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Schmidt number for density matrices
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We introduce the notion of a Schmidt number of a bipartite density matrix. We show thatk-positive maps
witness the Schmidt number, in the same way that positive maps witness entanglement. We determine the
Schmidt number of the family of states that is made from mixing the completely mixed state and a maximally
entangled state. We show that the Schmidt numberdoes not necessarily increasewhen taking tensor copies of
a density matrixr; we give an example of a density matrix for which the Schmidt numbers ofr andr ^ r are
both 2.

PACS number~s!: 03.67.Hk, 03.65.Bz
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In quantum information theory the study of bipartite e
tanglement is of great importance. The usual scenario is
in which two parties, Alice and Bob, share a supply ofn pure
or mixed statesr ^ n that they would like to convert by loca
operations and classical communication~denoted as LO
1CC! to a supply ofk other mixed or pure statess ^ k, where
k can either be smaller or larger thann. The simple question
that underlies many studies in bipartite entanglement is
question, what properties of these two sets of states ma
possible or impossible to carry out such a protocol? Mu
work has been devoted to developing the necessary and
ficient conditions for this LO1CC convertibility. In the case
of pure-state convertibility, it has been found that some
pects of this problem can be understood with the mathem
ics of majorization@1#. In the case of mixed-state entangl
ment the theory of positive maps has been shown to play
important role@2#. The power of positive maps is best illus
trated by the Peres separability condition@3#, which says that
a bipartite density matrix that is unentangled~aka separable!
must remain positive semidefinite under the application
the partial transposition map. For low-dimensional spin s
tems this condition is not only necessary but also suffici
to ensure separability@2#. It has been shown@4# that density
matrices which are positive under partial transposition
undistillable, that is, nonconvertible by LO1CC to sets of
entangled pure states. Many examples of these bound
tangled states have been found@5#. Evidence has been foun
as well for the nondistillability of certain classes of entang
states that are not positive under partial transposition@6,7#,
and it was shown that this feature relates to the 2-positi
of certain maps@6#.

In this paper, we extend the LO1CC classification of bi-
partite mixed states with the use of positive maps. In parti
lar, we extend the notion of the Schmidt rank of a pu
bipartite state to the domain of bipartite density matrices.
will show that this new quantity, which we will call the
Schmidt number, is witnessed byk-positive maps.

For a bipartite pure state that we write in its Schm
decomposition~see Ref.@8#!
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Al i uai& ^ ubi&, ~1!

the numberk is the Schmidt rank of the pure state; it is th
rank of the reduced density matrixr red5TrBuc&^cu. A nec-
essary condition for a pure state to be convertible
LO1CC to another pure state is that the Schmidt rank of
first pure state is larger than or equal to the Schmidt rank
the latter pure state; local operations and classical comm
cation cannot increase the Schmidt rank of a state@9#. We
propose the following definition of Schmidt number, whic
is a natural extension of the one applied to pure states.

Definition 1. A bipartite density matrixr has Schmidt
numberk if ~i! for any decomposition ofr, $pi>0,uc i&% with
r5( i pi uc i&^c i u at least one of the vectors$uc i&% has at least
Schmidt rankk and ~ii ! there exists a decomposition ofr
with all vectors$uc i&% of Schmidt rank at mostk.

The Schmidt number of a pure stateuc& is simply the
Schmidt rank of the pure state. Let us denote the set of d
sity matrices onHn^ Hn that have Schmidt numberk or less
by Sk . The setSk is a convex compact subset of the ent
set of density matrices denoted byS, andSk21,Sk . The set
of separable density matrices isS1.

The setS1 has been completely characterized by posit
maps@2#. Namely, for any stater defined onHn^ Hn , r
PS1 holds if and only if the matrix (1^ L1)(r) has non-
negative eigenvalues for all positive mapsL1 :Mn(C)
→Mn(C) @10#.

Now let us recall the definition ofk-positive linear maps.
Definition 2.The linear Hermiticity-preserving mapL is k

positive if and only if

~1^ L!~ uc&^cu!>0 ~2!

for all uc&^cuPSk .
Similarly as with the characterization ofS1 in terms of

1-positive~or, equivalently, positive! maps, we can charac
terizeSk with k-positive maps.

Theorem 1.Let r be a density matrix onHn^ Hn . The
density matrixr has Schmidt number at leastk11 if and
only if there exists ak-positive linear mapLk :Mn(C)
→Mn(C), such that
©2000 The American Physical Society01-1
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~1^ Lk!~r!>” 0. ~3!

The proof of this theorem, which involves some techni
details, is given at the end of this paper. With our definiti
of Schmidt number, it is not hard to prove the following.

Proposition 1.The Schmidt number of a density matr
cannot increase under local quantum operations and clas
communication.

Proof.Consider a density matrix% that has some Schmid
number k. Then it has the formr5( i pi uc i&^c i u with all
vectorsuc i& having Schmidt rank at mostk. If there were any
LO1CC operation that would increase the Schmidt num
of the state, it would increase the Schmidt rank of at le
one of the pure statesuc i&^c i u. But no LO1CC operation
can increase the Schmidt rank of a pure state@9#. j

We will study a well-known class of statesrF , mixtures
of the completely mixed state, and a maximally entang
state, by which we illustrate the notion of Schmidt numb
and its relation tok-positive maps. First we note the follow
ing.

Lemma 1.For any density matrixr on HN^ HN that has
Schmidt numberk, we have

f ~r![max
C

^CuruC&<
k

N
, ~4!

where we maximize over maximally entangled statesuC&.
Proof. For any pure stateuc&^cu with Schmidt rankk

characterized by its Schmidt coefficients$l i%, see Eq.~1!,
the functionf equals@11#

f ~ uc&^cu!5
1

N F(
i 51

k

Al i G2

. ~5!

Using Lagrange multipliers to implement the constra
( il i51 one can show that@( i 51

k Al i #
2<k. Since r has

Schmidt numberk, f (r)5( i pi^Cuc i&^c i uC&<k/N. j
We consider the family of states

rF5
12F

N221
~12uC1&^C1u!1FuC1&^C1u, 0<F<1,

~6!

with uC1&5(1/AN)( i 51
N u i i &. WhenF<1/N the density ma-

trix rF is separable, while forF.1/N it can be distilled by
an explicit protocol~see Ref.@11#!.

For these states we havef (rF)5F. Therefore by Lemma
1, when F.k/N the state has Schmidt number at lea
k11. This result has an alternative derivation in terms
k-positive maps. There exists a well-known family
k-positive maps for which the following has been proved

Lemma 2@12,13#. Let Lp be a family of positive maps on
MN(C) of the form

Lp~X!5Tr X12pX, ~7!

whereXPMN . The mapLp is k positive, butk11 negative
(k,N) for
04030
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k11
,p<

1

k
. ~8!

Note that the range ofp for k positivity does not depend
on the dimensionN of HN . We note that the mapLp51 is
the reduction criterion that was used in Ref.@11# to develop
a distillation method for entangled density matrices onHN
^ HN . If we apply these mapsLp on half ofrF , we find the
same lower bound on the Schmidt number ofrF .

By giving an explicit decomposition ofrF , we will show
that this lower bound on the Schmidt number is tight. W
will do so by showing that the density matrixrF at the point
F5k/N can be made by mixing Schmidt rankk vectors. If
we show that atF5k/N the density matrix can be made b
mixing Schmidt rankk vectors, then it follows that at any
F,k/N only vectors with Schmidt rankk are needed, as we
can make these states by mixing the completely mixed s
1 with the density matrixrF5k/N . As observed in Ref.@11#,
the statesrF have the important property that they are inva
ant under the operationU ^ U* for any unitary transforma-
tion U. We can define the LO1CC superoperatorS U ^ U* as

S U ^ U* ~r!5
1

Vol~U !
E dUU^ U* rU†

^ U* †, ~9!

which will bring any initial stater into the form ofrF , i.e.,
a mixture of1 and uC1&^C1u. As our initial state we take
the maximally entangled Schmidt rankk state uck&
5(1/Ak)( i 51

k u i i & and letS U ^ U* operate on this state. W
easily find that the resulting density matrix equalsrF at F
5k/N. We can summarize these results in a theorem.

Theorem 2.The staterF in HN^ HN has Schmidt numbe
k if and only if

k21

N
,F<

k

N
. ~10!

For this special class of states we have found that Schm
number is monotonically related to the amount of entang
ment in the state. This is not always the case; a pure stateuc&
with Schmidt rankk can have much less entanglement tha
say, the one bit of a maximally entangled Schmidt rank
state.

When we find that a density matrixr is of Schmidt num-
ber k, we may ask whether the tensor productr ^ r is of
Schmidt numberk2. Or is it possible to maker ^ r from
mixing Schmidt rankm,k2 vectors? In other words, whe
we assign the valueN(r)5 ln k to a density matrixr that has
Schmidt numberk, we ask whetherN(r) is additive, i.e.,

N~r ^ n!5nln k. ~11!

For pure states this additivity property holds: The ten
product of two pure entangled states, each with Schmidt r
k, is a pure state with Schmidt rankk2. With a simple argu-
ment we can lower bound the functionN(r). Whenr itself
has Schmidt numberk, then the Schmidt number of an
number of copies ofr,r ^ n must be at leastk. We can getr
from r ^ n (n>2) by local operations, namely tracing out a
1-2
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states but one. Thereforer ^ n cannot have a smaller Schmid
number thanr itself, since, if it were, then we would find
contradiction with Proposition 1. Thus we obtain the bou
N(r ^ n)>N(r).

Let us consider tensor copies of the staterF , i.e., rF
^ m

with m>2 and lower bound the Schmidt number as befo
This time, in the spaceH Nm^ H Nm, we havef (rF

^ m)>Fm

and with Lemma 1 this implies that whenFm.k/Nm the
Schmidt number ofrF

^ m is at leastk11. We will give an
example of two copies ofrF in H2^ H2 that will show that
this bound can be tight. The idea is again to use theU
^ U* invariance of each copy ofrF . We show how to con-
struct the density matrixrF

^ 2 whererF is a two-qubit state a
F51/A2 by mixing Schmidt rank 2 vectors. Letuc& be the
state

uc&5
1

A2
@ u0,c0& ^ u0,c0&1u1,0& ^ u1,0&], ~12!

whereuc0&5A2AA221u0&1(12A2)u1&. This is a maxi-
mally entangled Schmidt rank 2 state betweenHA1 ,A2

and

HB1 ,B2
. Now Alice and Bob perform the following opera

tions on this state:~i! They perform the superoperato
S U ^ U* , Eq. ~9!, on the Hilbert spaceHA1

^ HB1
and they

apply the same superoperator onHA2
^ HB2

. ~ii ! Then Alice
and Bob symmetrize the state between system 1 and sy
2; i.e., with probability 1/2, they locally swap qubitA1↔A2
andB1↔B2 and with probability 1/2 they do nothing.

By these two LO1CC operations any initial state i
mapped onto a state of the form

a~12uC1&^C1u! ^ 21buC1&^C1u ^ @12uC1&^C1u#

1b@12uC1&^C1u# ^ uC1&^C1u1c~ uC1&^C1u! ^ 2

By going through the algebra, one can check that the
operations on the stateuc& result in a5@A221#2/18,
b5(A221)/6 and c5 1

2 . We have shown that the sta
rF51/A2 has Schmidt number 2andrF51/A2

^ 2 also has Schmid
number 2. This is an example of nonadditivity of the fun
tion N in Eq. ~11!. We have numerical evidence that th
lower bound on the Schmidt number atF5A3/2 is tight as
well; i.e., it seems possible to makerF

^ 2 at F5A3/2 with
mixing only Schmidt rank 3 vectors. The stepwise behav
of Schmidt number is illustrated in Fig. 1.

Since we have found that the Schmidt number can exh
‘‘nonadditivity,’’ we can define the asymptotic Schmid
characteristic of a state

N `~r!5 lim
m→`

H ln k

m
: r ^ m has Schmidt numberkJ .

~13!

The asymptotic Schmidt number of a density matrix giv
us some information about whether two states, whose si
copy Schmidt number is identical, can be interconverted
LO1CC. Say we have two density matricesr1 andr2 that
04030
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each have Schmidt numberk. But assume that for somen the
Schmidt number ofr1

^ n is larger than the Schmidt number o
r2

^ n . Then it follows that a single copy ofr2 cannot be
converted by LO1CC to r2, because, if it could, then by
repeating this proceduren times we could convertr2

^ n to
r1

^ n , which is in violation of Proposition 1.
In conclusion, we have introduced a new criterion f

LO1CC convertibility for bipartite mixed states and show
its relation tok-positive maps. Since the theory ofk-positive
maps is not~yet! greatly developed, we have not been able
use this connection extensively. We have found that Schm
number for mixed states behaves differently than for p
states, in particular it does not necessarily increase w
taking tensor copies of a state. This feature of ‘‘nonaddit
ity’’ makes it possible to pose the following open questio
Assume that a bipartite stater1 has a higher Schmidt numbe
than r2, and thusr2 cannot be converted tor1. Assume
however that for somerhelp we can prove thatr1^ rhelp and
r2^ rhelp have thesameSchmidt number or thatr2^ rhelp
has a larger Schmidt number. Then it could possibly be t
r2^ rhelp can be converted tor1^ rhelp . This would be an
example of the use of borrowing of entanglement for mixe
state conversions. Such a borrowing scheme has been f
for exact pure-state conversion@14#; it would be interesting
to see whether it is possible in the mixed state domain.

Proof of Theorem 1.Before proving Theorem 1 it will be
useful to give some properties related tok positivity and an
alternative formulation ofk-positivity.

Lemma 3.The linear Hermiticity-preserving mapL is k
positive if and only if

~1^ L!~ uCk&^Cku!>0 ~14!

for all uCk& that are maximally entangled Schmidt rankk
vectors. The linear Hermiticity-preserving mapL is k posi-
tive if and only if

(
n,m51

k

Amnmm^bnuL~ uan&^amu!ubm&>0 ~15!

for all possible orthogonal sets of vectors$uan&%n51
k and

$ubn&%n51
k and Schmidt coefficients$mn%, (n51

k mn51. Fi-

FIG. 1. The Schmidt number of one and two copies ofrF for
N52 as a function ofF.
1-3
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nally, if L is k positive, thenL† defined by TrA†L(B)
5Tr L†(A†)B for all A andB, is alsok positive.

Proof (sketch).Equation~14! can be proved in a fashio
completely analogous to Lemma 7 in Ref.@6#; there it is
proved fork52. Equation~15! has been proved by Uhlman
@12# and can be understood as follows. It is equivalent to

(n,m,i , j 51
k Amnmm^gn ,bnu~1^ L!~ ug i ,ai&^g j ,aj u!ugm ,bm&

>0

for any orthogonal set$ugn&%n51
k , or

^cu~1^ L!~ uCk&^Cku!uc&>0

for arbitrary uc& and uCk&. The k positivity of L† can be
seen by noting that Eq.~2! can be written in terms ofL† as

^cu~1^ L†!~ uf&^fu!uc&>0 ~16!

for all uc&^cuPSk and arbritraryuf&. Sinceuc& has Schmidt
rank k or less, it follows that we can restrict the stateuf& to
be of Schmidt rankk as well, oruf&^fuPSk . j

Proof of Theorem 1.Consider the ‘‘if’’ part of the theo-
rem. Suppose, conversely, that there exist some% of
Schmidt number at mostk for which Eq.~3! is satisfied for
somek-positive mapLk . The first assumption guarantee
that % is a convex combination of pure statesuc i&^c i u of
Schmidt rank at mostk each. From the definition ofk posi-
tivity it follows immediately that alluc i&^c i u remain positive
after the action of1^ Lk , so their convex combination equa
to % remains positive too. But this then is in contradictio
with Eq. ~3!.

Consider the ‘‘only if’’ part of the theorem. Letr have
Schmidt number at leastk11, i.e.,r¹Sk . Then there exists
a hyperplane$sPSu Tr Hs50% that separates the conve
compact setSk and the pointr¹Sk ; i.e., there exists a Her
mitian operatorH such that

Tr Hr,0 and ;sPSk , Tr Hs>0. ~17!

We will show that we can associate with this Hermitian o
A

v

or
tt
,

es

d

04030
-

erator H a positive linear mapLk that is k positive. We
defineL as

H5~1^ Lk!~ uC1&^C1u!, ~18!

whereuC1&5(1/An)( i 51
n u i i &. We use TrHs>0 where we

take s to be an entangled Schmidt rank-k vector, s
5(n,m51

k Almlnuam ,bm&^an ,bnu. We will denote transposi-
tion in the full $uan&% basis asTa. We can rewrite the expres

sion (n,m51
k AlmlnTr Huam ,bm&^an ,bnu>0, using Eq.~18!

and the expansion of a linear mapS on an operatorX as
S(X)5( i , j 51

n ^ i uXu j &S(u i &^ j u), as

1

n (
m,n51

k

Alnlm^bnuLk+T+Ta~ uan&^amu!ubm&>0. ~19!

Lemma 3 then implies that the mapLk+T+Ta is k positive.
The mapT+Ta maps the vectoruan& onto uan* & where com-
plex conjugation is performed with respect to the$u i &% basis.
This corresponds to a unitary rotation from the$uan&% basis
to the$uan* &% basis. ThereforeLk itself will be k positive. On
the other hand, the condition TrHr,0 can be rewritten,
using Eq.~18!, as

^C1u~1^ Lk
†!~r!uC1&,0. ~20!

SinceLk is k positive,Lk
† is k positive; see Lemma 3. This

completes the proof.j
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