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The notion of quantum-classical correspondence is carefully investigated in order to prepare firm grounds
for studying the spatiotemporal evolution of quantum states in the same spirit as for corresponding classical
cases. Three relevant problen), the integrability of dynamical equations of quantum syste@sthe initial
minimum uncertainty states one-to-one correspondent to classical phase point3) #releffective Planck
constants for systems having analogous dynamical properties but exhibiting different quantum effects, have
been successfully resolved. Then the solupg(t) of the dynamical equation of a quantum integrable system
is shown to be expressed as an analytical functional of the initial minimum uncertaintypgtmying
smoothly withy andt. Such a general character of the quantum regular motion serves as a reference for the
study of quantum irregular motion under the action of perturbed Hamiltonian.

PACS numbds): 03.65—-w, 05.45-a

[. INTRODUCTION mechanics, in principle it is not impossible to study the
spatio-temporal evolution of quantum states for given initial
The state of motion of a classical system described by thétates to see whether or not the stgie,(t)) can be ex-
solutionx(t) of Hamilton canonical equations at any instant Pressed as an analytical functional W) varying smoothly
t corresponding to a given initial statg can be generally Wwith yandt. _ _
expressed as the map—x(t)=f(Xo,t). If the map is a Butdu_e to historical reasons, qgantum-mechanlcal studies
symplectic diffeomorphic one, the motion is stable with re_have.r.namly concentratfad on stationary problems as weI_I as
spect to slight alterations of the initial state and is thus regulfansition rates per unit time. As to the study of spatio-
lar. But in case the symplectic diffeomorphism of the map iStempo_raI evolut_lon of quantum states in parallelism to corre-
strongly violated, the motion is exponentially instable with sponding classical cases, there still exist problems to be re-
slight alterations of the initial state and is thus chaotic. solved.
In principle, the state of motion of a quantum system (1) The integrability of dynamical equations of quantum
could be studied in a corresponding way. But due to thesystems.
principle of uncertainty, both the initial statep® (2) The initial min@mum uncerta@nty states one-to-one cor-
=|\P3)<\If3| and the statg,(t)=|W,(t))(W (t)| at any in- respondent to clgssmal phase points. _
stantt are of statistical natur¢\,Ify(t)> should have the wave (3) The effecnvg Planck co_nstants for _sys_tems .havmg
nature and satisfy the principle of superposition. The Schroanalogous dynamical properties but exhibiting different
) . . ; guantum effects.
dinger equation governing the evolution of the sﬂalle;(t))
should be linear in nature. Thus it seems impossible for a We shall first make efforts to resolve these problems. The
guantum system to have its chaotic motion with exponentiaintegrability of dynamical equations of classical and quan-
instability as in the corresponding classical cpked]. tum systems can be shown explicitly if the Hamiltonian of
However, Arnold has pointed out in his monogrd@h:  the system has already been expressed in actions alone free
“The basic concepts and theorems of Hamiltonian mechanfrom angle variables. But it is difficult to ascertain whether
ics are invariant under the group of symplectic diffeomor-or not one can find an appropriate canonical transformation
phisms acting on the phase space,” and that “The Hamil{o reduce the Hamiltonian of a general system to the required
tonian point of view allows us to solve completely a series ofform. In quantum mechanics, it is even more difficult be-
mechanical problems which do not yield solutions by othercause basic canonically conjugate dynamical variables are
means. It has even greater value for the approximate methodgpresented by incommutable operators. Even if the classical
of perturbation theorycelestial mechanigsfor understand- canonical transformation betweemp,) and (,60) has al-
ing the general character of motion in complicated mechaniready been found, it is still unable to obtain the correspond-
cal systems(ergodic theory, statistical mechanicand in  ing quantum canonical transformation straightforwardy:
connection with other areas of mathematical physggics,  If one tries to study the problems from the topological prop-
quantum mechanics, ef¢.As the framework of quantum erty of quantum state space as in the Liouville theofdin
mechanics is mainly formulated on the basis of Hamiltonianone will immediately face the fundamental difficulty that the
general property of quantum state space known to us is just
the mathematical property of Hilbert space. For a few special
*Electronic address: goxu@nju.edu.cn systems, it has been known since the early days that the
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guantum state space can be spanned by a set of orthonornialthe same form but the commutation relations for basic
eigenstates of the corresponding stationary Siihger canonically conjugate variables must be expressed with dif-
equation either obtained by solving the differential equatiorferent effective Planck constants. This problem is explained
as a boundary condition problem or obtained by solving thdén detail in Sec. II.

problem algebraically6]. Later, more quantum systems of  With these three problems resolved, the quantum dynam-
physical interest have been studied in this j&yand such iCS can be studied in precisely the same way as in classical
special functions have been studied systematically from th@ynamics. However, we shall restrict ourselves to discus-
viewpoint of Lie algebrd8—11]. Since the interacting boson Sions on quantum regular dynamics in this article. General
model proposed by Arima and lache[ld2] enables one to d!scu§S|ons are given in Sep. v, numerlpal !IIustratlons are
carry out comparative spectroscopic studies for a series @iven in Sec. V. Finally, a brief summary is given in the last
nuclei, several authors have tried to define the quantum inS€ction.
tegrability with dynamical groups having several subgroup
chains[13-1§. But the correspondence between the classi-

cal integrability defined by the Liouville theorem and the
guantum integrability temporarily defined in such a way has

not yet been established.

After analyzing these previous works, we see that in order We shall study the problem of quantum integrability in
to resolve the problem of quantum integrability one has tathis section by taking the special integrable system, the
start from known quantum integrable systems and charactethree-dimensional isotropic oscillator, as the starting point.
ize their relevant properties algebraically, such that the conThe discussions consist of three stefds:to obtain indepen-
dition for existence of the required quantum canonical transeent sets of raising and lowering operators as simultaneous
formation for operators and the corresponding classicasolutions of eigenequations of first integrals of motion such
canonical transformation for dynamical variables can be exthat a complete basis set of orthonormal states for the quan-
pressed with analogous analytical relations. Moreover, theum state space can be foufD], (2) to express the condi-
obtained results for a special integrable system can be readitjon for completeness of the basis set generally with a closed
extended to a class of systems with a group of Lie transfortie algebra, and3) to find the quantum canonical transfor-
mations[17] keeping the relevant algebraic property invari- mation between the conjugate pair of raising and lowering
ant. Preliminary results have already been repdit®il We  operators and action-angle variables according to the ob-
shall study the problem in detail in this article by starting ourtained closed Lie algebra. Moreover, in order to show the
discussions from a three-dimensional isotropic harmonic osguantum-classical correspondence explicitly, the scaling
cillator in Sec. Il and extend the discussions to more generatansformations for oscillator systems with different para-
three-dimensional oscillators having the same kind of boundmetric quantities are first performed such that the fundamen-
ary conditions in Sec. Ill. tal Poisson brackets for canonical conjugate variables are

Owing to the uncertainty principle in quantum mechanics,expressed with different effective Planck constants.
it is not possible to consider generally the correspondence The Hamiltonian of the three-dimensional isotropic har-
between quantum state space and the classical phase spa®@nic oscillator is of the form
But we have pointed out previous[it9] for integrable sys-
tems,| are first integrals of motion, classical invariant tori 2
with definitel and any value of just correspond to simul- Ho_i 2 p?+ M~ E q? (2.13
taneous orthonormal eigenstates lofvith perfectly unde- 2m T2z ) 2 jST2s ) '
fined 6. At the same time, the ground state of the system has
the minimum uncertainty, while the displaced ground state%h tati lati bet d
having the minimum uncertainty too can thus be taken as the € commutation refations betweenandp; are
one-to-one correspondence of classical phase points. Using
such states as initial states for solutions of quantum dynami- [q;.pjl=in, (j=1,2,3). (2.1b
cal equations, the spatiotemporal evolution of quantum states
can be studied in the same spirit as for the correspondin
classical case. This problem is studied in detail in Sec. IV.

In the previous paragraph, we have taken the displaced
ground state of an integrable system as the one-to-one cor- dg; _dp, _
respondence of the classical phase points. As classical limit % -~ =[ H, ih - =P HOL (j=1,23).
cannot be attained straightforwardly with the universal 2.19
Planck constant, it implies that the minimum uncertainty '
state here must be characterized with effective Planck con-
stants for systems having analogous dynamical properties biftwe carry out the scaling transformations by referring to a
exhibiting different quantum effects. By making appropriatecertain oscillator system with finite frequeney and taking
scaling transformations, dynamical equations for three/mwefi, (wqo/w)\Vhi/Mmwg, and (wq/w)llwg as units of
dimensional isotropic harmonic oscillators with different in- p;, q;, andt, respectively, Eqs(2.1a and (2.1b will be
ertia masses and potential strengths can be expressed indeegressed in dimensionless form as

IIl. DYNAMICAL SYMMETRY ALGEBRA
AND LIOUVILLE'S THEOREM
ON INTEGRABLE SYSTEMS

ghe dynamical equations are
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t ! ' ! i
bj=\/55(ai=1P).  bj=\55(a+ip), (29

as simultaneously eigensolutions of eigenequations of
l—12,3 With different eigenvalue$20]. The pairs of conju-
gate operatorﬂ)-T,bj together withl; form a Heisenberg
Weyl algebra,

1 T T 1 T
%[lj,b]]:b, %[Ijibj]:_bji [b ,b]]zl,

(i=1,2,3. (2.6
Then the general simultaneous orthonormal eigenstates of
k=123 are

| B mymy) = Cihmym, (01 ™(b5) ™2(bk)™s|0),

b;|0)=b,|0)=bs|0)=0. 2.7
The closed Lie algebra for this case is just the direct sum of
these three subalgebras.

In the second case, the system can be regarded as com-
posed of two uncoupled subsystems, the first one consisting
of the third degree of freedom is just a simple harmonic
oscillator while the second one consisting of other two de-
grees of freedom just behaves as an axially isotropic har-
monic oscillator. The closed Lie algebra for this case is the
direct sum of subalgebras of these two uncoupled sub-

which remain of the original form. In fact, the scaling trans- Systems. The subalgebra of the first subsystem has already
formations here are just special canonical transformationgeen considered. For the second subsystem, the first integrals

which keep the form of dynamical equations unaltered.

of motion in involution are

Now we see that with the help of an arbitrary chosen

oscillator system with finite frequenay,, quantum effects

of oscillator systems with different frequencies can be
compared with each other while the quantityw, plays the

1
L3=01P2—0d2P1, ‘Jllzzj:}]‘{z(qu_{—pjz)- (2.8

role of effective Planck constant. For convenience, we shallhe first integralL; characterizes the axial symmetry of the

denoteHy /i wq, pj/Nmhwg, qj/(wo/ w\h/Mwg), ot, and
wl wgy simply asH®, pj, dj, t, and% afterwards, such that

1

HO=> > (q?+p?), (2.33
2T

[q;.pj]=ih, (j=1,2,3 (2.3b

da _ 0 dpj _ 0 -
(2.30

Hamiltonian of the subsystem, while the first integdy|
which commutes withL 5 just characterizes the motion of
such a subsystem with axial symmetry. We can find raising
and lowering operators

1o 1 _.
E(blile)' E(b1+lb2);
(2.9
1 1
Tt
i LY — bib; .
2252 ) 2\/§J=21,2 J'

~ This system has at the same time three different sets ofs simultaneous solution of eigenequationsLgfand J;,
first integrals of motion. In the first case, the system can bgith dgifferent eigenvalues. These raising and lowering op-
regarded as composed of three uncoupled simple harmonicgtators together with corresponding integrals of motion form

oscillators. The first integrals of motion in involution are

1
|j:§(qj2+pj2), (i=1,2,3. (2.9

We can find immediately the raising and lowering operators

Lie subalgebras

1 11
h(4)5Z—(Jni'-s),—z(bli'bz),—

h 2 2

(by*iby),1¢,
(2.10a
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can be obtained as simultaneous solutions of eigenequations
of Ls,L2, andJ,, with different eigenvalues. Noticing that

1 1) 1
- o+ =] ——
{50(2,1). 5 j=§1,2(b’ b; 2),2

V2 Ly and L? commute with 1/225;_;,4b/b]),
11223 ,123(b b;) butL? andJ;; do not commute with
X Z (b/b),—= Z (bb)] (210  1N2(bjxib)), 1/\/—(b1+|b2) the first integrals of motion
\/— L; and L2 should be taken as intrinsic properties and fixed

first before considering the motion of other two degrees of
Noticing that Ly commutes with 1/22%;_;(b/b]),  freedom. The closed Lie algebra for this case should be taken
1/2\23_,, z(b b;) but J, does not commute with as the semidirect sum of the Heisenberg algebra
1\2(b] i|b2) 1/\/—(b1+|b2) the first integral of motion  {b! b, b},b,,bl,bs1} and
L5 corresponding to the axial symmetry constraining should
be taken as an intrinsic property and fixed first before con 1 ) 1 )
sidering the motion of this subsystem with axial symmetry. LSO(3) |—3v7 1+'L2):E(|—1_”—2)}
The closed Lie subalgebra of this subsystem should be take
as the semidirect sum of the Heisenberg algebra

1) 1
{bl b;,b) bl 1} and Ty = | =
1 @1 s0(2,1): 212 biby+ 5 55

{so(2):L }@[so(z 1)-E > (bfb.+3> 1
‘Lg 2 H\ PP 2o, X E (bTbT)—\/_ Z (bb)]
thty 1 (2.13b

x 2, (bfb]), ﬁj_u(b,b,)]

We can use the property of the lowest-weight state to find
first the simultaneous orthonormal eigenstates)gf, L?,
The corresponding simultaneous orthonormal eigenstates ahdL ; with eigenvalues of.? andL ; equal tol (1 + 1)%2 and

the independent integrals of motion are —I#, respectively, and corresponding eigenvalud gf be-

ing ni=(2x+1)%A

X
an an Tt X I
[ring) = C“'“s(zf 2, b bl) -l == J-:%,Ab?b?)] [%w;—ib;) 0),
X %(bliibb (b3)™]0), (n=2x+1x1=012...). (2.14
Having obtained the lowest weight stai|")) we can ob-
(n=2x+y,l=+y,x=012...y=012..., tain the general simultaneous orthonormal eigenstates
n;=0,1,2...). (2.11)

|¢(|||)> C(m)

[E< D}

In the third case, the system can be regarded as a spheri-

cally isotropic harmonic oscillator. The Hamiltonian of the 1 1

system is invariant to the rotation about any axis, and thus X|—=(Ly+iLy) (bl—ib}) |O>
can commute with the Casimir operatb? of the SG3) \/5 \/—

group. The three operators

(n=2x+1,x=0,1,2 . =0,1,2.
L3=(01p2—02p1), L2=L5+L3+L3,
(2.12 m=y—1,y=0,1,2...2). (2.19
1
In=5 2 (p*+add) We have given in the above three complete sets of ortho-

normal eigenstates of the integrable systdfhcorrespond-
ing to three different cases. Though these are well-known
form a complete set of commutable operators, the raising anghgyits, we shall extract general characters from them in or-
lowering operators der to characterize the integrability of the system generally.
L L L First, the three pairs of raising and lowering operators are
Fot . . o obtained as simultaneous solutions of eigenequations of
E(bli|b2),ﬁ(b1+lb2).ﬁ(|-1+'LZ)'E(Ll_'LZ)’ commutable dynamical variables with different eigenvalues,
(2.133 these three pairs of raising and lowering operators are |nde_-
1 pendent of each other. Thus they can be used as three pairs
i E (bibl),——= 2 (bib)) of conjugate dynamical variables in the place of the original
22 i<T23 ™ pairs of basic canonically conjugate dynamical variables.
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Second, any pair of raising and lowering operators to- J 1
gether with corresponding first integrals of motion form a 3 P
closed Lie algebra. This fact shows us that the orthonormal f(_j) = (2.23
eigenstates dfi® thus obtained form indeed a complete basic h [ J J
set for the state space of the systeifi T 1 %

Due to the Jacobi identity between three operators

A1,A A, Inserting these results to E®.21) we have
[[A1,A2] Agl+[[A2,As] Arl+[[Ag, ALl A ]=0, L I B B
(2.16 5 (=i)In 7 1 I'+H.c.|,
. - . 0= —1/2 :
any pair of the raising and lowering operatdt§T" and the 1 (—i)In Iﬂ 1- i) I't+He
commutatof ', T'] form a closed Lie algebra if and only if 2 h h e
(2.249
J
[T,TT]=1 or i%. (2.17 Together with the relations,
1
In the first case, J | I'r+ >
%: (2.23
+[I,I'M,

1 1 1
%J=F*F+§, %[J,FT]=FT,
we have obtained the transformation betwe&hI(") and
1 (2.18 (6,J). As pointed out beforel’,I'" are used as a pair of
Z[3.r]=-r, [ I'"=1, conjugate dynamical variables and are expressed explicitly
h with basic dynamical variables, the transformation between
i (I',T'™) and (A,J) can lead to the canonical transformation
the three operatord,I'T,T" form the Heisenberg-Wyle alge- between ¢,p) and (4,J).
bra. In the latter two cases, With such a transformation betweeq, p) and (6,J), the
Hamiltonian of the system can be expressed with action vari-
i ables alone and independent of angle varialsleghus the
h’ first integrals of motion can be expressed only in terms of
(2.19 action variables. In the same spirit as the space-time symme-
+ try, the integrable system is said to have a dynamical sym-
the three operator$,I'',I" form sd2,1) and s@3) algebras, metry in the state space and the corresponding closed Lie
respectively. Therefore the closed Lie algebras involved caB|gebra will be designated as the dynamical symmetry alge-

1 1
FTN=T! Z[3T]=-T, [I,I1]==

be only of these three types. _ bra and regarded as the characteristic of an integrable sys-
Third, all these three types of closed Lie algebras connegly,.
the pair of conjugate dynamical variablgs,I' directly to Fourth, as discussions given before are based fully on

the third Hermitian dynamical variabl&/7.. Therefore it is  5gepraic relations expressed with quantum Poisson brackets,
possible to takd as action variable and introduce in addition the optained results can be readily transferred into classical

the corresponding angle variabfe mechanics by expressing the algebraic relations with classi-
cal Poisson brackets. While the quantum-classical correspon-
i _ dence can be explicitly exhibited with steadily decreasing
—[6,J]=1, (2.20 .
ih effective Planck constants.

_ _ Fifth, in classical mechanics, the torus in the phase space
and express the transformation relation betwEénI” and  of an integrable system invariant to the phase flow is desig-

J, 0 generally as nated with values of the first integrals of motion, while in
guantum mechanics the subspace
3 NAT
_aitg 2 Tl Z)ai0
Fr=e™' f(ﬁ), r —f(ﬁ)e' , (2.2 pm=|¢m><¢m’ (2.26)

of the state space of an integrable system invariant to the
Schralinger flow must be designated by discrete eigenvalues
m of first integrals of motionJ.

1 " The previous discussions for the three-dimensional isotro-

wheref(J/#) is a function to be determined. Inserting these
formulas to Eq.(2.17), we have

d J pic harmonic oscillator in principle can be extended to sys-

eXF<ﬁ5> —1}1‘2(%) =1 .9 (222 tems with more than three degrees of freedom or to more

h complicated systems. The general concept is still valid there.

But the admitted dynamical symmetry algebra is usually not

Solving this equation we find given with the model system, it is essential to carry out the
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technical work of finding out the dynamical symmetry alge-spherical isotropy. In such cases, the Hamiltonian can be
bra admitted by the model system. For example, the Hamilexpressed with action-angle variables determined ftéfn
tonian of the electron in the hydrogen atom moving undeffor the corresponding dynamical symmetry. However, due to
the Coulomb potential is invariant to $O group transfor- the presence of quartic terms, the Hamiltonian of the whole
mations. Hence we must consider the correspondei@)SO system or independent subsystems is not free from angle
invariant subalgebra. By enlarging the &0 group to variables. Now the problem is just to eliminate the angle
SO4,2) group, we have the required 801) subgroup with  variables there.

generatord 46, L4s, andLsg [21] (notations same as in Ref. Since the dynamical symmetry algebra is expressed as
[21] have been used herélhe Schrdinger equation for the direct and semidirect sum of corresponding subalgebras, the
hydrogen atom has an energy-dependent boundary conditioalimination of angle variables can be carried out for each
hence we must consider the Sollimger equation itself in- degree of freedom independently. The Hamiltonian of the
stead of the Hamiltonian of the hydrogen atom. Then, by firssubsystem with a single degree of freedom originally real-
left-multiplying the Schrodinger equation by ds—L4e), we ized as {A%:3°T°"T®% is now realized as
obtain an equation expressed linearly in group generatgrs  {A,()\):J(\),['T(\),['(\)} where A denotes a parameter
and L, of the S@2,1) subgroup. In order to obtain bound varying continuously in a certain range of values. They can
states of the hydrogen atom we can eliminate the term inbe transformed with each other as

volving L,g leaving the equation expressed withg alone

with a nonunitary transformation. In this way, we have ob- AM()\)=U({AB},A)A?LUT({AE},)\), (3.3
tained the required S@)-invariant subalgebra in whichgg
plays the role of the action variable. A2= UT({AV()\)},A)AM()\)U({AV(A)},)\). (3.9
Ill. DYNAMICAL-SYMMETRY-PRESERVING  (DSP) LIE Here U({A%,\) is a unitary transformation
TRANSFORMATIONS AND INTEGRABLE CLASS 0 0
OF SYSTEMS HAVING THE SAME U{ALN) =exd SHA LM, (3.5

DYNAMICAL SYMMETRY o i i » i
S({A}},\) is an anti-Hermitian function expressed as power

It has been discussed in Sec. Il that the integrability of aseries ot{AS} and\, Eq.(3.4) is just the inverse transforma-
known integrable system can be profoundly characterized byon of Eq. (3.3).
its dynamical symmetry algebra, which enables one to ex- Substituting the relation(3.4 to the Hamiltonian
press the Hamiltonian in terms of actions alone free fronH({Ag},)\) we have
angle variables. Thus the existence of first integrals of mo-
tion is closely related to the fact that the Hamiltonian of the H({AS},A)zUT({AV()\)},A)H({AV(A)},)\)U({A,,()\)},)\)
system is invariant to the rotation with respect to angle vari-
ables. The problem whether or not a class of systems have =H{AMN}EN). (3.6
the same dynamical symmetry as this system can thus be o )
studied with the continuous transformation group which € Hamiltonian expressed ifA,(\)} has a new form
keeps the dynamical symmetry as its invariant property. Foft({A.(\)},A). With an appropriately chosen Lie transfor-

this purpose, we introduce an auxiliary Hamiltonian mation, H({A,(\)},A) can be expressed with(\) alone
free from I'"(\),T'(A) or 6(\). Though the hierarchy of
H(A)=(1—N)H%+A\H’, (3.2 equations for determining the series expansion of the anti-

Hermitian generating function can be written dofird], but
whereH® denotes the known integrable system as given byhe explicit solution can hardly be found. We can only ascer-
Eq. (2.3a, the commutation relation betweep andp; re-  tain its existence implicitly by using Kolmogorov’s super-
mains the same, whiléd’ denotes the three-dimensional convergent perturbatiof22]. Recently, Scherdi23] has ap-

quartic oscillator given as follows: plied the Kolmogorov's superconvergent perturbation theory
1 to the Hamiltonian operator in quantum mechanics. While

o ’
H = ~(p2+ 02+ Ty 0202 . for our purpose we must appI)_/ the Kolmogorqu supercon-
':;,2,32“0J ) j:;,Z,S 2 % j,kzzl,Z,s 7kl G vergent series to the continuous dynamical-symmetry-

(3.2 preserving(DSP Lie transformatior{17].
According to the algebraic relations of the subalgebra

Such a system has the same boundary condition as the, o 55 Eqs(2.19—(2.17), the HamiltoniarH ({A%,\) can
systemH?, the state space can be spanned by same basis s ﬁvays be expressed as a Fourier seriese‘S‘F’. Hence

as for the known integrable systeHP. In special casgl) 0 ;

¥ik=0, (j,k=1,2,3), there does not exist any coupling be—H({AV}'M can be written generally as
tween the three degrees of freedom. In special ¢hea,
=a,=v15, YV23=y31=0, the subsystem composed of the H{AY M) =Ho(°0)+ X AV,({A%), 3.7a
first and second degrees of freedom has the isotropic prop- p=L2....

erty and moves independently from another subsystem com-

posed of the third degree of freedom. In special cde V ({A%) = D [(T°N™y (3% +H.c]. (3.7b
1= ap= a3= y1,= ¥23= ¥31, the whole system has the I pm
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The elimination of terms involving®" andT'° can be car- involving T'™T andT"("™ retained are of the order of magni-
ried out in successive steps. In the first step, the Hamiltoniatude O(A2"). For a sufficiently small, the required Lie
originally expressed wit{A% is expressed byfA{Y(\)},  transformation can always be found. With the notion of ana-
terms involvingT' " and 'Y retained are reduced to the lytical extension, we can take the systéhiA=\") instead
order of magnitudeD(\?). In the second step the Hamil- of H(A=0) as reference to carry out the same kind of study.

tonian originally expressed withA()()\)} is expressed by
{AP)(\)}, terms involvingT' @ and I'® retained are re-
duced to the order of magnitu@\*). In order to eliminate
terms involving T™T and I'™ associated with\P(p
=200~ 20=1) 17 .. 2—1) in thenth step, we take

2N—1

>
(n—1)

p=2""

NPS,({AT (M)} N)
(3.8

U<{Ai”><x>},x>=exr{

S,({AM (VDTN
= >
m=1,2

MO0y (A) = H.c].

(3.9

Substituting Eqs(3.8) and (3.9) into (3.6) and carrying out
the transformation explicitly, we have

2n-1
U(n)H(nfl)U(n):Hgnfl)_,_ 2 )\p{[Sg)n),Hgnfl)]
pzz(nfl)

+VI DL o). (3.10

Because the anti-Hermitian generating function given by Eq
(3.9 is of the similar form as the Hermitian perturbing term

v("~1) given by Eq.(3.7b. The yet unknown functions

uln@™(N)) can be determined individually from Egs.

(3.10
[S5 HE P+ v t=o,

(p=20-1), 2n=Dypq (3.1

L2-1).
After a straightforward calculation we have
uDEO ) =00 VAP Al VAP ()],
(p=2"D =Ny g 2-1), (3.12
with

ol DAM(N))

:( p(zmﬁ ) }Hm 1)(J)] :
J=3M()

(3.13

Since H{"" V) is the Hamiltonian of the subsystem with a

By repeating such studies again and again, we can eventually
ascertain thaH(A=1) is also an integrable system of the
same dynamical symmetry as$(A=0) and is expressed
only with action variableJ(\) in the new realization

IO =U{A%N)IPUTHAN). (3.14

But we should notice that the Hamiltonian is generally a
nonlinear function ofJ(\).

Since the eigenfunctions of the integrable Hamiltonian
H(\) are simultaneously eigenfunctions of action variables
in the new realization, the orthonormal eigenstate$i ¢X)
are thus related to the corresponding orthonormal eigenstates
of H(A=0) by the Lie transformatiot ({A%,\)

| pm(M)=U({ALN)|¢p), (3.15

UATLN =2 (60X (¢nl- (3.16

From Eg. (3.15 we see that the orthonormal eigenstates
|¢m()\)> of the systenH(\) in one-to-one correspondence
to orthonormal eigenstateg’) of H® have the following
propertiesii) |Im)\_)0|¢m()\)>_|¢m> (ii) [pm(\)) vary con-
tinuously with\ adiabatically in the same manner ld$\)
and (i) {(dm(\)|dm(N+£))=1+0(e?). Therefore Eq.
(2.16 implies that ifH(\) belongs to the same integrable
class aH®, orthonormal eigenstates &f(\) in one-to-one
correspondence to those ldf should be obtainable with the
method of iterative perturbatidr24,25.

On the contrary, the breaking of the dynamical symmetry
algebra implies that there exist couplings between at least
two degrees of freedom. We shall particularly examine be-
haviors of the subsysteid’(J; ,l“iJr ) (i=1,2) composed
of the two degrees of freedom. Let us consider an auxiliary
Hamiltonian

H'(J;,T] T = (1= N)Ho(J) +NH'(J;,T] T,
(3.17

and write it generally in the following form:

H(J,, T T ) =Hg(Ji \) + APV(3;,TT,T)),

(3.183

%

single degree of freedom or the whole system under definite

symmetry constrainingsh o {}, (3™(\)) cannot vanish.
We have thus obtained ™ ({A{M(\)},\) which can be ex-
pressed again in the form of Eg8.7a and (3.7b), terms

Try= X

mim, . ..

Vp(Ji. I [(TD™(T)™2Upm,m, (i) +H.C,

(3.18b
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arguments §,I'7,I'}) should be read asJ(,I'l I,
=1,2),i=1,2 is omitted here. Corresponding to E¢3.8)
and(3.9) we should have

SRR

-1
—exg >,
pzz(nfl)

SN, TN, T (M)

IERUCSRNRION)

APS, 30, TN, T (N)) | (3.19

[(F(ln)T)ml(F(zn)T)mlupmlmz(‘]i(n)) — HC] .

(3.20

In order to eliminate terms involving{"'(\),T{"(\), and
T, TY(N)  associated  with \P,(p=2(""1 200~ 1)
+1,...,22=1) in the nth step, Egs.(3.12 and (3.13
should be expressed as

Upm,m,3 V) =081 2 AV O Aol 0 MO

(p=20"D2n=Dyq . P-1) (3.21)
with

hofmm, G (V)

F’mlmz
{ exp( Z hmi— ) } H{n~ 1)(J)] .
3,=3M(n)
(3.22

SinceH{" Y(J;(\)) is a nonlinear function o8{™()\), asx
increases there will eventually occur the case

Ho@W(\) +mii)—Ho(AM(V)=0,  (3.23

PHYSICAL REVIEW A 61 042104

IV. QUANTUM DYNAMICS WITH COMPLETE
CLASSICAL CORRESPONDENCE

In Secs. Il and Ill, we have demonstrated the outstanding
property of the dynamical symmetry with which the integra-
bility of a quantum system can be clearly exhibited by the
existence of subspaces invariant to the Sdimger flow and
thus able to be characterized by definite values of action
variables. However, in addition to this kind of stationary
problem, we have to consider the general dynamical problem
which deals with the solution of the dynamical equation cor-
responding to a given initial state. In classical mechanics, the
initial state is naturally chosen as the phase point described
with pairs of conjugate dynamical variables corresponding to
a certain dynamical symmetry. While in quantum mechanics,
the initial state must be chosen as the minimum-uncertainty
state expressed in an analytical form and characterized by
expectation values of same pairs of conjugate dynamical
variables. Such an initial quantum state tends to the corre-
sponding phase point in classical lintit-0. The quantum
dynamics formulated in this way has evidently complete
classical correspondence.

The ground state of an integrable quantum system is al-
most localized to the classical phase point with minimum
uncertainty but still has a zero-point fluctuation. Such a state
can be found with the dynamical symmetry algebra and can
be sent to any desired place with an element of the corre-
sponding dynamical symmetry group. We shall use such
states as initial states to obtain corresponding solutions of
quantum dynamical equations.

The ground state of the integrable system corresponding
to a certain dynamical symmetry should be determined from
the subalgebra related to the Hamiltonian of the whole sys-
tem or subalgebras related to independent subsystems. These
subalgebras must be of the three types discussed in Sec. Il.
We shall discuss them individually as follows. In order to
avoid confusion, corresponding to a dynamical variabje
the quantum operator and its expectation value are denoted

by A andA, respectively, in this section.
In the Heisenberg-Weyl algebra, the ground sféitg has

corresponding to commensurable frequencies. It is generall§XPectation values af andp both equal to zero,

impossible to obtain for sufficiently large values ®fthe

implicit solution of the required Lie transformation to reduce
the Hamiltonian to the fornt(J;(\)). As the level spacing

tends to zero in the classical linfit— 0, the condition for the  Thus we have
commensurability of frequencies may even occur at infini-

tesimally small value oh in the classical limit.

Due to the dynamical symmetry breaking, there will not
exist the analytical relation of the for(3.15 for one-to-one

(¢ol0l bo) = (ol p| bo) =0. 4.0
(ol (A= (dolal bo)) 2+ (P— (ol Pl o)) 21| bo)
=(ol(a%+p?)| o) =1i. (4.2

correspondent orthonormal eigenstates of integrable system
H° and nonintegrable systehi(\). Therefore, we conclude The displaced ground state is given as
that if and only ifH(\) belongs to the same integrable class
asHP, orthonormal eigenstates bf(\) in one-to-one corre-
spondence to those bf° can be obtained with the method of
iterative perturbation. Though the explicit form of the re-
quired DSP Lie transformation cannot be explicitly found,
but it can be expressed in the forf®.16 and numerically
obtained with one-to-one correspondent orthonormal eigen-
states by using the method of iterative perturbation.

|®%)= exr{ (pg- qp)}ldm) y=q+ip, (43
which has expectation values
(@] ®9)=(dol(@+ ) ¢o) =0, (4.4
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(D5l 9= (ol (p+p)| do)=P. (4.5 (@%a,8)]3,-124 9%, B))

The statd®) is characterized by the expectation valags =(¢219"(@.)J,-1,9(.B)|¢°) (4.12

in correspondence to the coordinates of a classical phasg which

point. Corresponding to Eq4.2) we have ~ . -
§"(,8)3,8(a,8)=20'C,n(a,B)Iv

<¢3I[(&—E)2+(ﬁ—ﬁ)z]lq>(§>=<¢ol(ﬁ2+ﬁ2)|¢o>=?4- 5 XZvC,, (@, B)C e, B))
= 51/'1/"' (413
Evidently the uncertainty measure defined above is invariant )
The above expression for uncertainty is symmetrical With(d)°(a,/3)|[(Ajl)2+(A32)2+g33(Aj3)2]|(I)°(a,/3)>

respect to A(i and AE), it is usually defined as

((AQ)?){((Ap)?)=1#2/4. As the principle of uncertainty has =(¢%|[(AJ)*+(Ad2)*+033(A3)%][¢°)

been generally embodied in the fundamental Poisson bracket Ok sQ(3)

for basic canonically conjugate variables, while the results of = (4.19
Eq. (4.6) are obtained only for the case of the Heisenberg- —®7 SQA2,)

Weyl subgroup which is particularly related to Euclidean o 5ins the same.

phase space, we prefer to use E46) to characterize the  Thg |gwest-weight state displaced with an element of the
m|n|mum—uncerta|nty state and then generalize it to Casegynamical symmetry group has kept the required property of
corresponding to S@) and S@2,1) subgroupg26]. minimum uncertainty and tends to the classical phase point
In the case of S@) and S@2,1) with discrete infinite-  in the limiting case, thus it can be readily used as the initial
dimensional representatio® " (®) bounded below, the state in formulating the quantum dynamics with complete
ground state is the lowest-weight std#” ) which is the classical correspondence. In this respect, it differs from the
simultaneous eigenstates of the Casimir operd@er J3 Cor_}earsggsgﬁéen?_'s%‘sﬁ]edr?g’eﬁgart‘g ?&?;gﬂﬁﬁ% state
a2 a2 O 5 [ inimum-u inty initi
+J51g35)5 and J with eigenvaluegys;® (¢ +1)2" and 5 denoting it generally d%/°), we have the expectation
(—®#), respectively. Heragss=+1,0 denotes a positive . . a0 S
integer or half integer for the case &0 gas=—1, —1 value for the dynamical variabl&” at the initial instantt

<®<0 for the case SQ@,1), the same notations as in Ref. =0,
[21] have been used here. Utilizing the properties of the K°=<¢°|AO|¢//°>=Tr(A°,3°), (4.15
lowest-weight statép® )

where
Jg|¢2)=—Dh[4%), I |¢°)=(¢°]3,=0 (4. ~ Aoz A
3|¢ > |¢ > |¢ > <¢ | + ( 7) p0=|¢r0><(//0|, (pO)Zpo (4.16)
and the algebraic relations is the density operator first introduced by von Neumgas.
T8 3y 7 ~ As A(t) should be uniquely determined at a definite instant,
[Jd-=J-J:1=2719sa) (4.8 the variation of the state and operators with respettctn-
we have not be independent of each other. In the Heisenberg picture,
states are independent pfwhile operators for canonically
(2 [(AT)2+(AT,)2+g35(AI3)Y %) conjugate variables vary witt)
S pu=p% Au(t=0)=A", (4.17
:<¢7|J+‘]*_E(‘]+J*_J*‘]+)]|¢*> SUCh that
[qm, sQ?3) w9 A(t)=Tr(Aup) (4.18
= 4.
—®7, SQA2,). vary with t in correspondence to results in classical mechan-

_ o ics. We have thus
The lowest-weight statgp~ ) among the whole set of ortho-

normal eigenstates df; gives minimum uncertainty. dK(t) —Tr dAHAo 4.19
For the rotated lowest-weight state dt dt ' '
|<D°(a,B))=§1(a,ﬁ)|¢9>, (4.10 In order to keep the quantum-classical correspondence we
must have
- i A R
g(a,ﬁ)=exr{—(aJ1+BJz)} (4.11 dAy 1 . .. . .
h WZE[AH,H]Z{AH,H}W- (4.20
the expectation valuesb®(a,8)|J,_; » D%, B)) are For autonomous systems,
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Aoexp[ }

With A, (t) andpy given by Eqgs(4.21) and(4.17), A(t) in

(4.18 can also be expressed as
ﬁoex4
In the first case, the obtained solutiopg(t) should be
Therefore we have alternatively the Sctirger picture in  expressed as an analytical functionalo@fvarying smoothly
which operators for basic dynamical variables are indepenwith y and t. Various components of the initial state evolve
dent oft while states of autonomous systems vary wjth essentially in the same way such that the coherence property
of the initial state will be preserved during its evolution.

PHYSICAL REVIEW A 61 042104

As the integrability and initial state are both discussed on
the basis of dynamical symmetry, we have to consider two
quite different situations: the evolution of an initial
minimum-uncertainty state corresponding to a certain dy-
namical symmetry oH® under the action ofi) an integrable
system belonging to the same integrable clasid@and (i)

a nonintegrable system without any kind of dynamical sym-
metry.

i
~ At

7 (4.21

AH(t)=exr{%I:|t

_ . i i
_ 0 _ _
A(t) Tr(A exp[ FHt ~Ht

). (4.22

As=A% py(t=0)=p", (423 \while in the second case, due to the dynamical symmetry
such that breaking, the obtained solutiops(t) can no longer be ex-
pressed as an analytical functional @f. Various compo-
A()=Tr(Agpy). (4.24  nents of the initial state may evolve in quite different ways

due to successive occurrences of nonlinear resonance. Thus
the coherence property of the initial state may even be
} strongly violated.

Comparing it with Eq(4.22), we have

ﬁoex%

1 . p a 0 - ~ ~ ~
E[H,pS]:{H’pS}QU1 p(t=0)=p% (p°)2=)p°.
(4.26

As the initial state is required to be a pure state, this equation

of the form of Neumann equation has in fact the nature of As discussed in thg previous section, if we take the dis-
placed ground state. of the known integrable system

(4.25 In order to understand the violation of the general charac-
ter of quantum regular motion more comprehensively, we
shall give in the next section a detailed study of the general
character of quantum regular motion together with numerical
illustrations.

[ [
—%Ht gHt

ps(t)ZeXF{
or, equivalently,
9ps _
ot
V. GENERAL CHARACTER OF QUANTUM REGULAR
MOTION ILLUSTRATED WITH A LIPKIN MODEL

Schralinger equation. In transition to classical mechanics)

we have correspondingly

Ipei _
ot

(pd)2=p3,
4.2

where p?, is just the classical counterpart of the minimum-
uncertainty stat@®. As the discussions about the minimum-

{Hcl ’Pcl}cl ) Pcl(t:0)2P2| )

H(x=0) as an initial state to study its spatiotemporal evo-
lution under the action of an integrable systeifw) belong-
ing to the same integrable class ld§¢x=0), the obtained
solutionp (t) of the quantum dynamical equation is just an
analytical functional otof; varying smoothly with respect to
y andt. The solutionp,(t) is generally distorted but still
behaves as a phase trajectory in the classical limit.

Let us consider as an example the two-level Lipk29]

uncertainty states are just based on algebraic relations exodel which has been introduced to simulate collective

pressed with quantum Poisson brackets, there exist certainfyionopole excitations of nuclei. The Hamiltonian of the two-
classical counterpartﬁgI which behave ag functions in the  |evel model is of the form

phase space corresponding to different dynamical symme-

tries. Hence Eq(4.27) of the form of Liouville equation can e al,ams a_an,. 1
be used to describe a bundle of phase trajectories originating H(k)=75 > - +5
o ) . 2“5 Q Q Q
from an infinitesimally small cloud of phase points. In this
way, we have indeed quantum dynamics with complete clas- p al a,  a a2
sical correspondence. As the correspondence principle has - 5[2 m}lm m_Qm ] , (5.
already been emphasized, dynamical equations in Heisen- m

berg picturg Egs.(4.17) and(4.20] and in Schrdinger pic-
ture [Egs.(4.23 and(4.26)] come out naturally. whereaﬁt ,am+ denote, respectively, creation and annihila-
The present form of quantum dynamics differs from thetion operators of fermions situated in upper and lower levels
conventional one in considering solutions of the quantunwith the same angular momentumwhile Q=2j+1 de-
dynamical equation for respective initial minimum uncer- notes the degeneracy of these two levels. If the total number
tainty states. Since the linear superposition of two minimumof fermions of the system is equal (®, the ground state of
uncertainty states is no longer a minimum uncertainty statethe system withk=0 is just the state with the lower level
solutions of the quantum dynamical equation correspondindully occupied. Then the action of collective operator
to different initial minimum uncertainty states will not obey Em(a,TMam,)/Q or Em(a,Tn,am)/Q just denotes the cre-
the principle of superposition. Thus it is not a linear problem.ation or annihilation of a monopole particle-hole pair and the
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resulting collectively excited states are just the eigenstates of 0.40 . . .

the Hermitian collective operatd{ = (a!  an_—a) _am:

+11]/Q. These three collective operators behavd asl_, 0.20 r |

and J, of the sd3) algebra. Thus according to discussions o 000 - 1

given in Sec. lIH(«) represents an integrable system with a

single collective degree of freedom. Comparing the commu- -0.20 .

tation relations for these three collective operators with Eq.

éze'rlen’ we see that 1} plays the effective Planck constant -0.40_1.0 oF 05 o5 o
: q

The state space of the Hamiltoniaf(x#0) is just
spanned by the same basis setHisc=0). It has been

shown in Sec. Il that with the application of a Lie transfor- . .
mation U («,0), H(x) can be expressed generally as a non-not contradict the property of dynamical symmetry preserva-

linear function ofJy(«) free from raising and lowering op- Eon. On the contrafw, th(_a 3psegcetr(])f any ta\lV|(:!encebof (t:Iedco-
eratorsJ. (k). Hence system#i(x) belong to the same 'Er€Nce even coniirms indirectly the conclusion about dy-

integrable class ad(«=0), the complete set of orthonormal narlnicaldsyr?me;ry p:ﬁservation. ientl

eigenstate$e,(«)) of H(«) are just simultaneous orthonor- h order 1o show Inese consequences more conveniently,
) ~ 0 the collective Hamiltonian will be described with a &D

mal eigenstates odo(«), |bn(x))=U(x,0)[¢y). Thus we 00 Bre e siization [30] with Jo=2(q—ip)(a+ip)

haveU (x,0)=2,|¢n(x)){¢]. Though it is not possible to 1 ] =quq—ip) [1-L(q—ip) (qiipz)]ql’z pJ q: lFl

obtain the explicit form of the required Lie transformation, —i'(q—i+p)(2q+ip)]1’2(q—2ip) we have then 2

U(k,0) can be obtained numerically through the one-to-one 2 '

correspondent orthonormal eigenstdigs(«)) of H(«) and e

|¢2> of H(x=0) with the method of iterative perturbation H= E(q—ip)(q+ip)

FIG. 1. Energy contour of{.(q,p)=E.e=1.0, k=0.8.

[24,25. « 1 112 2

If the initial state is taken as the rotated ground state of ——[(q—ip) 1-=(q—ip)(q+ip)| +H.c.! , (5.6
H(x=0) 4 2
pO=10(@Y, [0 =exd v, —y* I 1|¢%), (52 . p]:i(i) .
and evolves under the action Bifl « #0) , we have ’ Q) '

All systems with definites, x but differentQ) have the same
classical counterpart corresponding t6)+ 0. Hence quan-
tum effects in systems with differen) can be readily
_ — (i) Ep ()t 0 shown.
= e m ,

n%, |#m(x)) (Sm()lp5] b (<)) In the classical limit 1) — 0, the classical orbits can be
readily shown with the energy contours

py(t)=ex;{ - %H(K)t p?,eX[{ille(K)t

x eUME (g, (). (5.3
Here Hea(p,q)=E (5.9
(1015l b (10)=Z (S0l S2X(0l3] 1) f}ﬁcl‘rt;iﬁt'y1rhe‘)§;§rrge§7fg)afe taken @s1.04=08. The
(| (1)) BA  [A(yD]Y=(THI(AJ)?+(Ad,)%+ (A1) %]p, (D)2
Em(€) =(bm(1)[H(1) (1)) (5.5 (5.9

calculated for solutions corresponding to a given initial state

As both  expyd.—1*J.] and (¢n(x)|¢0)  butwith 10 = 155,35 is given in Fig. 2. The time-averaged
=<¢°m|uT(K,0)|¢2> here are dynamical symmetry preserv- values are 0.24 and 0.14, respectively, the ratio between
ing transformations,p,(t) is an analytical functional of them agree roughly with the ratio betwee 1/100 and
p(t) varying smoothly withy andt. However, due to the V1/300. As 1f) decreases steadilyA(y,t)]* decreases as
fact thatH(«) is a nonlinear function ofi(«), E,(x) is a @ and beco_mes much smaller than the range of variation
nonlinear function ofm, different matrix elements o;ﬁ(;(t) of q(y,t) and p(y,t), quantum effects will then be negli-
will evolve with different frequencies. There will appear dis- gible, the evolution of the state,(t) can be approximately
persion and regular interference patterns during a sufficientlyepresented with the classical phase trajectory.
long period of evolution. However, the effective Planck constanfllis a finitely

These features are just quantum effects, the regularitiesmall quantity. There should always exist quantum effects.
exhibited in these plentiful features imply that the stafét) In order to show them explicitly we consider the expectation
has its analyticity still preserved. These quantum effects dealue
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FIG. 2. Uncertainty measufe (y,t)]¥?for a given initial state,
curve (a) corresponds to ﬂ=ﬁ and (b) corresponds to O
1

= 300-

1000.0

1500.0

9%, =Trlap,(0)]= 2 (¢n(x)lalbn ()

X{(nr (k)] po(D)] n())
and the probability lying to the left of the energy barrier

Py =2 Tilla(ale,(t)]

= 2 E <¢n(K)|qi><qi|¢n’(K)>

4i<0 pp’

X (k)| p (V)| n())

where|q;) is the orthonormal eigenstate qf

alaiy=aila;)-

(5.10

(5.11

(5.12
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FIG. 4. Probability lying to the left of the barriét, (y,t) for the
same initial state. = 755.

lowered so that they become almost degenerated with the
preceding even-parity ones. The almost-degenerated pair of
levels are in phase with each other at the right side of the
energy barrier but out of phase at the left side of the energy

barrier. Hencey(y,t) mainly oscillates around the well cen-

ter at the right side of the energy barrier with a frequency
w~1 which is determined from the mean level spacing be-
tween two neighboring almost-degenerated pairs of levels.

Similarly p(y,t) mainly oscillates around the mean value
zero with the same frequenay~1. Hence the “quantum
trajectory” mainly revolves around the well center at the
right side of the energy barrier.

However, due to the spreaded probability distribution of
the state and the energy-dependent frequency of different
components, the probability distribution of the state will be
distorted. Consequently, the details of the “quantum trajec-

tory” will vary with t. In other wordgy(y,t) andp(y,t) will
have an amplitude modulation around their mean values. As
the amplitude modulation is correlated with the distortion of
the probability distribution[A(7,t)]¥? will also have an

The corresponding numerical results are given in Figs. 3 andmplitude modulation around its mean value. The largest
4, respectively, for the case(l/ 155 with the other param-  amplitudes of(y,t) oscillation generally correspond to the

eters the same as in Fig. 2.

smallest amplitudes ¢fA (y,t)]¥? oscillation and vice versa.

For the initial minimum L!ncertainty state studied here,Practica”y’py(tzo) is Comp|ete|y localized at the r|ght side
almost all the components lie below the top of the energyf the energy barrier. Ap,(t) evolves witht, the almost-
barrier, the eigenenergy of the odd-parity states are mucfegenerated pair of levels will not be completely out of

0.80

0.70

0.60

0.50

<q(v.t)>

0.40

0.30

0.20

FIG. 3. Expectation vaIueT(y,t) for the same initial state.

110 = 155.

t

0.0 250.0 500.0 750.0 1000.0 1250.0 1500.0

phase at the left side of the energy barrier. The probability
distribution at the left side of the energy barrier(y,t) will

not always be negligibly smallP (y,t) will have also an
amplitude modulated oscillation as shown in Fig. 4.

As these interference patterns can exist only if the dy-
namical symmetry and analyticity of the initial state are pre-
served, the disappearance of such a kind of regular interfer-
ence patterns can be regarded as an indication of
decoherence and also an indirect indication of dynamical
symmetry breaking.

As a whole, the essential point of quantum regular dy-
namics is the preservation of the dynamical symmetry and
analyticity of the initial state during its evolution. Thus the
essential point of quantum chaotic dynamics should be just
the violent destruction of the general character of quantum
regular motion as in classical chaotic dynamics.
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VI. SUMMARY ized algebraically by its dynamical symmetry, the discus-
n thi h first | tiaated th ¢ sions can readily be extended to a class of integrable systems
n this paper, weé have hirst investigate € quan um’naving the same dynamical symmetry. In this way, we have

classi'cal correspondgnpe by concentrating.our a.ttention. fendered the Liouville theorem applicable to both classical
peculiar properties arising from the uncertainty principle ingpq quantum integrable systems.

quantum mechanics. Though with the replacement of basic aternatively, the one-to-one correspondence between
canonically conjugate dynamical variables by correspondingompletely defined single quantum state with minimum un-
incommutable operators, quantum dynamical equations havgertainty and classical phase points can be seen through clas-
been formulated correspondingly. But due to the uncertaintgical limit. Having known the dynamical symmetry algebra
principle, we have to introduce quantum states of statisticabf an integrable system, such a minimum uncertainty state
nature to give expectation values for dynamical variablescan readily be found as a displaced ground state. Taking such
Thus quantum state space is quite different from classicah state as the initial state for quantum dynamical equations,
phase space. its spatiotemporal evolution can be studied in the same spirit
But instead of a completely defined single state, one caas for the corresponding classical case.
consider subspaces of an integrable system defined by defi- Though quantum dynamical equations for operators are
nite values of action variables alone. In classical mechanicgprmally analogous to classical canonical equations for dy-
such subspaces are just the tori invariant to the phase flomamical variables, the manipulations in solving quantum dy-
while in quantum mechanics, the corresponding subspacesmmical equations must involve the commutation relations
invariant to the Schidinger flow will be the simultaneous for basically conjugate operators. Due to the finiteness of the
orthonormal eigenstates of a complete set of commutablaniversal Planck constant, it is not possible to consider the
operators. In order to span the quantum state space comlassical limit straightforwardly. In fact, a microscopic sys-
pletely by such a set of orthonormal states, pairs of conjugateem would be characterized by the small inertia mass and/or
operators together with accompanying Hermitian operatorstrong interaction strength such that its state varies rapidly.
must form closed Lie algebras. Due to this fact, we can findHence it is possible to consider scaling transformations to
the quantum canonical transformation between basic canonéxpress dynamical equations for systems with different para-
cally conjugated variables and action-angle variables suchmetric quantities in the same form but commutation relations
that the Hamiltonian of this integrable system can be exwith different effective Planck constants. Then the classical
pressed in terms of action variables alone free from anglémit is attained by steadily decreasing the magnitude of the
variables. Analogous to space-time symmetry, such a propeffective Planck constant for systems with different paramet-
erty is designated as dynamical symmetry and the associateid quantities.
Lie algebra as dynamical symmetry algebra. Having resolved these relevant problems, not only the
Though such discussions are made for a special integrabgeneral character of quantum regular motion can be studied
system, but the integrability of this system is now characterin parallel to that of the classical regular motion, but also the

Decrease of effective Planck constant
<

" Regular motion of classical . |Regular motion of quantum
integrable systems integrable systems

Violent destruction of the |
general character of reg-
ular motion due to succ-
esive occurrences of
nonlinear resonance

4
Chaotic motion of classical . | Chaotic motion of quantum
nonintegrable systems nonintegrable systems
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