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Mixedness and teleportation
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We show that on exceeding a certain degree of mixedfessgjuantified by the von Neumann entrppy
entangled states become useless for teleportation. By increasing the dimension of the entangled systems, this
entropy threshold can be made arbitrarily close to maximal. This entropy is found to exceed the entropy
threshold sufficient to ensure the failure of dense coding.

PACS numbd(s): 03.67.Hk

Shared bipartite entanglement has found a host of inter- N?
esting applications in quantum communicatidts-3]. It is S(p)<—>, c;ilInc;; . 2)
=1

natural to expect that the efficiency of these applications
would go down with the decrease of shared entanglement, ) )
However, apart from the degree of entanglement of a sharegubiect to the constraintcy,=1/N, the —expression
state, there is another physical factor, namely the mixednessEiN: 1Cii Ing; attains its highest value whesy;=1/N and

of the state, which causes deterioration of the efficiency othe remainingN>—1 elements;; are all equal. Thus

the applications. Though for given classes of st@sesh as

the Werner statef4]), the entanglement of the state may N? 1 1 1 1 1
decrease with the mixedness of the state, the two are not— 2>, Ci In Cii$—ﬁ|nﬁ—<1— N/ 2—<1— N)
necessarily related concepts. For example, a mixed state can '~ N"-1

have more entanglement than a completely gaexo mix- 1

ednessdisentangled state. Thus we are interested in how the =InN+|1- N) In(N+1). 3)

mixedness of a given state, taken as an independent physical
criterion, affects the efficiency of the entanglement applicaf o, Egs.(2) and (3) it follows that
tions. In particular, we will focus on teleportati¢].

A good measure of mixedness of a stateis its von
Neumann entrop§5] S(p) = — Tr(p In p). We will first show S(p)<InN+
that when the entropy of a giveN XN state exceeds M
+(1-1/N)In(N+1), the state becomes useless for teleportaThus we have
tion. To this end we will first need to prove a short theorem.
For this theorem we need a quantity called the singlet frac-
tion introduced by Horodeclet al. [6]. The singlet fraction
F(p) of anNXN statep is defined as ma®¥’|p| V), where
the maximum is taken over all theXN maximally en-  The implication in the above equation is equivalent to
tangled states. We now proceed to our theorem.

IN(N+1). (4)

L2
N

1
F(p)= N:>S(p)<ln N+

1
1—N%mN+n. (5)

Theorem If the entropyS(p) of a statep of a NXN 1 1
system exceeds M+(1—1/N)In(N+1), then the singlet S(p)=InN+{ 1 N ln(N+1):F(p)<N' ©)
fraction F(p) <1/N.

Proof. Let, for a certain statp, F(p)=1/N. This means In Ref.[6] Horodeckiet al. have shown that singlet frac-

that there exists, at least oridéxX N maximally entangled tion F(p)<<1/N implies that one cannot do teleportation with
state| W a0, for which (W0 p|Wyao =1/N. Let us write  p with better than classical fidelity. Thus when the entropy of
the statep as a state exceeds M+ (1—1/N)In(N+1), then by virtue of the
theorem proved above, the state becomes useless for telepor-
tation. Here, the phrase “useless for teleportation” means
o “useless for teleportation with better than classical fidelity.”
P:i:lEjzl cij 1)l (1) Note that this value of entropy is a minimum threshold. At
' values of entropy arbitrarily close to this, but less, a spaite
not forbidden to allow better than classical teleportation. For
where{|i)} is a basis formed fromi¥ ,,.,) andN?—1 other  example, consider the generalized Werner sf@ieWy(e)
maximally entangled states. From the definition of singlet= €| W\ )(¥\|+(1— €)py of NXN dimensions whergy, is
fraction it follows that the largest of the elements(say this  the corresponding maximally mixed state. Whers infini-
is cq1) has a value greater than or equal ttd1Now, we  tesimally greater than I (which automatically ensures that
know that the von Neumann entrof$(p) of the statep is  the singlet fraction is>1/N) the state will allow teleporta-
always less than or equal to its Shannon entropy in any pation better than classical, but its entropy will only be slightly
ticular basis. This implies below INN+(1—-1/N)In(N+1).
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An interesting consequence of our result is the fact that as(Wy(e)) slightly less than IIN. This threshold of IN is
the dimensionN of the systems is increased, the entropyevidently much smaller than the threshold N (1
threshold becomes closer and closer to the maximal possible 1/N)In(N+1) sufficient to ensure the failure of teleporta-
entropy of the state. In fact, @d—o, we have I'N+(1 tion.
—1/N)In(N+1)—2InN. Thus for systems of very large di- In this paper we have shown that there is a degree of
mensionseven an entropy extremely close to the maximakmixedness after which a state becomes useless for teleporta-
entropy is not sufficient to ensure the failure of teleportation tion. We have quantified this mixedness with the von Neu-

It is now interesting to compare the entropy sufficient tomann entropy, but we could as well use the linear entropy
ensure the failure of teleportation with the entropy sufficientS =1—Tr p?. In that case the threshold for failure of tele-
to ensure the failure of another application, namely, densgortation will be 1—2[N(N+1)]. The fact that on increas-
coding[2]. Dense coding with mixed states has been studiethg the mixedness of a state, dense coding fails before tele-
before[8,9], but here our target is to identify a degree of portation indicates that teleportation is “more robust” to
mixedness above which dense coding is bound to fail. Herexternal noise. Of course, our entropic criterion is only a
again, the failure of dense coding will mean its capacity issufficient conditiorfor the failure of teleportation. However,
less than or equal to the classical communication capacity aéntropic criteria can never be necessary for the failure of any
InN bits per quN-bit. An upper bound to the capacity for entanglement application because they fail even for pure dis-
dense coding with mixed signal stat¥% occurring with  entangled states. It would be easier to calculate the entropy
probabilities p; is given by the Kholevo bound10] H of a state than to calculate its singlet fraction, as no maximi-
=S(ZpiW;)—2Zp;S(W;). The first expressionS(Zp;W;) zation is involved in the former calculation. Hence math-
can attain at most a value of 2% Now, note that all the ematically, our entropic criteriorf S>In N+(1—21/N)In(N
signal states in a dense coding protocol are related to eachl)] is more convenient than the corresponding singlet frac-
other by local unitary operations. Therefore they each havéion condition F<1/N). How about the relation between
the same entropy. Thus when the entr&fyV;) of a signal  mixedness and entanglement itself? We know that for a Bell
state(and hence all the signal state=xceeds IiN we have diagonal statep with only two nonzero eigenvalues, the dis-
H=<InN. Therefore an entangled statewill fail to be useful tillable entanglemeni11] is equal to +S(p) [12]. Such a
for dense coding wheB(p)>InN. This is also a minimum state would not be distillable B(p)=In 2. Is there such an
threshold. For example, for the stat®y(e), we haveH entropy threshold sufficient to ensure the failure of entangle-
=2InN—-S(Wy(e)) for standard Bennett and Wiesner ment distillation for an arbitrarjN X N state? We leave that
scheme of dense coding and this can exceell fior  as an interesting open question.
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