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Classical versus quantum dynamics for a driven relativistic oscillator
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~Received 17 September 1999; published 17 February 2000!

We compare the time evolution of the quantum-mechanical spatial probability density obtained by solving
the time-dependent Dirac equation with its classical counterpart obtained from the relativistic Liouville equa-
tion for the phase-space density in a regime in which the dynamics is essentially relativistic. For a resonantly
driven one-dimensional harmonic oscillator, the simplest nontrivial model system to perform this comparison,
we find that, despite the nonlinearity induced by relativity, the classical ensemble description matches the
quantum evolution remarkably well.

PACS number~s!: 32.80.2t, 03.65.2w
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It is well known that for linear systems the time evolutio
of quantum-mechanical observables can also be describe
the corresponding average values obtained from the clas
phase-space density@1#. The Heisenberg equations of motio
for the quantum operators and their corresponding expe
tion values in this special case are formally identical to
corresponding dynamical equations for the classical ave
values.

In the more interesting general case of a nonlinear syst
however, the correspondence between the exact quantum
scription and the classical description using phase-space
sities is not so clear. For instance, if the quantum-mechan
Wigner function obtained from the quantum state is negat
it is believed that the corresponding classical descript
could be inappropriate. In the case of nonchaotic dynam
several case studies have suggested that the quantum
classical ensemble average values are very similar on a
scale inversely proportional to Planck’s constant repres
ing the effective action. In the case of a bound quant
system, the system does not realize the discreteness o
underlying energy levels and the dynamics is basically c
sical until the characteristic quantum recurrences occur@2,3#.
For classically chaotic dynamics the time scales for wh
the two approaches agree is much shorter, and only pro
tional to the logarithm of Planck’s constant@4,5#. In almost
all studies that investigated the classical and quant
mechanical correspondence, the nonlinearity of the dynam
was due to either the time-independent or time-depend
interaction force. In this work, we investigate the nonline
ity induced by the velocity in the high-speed, relativistic r
gime.

The new dynamical features that relativity can bring
the time evolution for a classical system have recently b
demonstrated by Kim and Lee@6#. They showed that in con
trast to the trivial and fully analytically soluble dynamics@1#
of the driven harmonic oscillator, the relativistic case exh
its resonance overlap and chaos that normally is assoc
with driven nonlinear oscillators. They suggested that re
tivistic chaos requires at least a quadratic potential, wh
nonrelativistic chaos needs at least a cubic term in the po
tial. In a related work,@7# chaotic signatures such as nonli
ear resonances, stochastic layers near resonance separa
bifurcations of fixed points, and reconnection phenome
have also been associated with the relativistic cyclotron m
tion of electrons.
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The exploration of the relativistic quantum dynamics r
lies in general on the wave-function solution of the tim
dependent Dirac equation. These solutions are very diffi
to obtain analytically; for a few exceptions see Ref.@8#. To
overcome this technical limitation and to obtain some fi
insights into the relativistic dynamics, numerical solutio
techniques are required. This computational challenge
been taken in the study of relativistic heavy ion collisio
@9–11#, and was recently performed to simulate the inter
tion of atoms in intense laser fields@12–15#. However, the
limitations due to the finite CPU time and memory, even
the fastest supercomputers, are quite severe, and restric
accessible parameter regime that can be studied. For the
of the relativistic atom-laser interaction, for which effec
due to the generation of antiparticles are not so import
~yet!, a first insight into the dynamics can be obtained
inspecting the corresponding classical, but relativistic,
namics of the phase-space density@16–18#. For these case
studies it is quite crucial to determine whether classical p
dictions can be trusted even qualitatively in regimes
which the nonlinearity induced by the high-speed motion
the electrons is the dominant factor for the evolution.

The simplest system for which no analytical solution e
ists, and for which the impact of relativity on the classic
and quantum-mechanical system can be compared, is
one-dimensional harmonic oscillator with the potent
V(x)5v0

2x2/2 driven by a time-dependent periodic force
strengthE and frequencyvL . Classically, its time evolution
generator is described by the Hamilton functionHcl in
atomic units:

Hcl5Ac41c2@p2E/vL sin~vLt !#21V~x!. ~1!

We should note that the relativistic dynamics can be sol
exactly only for two simpler cases,V(x)50 ~free particle!
andV(x)'x ~free-fall!, for which the classical and quantum
mechanical solutions can be expressed analytically and a
@1#. The classical spatial probability densityPcl(x,t) can be
obtained from the phase-space densityr(x,p,t) via
Pcl(x,t)[*dpr(x,p,t), which is a solution of the relativis-
tic Liouville equation@19#

]r~x,p,t !/]t5~]Hcl /]x!]r~x,p,t !/]p

2~]Hcl /]p!]r~x,p,t !/]x. ~2!
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We should stress that the simplicity of the model w
chosen for convenience only; our interest here is clearly
to simulate a specific physical system in every detail, bu
investigate a prototype model system that includes just
minimum ingredients to be useful as a working model
compare the classical and quantum-mechanical predicti
However, we might also note that the dynamics of an el
tron in a uniform static magnetic field interacting with
resonant laser field@7,17,18# is similar to the dynamics in-
vestigated here. The latter suggests that the~standing-wave!
dipole approximation and the space-dimensional restric
used here are not crucial at all to discuss the basic phy
Also, we neglect radiative corrections that could affect
motion for extreme-ultrarelativistic speeds for a charged p
ticle.

The corresponding relativistic quantum mechanical s
tial probability density isPqm(x,t)5( i 51

4 uC i(x,t)u2, where
the summation extends over the four spinor component
can be obtained from the corresponding numerical w
function solution to the Dirac equation~in atomic units!:

i ]C/]t52 icax]C/]x1axAC1c2bC1V~x!C. ~3!

Here ax and b denote the 434 Dirac matrices, andA5
2cE/vL sin(vLt). The time-dependent solution of the wav
function C(x,t)5$C1 ,C2 ,C3 ,C4% can be obtained on a
space-time grid using a split-operator algorithm based on
Fourier transformation that is accurate up to the fifth orde
time @15#. In all of our simulations presented below, the sp
tial axis was discretized into 16 384 grid points, which t
gether with up to 1 500 000 temporal points led to fully co
verged results. The classical Liouville equation was solv
via a Monte Carlo technique in which the phase-space d
sity was discretized along 10 000 appropriately weigh
classical relativistic orbits.

For simplicity, as an initial state we use the grou
state of the harmonic oscillatorC1(x,t50)5(v0 /
p)1/4exp(21

2 v0x
2), where for convenience we have set t

remaining three spinor components to zero. The correspo
ing classical probability distribution was~arbitrarily! chosen
to be factorizedr(x,p,t50)51/p exp@2v0x

2#exp@2p2/v0#
for which all average values ^xnpm&cl
[**dx dpxnpmr(x,p,t50) match the initial~symmetrized!
quantum-mechanical expectation values@^xnpm&qm
1^pmxn&qm#/2 for all positive integersn andm.

In Fig. 1~a! we show three snapshots of the exa
quantum-mechanical spatial probability densityPqm(x,t) af-
ter zero, four, and eight cycles of the external force. Sup
imposed are the predictions from the corresponding class
space densityPcl(x,t). The graphs are practically indistin
guishable.

This agreement is quite remarkable because the dyna
is basically relativistic. The corresponding nonrelativistic s
lution displayed in Fig. 1~b! is quite different. The distribu-
tion according to nonrelativistic Schro¨dinger @20,21# and
classical Liouville theory match, and can be found analy
cally:
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Pcl~x,t !5Pqm~x,t !

5S 1

2pDx2~ t ! D
1/2

exp@2„x2j~ t !…2/„2Dx2~ t !…#

~4!

where the time-dependent parameterj(t)52E@cos(vLt)
2cos(v0t)#/(v0

22vL
2) denotes the motion of the center of th

distribution, andDx2(t)5Dx2 cos2(v0t)1sin2(v0t)/(4v0
2Dx2)

its time-dependent spatial variance.
In Fig. 1~c! we show the relativistic distribution after 30

cycles. Several features characterize the quantum distr
tion. It is highly oscillatory in space, and the wave pack

FIG. 1. Comparison of the relativistic and nonrelativistic spat
probability densities calculated from the Dirac equation, the Sch¨-
dinger equation, and the classical Liouville equation. The temp
snapshots were taken at timest50, 4, and 8 cycles of the externa
driving force. ~a! Solution of the time-dependent Dirac equatio
Pqm(x,t). Superimposed on each of the three graphs is the solu
of the relativistic Liouville equation,Pcl(x,t)5*dpr(x,p,t). ~b!
Solution of the time-dependent Schro¨dinger equation,Pqm(x,t)
5uC(x,t)u2. Superimposed on each graph is the solution of
non-relativistic Liouville equation,Pcl(x,t)5*dpr(x,p,t). ~c! The
Dirac equation prediction for the spatial distribution after 3
cycles. The parameters wereE5100 a.u., v0510 a.u., andvL

58.8 a.u.
2-2
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seems to consist of two different types of relativistic stru
tures. A more irregular part for28 a.u.,x,0 and a periodic
part for 0,x,20 a.u. Most importantly, we have noticed a
extreme degree of localization. The wave packet falls off
more than 30 orders of magnitude within less than 1 a.u
repeated simulation for smaller spatial and temporal g
points clearly confirm that this extreme degree of sharp
calization is not a numerical artifact. In addition, the cor
sponding classical ensemble solution also shows this q
unexpected localization. Clearly more detailed investigati
of this relativistic effect are in order.

A comparsion between the quantum-mechanical expe
tion value of the position̂x& and the ensemble-averaged p
sition ^x&cl(t) do not reveal any major difference in the rel

FIG. 2. Time evolution of the spatial width of the distributio
^Dx& according to the Dirac equation and the relativistic Liouvi
equation. The two curves are practically indistinguishable. T
~constant! dashed line corresponds to the~analytical! prediction of
the ~nonrelativistic! Schrödinger equation, which matches the cur
from the nonrelativistic Liouville equation.
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tivistic domain. In Fig. 2 we view the same process via t
time evolution of the spatial widthŝ Dx&qm(t) and
^Dx&cl(t). Again, the nonrelativistic curve can be easily o
tained analytically. For our initial width ofDx51/A@2v0# it
becomes time independent:^Dx&qm5^Dx&cl5Dx, which is
shown by the dashed line.

The relativistic solutions, however, show a quite distin
behavior. The widths increase in an oscillatory fashion t
maximum value close to 12 a.u. The growth pattern is ch
acterized by a short-time scale of the half-laser cycle, an
longer one with a period of about 18 laser cycles. After ab
300 laser cycles~not shown! the widths reach an almos
steady value@22#. We should point out that the quantum an
classical predictions are practically indistinguishable. T
nonrelativistic width does not depend on the driving stren
E; however, the relativistic solution does.

To summarize, in this Brief Report we have demonstra
that, for a simple model system, the approximation of re
tivistic quantum dynamics by a classical phase-space den
can be quite reasonable even in the high-speed regim
which the nonlinearity induced by relativity determines a
most all aspects of the evolution, and the classical dynam
can reveal chaotic behavior.
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