantiate this claim
should be noted that one of the shortcomings of the HVH
PMS method is that the computation time rapidly increa
with increasing the number of terms. The calculation ofEk

involves the derivativesV0
( i ) with 1< i<2k. Thus, it is ob-

vious that if one is not careful significant roundoff errors c
occur, for instance as early as the eighth term in the cas
the Patil potential. We have employedMATHEMATICA to

n-

e.

FIG. 6. An illustration of the behavior of the percentage diffe
ence between our SLNE, ULNE, and P1NE eigenenergies
Crandall reference data~Ref. @30#! as a function of the principa
quantum numbern and the number of firstN terms of the perturba-
tion series for the fixedl 50 principal quantum number in the cas
of the Gaussian potential. Curves are drawn to guide the eye.
numbers on % axis are powers of 10, i.e., for example23
[1023.
5-16
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avoid roundoff errors. Only the first several terms that
not affected by roundoff errors are quoted in Tables VIII a
IX. From the sequences so obtained one sees that the la
the order the more accurate our results and the less acc
those of SLNE if this latter is applicable. The numeric
magnitude of the HVHF-PMS calculated energies are q
satisfactory. Clearly, the order-dependent shift considera
enhances the accuracy of the energy eigenvalues. Final
would be instructive to check if, as suspected by Duttet al.
@103#, the discrepancies happen because the large-N effective
potential becomes shallow and its minimum shifts appre
bly from the minimum of the through potential. To see
more clearly, we have plotted in Fig. 8 the large-N effective
potential for the 2s ground state of the Patil potential fo

FIG. 7. An illustration of the behavior of the percentage diffe
ence between our SLNE, ULNE, and P1NE eigenenergies
Crandall reference data~Ref. @30#! as a function of the orbital quan
tum numberl and the number of firstN terms of the perturbation
series for the fixednr53 radial quantum number in the case of t
Gaussian potential. Curves are drawn to guide the eye. The num
on % axis are powers of 10, i.e., for example23[1023.
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TABLE IX. Predicted partial sums of energy eigenvalues in atomic units~Hellmann potential! as a
function of the screening parameterC for B525. First entry, HVHF-PMS; second entry, SLNE. In the la
column are given the variational results of Adamowski~Ref. @43#! converted to our scale of units. Asterisk
in the second entry correspond to divergent results and the abbreviations~n.a.! indicate nonapplicability of
the SLNE method.

C State

Na Ref. data

4 6 8 10 12 14

0.5 4s 20.3232 20.0238 20.0851 20.1077 20.1184 20.1208 20.1215
20.2498 20.3521 20.6607 21.5740 24.3660 213.1900

4p 0.3812 0.6287 20.4808 20.8708 20.9919 20.1021 20.1031
20.1311 20.1375 20.1420 20.1733 20.1771 20.3658

4 f 20.0316 20.0326 20.0332 20.0335 20.0338 20.0340 20.0340
n.a n.a n.a n.a n.a n.a

2 2p 0.8750 0.0743 21.0250 20.1204 20.1373 20.1939 20.1910

* * * * * *
3p 20.0537 20.0553 20.0555 20.0557 20.0584 20.0764 20.0727

* * * * * *
3d 20.0534 20.0553 20.0555 20.0556 20.0556 20.0559 20.0557

n.a n.a n.a n.a n.a n.a
4d 20.0311 20.0313 20.0314 20.0311 20.0317 20.0318 20.0313

n.a n.a n.a n.a n.a n.a
4 f 20.0311 20.0312 20.0313 20.0313 20.0312 20.0312 20.0312

n.a n.a n.a n.a n.a n.a
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several values ofM corresponding toEM(r 0)50. The behav-
ior of the diagrams seems to indicate that the poor res
may not be attributed to that situation contrary to what w
suspected in Ref.@103#.

IV. CONCLUDING REMARKS

The purpose of this work was first to explore the credib
ity of the three schemes SLNE, P1NE, and ULNE when h

FIG. 8. Schematic diagrams of the behavior of the Patil poten
~right-hand scale! and the large-N effective potential~left-hand
side! corresponding to the appropriated roots ofEM(r 0)50 (M
52,5,13,19) for the ground state 2s. BothV(r ) andr are in atomic
units.
04210
ts
s

-
h

orders of the perturbation theory are taken into account,
second to test the effectiveness of the HVHF-PMS approa
To this end, we have derived explicitly algebraic recursi
relations for the coefficientsE by applying the hypervirial
1/N expansion together with the Hellmann-Feynman th
rem. These recurrence formulas, convenient for comp
calculations, make it possible to evaluateE for arbitrarily
high orders for any kind of 1/N expansion. The analytic ex
pressions for these coefficients coincide with those obtai
by Stepanov and Tutik from a method based on a semic
sical interpretation of the 1/N expansion. Then we have use
these formulas to study the applicability of each scheme c
cerning the Gaussian and Patil potentials, which are
smoothly changing potential and a superposition of sim
potentials, respectively. Owing to limited computational f
cilities and order increasing roundoff errors, we have be
able to handle no more than 21 perturbation corrections.
find that the shifted 1/N expansion offers in general a larg
improvement over P1NE and ULNE for energy eigenvalu
In other words, there is a distinct advantage in using SL
over the latter. The 1/n expansion is found to be useful onl
for the simple Gaussian potential. The iteration proced
converges and the correction terms improve considerably
numerical results. In the case of the Patil potential, the co
ficients Ek grow sharply and P1NE is not applicable. Th
apparently raises doubt about the applicability of that te
nique to complicated potentials. It also emerges from
computations that ULNE diverges whatever the type of p
tential considered—however, less strongly than P1NE for
Patil potential. Large-order cal-

l
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culations here are useless unless an appropriate resumm
technique is used. SLNE results compare remarkably w
with those of Crandall. The situation is reversed and app
ciable discrepancy of the SLNE results occurs for thes andp
states. Particularly for thes states, SLNE fails completely
from which it follows that caution is necessary in usin
SLNE. To solve the problem of divergence, we have inc
porated in the shifted 1/N expansion the principle of minima
sensitivity as suggested by Maluendeset al. In order to bring
out the improvement of this approach, we have applied
formulas thus derived to the Patil and Hellmann potentia
leaving the other cases for later investigations. The ene
values obtained are in good agreement with reference
which proves the usefulness of the HVHF-PMS approach
such unfavorable cases. These results are quite encoura
We are at present using that modified shifted 1/N expansion
for extensive applications to central potentials especially
low-lying states. We are also performing the summabi
studies of the expansions presented in this paper as we
the acceleration of their convergence@123#. This work will
be reported later in a forthcoming paper.
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APPENDIX A

For purposes of comparison with the analytical resu
derived from our HVHF method, we apply the convention
04210
tion
ll
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Rayleigh-Schro¨dinger perturbation theory to Eq.~9! trun-
cated to calculate the energy eigenvalues toO(g4). In as
much as the formulas up to and includingO(g6) have long
been known@81#, we present explicitly only the next add
tional terms. We consider the Schro¨dinger equation

H 2
1

2

d2

dx2 1
1

2
v2x21«01W~x!J x~x!5Êx~x!, ~A1!

where terms of ordergi ( i<6) are retained in the perturba
tion potential,

W~x!5g~«1x1«3x3!1g2~«2x21«4x4!

1g3~d1x1d3x31d5x5!1g4~d2x21d4x41d6x6!

1g5~g3x31g5x51g7x7!1g6~g4x41g6x61g8x8!,

~A2!

with the following notations:

«05 1
2 b01b~0!, b~0!5 1

2 j0 , «15 1
2 b1 , «25 1

2 b2 ,

«35 1
2 a1 , «45 1

2 a2 , ~A3!

d15 1
2 j1 , d25 1

2 j2 , d35 1
2 b3 , d45 1

2 b4 ,

d55 1
2 a3 , d65 1

2 a4 , ~A4!

g35 1
2 j3 , g45 1

2 j4 , g55 1
2 b5 , g65 1

2 b6 ,

g75 1
2 a5 , g85 1

2 a6 , ~A5!

Ê5r 0
2g2~Ē2E0!'(

k51

6

Ê~k!. ~A6!

The calculation which is carried out to sixth order in th
potential, using the general formulas, yields
Ê~0!5«01~nr11/2!v, ~A7!

Ê~1!5Wnn5g2b~1!1g4c~1!1g6d~1!, ~A8!

Ê~2!5(
iÞn

WniWin

lni
5g2b~2!1g4c~2!1g6d~2!, ~A9!

Ê~3!5 (
i , j Þn

WniWi j Wjn

lniln j
2Ê~1!(

iÞn

WniWin

~lni!
2 5g4c~3!1g6d~3!, ~A10!

Ê~4!5 (
i , j ,kÞn

WniWi j WjkWkn

lniln jlnk
22Ê~1! (

i , j Þn

WniWi j Wjn

~lni!
2ln j

2~Ê~1!!2(
iÞn

WniWin

~lni!
3 2Ê~2!(

iÞn

WniWin

~lni!
2 5g4c~4!1g6d~4!,

~A11!
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Ê~5!5 (
i , j ,k,lÞn

WniWi j WjkWklWln

lniln jlnklnl
2Ê~1! (

i , j ,kÞn

WniWi j WjkWkn

lniln jlnk
S 2

lni
1

1

ln j
D

2Ê~3!(
iÞn

WniWin

~lni!
2 2Ê~2! (

i , j Þn

WniWi j Wjn

lniln j
S 1

lni
1

1

ln j
D1~Ê~1!!2 (
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WniWi j Wjn

lniln j
S 2

~lni!
2 1

1

~ln j!
2D

12Ê~1!Ê~2!(
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WniWin

~lni!
2 2~Ê~1!!3(

iÞn

WniWin

~lni!
4

5g6d~5!, ~A12!

Ê~6!5 (
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lniln jlnklnllnm
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S 1
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S 1

lni
1

1
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lniln jlnk
S 2

~lni!
2 1
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~ln j!
2 1
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2 1

1

lniln j
D
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WniWin
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3 1Ê~1!Ê~2! (

i , j Þn

WniWi j Wjn

lniln j
S 2

~lni!
3 1

2

~ln j!
2 1

1

lniln j
D12Ê~1!Ê~3!(

iÞn

WniWin

~lni!
3

2~Ê~1!!3 (
i , j Þn

WniWi j Wjn

lniln j
S 2

~lni!
3 1

1

~ln j!
3 1

1

~ln j!
2lni

D23~Ê~1!!2Ê~2!(
iÞn

WniWin

~lni!
4

5g6d~6!, ~A13!

with l i j 5Êi
(0)2Êj

(0) , Wi j 5^ i uWu j &. Substituting these expressions in Eq.~A6! and rearranging in powers ofg we arrive at

Ē5 (
k50

4

Ēk , ~A14!

where

Ē05E0 , Ē15
1

2r 0
2g2 @~112nr !v1b0#, ~A15!

Ē25
1

r 0
2 (

i 50

2

b~ i !, Ē35
g2

r 0
2 (

i 50

4

c~ i !, Ē45
g4

r 0
2 (

i 50

6

d~ i !. ~A16!

The coefficientsb( i ) andc( i ) ( i>1) are listed in Ref.@124#. Omitting the algebraic complexities the sought new coefficie
in the contributionĒ4 are

d~1!53~112nr12nr
2!g̃415~318nr16nr

214nr
3!g̃6135~318nr110nr

214nr
312nr

4!g̃8 , ~A17!

d~2!5
1

v
@210~5116nr122nr

2112nr
316nr

4!«̃3g̃7110~112nr !~13114nr114nr
2!«̃3g̃5

16~112nr !d̃1d̃312~11130nr130nr
2!«̃3g̃3112~112nr12nr

2!«̃4d̃212d̃1
2

170~112nr !~312nr12nr
2!«̃1g̃712~112nr !«̃2d̃2130~112nr12nr

2!«̃1g̃5

112~112nr12nr
2!«̃2d̃416~112nr !«̃1g̃3130~112nr !~312nr12nr

2!«̃2d̃6

14~112nr !~21117nr117nr
2!«̃4d̃4160~12135nr146nr

2122nr
3111nr

4!«̃4d̃4

130~112nr12nr
2!d̃1d̃51~11130nr130nr

2!d̄3
2110~112nr !~13114nr114nr

2!d̃3d̃5

1~44911400nr12030nr
211260nr

31630nr
4!d̃5#, ~A18!
042105-20
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d~3!5
1

v2 @4«̃1
2d̃218«̃1«̃2d̃1124~112nr !«̃1

4d̃4136~112nr !«̃1«̃2d̃212~112nr !«̃2
3136~112nr !«̃1«̃3d̃2

136~112nr !«̃2«̃3d̃1148~112nr !«̃1«̃4d̃11180~112nr12nr
2!«̃1

2d̃6

1240~112nr12nr
2!«̃1«̃2d̃5148~112nr12nr

2!«̃2
2«̃4116~11130nr130nr

2!«̃2«̃3d̃3

18~11130nr130nr
2!«̃3

2d̃218~31178nr178nr
2!«̃1«̃3d̃418~31178nr178nr

2!«̃1«̃4d̃3

18~31178nr178nr
2!«̃3«̃4d̃11100~112nr !~13114nr114nr

2!«̃2«̃3d̃5

120~112nr !~21117nr117nr
2!«̃2«̃4

2136~112nr !~19125nr125nr
2!«̃3

2d̃4

172~112nr !~19125nr125nr
2!«̃3«̃4d̃3160~112nr !~35134nr134nr

2!«̃1«̃3d̃6

112~1111347nr1472nr
21250nr

31125nr
4!«̃4

3140~112nr !~47145nr145nr
2!«̃1«̃4d̃5

120~32311125nr11668nr
211086nr

31543nr
4!«̃3

2d̃6124~47411625nr12430nr
211610nr

31805nr
4!«̃3«̃4d̃5#,

~A19!

d~4!52
1

v3 @144~11130nr130nr
2!«̃1«̃3

2d̃3116«̃1
2«̃2

2124~112nr !~5611685nr1685nr
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2

132~31178nr178nr
2!«̃1

2«̃4
2180~112nr !«̃1

3d̃51216~112nr !«̃1
2«̃3d̃31180~112nr !«̃1«̃2

2«̃3

18«̃1
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2!«̃2

2«̃3
21240~112nr !«̃1

2«̃2«̃4

140~491114nr1114nr
2!«̃1

2«̃3d̃5196~31178nr178nr
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2«̃3d̃1

1120~112nr !~1221145nr1145nr
2!«̃1«̃3

2d̃5148~11130nr130nr
2!«̃3
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2!«̃2«̃3
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2!«̃3

3d̃3
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3124945nr
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2«̃4
2
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4!«̃3

3d̃5#, ~A20!
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2!«̃1«̃2«̃3
311056~112nr !«̃1
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4«̃4

1288~531138nr1138nr
2!«̃1

2«̃3
2«̃4148~112nr !~181712515nr12515nr

2!«̃1«̃3
3«4

148~112nr !~181712515nr12515nr
2!«̃1«̃3

3«41540~112nr !~31147nr147nr
2!«̃2«̃3

4

11512~112nr !«̃1
2«̃2«̃3

2112~15 169159 385nr198 160nr
2177 550nr

3138775nr
4!«̃3

4«̃4#, ~A21!

d~6!52
1

v5 @144«̃1
4«̃3

213024~112nr !«̃1
3«̃3

312304~11130nr130nr
2!«̃1

2«̃3
4

13240~112nr !~31147nr147nr
2!«̃1«̃3

514~39 709116 2405nr127 8160nr
2

123 1510nr
3111 5755nr

4!«̃3
6#, ~A22!

where

«̃ j5
« j

~2v! j /2 , d̃ j5
d j

~2v! j /2 , g̃ j5
g j

~2v! j /2 .

As an illustration with the class of power-law potentialsArv, we display below the result of the foregoing equation~A14! in
the case of the shifted 1/N expansion
042105-21
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Ē5 k̄~n22!/~n12!~4nA!2/~n12!H k̄~n12!

8n
2

~n11!~n22!

123k̄2An12
S 12~116nr16nr

2!An12k̄2~n11!~n22!

2~7n2231n262!nr2~5n2229n258!~312nr !nr
22
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k̄An12
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32 400
~317n42166n3

21923n2215 364n217 164!1
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1
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APPENDIX B

For the sake of comparison with the formulas of our HVHF method and those of the RSPT, we recall here the
recursion relations derived by Stepanov and Tutik@90# in the framework of their semiclassical approach for the computa
of the energy eigenvalues. We set herem51. The\ expansion for the bound energy is represented in the form

E5 (
k50

`

Ek\
k, ~B1!

where

E05V01
L2

8r 0
2 , E15

1

2 H g̃11~112nr !
v0

r 0
J , ~B2!

Ek5
1

2 H g̃k1
1

r 0
C2k22

k21 2 (
i 51

k21

(
j 50

2k22

Cj
i C2k222 j

k2 i 22 (
j 51

2k22

Cj
0C2k222 j

k2 i J , k>2 ~B3!

where the coefficientsCj
i are expressed as follows:

C0
052v0 , C1

052
v0a1

2
, ~B4a!

Ci
055 2

1

2C0
0 S 2(

j 51

p

Cj
0Ci 2 j

0 2~Cp
0!22v0

2ai D , i 52p

2
1

2C0
0 S 2(

j 51

p

Cj
0Ci 2 j

0 2v0
2ai D , i 52p11, p51,2, . . . .

~B4b!

It should be noted that in their paper Stepanov and Tutik@90# have omitted the global factor 1/2 in Eq.~23! which corresponds
to Eq. ~B4b!,

C0
15

nr

r 0
, Ci

15
1

2C0
0 H ~11 i !F ~21! i g̃12
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r 0
Ci

0G22(
j 51
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0Ci 2 j

1 J , i 51,2,3, . . . ~B5a!
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0 S 2i 23
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i 2122(
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i 2 j1~C0
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2C0
0 S 2i 23
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C0
j C0

i 2 j D , i 52p11, p51,2, . . .

. ~B5b!
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Finally

C2i 22
i 50, ~B6a!

Cj
i 5

1

2C0
0 H ~31 j 22i !F ~21! ju~ j 22i 12!g̃ i2

1

r 0
Cj

i 21G22(
s51

i
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0Cj 2s

1 2 (
q51

i 21

(
s50

j

Cs
0Cj 2s

i 2qJ , i>2, j 51,2,3, . . . .

~B6b!

The quantitiesg̃ i , v0 , andak are written as follows:

g̃15
AL

2r 0
2 , g̃25

B

r 0
2 , g̃ i50, i>3, ~B7a!

v0
252V213V15

4L2

r 0
2 v2, ~B7b!

ak5
2

v0
2 S Vk121~21!k

k13

2
V1D , Vk5

r 0
kV0

~k!

k!
, k51,2, . . . . ~B7c!

In Ref. @90# there is a misprint in the expression ofak , i.e.,Vk should be replaced byV1 . The first coefficientsak are related
to the parameterek , dk , andgk by

a15h«3 , a25h«4 , a35hd5 , a45hd6 , a55hg7 , a65hg8 , h5
1

4Lv2 . ~B8!
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