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Mixedness and teleportation
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We show that on exceeding a certain degree of mixedness~as quantified by the von Neumann entropy!,
entangled states become useless for teleportation. By increasing the dimension of the entangled systems, this
entropy threshold can be made arbitrarily close to maximal. This entropy is found to exceed the entropy
threshold sufficient to ensure the failure of dense coding.

PACS number~s!: 03.67.Hk
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Shared bipartite entanglement has found a host of in
esting applications in quantum communications@1–3#. It is
natural to expect that the efficiency of these applicatio
would go down with the decrease of shared entanglem
However, apart from the degree of entanglement of a sha
state, there is another physical factor, namely the mixedn
of the state, which causes deterioration of the efficiency
the applications. Though for given classes of states~such as
the Werner states@4#!, the entanglement of the state ma
decrease with the mixedness of the state, the two are
necessarily related concepts. For example, a mixed state
have more entanglement than a completely pure~zero mix-
edness! disentangled state. Thus we are interested in how
mixedness of a given state, taken as an independent phy
criterion, affects the efficiency of the entanglement appli
tions. In particular, we will focus on teleportation@3#.

A good measure of mixedness of a stater is its von
Neumann entropy@5# S(r)52Tr(r ln r). We will first show
that when the entropy of a givenN3N state exceeds lnN
1(121/N)ln(N11), the state becomes useless for telepo
tion. To this end we will first need to prove a short theore
For this theorem we need a quantity called the singlet fr
tion introduced by Horodeckiet al. @6#. The singlet fraction
F(r) of an N3N stater is defined as max^CuruC&, where
the maximum is taken over all theN3N maximally en-
tangled states. We now proceed to our theorem.

Theorem. If the entropyS(r) of a stater of a N3N
system exceeds lnN1(121/N)ln(N11), then the singlet
fraction F(r),1/N.

Proof. Let, for a certain stater, F(r)>1/N. This means
that there exists, at least oneN3N maximally entangled
stateuCMax&, for which ^CMaxuruCMax&>1/N. Let us write
the stater as

r5 (
i 51,j 51

N2

ci j u i &^ j u, ~1!

where$u i &% is a basis formed fromuCmax& andN221 other
maximally entangled states. From the definition of sing
fraction it follows that the largest of the elementscii ~say this
is c11) has a value greater than or equal to 1/N. Now, we
know that the von Neumann entropyS(r) of the stater is
always less than or equal to its Shannon entropy in any
ticular basis. This implies
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S~r!<2(
i 51

N2

cii ln cii . ~2!

Subject to the constraintc11>1/N, the expression

2( i 51
N2

cii ln cii attains its highest value whenc1151/N and
the remainingN221 elementscii are all equal. Thus

2(
i 51

N2

cii ln cii <2
1

N
ln

1

N
2S 12

1

ND lnH 1

N221
S 12

1

ND J
5 ln N1S 12

1

ND ln~N11!. ~3!

From Eqs.~2! and ~3! it follows that

S~r!< ln N1S 12
1

ND ln~N11!. ~4!

Thus we have

F~r!>
1

N
⇒S~r!< ln N1S 12

1

ND ln~N11!. ~5!

The implication in the above equation is equivalent to

S~r!. ln N1S 12
1

ND ln~N11!⇒F~r!,
1

N
. ~6!

In Ref. @6# Horodeckiet al. have shown that singlet frac
tion F(r),1/N implies that one cannot do teleportation wi
r with better than classical fidelity. Thus when the entropy
a state exceeds lnN1(121/N)ln(N11), then by virtue of the
theorem proved above, the state becomes useless for tel
tation. Here, the phrase ‘‘useless for teleportation’’ mea
‘‘useless for teleportation with better than classical fidelity
Note that this value of entropy is a minimum threshold.
values of entropy arbitrarily close to this, but less, a stater is
not forbidden to allow better than classical teleportation. F
example, consider the generalized Werner state@7# WN(e)
5euCN&^CNu1(12e)rM of N3N dimensions whererM is
the corresponding maximally mixed state. Whene is infini-
tesimally greater than 1/N ~which automatically ensures tha
the singlet fraction is.1/N) the state will allow teleporta-
tion better than classical, but its entropy will only be slight
below lnN1(121/N)ln(N11).
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An interesting consequence of our result is the fact tha
the dimensionN of the systems is increased, the entro
threshold becomes closer and closer to the maximal pos
entropy of the state. In fact, asN→`, we have lnN1(1
21/N)ln(N11)→2lnN. Thus for systems of very large d
mensions,even an entropy extremely close to the maxim
entropy is not sufficient to ensure the failure of teleportatio.

It is now interesting to compare the entropy sufficient
ensure the failure of teleportation with the entropy sufficie
to ensure the failure of another application, namely, de
coding@2#. Dense coding with mixed states has been stud
before @8,9#, but here our target is to identify a degree
mixedness above which dense coding is bound to fail. H
again, the failure of dense coding will mean its capacity
less than or equal to the classical communication capacit
ln N bits per qu-N-bit. An upper bound to the capacity fo
dense coding with mixed signal statesWi occurring with
probabilities pi is given by the Kholevo bound@10# H
5S((piWi)2(piS(Wi). The first expressionS((piWi)
can attain at most a value of 2lnN. Now, note that all the
signal states in a dense coding protocol are related to e
other by local unitary operations. Therefore they each h
the same entropy. Thus when the entropyS(Wi) of a signal
state~and hence all the signal states! exceeds lnN we have
H< ln N. Therefore an entangled stater will fail to be useful
for dense coding whenS(r). ln N. This is also a minimum
threshold. For example, for the stateWN(e), we haveH
52lnN2S„WN(e)… for standard Bennett and Wiesn
scheme of dense coding and this can exceed lnN for
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S„WN(e)… slightly less than lnN. This threshold of lnN is
evidently much smaller than the threshold lnN1(1
21/N)ln(N11) sufficient to ensure the failure of teleport
tion.

In this paper we have shown that there is a degree
mixedness after which a state becomes useless for telep
tion. We have quantified this mixedness with the von Ne
mann entropy, but we could as well use the linear entro
SL512Tr r2. In that case the threshold for failure of tele
portation will be 122/@N(N11)#. The fact that on increas
ing the mixedness of a state, dense coding fails before t
portation indicates that teleportation is ‘‘more robust’’
external noise. Of course, our entropic criterion is only
sufficient conditionfor the failure of teleportation. However
entropic criteria can never be necessary for the failure of
entanglement application because they fail even for pure
entangled states. It would be easier to calculate the entr
of a state than to calculate its singlet fraction, as no maxi
zation is involved in the former calculation. Hence mat
ematically, our entropic criterion@S. ln N1(121/N)ln(N
11)# is more convenient than the corresponding singlet fr
tion condition (F,1/N). How about the relation betwee
mixedness and entanglement itself? We know that for a B
diagonal stater with only two nonzero eigenvalues, the di
tillable entanglement@11# is equal to 12S(r) @12#. Such a
state would not be distillable ifS(r)> ln 2. Is there such an
entropy threshold sufficient to ensure the failure of entang
ment distillation for an arbitraryN3N state? We leave tha
as an interesting open question.
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