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Schmidt number for density matrices
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We introduce the notion of a Schmidt number of a bipartite density matrix. We show-tiaitive maps
witness the Schmidt number, in the same way that positive maps witness entanglement. We determine the
Schmidt number of the family of states that is made from mixing the completely mixed state and a maximally
entangled state. We show that the Schmidt nundoes not necessarily increaaden taking tensor copies of
a density matrixp; we give an example of a density matrix for which the Schmidt numbepsarfdp® p are
both 2.

PACS numbgs): 03.67.Hk, 03.65.Bz

In quantum information theory the study of bipartite en- k
tanglement is of great importance. The usual scenario is one lyy=2, V\ila)®|by), (1)
in which two parties, Alice and Bob, share a supphnafure =1
or mixed statep®" that they would like to convert by local
operations and classical communicatioenoted as LO
+CC) to a supply ofk other mixed or pure states®*, where
k can either be smaller or larger thanThe simple question,

the numbelk is the Schmidt rank of the pure state; it is the
rank of the reduced density matrixeq= Trg|#){|. A nec-
essary condition for a pure state to be convertible by

: S : : O+CC to another pure state is that the Schmidt rank of the
that underlies many studies in bipartite entanglement is th ) .
y b g st pure state is larger than or equal to the Schmidt rank of

guestion, what properties of these two sets of states make } . . .
possible or impossible to carry out such a protocol? MucH ellatter pure state; local operations and classical communi-
work has been devoted to developing the necessary and SLﬁ’@t'on cannot Increase th_e_Schmldt rank_ of a sEQjeWe_
ficient conditions for this LG-CC convertibility. In the case propose the follow!ng definition of Sc_hmldt number, which
of pure-state convertibility, it has been found that some as® @ né.ltl.”.al extenspn Of the one appheq to pure stateg.
pects of this problem can be understood with the mathemat- Defmlt_lon_ 1. A bipartite dens_,l_ty matrixp has SChm'dt
ics of majorization[1]. In the case of mixed-state entangle- numberkif (i) for any decomposition gf, {p;=0/¢;)} with
ment the theory of positive maps has been shown to play aﬂZEiPiWi)Wi' at Iea_\_st one of th_e vectofsy)} has_ at least
important role[2]. The power of positive maps is best illus- >¢NMidt rankk and (ii) there exists a decomposition pf
trated by the Peres separability condit[@}, which says that with all VeCtOFSﬂ i)} of Schmidt rank at mc_Jsk. .
a bipartite density matrix that is unentangl@dka separabje The Schmidt number of a pure stdtg) is simply the
must remain positive semidefinite under the application ofScNMidt rank of the pure state. Let us denote the set of den-
the partial transposition map. For low-dimensional spin sysSity matrices ort{, @7, that have Schmidt numbéror less
tems this condition is not only necessary but also sufficienPy Sc- The setS, is a convex compact subset of the entire
to ensure separabilifi2]. It has been showpd] that density ~ S€t of density matrices denoted ByandS,,CS;. The set
matrices which are positive under partial transposition ar@f Separable density matrices 3s. _ -
undistillable, that is, nonconvertible by LLOCC to sets of The setS, has been completely characterized by positive
entangled pure states. Many examples of these bound efaps[2]. Namely, for any state defined onH,®H,, p
tangled states have been fouisd. Evidence has been found € S: holds if and only if the matrix I® A;)(p) has non-
as well for the nondistillability of certain classes of entanglednegative eigenvalues for all positive map$;: M,(C)
states that are not positive under partial transposiitod, =~ —Mn(C) [10]. o o
and it was shown that this feature relates to the 2-positivity NOW let us recall the definition dt-positive linear maps.
of certain map$6]. Definition 2.The linear Hermiticity-preserving map is k

In this paper, we extend the LOCC classification of bi-  Positive if and only if
partite mixed states with the use of positive maps. In particu-
lar, we extend the notion of the Schmidt rank of a pure (1@ A)([)(¥)=0 2
bipartite state to the domain of bipartite density matrices. We
will show that this new quantity, which we will call the for all |){y|eS.

Schmidt numberis withessed bk-positive maps. Similarly as with the characterization &, in terms of
For a bipartite pure state that we write in its Schmidt1-positive (or, equivalently, positivemaps, we can charac-
decomposition(see Ref[8]) terize S, with k-positive maps.

Theorem 1let p be a density matrix oft{,®H,,. The

density matrixp has Schmidt number at leaktt 1 if and

*Electronic address: terhal@watson.ibm.com only if there exists ak-positive linear mapA: M,(C)
Electronic address: pawel@mif.pg.gda.pl —M,(C), such that
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1Pk ®

The proof of this theorem, which involves some technical
details, is given at the end of this paper. With our definition  Note that the range gf for k positivity does not depend
of Schmidt number, it is not hard to prove the following.  on the dimensioN of . We note that the map -, is
Proposition 1.The Schmidt number of a density matrix the reduction criterion that was used in Rgf1] to develop
cannot increase under local quantum operations and classicgldistillation method for entangled density matrices7gg

communication. ®@Hy . If we apply these map4 , on half of p, we find the
Proof. Consider a density matrig that has some Schmidt same lower bound on the Schmidt numbenpgf
numberk. Then it has the formp=ZX;p;|)(¢;| with all By giving an explicit decomposition qfr , we will show

vectors| ;) having Schmidt rank at mokt If there were any  that this lower bound on the Schmidt number is tight. We

LO+CC operation that would increase the Schmidt numbeiill do so by showing that the density matrix at the point

of the state, it would increase the Schmidt rank of at least-=k/N can be made by mixing Schmidt rafkvectors. If

one of the pure statelsy;)(#;|. But no LO+CC operation we show that aE =k/N the density matrix can be made by

can increase the Schmidt rank of a pure sfale® mixing Schmidt rankk vectors, then it follows that at any
We will study a well-known class of stateg, mixtures  F<k/N only vectors with Schmidt rank are needed, as we

of the completely mixed state, and a maximally entangledtan make these states by mixing the completely mixed state

state, by which we illustrate the notion of Schmidt numbery with the density matrixpg_,n . As observed in Ref11],

_and its relation tk-positive maps. First we note the follow- the stategr have the important property that they are invari-

Ing. ant under the operatiod ® U* for any unitary transforma-

Lemma 1For any density matrix on Hy® Hy that has tion U. We can define the L&CC superoperato.fs‘“®u* as
Schmidt numbek, we have

UeUu* — 1 J * T *1
f(p) =ma ¥ o) =, @ S Vo)) dUPERTRUETL @

! which will bring any initial statep into the form ofpg, i.e.,
where we maximize over maximally entangled statés. a mixture of1 and | W)W *|. As our initial state we take
Proof. For any pure statéy)(y| with Schmidt rankk ~ the maximally entangled Schmidt rank state [n)
characterized by its Schmidt coefficierfts;}, see Eq.(1), =(1//k)=K,ii) and letSU®Y" operate on this state. We

the functionf equals[11] easily find that the resulting density matrix equals at F

=k/N. We can summarize these results in a theorem.
5 Theorem 2The statepr in Hy® Hy has Schmidt number
: ®)  kifand only if

2

k
f(l¢><¢|)=%{§l N

Using Lagrange multipliers to implement the constraint k_1<|:$

S\i=1 one can show thatSk_,\\]?<k. Sincep has N
Schmidt numbek, f(p)==pi(V|#i){i|P)<k/N. R
We consider the family of states

(10

Z| =

For this special class of states we have found that Schmidt
number is monotonically related to the amount of entangle-
ment in the state. This is not always the case; a pure |sfate

pE= 1-F (1= | NP T)+F|T WP, 0<F<1, with Schmidt rankk can have much less entanglement than,
N?—1 say, the one bit of a maximally entangled Schmidt rank-2
(6)  state.

. N N ) When we find that a density matrixis of Schmidt num-
with [W*)=(L/YN)=L,|ii). WhenF<1/N the density ma- per k we may ask whether the tensor produch p is of
trix pg is separable, while foF >1/N it can be distilled by  gchmidt numbek2. Or is it possible to make®p from
an explicit protocolsee Ref[11]). mixing Schmidt rankm<k? vectors? In other words, when

For these states we ha¥goe) =F. Therefore by Lemma e assign the valua/{p) =Ink to a density matrixp that has

1, when F>k/N the state has Schmidt number at leastschmidt numbek, we ask whetheA(p) is additive i.e.,
k+1. This result has an alternative derivation in terms of

k-positive maps. There exists a well-known family of Mp®M=nink. (11
k-positive maps for which the following has been proved. . o
Lemma 212,13 Let A, be a family of positive maps on For pure states this additivity property holds: The tensor

My(C) of the form product of two pure entangled states, each with Schmidt rank
k, is a pure state with Schmidt ram®. With a simple argu-
Ap(X)=TrX1-pX, (7) ment we can lower bound the functidWp). Whenp itself

has Schmidt numbek, then the Schmidt number of any
whereX e My . The mapA is k positive, butk+ 1 negative  number of copies op,p®" must be at least. We can gep
(k<N) for from p®" (n=2) by local operations, namely tracing out all
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states but one. Therefop&" cannot have a smaller Schmidt — — = =2copies

number tharp itself, since, if it were, then we would find a k

contradiction with Proposition 1. Thus we obtain the bound

Mp®")=Mp). 4
Let us consider tensor copies of the state, i.e., pp™

with m=2 and lower bound the Schmidt number as before. 31 ===t

This time, in the spacé{ ym® H ym, we havef(pg™=F™ I

and with Lemma 1 this implies that wheA™>k/N™ the 2 —— ——

Schmidt number opg™ is at leastk+1. We will give an

example of two copies gbr in H,® H, that will show that | ]

this bound can be tight. The idea is again to use tthe

®U* invariance of each copy gfz. We show how to con- 12 V22 V321

— =] cOpy

struct the density matri)si,?2 wherepg is a two-qubit state at F
Ft=t1/\/§ by mixing Schmidt rank 2 vectors. Lé) be the FIG. 1. The Schmidt number of one and two copiespgpffor
state N=2 as a function of.
1 .
= [10.00)®|0.40) + |1.002[1,0)], 12 each have Schmidt numblkerBut assume that for sonrethe
) \/EH ¥0)©[040) +11.011,0] (12 Schmidt number op7" is larger than the Schmidt number of

p5". Then it follows that a single copy g, cannot be

where | o) = V2V \2—1]0)+ (1— \/2)|1). This is a maxi- converted by LG-CC t0 p,, because, if it could, tgsn by
mally entangled Schmidt rank 2 state betwdép, , and r%%eatmg this procedure times we could converp; ™ to
Hg. 5. Now Alice and Bob perform the following opera- P1 » Which is in violation of Proposition 1. o
tionlé 20n this state:i) The erform the superoperator In conclusion, we have introduced a new criterion for

UsU* ' } yp perop LO+CC convertibility for bipartite mixed states and shown
S , EQ. (9), on the Hilbert spacé{s ®Hg, and they i relation tok-positive maps. Since the theory lopositive
apply the same superoperator &3, ® Hg,. (i) Then Alice  maps is notyet) greatly developed, we have not been able to

and Bob symmetrize the state between system 1 and systewge this connection extensively. We have found that Schmidt
2; i.e., with probability 1/2, they locally swap quii < A, number for mixed states behaves differently than for pure

andB;+ B, and with probability 1/2 they do nothing. states, in particular it does not necessarily increase when
By these two LO-CC operations any initial state is taking tensor copies of a state. This feature of “nonadditiv-
mapped onto a state of the form ity” makes it possible to pose the following open question:
Assume that a bipartite stgpg has a higher Schmidt number
a(l— | WP )22+ bW WP | @[1- [T N¥T] than p,, and thusp, cannot be converted tp;. Assume

however that for sompy,¢, we can prove thgt, ® ppeip and
P2® pheip have thesameSchmidt number or that,® ppep

By going through the algebra, one can check that the twgas a larger Schmidt number. Then it cou_ld possibly be that
operations on the statéy) result in a=[y2—1]2/18, P2 Pnelp C&N be converted 1p1® ppelp. This would be an
b=(y2—1)/6 andc—2%. We have shown that the st,ate example of the use of borrowing of entanglement for mixed-

. 2 2 ) state conversions. Such a borrowing scheme has been found
pr-12 has Schmidt number @ndpZ,, > also has Schmidt ¢4 exact pure-state conversigh4]; it would be interesting
number 2. This is an example of nonadditivity of the func-5 see whether it is possible in the mixed state domain.
tion Vin Eq. (11). We have numerical evidence that the  proof of Theorem 1Before proving Theorem 1 it will be
lower bound on the Schmidt number fat= \/3/2 is tight as  yseful to give some properties relatedktpositivity and an
well; i.e., it seems possible to makg? at F=\3/2 with  alternative formulation ok-positivity.
mixing only Schmidt rank 3 vectors. The stepwise behavior Lemma 3.The linear Hermiticity-preserving map is k

+b[1— [ W NP ]| W W[+ e[ W (P

of Schmidt number is illustrated in Fig. 1. positive if and only if
Since we have found that the Schmidt number can exhibit
“nonadditivity,” we can define the asymptotic Schmidt (1@ A) (W (Wi)=0 (14)

characteristic of a state . .
for all |W¥,) that are maximally entangled Schmidt rakk

vectors. The linear Hermiticity-preserving mapis k posi-

NZ(p)= lim p®™has Schmidt numbet . tive if and only if

| M
(13 k
S unsa(bilAla) @) b=0 (19

The asymptotic Schmidt number of a density matrix gives
us some information about whether two states, whose single
copy Schmidt number is identical, can be interconverted byor all possible orthogonal sets of vectoffa,)}¥_, and
LO+CC. Say we have two density matrices and p, that ~ {|b,)}¥_, and Schmidt coefficient§u,}, =K_,u,=1. Fi-
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nally, if A is k positive, thenA' defined by TATA(B)
=Tr AT(A")B for all A andB, is alsok positive.

Proof (sketch)Equation(14) can be proved in a fashion
completely analogous to Lemma 7 in Rg6]; there it is
proved fork= 2. Equation(15) has been proved by Uhimann
[12] and can be understood as follows. It is equivalent to

Eﬁ,m,i,jzl \//'Ln:um<')’nabn|(1®A)(|')’i 1ai><7j -aj|)|7mabm>

=0
for any orthogonal seff| yn)}<_,, or

(W1 A)([ W)W i) #)=0

for arbitrary |) and |¥). The k positivity of AT can be
seen by noting that Eq2) can be written in terms oA ' as

(W@ AN (o) (¢D]¥)=0

for all |)(¢| € S and arbritrary| ). Since|) has Schmidt
rankk or less, it follows that we can restrict the sthi to
be of Schmidt rank as well, or|$)(p|eS,. B

Proof of Theorem 1Consider the “if” part of the theo-
rem. Suppose, conversely, that there exist sogneof
Schmidt number at modt for which Eq.(3) is satisfied for

(16)

somek-positive mapA . The first assumption guarantees

that ¢ is a convex combination of pure statpg)(#;| of
Schmidt rank at most each. From the definition d posi-
tivity it follows immediately that all «;)( ;| remain positive
after the action ol® A, so their convex combination equa

to o remains positive too. But this then is in contradiction

with Eq. (3).
Consider the “only if” part of the theorem. Let have
Schmidt number at lea&t+ 1, i.e.,p ¢ S;. Then there exists

a hyperplang{o e S| TrHo=0} that separates the convex

compact seB, and the poinp & Sy ; i.e., there exists a Her-
mitian operatoH such that

TrHp<0 and VoeS,, TrHo=0. a7
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erator H a positive linear map\, that is k positive. We
defineA as

H=(10A) (W )P ), (19
where| W )= (1/\/n)="_,]ii ). We use THo=0 where we
take o to be an entangled Schmidt rakk-~ector, o
=Eﬁ’m:1\/)\m)\n|am,bm><an ,b,|. We will denote transposi-
tion in the full{|a,)} basis asl®. We can rewrite the expres-
sion Eﬁ‘mzl\/xm)\nTrH|am,bm)(an,bn|>0, using Eq.(18)
and the expansion of a linear m@pon an operatoiX as
S =204 IXI§)S(i)]), as

1 k

ﬁm?zl VAR (Bl Ao ToT3(|ag)(am|)|[bm)=0. (19
Lemma 3 then implies that the mapeTeT? is k positive.
The mapToT? maps the vectofa,) onto|a}) where com-
plex conjugation is performed with respect to {ie} basis.
This corresponds to a unitary rotation from tfe,,)} basis
to the{|a} )} basis. Thereford , itself will be k positive. On
the other hand, the condition Hp<<0 can be rewritten,
using Eq.(18), as

(VF|(1@A)(p)| ¥ )<O0. (20)

Since Ay is k positive,AE is k positive; see Lemma 3. This

| completes the prool
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