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Dynamical symmetry, integrability of quantum systems,
and general character of quantum regular motion
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The notion of quantum-classical correspondence is carefully investigated in order to prepare firm grounds
for studying the spatiotemporal evolution of quantum states in the same spirit as for corresponding classical
cases. Three relevant problems,~1! the integrability of dynamical equations of quantum systems,~2! the initial
minimum uncertainty states one-to-one correspondent to classical phase points, and~3! the effective Planck
constants for systems having analogous dynamical properties but exhibiting different quantum effects, have
been successfully resolved. Then the solutionrg(t) of the dynamical equation of a quantum integrable system
is shown to be expressed as an analytical functional of the initial minimum uncertainty staterg

0 varying
smoothly withg and t. Such a general character of the quantum regular motion serves as a reference for the
study of quantum irregular motion under the action of perturbed Hamiltonian.

PACS number~s!: 03.65.2w, 05.45.2a
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I. INTRODUCTION

The state of motion of a classical system described by
solutionxI (t) of Hamilton canonical equations at any insta
t corresponding to a given initial statexI 0 can be generally
expressed as the mapxI 0→xI (t)5 f (xI 0 ,t). If the map is a
symplectic diffeomorphic one, the motion is stable with r
spect to slight alterations of the initial state and is thus re
lar. But in case the symplectic diffeomorphism of the map
strongly violated, the motion is exponentially instable w
slight alterations of the initial state and is thus chaotic.

In principle, the state of motion of a quantum syste
could be studied in a corresponding way. But due to
principle of uncertainty, both the initial staterg

0

5uCg
0&^Cg

0u and the staterg(t)5uCg(t)&^Cg(t)u at any in-
stantt are of statistical nature,uCg(t)& should have the wave
nature and satisfy the principle of superposition. The Sch¨-
dinger equation governing the evolution of the stateuCg(t)&
should be linear in nature. Thus it seems impossible fo
quantum system to have its chaotic motion with exponen
instability as in the corresponding classical case@1–3#.

However, Arnold has pointed out in his monograph@4#:
‘‘The basic concepts and theorems of Hamiltonian mech
ics are invariant under the group of symplectic diffeom
phisms acting on the phase space,’’ and that ‘‘The Ham
tonian point of view allows us to solve completely a series
mechanical problems which do not yield solutions by oth
means. It has even greater value for the approximate met
of perturbation theory~celestial mechanics!, for understand-
ing the general character of motion in complicated mecha
cal systems~ergodic theory, statistical mechanics! and in
connection with other areas of mathematical physics~optics,
quantum mechanics, etc.!’’ As the framework of quantum
mechanics is mainly formulated on the basis of Hamilton
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mechanics, in principle it is not impossible to study t
spatio-temporal evolution of quantum states for given init
states to see whether or not the stateuCg(t)& can be ex-
pressed as an analytical functional ofuCg

0& varying smoothly
with g and t.

But due to historical reasons, quantum-mechanical stu
have mainly concentrated on stationary problems as we
transition rates per unit time. As to the study of spat
temporal evolution of quantum states in parallelism to cor
sponding classical cases, there still exist problems to be
solved.

~1! The integrability of dynamical equations of quantu
systems.

~2! The initial minimum uncertainty states one-to-one co
respondent to classical phase points.

~3! The effective Planck constants for systems hav
analogous dynamical properties but exhibiting differe
quantum effects.

We shall first make efforts to resolve these problems. T
integrability of dynamical equations of classical and qua
tum systems can be shown explicitly if the Hamiltonian
the system has already been expressed in actions alone
from angle variables. But it is difficult to ascertain wheth
or not one can find an appropriate canonical transforma
to reduce the Hamiltonian of a general system to the requ
form. In quantum mechanics, it is even more difficult b
cause basic canonically conjugate dynamical variables
represented by incommutable operators. Even if the class
canonical transformation between (pI ,qI ) and (II,uI ) has al-
ready been found, it is still unable to obtain the correspo
ing quantum canonical transformation straightforwardly@5#.
If one tries to study the problems from the topological pro
erty of quantum state space as in the Liouville theorem@4#,
one will immediately face the fundamental difficulty that th
general property of quantum state space known to us is
the mathematical property of Hilbert space. For a few spe
systems, it has been known since the early days that
©2000 The American Physical Society04-1
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quantum state space can be spanned by a set of orthono
eigenstates of the corresponding stationary Schro¨dinger
equation either obtained by solving the differential equat
as a boundary condition problem or obtained by solving
problem algebraically@6#. Later, more quantum systems
physical interest have been studied in this way@7# and such
special functions have been studied systematically from
viewpoint of Lie algebra@8–11#. Since the interacting boso
model proposed by Arima and Iachello@12# enables one to
carry out comparative spectroscopic studies for a serie
nuclei, several authors have tried to define the quantum
tegrability with dynamical groups having several subgro
chains@13–16#. But the correspondence between the clas
cal integrability defined by the Liouville theorem and th
quantum integrability temporarily defined in such a way h
not yet been established.

After analyzing these previous works, we see that in or
to resolve the problem of quantum integrability one has
start from known quantum integrable systems and charac
ize their relevant properties algebraically, such that the c
dition for existence of the required quantum canonical tra
formation for operators and the corresponding class
canonical transformation for dynamical variables can be
pressed with analogous analytical relations. Moreover,
obtained results for a special integrable system can be rea
extended to a class of systems with a group of Lie trans
mations@17# keeping the relevant algebraic property inva
ant. Preliminary results have already been reported@18#. We
shall study the problem in detail in this article by starting o
discussions from a three-dimensional isotropic harmonic
cillator in Sec. II and extend the discussions to more gen
three-dimensional oscillators having the same kind of bou
ary conditions in Sec. III.

Owing to the uncertainty principle in quantum mechani
it is not possible to consider generally the corresponde
between quantum state space and the classical phase s
But we have pointed out previously@19# for integrable sys-
tems, II are first integrals of motion, classical invariant to
with definite II and any value ofuI just correspond to simul
taneous orthonormal eigenstates ofII with perfectly unde-
fineduI . At the same time, the ground state of the system
the minimum uncertainty, while the displaced ground sta
having the minimum uncertainty too can thus be taken as
one-to-one correspondence of classical phase points. U
such states as initial states for solutions of quantum dyna
cal equations, the spatiotemporal evolution of quantum st
can be studied in the same spirit as for the correspond
classical case. This problem is studied in detail in Sec. I

In the previous paragraph, we have taken the displa
ground state of an integrable system as the one-to-one
respondence of the classical phase points. As classical
cannot be attained straightforwardly with the univer
Planck constant, it implies that the minimum uncertain
state here must be characterized with effective Planck c
stants for systems having analogous dynamical properties
exhibiting different quantum effects. By making appropria
scaling transformations, dynamical equations for thr
dimensional isotropic harmonic oscillators with different i
ertia masses and potential strengths can be expressed in
04210
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in the same form but the commutation relations for ba
canonically conjugate variables must be expressed with
ferent effective Planck constants. This problem is explain
in detail in Sec. II.

With these three problems resolved, the quantum dyn
ics can be studied in precisely the same way as in class
dynamics. However, we shall restrict ourselves to disc
sions on quantum regular dynamics in this article. Gene
discussions are given in Sec. IV, numerical illustrations
given in Sec. V. Finally, a brief summary is given in the la
section.

II. DYNAMICAL SYMMETRY ALGEBRA
AND LIOUVILLE’S THEOREM
ON INTEGRABLE SYSTEMS

We shall study the problem of quantum integrability
this section by taking the special integrable system,
three-dimensional isotropic oscillator, as the starting po
The discussions consist of three steps:~1! to obtain indepen-
dent sets of raising and lowering operators as simultane
solutions of eigenequations of first integrals of motion su
that a complete basis set of orthonormal states for the qu
tum state space can be found@20#, ~2! to express the condi
tion for completeness of the basis set generally with a clo
Lie algebra, and~3! to find the quantum canonical transfo
mation between the conjugate pair of raising and lower
operators and action-angle variables according to the
tained closed Lie algebra. Moreover, in order to show
quantum-classical correspondence explicitly, the sca
transformations for oscillator systems with different pa
metric quantities are first performed such that the fundam
tal Poisson brackets for canonical conjugate variables
expressed with different effective Planck constants.

The Hamiltonian of the three-dimensional isotropic ha
monic oscillator is of the form

H05
1

2m (
j 51,2,3

pj
21

mv2

2 (
j 51,2,3

qj
2 , ~2.1a!

the commutation relations betweenqj andpj are

@qj ,pj #5 i\, ~ j 51,2,3!. ~2.1b!

The dynamical equations are

i\
dqj

dt
5@qj ,H0#, i\

dpj

dt
5@pj ,H0#, ~ j 51,2,3!.

~2.1c!

If we carry out the scaling transformations by referring to
certain oscillator system with finite frequencyv0 and taking
Amv0\, (v0 /v)A\/mv0, and (v0 /v)1/v0 as units of
pj , qj , and t, respectively, Eqs.~2.1a! and ~2.1b! will be
expressed in dimensionless form as
4-2
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H0

\v0

5
1

2
(

j 51,2,3 F S pj

Amv0\
D 2

1S qj

S v0

v
DA \

mv0

D 2G
~2.2a!

and

F qj

S v0

v
DA \

mv0

,
pj

Amv0\G5 i S v

v0
D , ~ j 51,2,3!.

~2.2b!

While the dynamical equations become

i S v

v0
D

dS qj

S v0

v
DA \

mv0

D
d~vt !

5F qj

S v0

v
DA \

mv0

,
H0

\v0G ,

i S v

v0
DdS pj

A\mv0
D

d~vt !
5F pj

A\mv0

,
H0

\v0
G , ~ j 51,2,3!,

~2.2c!

which remain of the original form. In fact, the scaling tran
formations here are just special canonical transformati
which keep the form of dynamical equations unaltered.

Now we see that with the help of an arbitrary chos
oscillator system with finite frequencyv0, quantum effects
of oscillator systems with different frequenciesv can be
compared with each other while the quantityv/v0 plays the
role of effective Planck constant. For convenience, we s
denoteH0 /\v0 , pj /Am\v0, qj /(v0 /vA\/mv0), vt, and
v/v0 simply asH0, pj , qj , t, and\ afterwards, such that

H05
1

2 (
j 51,2,3

~qj
21pj

2!, ~2.3a!

@qj ,pj #5 i\, ~ j 51,2,3! ~2.3b!

dqj

dt
5@qj ,H0#,

dpj

dt
5@pj ,H0#, ~ j 51,2,3!.

~2.3c!

This system has at the same time three different set
first integrals of motion. In the first case, the system can
regarded as composed of three uncoupled simple harmo
oscillators. The first integrals of motion in involution are

I j5
1

2
~qj

21pj
2!, ~ j 51,2,3!. ~2.4!

We can find immediately the raising and lowering operat
04210
s

ll

of
e
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s

bj
†5A 1

2\
~qj2 ip j !, bj5A 1

2\
~qj1 ip j !, ~2.5!

as simultaneously eigensolutions of eigenequations
I k51,2,3 with different eigenvalues@20#. The pairs of conju-
gate operatorsbj

† ,bj together with I j form a Heisenberg
Weyl algebra,

1

\
@ I j ,bj

†#5bj
† ,

1

\
@ I j ,bj #52bj , @bj

† ,bj #51,

~ j 51,2,3!. ~2.6!

Then the general simultaneous orthonormal eigenstate
I k51,2,3 are

ufm1m2m3

(I ) &5Cm1m2m3

(I ) ~b1
†!m1~b2

†!m2~b3
†!m3u0&,

b1u0&5b2u0&5b3u0&50. ~2.7!

The closed Lie algebra for this case is just the direct sum
these three subalgebras.

In the second case, the system can be regarded as
posed of two uncoupled subsystems, the first one consis
of the third degree of freedom is just a simple harmo
oscillator while the second one consisting of other two d
grees of freedom just behaves as an axially isotropic h
monic oscillator. The closed Lie algebra for this case is
direct sum of subalgebras of these two uncoupled s
systems. The subalgebra of the first subsystem has alr
been considered. For the second subsystem, the first inte
of motion in involution are

L35q1p22q2p1 , JII 5
1

2 (
j 51,2

~qj
21pj

2!. ~2.8!

The first integralL3 characterizes the axial symmetry of th
Hamiltonian of the subsystem, while the first integralJII
which commutes withL3 just characterizes the motion o
such a subsystem with axial symmetry. We can find rais
and lowering operators

1

A2
~b1

†6 ib2
†!,

1

A2
~b17 ib2!;

~2.9!
1

2A2
(

j 51,2
bj

†bj
† ,

1

2A2
(

j 51,2
bjbj ,

as simultaneous solution of eigenequations ofL3 and JII
with different eigenvalues. These raising and lowering o
erators together with corresponding integrals of motion fo
Lie subalgebras

H h~4!:
1

2\
~JII 6L3!,

1

A2
~b1

†6 ib2
†!,

1

A2
~b17 ib2!,1J ,

~2.10a!
4-3
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H so~2,1!:
1

2 (
j 51,2

S bj
†bj1

1

2D ,
1

2A2

3 (
j 51,2

~bj
†bj

†!,
1

2A2
(

j 51,2
~bjbj !J . ~2.10b!

Noticing that L3 commutes with 1/2A2( j 51,2(bj
†bj

†),
1/2A2( j 51,2(bjbj ) but JII does not commute with
1/A2(b1

†6 ib2
†), 1/A2(b17 ib2), the first integral of motion

L3 corresponding to the axial symmetry constraining sho
be taken as an intrinsic property and fixed first before c
sidering the motion of this subsystem with axial symmet
The closed Lie subalgebra of this subsystem should be ta
as the semidirect sum of the Heisenberg alge
$b1

† ,b1 ,b2
† ,b2

† ,1% and

$so~2!:L3% % H so~2,1!:
1

2 (
j 51,2

S bj
†bj1

1

2D ,
1

2A2

3 (
j 51,2

~bj
†bj

†!,
1

2A2
(

j 51,2
~bjbj !J .

The corresponding simultaneous orthonormal eigenstate
the independent integrals of motion are

ufnln3

(II ) &5Cnln3

(II ) S 1

2A2
(

j 51,2
bj

†bj
†D x

3F 1

A2
~b1

†6 ib2
†!G y

~b3
†!n3u0&,

~n52x1y,l 56y,x50,1,2, . . . ,y50,1,2, . . . ,

n350,1,2, . . . ). ~2.11!

In the third case, the system can be regarded as a sp
cally isotropic harmonic oscillator. The Hamiltonian of th
system is invariant to the rotation about any axis, and t
can commute with the Casimir operatorL2 of the SO~3!
group. The three operators

L35~q1p22q2p1!,L25L1
21L2

21L3
2 ,

~2.12!

JIII 5
1

2 (
j 51,2,3

~pj
21qj

2!

form a complete set of commutable operators, the raising
lowering operators

1

A2
~b1

†6 ib2
†!,

1

A2
~b17 ib2!;

1

A2
~L11 iL 2!,

1

A2
~L12 iL 2!;

~2.13a!
1

2A2
(

j 51,2,3
~bj

†bj
†!,

1

2A2
(

j 51,2,3
~bjbj !
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can be obtained as simultaneous solutions of eigenequa
of L3 ,L2, andJIII with different eigenvalues. Noticing tha
L3 and L2 commute with 1/2A2( j 51,2,3(bj

†bj
†),

1/2A2( j 51,2,3(bjbj ) but L2 and JIII do not commute with
1/A2(b1

†6 ib2
†), 1/A2(b17 ib2), the first integrals of motion

L3 and L2 should be taken as intrinsic properties and fix
first before considering the motion of other two degrees
freedom. The closed Lie algebra for this case should be ta
as the semidirect sum of the Heisenberg alge
$b1

† ,b1 ,b2
† ,b2 ,b3

† ,b3,1% and

H so~3!:L3 ,
1

A2
~L11 iL 2!,

1

A2
~L12 iL 2!J

% H so~2,1!:
1

2 (
j 51,2,3

S bj
†bj1

1

2D ,
1

2A2

3 (
j 51,2,3

~bj
†bj

†!,
1

2A2
(

j 51,2,3
~bjbj !J .

~2.13b!

We can use the property of the lowest-weight state to fi
first the simultaneous orthonormal eigenstates ofJIII , L2,
andL3 with eigenvalues ofL2 andL3 equal tol ( l 11)\2 and
2 l\, respectively, and corresponding eigenvalue ofJIII be-
ing n\5(2x1 l )\

ufnl2 l
(III ) &5Cnl2 l

(III ) F 1

2A2
(

j 51,2,3
~bj

†bj
†!G xF 1

A2
~b1

†2 ib2
†!G l

u0&,

~n52x1 l ,x,l 50,1,2, . . . !. ~2.14!

Having obtained the lowest weight stateufnl2 l
(III ) & we can ob-

tain the general simultaneous orthonormal eigenstates

ufnlm
(III )&5Cnlm

(III )F 1

2A2
(

j 51,2,3
~bj

†bj
†!G x

3F 1

A2
~L11 iL 2!G yF 1

A2
~b1

†2 ib2
†!G l

u0&,

~n52x1 l ,x50,1,2, . . . ,l 50,1,2, . . . ,

m5y2 l ,y50,1,2, . . . 2l ). ~2.15!

We have given in the above three complete sets of ort
normal eigenstates of the integrable systemH0 correspond-
ing to three different cases. Though these are well-kno
results, we shall extract general characters from them in
der to characterize the integrability of the system genera

First, the three pairs of raising and lowering operators
obtained as simultaneous solutions of eigenequations
commutable dynamical variables with different eigenvalu
these three pairs of raising and lowering operators are in
pendent of each other. Thus they can be used as three
of conjugate dynamical variables in the place of the origi
pairs of basic canonically conjugate dynamical variables.
4-4
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DYNAMICAL SYMMETRY, INTEGRABILITY O F . . . PHYSICAL REVIEW A 61 042104
Second, any pair of raising and lowering operators
gether with corresponding first integrals of motion form
closed Lie algebra. This fact shows us that the orthonor
eigenstates ofH0 thus obtained form indeed a complete ba
set for the state space of the systemH0.

Due to the Jacobi identity between three operat
A1 ,A2 ,A3,

†@A1 ,A2#,A3‡1†@A2 ,A3#,A1‡1†@A3 ,A1#,A2‡50,
~2.16!

any pair of the raising and lowering operatorsG†,G and the
commutator@G†,G# form a closed Lie algebra if and only i

@G,G†#51 or 6
J

\
. ~2.17!

In the first case,

1

\
J5G†G1

1

2
,

1

\
@J,G†#5G†,

~2.18!
1

\
@J,G#52G, @G,G†#51,

the three operatorsJ,G†,G form the Heisenberg-Wyle alge
bra. In the latter two cases,

1

\
@J,G†#5G†,

1

\
@J,G#52G, @G,G†#56

J

\
,

~2.19!

the three operatorsJ,G†,G form so~2,1! and so~3! algebras,
respectively. Therefore the closed Lie algebras involved
be only of these three types.

Third, all these three types of closed Lie algebras conn
the pair of conjugate dynamical variablesG†,G directly to
the third Hermitian dynamical variableJ/\. Therefore it is
possible to takeJ as action variable and introduce in additio
the corresponding angle variableu,

1

i\
@u,J#51, ~2.20!

and express the transformation relation betweenG†, G and
J,u generally as

G5e2 iu f S J

\ D , G†5 f S J

\ Deiu, ~2.21!

where f (J/\) is a function to be determined. Inserting the
formulas to Eq.~2.17!, we have

FexpS \
]

]JD21G f 2S J

\ D5H 1,

6
J

\
.

~2.22!

Solving this equation we find
04210
-

al

s

n

ct

f S Jj

\ D55A
J

\
2

1

2
,

A7
J

\ S 12
J

\ D .

~2.23!

Inserting these results to Eq.~2.21! we have

u5H 1

2 H (2 i )lnF S J

\
21D 21/2GG†1H.c.G J ,

1

2H (2 i )lnF7
J

\ S 12
J

\ D 21/2GG†1H.c.G J .

~2.24!

Together with the relations,

J

\
5H G†G1

1

2

6@G,G†#,

~2.25!

we have obtained the transformation between (G,G†) and
(u,J). As pointed out before,G,G† are used as a pair o
conjugate dynamical variables and are expressed expli
with basic dynamical variables, the transformation betwe
(G,G†) and (u,J) can lead to the canonical transformatio
between (q,p) and (u,J).

With such a transformation between (q,p) and (u,J), the
Hamiltonian of the system can be expressed with action v
ables alone and independent of angle variablesu, thus the
first integrals of motion can be expressed only in terms
action variables. In the same spirit as the space-time sym
try, the integrable system is said to have a dynamical sy
metry in the state space and the corresponding closed
algebra will be designated as the dynamical symmetry a
bra and regarded as the characteristic of an integrable
tem.

Fourth, as discussions given before are based fully
algebraic relations expressed with quantum Poisson brac
the obtained results can be readily transferred into class
mechanics by expressing the algebraic relations with cla
cal Poisson brackets. While the quantum-classical corresp
dence can be explicitly exhibited with steadily decreas
effective Planck constants.

Fifth, in classical mechanics, the torus in the phase sp
of an integrable system invariant to the phase flow is de
nated with values of the first integrals of motion, while
quantum mechanics the subspace

rm5ufm&^fmu, ~2.26!

of the state space of an integrable system invariant to
Schrödinger flow must be designated by discrete eigenval
m of first integrals of motionJI .

The previous discussions for the three-dimensional iso
pic harmonic oscillator in principle can be extended to s
tems with more than three degrees of freedom or to m
complicated systems. The general concept is still valid th
But the admitted dynamical symmetry algebra is usually
given with the model system, it is essential to carry out
4-5
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technical work of finding out the dynamical symmetry alg
bra admitted by the model system. For example, the Ha
tonian of the electron in the hydrogen atom moving un
the Coulomb potential is invariant to SO~4! group transfor-
mations. Hence we must consider the correspondent SO~4!-
invariant subalgebra. By enlarging the SO~4! group to
SO~4,2! group, we have the required SO~2,1! subgroup with
generatorsL46, L45, andL56 @21# ~notations same as in Re
@21# have been used here!. The Schro¨dinger equation for the
hydrogen atom has an energy-dependent boundary cond
hence we must consider the Schro¨dinger equation itself in-
stead of the Hamiltonian of the hydrogen atom. Then, by fi
left-multiplying the Schrodinger equation by (L562L46), we
obtain an equation expressed linearly in group generatorsL56
and L46 of the SO~2,1! subgroup. In order to obtain boun
states of the hydrogen atom we can eliminate the term
volving L46 leaving the equation expressed withL56 alone
with a nonunitary transformation. In this way, we have o
tained the required SO~4!-invariant subalgebra in whichL56
plays the role of the action variable.

III. DYNAMICAL-SYMMETRY-PRESERVING „DSP… LIE
TRANSFORMATIONS AND INTEGRABLE CLASS

OF SYSTEMS HAVING THE SAME
DYNAMICAL SYMMETRY

It has been discussed in Sec. II that the integrability o
known integrable system can be profoundly characterized
its dynamical symmetry algebra, which enables one to
press the Hamiltonian in terms of actions alone free fr
angle variables. Thus the existence of first integrals of m
tion is closely related to the fact that the Hamiltonian of t
system is invariant to the rotation with respect to angle v
ables. The problem whether or not a class of systems h
the same dynamical symmetry as this system can thu
studied with the continuous transformation group wh
keeps the dynamical symmetry as its invariant property.
this purpose, we introduce an auxiliary Hamiltonian

H~l!5~12l!H01lH8, ~3.1!

whereH0 denotes the known integrable system as given
Eq. ~2.3a!, the commutation relation betweenqj and pj re-
mains the same, whileH8 denotes the three-dimension
quartic oscillator given as follows:

H85 (
j 51,2,3

1

2
~pj

21qj
2!1 (

j 51,2,3

a j

2
qj

41 (
j ,k51,2,3

g jkqj
2qk

2 .

~3.2!

Such a system has the same boundary condition as
systemH0, the state space can be spanned by same basis
as for the known integrable systemH0. In special case~I!
g jk50, (j ,k51,2,3), there does not exist any coupling b
tween the three degrees of freedom. In special case~II !, a1
5a25g12, g235g3150, the subsystem composed of th
first and second degrees of freedom has the isotropic p
erty and moves independently from another subsystem c
posed of the third degree of freedom. In special case~III !
a15a25a35g125g235g31, the whole system has th
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spherical isotropy. In such cases, the Hamiltonian can
expressed with action-angle variables determined fromH0

for the corresponding dynamical symmetry. However, due
the presence of quartic terms, the Hamiltonian of the wh
system or independent subsystems is not free from a
variables. Now the problem is just to eliminate the ang
variables there.

Since the dynamical symmetry algebra is expressed
direct and semidirect sum of corresponding subalgebras,
elimination of angle variables can be carried out for ea
degree of freedom independently. The Hamiltonian of
subsystem with a single degree of freedom originally re
ized as $An

0 :J0,G0†,G0% is now realized as
$An(l):J(l),G†(l),G(l)% where l denotes a paramete
varying continuously in a certain range of values. They c
be transformed with each other as

Am~l!5U~$An
0%,l!Am

0 U†~$An
0%,l!, ~3.3!

Am
0 5U†~$An~l!%,l!Am~l!U~$An~l!%,l!. ~3.4!

HereU($An
0%,l) is a unitary transformation

U~$An
0%,l!5exp@S~$An

0%,l!#, ~3.5!

S($An
0%,l) is an anti-Hermitian function expressed as pow

series of$An
0% andl, Eq. ~3.4! is just the inverse transforma

tion of Eq. ~3.3!.
Substituting the relation ~3.4! to the Hamiltonian

H($An
0%,l) we have

H~$An
0%,l!5U†~$An~l!%,l!H~$An~l!%,l!U~$An~l!%,l!

5H~$An~l!%,l!. ~3.6!

The Hamiltonian expressed in$An(l)% has a new form
H($An(l)%,l). With an appropriately chosen Lie transfo
mation, H($An(l)%,l) can be expressed withJ(l) alone
free from G†(l),G(l) or u(l). Though the hierarchy of
equations for determining the series expansion of the a
Hermitian generating function can be written down@15#, but
the explicit solution can hardly be found. We can only asc
tain its existence implicitly by using Kolmogorov’s supe
convergent perturbation@22#. Recently, Scherer@23# has ap-
plied the Kolmogorov’s superconvergent perturbation the
to the Hamiltonian operator in quantum mechanics. Wh
for our purpose we must apply the Kolmogorov’s superco
vergent series to the continuous dynamical-symme
preserving~DSP! Lie transformation@17#.

According to the algebraic relations of the subalgeb
given as Eqs.~2.15!–~2.17!, the HamiltonianH($An

0%,l) can
always be expressed as a Fourier series ofeimu. Hence
H($An

0%,l) can be written generally as

H~$An
0%,l!5H0~J0,l!1 (

p51,2, . . .
lVp~$An

0%!, ~3.7a!

Vp~$An
0%!5 (

m51,2, . . .
@~G0†!mvpm~J0!1H.c.#. ~3.7b!
4-6
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The elimination of terms involvingG0† and G0 can be car-
ried out in successive steps. In the first step, the Hamilton
originally expressed with$An

0% is expressed by$An
(1)(l)%,

terms involvingG (1)† and G (1) retained are reduced to th
order of magnitudeO(l2). In the second step the Hami
tonian originally expressed with$An

(1)(l)% is expressed by
$An

(2)(l)%, terms involvingG (2)† and G (2) retained are re-
duced to the order of magnitudeO(l4). In order to eliminate
terms involving G (n)† and G (n) associated withlp(p
52(n21),2(n21)11, . . . ,2n21) in thenth step, we take

U~$An
(n)~l!%,l!5expF (

p52(n21)

2n21

lpSp~$An
(n)~l!%,l!G ,

~3.8!

Sp~$An
(n)~l!%,l!

5 (
m51,2, . . .

@$G (n)†~l!%mupm„J
(n)~l!…2H.c.#.

~3.9!

Substituting Eqs.~3.8! and ~3.9! into ~3.6! and carrying out
the transformation explicitly, we have

U (n)H (n21)U (n)5H0
(n21)1 (

p52(n21)

2n21

lp$@Sp
(n) ,H0

(n21)#

1Vp
(n21)%1O~l2n!. ~3.10!

Because the anti-Hermitian generating function given by
~3.9! is of the similar form as the Hermitian perturbing ter
V(n21) given by Eq. ~3.7b!. The yet unknown functions
upm

(n)
„J(n)(l)… can be determined individually from Eqs

~3.10!

@Sp
(n) ,H0

(n21)#1Vp
(n21)50,

~3.11!
~p52(n21), 2(n21)11, . . . 2n21!.

After a straightforward calculation we have

upm
(n)
„J(n)~l!…5vpm

(n21)
„J(n)~l!…@\vpm

(n21)
„J(n)~l!…#21,

~p52(n21),2(n21)11, . . . 2n21!, ~3.12!

with

\vpm
(n21)

„J(n)~l!…

5H FexpS 2m\
]

]JD21GH0
(n21)~J!J

J5J(n)(l)

.

~3.13!

Since H0
(n21) is the Hamiltonian of the subsystem with

single degree of freedom or the whole system under defi
symmetry constrainings,\vpm

(n21)
„J(n)(l)… cannot vanish.

We have thus obtainedH (n)($An
(n)(l)%,l) which can be ex-

pressed again in the form of Eqs.~3.7a! and ~3.7b!, terms
04210
n
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te

involving G (n)† andG (n) retained are of the order of magn
tude O(l2n). For a sufficiently smalll1, the required Lie
transformation can always be found. With the notion of an
lytical extension, we can take the systemH(l5l8) instead
of H(l50) as reference to carry out the same kind of stu
By repeating such studies again and again, we can eventu
ascertain thatH(l51) is also an integrable system of th
same dynamical symmetry asH(l50) and is expressed
only with action variableJ(l) in the new realization

J~l!5U~$An
0%,l!J0U†~$An

0%,l!. ~3.14!

But we should notice that the Hamiltonian is generally
nonlinear function ofJ(l).

Since the eigenfunctions of the integrable Hamiltoni
H(l) are simultaneously eigenfunctions of action variab
in the new realization, the orthonormal eigenstates ofH(l)
are thus related to the corresponding orthonormal eigens
of H(l50) by the Lie transformationU($An

0%,l)

ufm~l!&5U~$An
0%,l!ufm

0 &, ~3.15!

U~$An
0%,l!5(

m
ufm~l!&^fm

0 u. ~3.16!

From Eq. ~3.15! we see that the orthonormal eigensta
ufm(l)& of the systemH(l) in one-to-one correspondenc
to orthonormal eigenstatesufm

0 & of H0 have the following
properties:~i! lim

l→0
ufm(l)&5ufm

0 &, ~ii ! ufm(l)& vary con-

tinuously withl adiabatically in the same manner asH(l)
and ~iii ! ^fm(l)ufm(l1«)&511O(«2). Therefore Eq.
~2.16! implies that if H(l) belongs to the same integrab
class asH0, orthonormal eigenstates ofH(l) in one-to-one
correspondence to those ofH0 should be obtainable with the
method of iterative perturbation@24,25#.

On the contrary, the breaking of the dynamical symme
algebra implies that there exist couplings between at le
two degrees of freedom. We shall particularly examine
haviors of the subsystemH8(Ji ,G i

† ,G i) ( i 51,2) composed
of the two degrees of freedom. Let us consider an auxili
Hamiltonian

H8~Ji ,G i
† ,G i !5~12l!H0~Ji !1lH8~Ji ,G i

† ,G i !,
~3.17!

and write it generally in the following form:

H~Ji ,G i
† ,G i ,l!5H0~Ji ,l!1 (

p51,2, . . .
lpVp~Ji ,G i

† ,G i !,

~3.18a!

Vp~Ji ,G i
† ,G i !5 (

m1m2 . . .
@~G1

†!m1~G2
†!m2upm1m2

~Ji !1H.c.#,

~3.18b!
4-7
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arguments (Ji ,G i
† ,G i) should be read as (Ji ,G i

† ,G i ,i
51,2), i 51,2 is omitted here. Corresponding to Eqs.~3.8!
and ~3.9! we should have

U (n)
„Ji

(n)~l!,G i
(n)†~l!,G i

(n)~l!…

5expF (
p52(n21)

2n21

lpSp„Ji
(n)~l!,G i

(n)†~l!,G i
(n)~l!…G ~3.19!

Sp„Ji
(n)~l!,G i

(n)†~l!,G i
(n)~l!…

5 (
m1m251,2, . . .

@~G1
(n)†!m1~G2

(n)†!m1upm1m2
~Ji

(n)!2H.c.#.

~3.20!

In order to eliminate terms involvingG1
(n)†(l),G1

(n)(l), and
G2

(n)†(l),G2
(n)(l) associated with lp,(p52(n21),2(n21)

11, . . . ,2n21) in the nth step, Eqs.~3.12! and ~3.13!
should be expressed as

upm1m2
„J(n)~l!…5vpm1m2

(n21)
„Ji

(n)~l!…@\vpm1m2

(n21)
„Ji

(n)~l!…#21,

~p52(n21),2(n21)11, . . . ,2n21! ~3.21!

with

\vpm1m2

(n21)
„Ji

(n)~l!…

5H FexpS (
i 51,2

\mi

]

]Ji
D 21GH0

(n21)~Ji !J
Ji5J

i
(n)(l)

.

~3.22!

SinceH0
(n21)

„Ji(l)… is a nonlinear function ofJi
(n)(l), asl

increases there will eventually occur the case

H0„Ji
(n)~l!1mi\…2H0„Ji

(n)~l!…50, ~3.23!

corresponding to commensurable frequencies. It is gene
impossible to obtain for sufficiently large values ofl the
implicit solution of the required Lie transformation to redu
the Hamiltonian to the formH„Ji(l)…. As the level spacing
tends to zero in the classical limit\→0, the condition for the
commensurability of frequencies may even occur at infi
tesimally small value ofl in the classical limit.

Due to the dynamical symmetry breaking, there will n
exist the analytical relation of the form~3.15! for one-to-one
correspondent orthonormal eigenstates of integrable sys
H0 and nonintegrable systemH(l). Therefore, we conclude
that if and only ifH(l) belongs to the same integrable cla
asH0, orthonormal eigenstates ofH(l) in one-to-one corre-
spondence to those ofH0 can be obtained with the method o
iterative perturbation. Though the explicit form of the r
quired DSP Lie transformation cannot be explicitly foun
but it can be expressed in the form~3.16! and numerically
obtained with one-to-one correspondent orthonormal eig
states by using the method of iterative perturbation.
04210
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IV. QUANTUM DYNAMICS WITH COMPLETE
CLASSICAL CORRESPONDENCE

In Secs. II and III, we have demonstrated the outstand
property of the dynamical symmetry with which the integr
bility of a quantum system can be clearly exhibited by t
existence of subspaces invariant to the Schro¨dinger flow and
thus able to be characterized by definite values of ac
variables. However, in addition to this kind of stationa
problem, we have to consider the general dynamical prob
which deals with the solution of the dynamical equation c
responding to a given initial state. In classical mechanics,
initial state is naturally chosen as the phase point descr
with pairs of conjugate dynamical variables corresponding
a certain dynamical symmetry. While in quantum mechan
the initial state must be chosen as the minimum-uncerta
state expressed in an analytical form and characterized
expectation values of same pairs of conjugate dynam
variables. Such an initial quantum state tends to the co
sponding phase point in classical limit\→0. The quantum
dynamics formulated in this way has evidently comple
classical correspondence.

The ground state of an integrable quantum system is
most localized to the classical phase point with minimu
uncertainty but still has a zero-point fluctuation. Such a st
can be found with the dynamical symmetry algebra and
be sent to any desired place with an element of the co
sponding dynamical symmetry group. We shall use su
states as initial states to obtain corresponding solutions
quantum dynamical equations.

The ground state of the integrable system correspond
to a certain dynamical symmetry should be determined fr
the subalgebra related to the Hamiltonian of the whole s
tem or subalgebras related to independent subsystems. T
subalgebras must be of the three types discussed in Se
We shall discuss them individually as follows. In order
avoid confusion, corresponding to a dynamical variableA,
the quantum operator and its expectation value are den
by Â and Ā, respectively, in this section.

In the Heisenberg-Weyl algebra, the ground stateuf0& has
expectation values ofq̂ and p̂ both equal to zero,

^f0uq̂uf0&5^f0u p̂uf0&50. ~4.1!

Thus we have

^f0u@~ q̂2^f0uq̂uf0&!21~ p̂2^f0u p̂uf0&!2#uf0&

5^f0u~ q̂21 p̂2!uf0&5\. ~4.2!

The displaced ground state is given as

uFg
0&5expF i

\
~ p̄q̂2q̄p̂!G uf0&, g5q̄1 i p̄, ~4.3!

which has expectation values

^Fg
0uq̂uFg

0&5^f0u~ q̂1q̄!uf0&5q̄, ~4.4!
4-8
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^Fg
0u p̂uFg

0&5^f0u~ p̂1 p̄!uf0&5 p̄. ~4.5!

The stateuFg
0& is characterized by the expectation valuesq̄,p̄

in correspondence to the coordinates of a classical ph
point. Corresponding to Eq.~4.2! we have

^Fg
0u@~ q̂2q̄!21~ p̂2 p̄!2#uFg

0&5^f0u~ q̂21 p̂2!uf0&5\.
~4.6!

Evidently the uncertainty measure defined above is invar
to the displacement.

The above expression for uncertainty is symmetrical w
respect to Dq̂ and D p̂, it is usually defined as

^(Dq̂)2&^(D p̂)2&>\2/4. As the principle of uncertainty ha
been generally embodied in the fundamental Poisson bra
for basic canonically conjugate variables, while the results
Eq. ~4.6! are obtained only for the case of the Heisenbe
Weyl subgroup which is particularly related to Euclide
phase space, we prefer to use Eq.~4.6! to characterize the
minimum-uncertainty state and then generalize it to ca
corresponding to SO~3! and SO~2,1! subgroups@26#.

In the case of SO~3! and SO~2,1! with discrete infinite-
dimensional representationD1(F) bounded below, the
ground state is the lowest-weight stateuf2

0 & which is the

simultaneous eigenstates of the Casimir operatorĈ5 Ĵ1
2

1 Ĵ2
21g33Ĵ3

2 and Ĵ3 with eigenvaluesg33F(F11)\2 and
(2F\), respectively. Hereg33511,F denotes a positive
integer or half integer for the case SO~3!, g33521, 21
,F,0 for the case SO~2,1!, the same notations as in Re
@21# have been used here. Utilizing the properties of
lowest-weight stateuf2

0 &

Ĵ3uf2
0 &52F\uf2

0 &, Ĵ2uf2
0 &5^f2

0 uĴ150 ~4.7!

and the algebraic relations

@ Ĵ1Ĵ22 Ĵ2Ĵ1#52\g33Ĵ3 ~4.8!

we have

^f2
0 u@~D Ĵ1!21~D Ĵ2!21g33~D Ĵ3!2uf2

0 &

5^f2
0 uĴ1Ĵ22

1

2
~ Ĵ1Ĵ22 Ĵ2Ĵ1!] uf2

0 &

5H F\, SO~3!

2F\, SO~2,1!.
~4.9!

The lowest-weight stateuf2
0 & among the whole set of ortho

normal eigenstates ofĴ3 gives minimum uncertainty.
For the rotated lowest-weight state

uF0~a,b!&5ĝ~a,b!uf2
0 &, ~4.10!

ĝ~a,b!5expF i

\
~a Ĵ11b Ĵ2!G , ~4.11!

the expectation valueŝF0(a,b)uĴn51,2,3uF0(a,b)& are
04210
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^F0~a,b!uĴn51,2,3uF0~a,b!&

5^f2
0 uĝ†~a,b!Ĵn51,2,3ĝ~a,b!uf0& ~4.12!

in which

ĝ†~a,b!Ĵnĝ~a,b!5(n8Cnn9~a,b!Ĵn

3(nCnn8~a,b!Cnn9~a,b!&

5dn8n9. ~4.13!

Hence the uncertainty measure

^F0~a,b!u@~D Ĵ1!21~D Ĵ2!21g33„D Ĵ3…
2#uF0~a,b!&

5^f2
0 u@~D Ĵ1!21~D Ĵ2!21g33~D Ĵ3!2#uf2

0 &

5H F\ SO~3!

2F\ SO~2,1!
~4.14!

remains the same.
The lowest-weight state displaced with an element of

dynamical symmetry group has kept the required property
minimum uncertainty and tends to the classical phase p
in the limiting case, thus it can be readily used as the ini
state in formulating the quantum dynamics with comple
classical correspondence. In this respect, it differs from
coherent state discussed by Zhang and co-workers@13,27#.

Taking the minimum-uncertainty state as the initial sta
and denoting it generally asuc0&, we have the expectation
value for the dynamical variableÂ0 at the initial instantt
50,

Ā05^c0uÂ0uc0&5Tr~Â0r̂0!, ~4.15!

where

r̂05uc0&^c0u, ~ r̂0!25 r̂0 ~4.16!

is the density operator first introduced by von Neumann@28#.
As Ā(t) should be uniquely determined at a definite insta
the variation of the state and operators with respect tot can-
not be independent of each other. In the Heisenberg pict
states are independent oft, while operators for canonically
conjugate variables vary witht,

r̂H5 r̂0, ÂH~ t50!5Â0, ~4.17!

such that

Ā~ t !5Tr~ÂHr̂H! ~4.18!

vary with t in correspondence to results in classical mech
ics. We have thus

dĀ~ t !

dt
5TrS dÂH

dt
r̂0D . ~4.19!

In order to keep the quantum-classical correspondence
must have

dÂH

dt
5

1

i\
@ÂH ,Ĥ#5$ÂH ,Ĥ%qu . ~4.20!

For autonomous systems,
4-9
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ÂH~ t !5expF i

\
Ĥt G Â0 expF2

i

\
Ĥt G . ~4.21!

With ÂH(t) and r̂H given by Eqs.~4.21! and~4.17!, Ā(t) in
~4.18! can also be expressed as

Ā~ t !5TrS Â0 expF2
i

\
Ĥt G r̂0 expF i

\
Ĥt G D . ~4.22!

Therefore we have alternatively the Schro¨dinger picture in
which operators for basic dynamical variables are indep
dent of t while states of autonomous systems vary witht,

Âs5Â0, r̂s~ t50!5 r̂0, ~4.23!

such that

Ā~ t !5Tr~Âsr̂s!. ~4.24!

Comparing it with Eq.~4.22!, we have

r̂s~ t !5expF2
i

\
Ĥt G r̂0 expF i

\
Ĥt G ~4.25!

or, equivalently,

]r̂s

]t
5

1

i\
@Ĥ,r̂s#5$Ĥ,r̂s%qu , r̂s~ t50!5 r̂0, ~ r̂0!25 r̂0.

~4.26!

As the initial state is required to be a pure state, this equa
of the form of Neumann equation has in fact the nature
Schrödinger equation. In transition to classical mechani
we have correspondingly

]rcl

]t
5$Hcl ,rcl%cl , rcl~ t50!5rcl

0 , ~rcl
0 !25rcl

0 ,

~4.27!

wherercl
0 is just the classical counterpart of the minimum

uncertainty stater̂0. As the discussions about the minimum
uncertainty states are just based on algebraic relations
pressed with quantum Poisson brackets, there exist certa
classical counterpartsrcl

0 which behave asd functions in the
phase space corresponding to different dynamical sym
tries. Hence Eq.~4.27! of the form of Liouville equation can
be used to describe a bundle of phase trajectories origina
from an infinitesimally small cloud of phase points. In th
way, we have indeed quantum dynamics with complete c
sical correspondence. As the correspondence principle
already been emphasized, dynamical equations in Hei
berg picture@Eqs.~4.17! and~4.20!# and in Schro¨dinger pic-
ture @Eqs.~4.23! and ~4.26!# come out naturally.

The present form of quantum dynamics differs from t
conventional one in considering solutions of the quant
dynamical equation for respective initial minimum unce
tainty states. Since the linear superposition of two minim
uncertainty states is no longer a minimum uncertainty st
solutions of the quantum dynamical equation correspond
to different initial minimum uncertainty states will not obe
the principle of superposition. Thus it is not a linear proble
04210
n-

n
f
,

x-
ly

e-

ng

s-
as
n-

e,
g

.

As the integrability and initial state are both discussed
the basis of dynamical symmetry, we have to consider t
quite different situations: the evolution of an initia
minimum-uncertainty state corresponding to a certain
namical symmetry ofH0 under the action of~i! an integrable
system belonging to the same integrable class asH0 and~ii !
a nonintegrable system without any kind of dynamical sy
metry.

In the first case, the obtained solutionsrg(t) should be
expressed as an analytical functional ofrg

0 varying smoothly
with g and t. Various components of the initial state evol
essentially in the same way such that the coherence prop
of the initial state will be preserved during its evolutio
While in the second case, due to the dynamical symme
breaking, the obtained solutionsrg(t) can no longer be ex-
pressed as an analytical functional ofrg

0 . Various compo-
nents of the initial state may evolve in quite different wa
due to successive occurrences of nonlinear resonance.
the coherence property of the initial state may even
strongly violated.

In order to understand the violation of the general char
ter of quantum regular motion more comprehensively,
shall give in the next section a detailed study of the gene
character of quantum regular motion together with numer
illustrations.

V. GENERAL CHARACTER OF QUANTUM REGULAR
MOTION ILLUSTRATED WITH A LIPKIN MODEL

As discussed in the previous section, if we take the d
placed ground staterg

0 of the known integrable system
H(k50) as an initial state to study its spatiotemporal ev
lution under the action of an integrable systemH(k) belong-
ing to the same integrable class asH(k50), the obtained
solutionrg(t) of the quantum dynamical equation is just a
analytical functional ofrg

0 varying smoothly with respect to
g and t. The solutionrg(t) is generally distorted but stil
behaves as a phase trajectory in the classical limit.

Let us consider as an example the two-level Lipkin@29#
model which has been introduced to simulate collect
monopole excitations of nuclei. The Hamiltonian of the tw
level model is of the form

H~k!5
«

2 (
m

S am1
† am1

V
2

am2
† am2

V
1

1

V D
2

k

2 H(
m

S am1
† am2

V
1

am2
† am1

V D J 2

, ~5.1!

wheream6
† ,am6 denote, respectively, creation and annihi

tion operators of fermions situated in upper and lower lev
with the same angular momentumj, while V52 j 11 de-
notes the degeneracy of these two levels. If the total num
of fermions of the system is equal toV, the ground state of
the system withk50 is just the state with the lower leve
fully occupied. Then the action of collective operat
(m(am1

† am2)/V or (m(am2
† am1)/V just denotes the cre

ation or annihilation of a monopole particle-hole pair and t
4-10
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resulting collectively excited states are just the eigenstate
the Hermitian collective operator12 @(m(am1

† am22am2
† am1

11#/V. These three collective operators behave asJ1 ,J2 ,
and J0 of the so~3! algebra. Thus according to discussio
given in Sec. II,H(k) represents an integrable system with
single collective degree of freedom. Comparing the comm
tation relations for these three collective operators with
~2.17!, we see that 1/V plays the effective Planck consta
here.

The state space of the HamiltonianH(kÞ0) is just
spanned by the same basis set asH(k50). It has been
shown in Sec. III that with the application of a Lie transfo
mationU(k,0), H(k) can be expressed generally as a no
linear function ofJ0(k) free from raising and lowering op
eratorsJ6(k). Hence systemsH(k) belong to the same
integrable class asH(k50), the complete set of orthonorma
eigenstatesufn(k)& of H(k) are just simultaneous orthono
mal eigenstates ofJ0(k), ufn(k)&5U(k,0)ufn

0&. Thus we
haveU(k,0)5(nufn(k)&^fn

0u. Though it is not possible to
obtain the explicit form of the required Lie transformatio
U(k,0) can be obtained numerically through the one-to-o
correspondent orthonormal eigenstatesufn(k)& of H(k) and
ufn

0& of H(k50) with the method of iterative perturbatio
@24,25#.

If the initial state is taken as the rotated ground state
H(k50)

rg
05uFg

0&^Fg
0u, uFg

0&5exp@gJ12g* J2#uf2
0 &, ~5.2!

and evolves under the action ofH(kÞ0) , we have

rg~ t !5expF2
i

\
H~k!t Grg

0 expF i

\
H~k!t G

5 (
mm8

ufm~k!&e2( i /\)Em(k)t^fm~k!urg
0ufm8~k!&

3e( i /\)Em8(k)t^fm8~k!u. ~5.3!

Here

^fm~k!urg
0ufm8~k!&5(

nn8
^fm~k!ufn

0&^fn
0urg

0ufn8
0 &

3^fn8
0 ufm8~k!& ~5.4!

Em~k!5^fm~k!uH~k!ufm~k!&. ~5.5!

As both exp@gJ12g*J2# and ^fm(k)ufn
0&

5^fm
0 uU†(k,0)ufn

0& here are dynamical symmetry preser
ing transformations,rg(t) is an analytical functional of
rg

0(t) varying smoothly withg and t. However, due to the
fact thatH(k) is a nonlinear function ofJ(k), Em(k) is a
nonlinear function ofm, different matrix elements ofrg

0(t)
will evolve with different frequencies. There will appear di
persion and regular interference patterns during a sufficie
long period of evolution.

These features are just quantum effects, the regular
exhibited in these plentiful features imply that the staterg(t)
has its analyticity still preserved. These quantum effects
04210
of

-
.

-

e

f

ly

es

o

not contradict the property of dynamical symmetry preser
tion. On the contrary, the absence of any evidence of de
herence even confirms indirectly the conclusion about
namical symmetry preservation.

In order to show these consequences more convenie
the collective Hamiltonian will be described with a SO~3!
model in q,p realization @30# with J05 1

2 (q2 ip)(q1 ip)
2 1

2 , J15 1
2 (q2 ip) @12 1

2 (q2 ip) (q1 ip)#1/2, J25 1
2 @1

2 1
2 (q2 ip)(q1 ip)#1/2(q2 ip), we have then

H5
«

2
~q2 ip !~q1 ip !

2
k

4 H ~q2 ip !F12
1

2
~q2 ip !~q1 ip !G1/2

1H.c.J 2

, ~5.6!

@q,p#5 i S 1

V D . ~5.7!

All systems with definite«,k but differentV have the same
classical counterpart corresponding to 1/V50. Hence quan-
tum effects in systems with differentV can be readily
shown.

In the classical limit 1/V→0, the classical orbits can b
readily shown with the energy contours

Hcl~p,q!5E ~5.8!

as in Fig. 1, parameters are taken as«51.0,k50.8. The
uncertainty measure ofrg(t)

@D~g,t !#1/25~Tr$@~DJx!
21~DJy!21~DJz!

2#rg~ t !%!1/2

~5.9!

calculated for solutions corresponding to a given initial st
but with 1/V5 1

100, 1
300 is given in Fig. 2. The time-average

values are 0.24 and 0.14, respectively, the ratio betw
them agree roughly with the ratio betweenA1/100 and
A1/300. As 1/V decreases steadily,@D(g,t)#1/2 decreases as
A1/V and becomes much smaller than the range of varia
of q̄(g,t) and p̄(g,t), quantum effects will then be negli
gible, the evolution of the staterg(t) can be approximately
represented with the classical phase trajectory.

However, the effective Planck constant 1/V is a finitely
small quantity. There should always exist quantum effe
In order to show them explicitly we consider the expectat
value

FIG. 1. Energy contour ofHcl(q,p)5E.«51.0, k50.8.
4-11
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q̄~g,t !5Tr@qrg~ t !#5(
nn8

^fn~k!uqufn8~k!&

3^fn8~k!urg~ t !ufn~k!& ~5.10!

and the probability lying to the left of the energy barrier

PL~g,t !5 (
qi,0

Tr@ uqi&^qi urg~ t !#

5 (
qi,0

(
nn8

^fn~k!uqi&^qi ufn8~k!&

3^fn8~k!urg~ t !ufn~k!& ~5.11!

whereuqi& is the orthonormal eigenstate ofq

quqi&5qi uqi&. ~5.12!

The corresponding numerical results are given in Figs. 3
4, respectively, for the case 1/V5 1

100 with the other param-
eters the same as in Fig. 2.

For the initial minimum uncertainty state studied he
almost all the components lie below the top of the ene
barrier, the eigenenergy of the odd-parity states are m

FIG. 2. Uncertainty measure@D(g,t)#1/2 for a given initial state,
curve ~a! corresponds to 1/V5

1
100 and ~b! corresponds to 1/V

5
1

300.

FIG. 3. Expectation valueq̄(g,t) for the same initial state
1/V5

1
100.
04210
d

,
y
ch

lowered so that they become almost degenerated with
preceding even-parity ones. The almost-degenerated pa
levels are in phase with each other at the right side of
energy barrier but out of phase at the left side of the ene

barrier. Henceq̄(g,t) mainly oscillates around the well cen
ter at the right side of the energy barrier with a frequen
v'1 which is determined from the mean level spacing b
tween two neighboring almost-degenerated pairs of lev
Similarly p̄(g,t) mainly oscillates around the mean valu
zero with the same frequencyv'1. Hence the ‘‘quantum
trajectory’’ mainly revolves around the well center at th
right side of the energy barrier.

However, due to the spreaded probability distribution
the state and the energy-dependent frequency of diffe
components, the probability distribution of the state will
distorted. Consequently, the details of the ‘‘quantum traj
tory’’ will vary with t. In other wordsq̄(g,t) andp̄(g,t) will
have an amplitude modulation around their mean values
the amplitude modulation is correlated with the distortion
the probability distribution,@D(g,t)#1/2 will also have an
amplitude modulation around its mean value. The larg
amplitudes ofq̄(g,t) oscillation generally correspond to th
smallest amplitudes of@D(g,t)#1/2 oscillation and vice versa
Practically,rg(t50) is completely localized at the right sid
of the energy barrier. Asrg(t) evolves witht, the almost-
degenerated pair of levels will not be completely out
phase at the left side of the energy barrier. The probab
distribution at the left side of the energy barrierPL(g,t) will
not always be negligibly small.PL(g,t) will have also an
amplitude modulated oscillation as shown in Fig. 4.

As these interference patterns can exist only if the
namical symmetry and analyticity of the initial state are p
served, the disappearance of such a kind of regular inter
ence patterns can be regarded as an indication
decoherence and also an indirect indication of dynam
symmetry breaking.

As a whole, the essential point of quantum regular d
namics is the preservation of the dynamical symmetry a
analyticity of the initial state during its evolution. Thus th
essential point of quantum chaotic dynamics should be
the violent destruction of the general character of quant
regular motion as in classical chaotic dynamics.

FIG. 4. Probability lying to the left of the barrierPL(g,t) for the
same initial state. 1/V5

1
100.
4-12
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VI. SUMMARY

In this paper, we have first investigated the quantu
classical correspondence by concentrating our attentio
peculiar properties arising from the uncertainty principle
quantum mechanics. Though with the replacement of b
canonically conjugate dynamical variables by correspond
incommutable operators, quantum dynamical equations h
been formulated correspondingly. But due to the uncerta
principle, we have to introduce quantum states of statist
nature to give expectation values for dynamical variab
Thus quantum state space is quite different from class
phase space.

But instead of a completely defined single state, one
consider subspaces of an integrable system defined by
nite values of action variables alone. In classical mechan
such subspaces are just the tori invariant to the phase fl
while in quantum mechanics, the corresponding subspa
invariant to the Schro¨dinger flow will be the simultaneou
orthonormal eigenstates of a complete set of commuta
operators. In order to span the quantum state space c
pletely by such a set of orthonormal states, pairs of conjug
operators together with accompanying Hermitian opera
must form closed Lie algebras. Due to this fact, we can fi
the quantum canonical transformation between basic can
cally conjugated variables and action-angle variables s
that the Hamiltonian of this integrable system can be
pressed in terms of action variables alone free from an
variables. Analogous to space-time symmetry, such a p
erty is designated as dynamical symmetry and the assoc
Lie algebra as dynamical symmetry algebra.

Though such discussions are made for a special integr
system, but the integrability of this system is now charac
04210
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g
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n
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ized algebraically by its dynamical symmetry, the discu
sions can readily be extended to a class of integrable sys
having the same dynamical symmetry. In this way, we ha
rendered the Liouville theorem applicable to both classi
and quantum integrable systems.

Alternatively, the one-to-one correspondence betwe
completely defined single quantum state with minimum u
certainty and classical phase points can be seen through
sical limit. Having known the dynamical symmetry algeb
of an integrable system, such a minimum uncertainty s
can readily be found as a displaced ground state. Taking s
a state as the initial state for quantum dynamical equatio
its spatiotemporal evolution can be studied in the same s
as for the corresponding classical case.

Though quantum dynamical equations for operators
formally analogous to classical canonical equations for
namical variables, the manipulations in solving quantum
namical equations must involve the commutation relatio
for basically conjugate operators. Due to the finiteness of
universal Planck constant, it is not possible to consider
classical limit straightforwardly. In fact, a microscopic sy
tem would be characterized by the small inertia mass an
strong interaction strength such that its state varies rapi
Hence it is possible to consider scaling transformations
express dynamical equations for systems with different pa
metric quantities in the same form but commutation relatio
with different effective Planck constants. Then the classi
limit is attained by steadily decreasing the magnitude of
effective Planck constant for systems with different param
ric quantities.

Having resolved these relevant problems, not only
general character of quantum regular motion can be stu
in parallel to that of the classical regular motion, but also
4-13
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destruction of the general character of quantum regular
tion can be studied in the same spirit as shown in the
diagram.

The general character of quantum regular motion has b
clearly shown to be the preservation of the dynami
symmetry and analyticity of the initial minimum uncertain
state. It is expected that very complicated behavi
will arise as a consequence of the violent destruction of
general character of quantum regular motion under pertu
tion.
r-
v

a-

cs

p

p-

ys
.

04210
o-
e

en
l

s
e
a-

ACKNOWLEDGMENTS

The authors would like to thank Professor Y. S. Dua
Professor Y. Gu, Professor D. J. Fu, Professor Z. Q. M
Professor S. J. Wang, Professor M. L. Ge, and Professo
Y. Zhu for helpful discussions. The work was supported
the National Basis Research Project, ‘‘Nonlinear Science’
China, the National Natural Science Foundation of Chi
and the Natural Science Foundation of Fujian Province
China.
n.

. A

n.

-
,

n,
@1# G. Casati and B.V. Chirikov, inQuantum Chaos, Between O
der and Disorder, edited by G. Casati and B.V. Chiriko
~Cambridge University Press, Cambridge, England, 1995!.

@2# E.A. Jackson,Perspections of Nonlinear Dynamics~Cam-
bridge University Press, Cambridge, UK, 1989! Vol. 1, p. 3.

@3# L.E. Reichle,The Transition to Chaos in Classical Conserv
tive Systems: Quantum Manifestations~Springer-Verlag, New
York, 1992!, p. 7.

@4# V.I. Arnold, Mathematical Methods of Classical Mechani
~Springer-Verlag, New York, 1978!, pp. 162, 271.

@5# H.A. Kramers,Quantum Mechanics~North-Holland, Amster-
dam, 1957!, Sec. 42.

@6# P.A.M. Dirac,Principle of Quantum Mechanics~Oxford Uni-
versity Press, Oxford, UK, 1958!.

@7# L. Infeld and T.E. Hull, Rev. Mod. Phys.23, 21 ~1951!.
@8# B. Kaufman, J. Math. Phys.7, 447 ~1966!.
@9# N.I. Vilemkin, Special Functions and the Theory of Grou

Representations, Transl. Math. Monogr. Vol. 22~American
Mathematical Society, Providence, RI, 1968!.

@10# J.D. Talman,Special Functions and Group Theoretical A
proach ~Benjamin, New York, 1968!.

@11# W. Miller, Lie Theory and Special Functions~Academic Press,
New York, 1968!.

@12# A. Arima and F. Iachello, Ann. Phys.~N.Y.! 99, 253 ~1976!;
111, 201 ~1978!; 115, 325 ~1978!; 123, 468 ~1979!.

@13# W.M. Zhang, D.H. Feng, J.M. Yuan, and S.J. Wang, Ph
Rev. A 40, 438 ~1989!; W.M. Zhang, D.H. Feng, and J.M
Yuan, ibid. 42, 7125~1990!.
.

@14# S. Weigert and G. Muller, Chaos, Solitons and Fractals5, 1419
~1995!.

@15# T. Gramespacher and S. Weigert, Phys. Rev. A53, 2971
~1996!.

@16# D. Kuznezov, Phys. Rev. Lett.79, 532 ~1997!.
@17# A. Lichtenberg and M. Liebermann,Regular and Chaotic Dy-

namics~Springer, Berlin, 1992!.
@18# Xu Gong-ou and Yang Ya-tian, Chin. Phys. Lett.16, 6 ~1999!.
@19# Xu Gong-ou, Yang Ya-tian, and Xing Yong-zhong, Chi

Phys. Lett.16, 318 ~1999!.
@20# J.Q. Chen,Group Representation Theory for Physics~World

Scientific, Singapore, 1988!.
@21# B.G. Wybourne,Classical Groups for Physics~John Wiley

and Sons, New York, 1974!.
@22# A.N. Kolmogorov, Dokl. Akad. Nauk SSSR98, 527 ~1954!.
@23# W. Scherer, Phys. Rev. Lett.74, 1495~1995!.
@24# Xu Gong-ou, Wang Wen-ge, and Yang Yia-tian, Phys. Rev

45, 5401~1992!.
@25# Xu Gong-ou, Xing Yong-zhong, and Yang Ya-tian, Chi

Phys. Lett.16, 86 ~1999!.
@26# R. Delbourgo and Le Fox, J. Phys. A10, L233 ~1977!.
@27# W.M. Zhang, D.H. Feng, and R. Gilmore, Rev. Mod. Phys.62,

867 ~1990!.
@28# J. von Neumann,Mathematical Foundation of Quantum Me

chanics, translated by R.T. Beger~Princeton University Press
Princeton, 1955!.

@29# H.J. Lipkin, N. Meshkov, and A.S. Glick, Nucl. Phys.62, 188
~1965!.

@30# Xu Gong-ou, Gong Jiang-bin, Wang Wen-ge, Yang Ya-tia
and Fu De-ji, Phys. Rev. E51, 1770~1995!.
4-14


