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Electrons above a helium surface and the one-dimensional Rydberg atom
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Isolated electrons resting above a helium surface are predicted to have a bound spectrum corresponding to
a one-dimensional hydrogen atom. But in fact, the observed spectrum is closer to that of a quantum-defect
atom. Such a model is discussed and solved in analytic closed form.

PACS numbd(s): 34.50.Dy, 03.65.Ge, 73.20r

Some time ago the prediction was made that an isolated bo=2x0=2a/Z=76.01 A . 9)
electron resting on a heliufor some certain othgsurface
should have a bound-state spectrum in the vertical direction By techniques similar to those used to obtain the solutions
[1-3]. The idea is that the electron induces an image chargéor the three-dimensional hydrogen atom, one can obtain the

in the helium, producing a potential on the electron of normalized eigensolutior[d.2,13
ze e—1 dn(2)=[2n%o] Y2z, ext — z,/2]L Y1 (z)). (10
V(X):_T, X>0, Z:i( +:3), (1) n 0 n n n—1\4n
€ This agrees with particulan=1,2,3 wave functions in the
— 4w, x=<0, @) literature[14].

In Eqg. (10) we have used thgeneralized_aguerre poly-

wheree is the dielectric constarfé]. For helium it is[5,6] ~ nomials commonly found in the modern mathematical phys-
ics literature[15]:

€=1.05723, Z=0.0069547. (3 n
n+a (_X)k exxfa dn
imi L0 =2 Ty el Ll
The spectrum should thus be similar to that ofveeakly n “o\ln—k/ Kk nt gy '
coupled one-dimensional hydrogen atom. This phenomenon (11)

has been observd®—8]. (See Ref[9] for a current review

and[10] for a proposed application to quantum computing. In Eq. (11), the generalized binomial symbof)( means
Consider the one-dimensional Schimger equation of I'(a+1)/[T(a—b+1)I'(b+1)]. Also, Lgo)(x):Ln(x),

this systen{11]: whereL ,(x) are the ordinary Laguerre polynomials normal-

ized to unity at zerolL,(0)=1. These polynomials were

_ h_zd_z_ E (X) = Enhn(X) @) used instead of thassociatedLaguerre polynomials often
2mgx2 X Yn(X)=Entin(). defined, for Coulomb wave functiorf46], as
i i . di,x) d|  dn
Making the changes of variables L (x)= n( ) _ oL em . 12
P 08 dx! dx| dx"
__co o _Mee _
En= n2' 0 o2 ®) Here,L,(x)=(n!)L,(x), the ordinary Laguerre polynomials

normalized td?n(O)z(n!). Equation(12) can be confusing,
X %2 since this definition only holds for integér Contrariwise,
(6) Eq. (11) is defined for arbitraryx. (This will be very impor-

%o 2mz¢ tant in the following) Whena=j, an integer, the connection
. between the two forms is
one obtains
£ o1 Lhs 00 =(=DI[(n+)1ILP(x). (13)
(E*’ Z_n_ Z) ¥n=0. () The experiments obtain transition energies from excited

states to the ground state:
Observe that the helium-surface “Rydberg” and “Bohr ra- 1
dius” have values A, =|E| —|En|=<‘30< 1— F) . (14)

£=27%R,.=0.658086 meW-159.123 GHz, (8)
However, the experiments do not yield exact Balmer ener-
gies. TheA,, are all of order 7 GHz too larges,7]. This is
*Electronic address: mmn@lanl.gov like a quantum defect, since if
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E, »E __ b n*=n—o (15)
n n (n*)21 ’
then
A =|Ex|—|E |—£( ! (16)
n* 1* n* 0 (1_5)2 (n_5)2
1 1 ) 1
~& 1—¥ +26 1—F +36 1—F +
17

The correction term&, 2 §[1—1/n3], varies by only
~10% asn varies from 2 toe [17]. Just fitting the 2
—1* and 3*—1* transition energie$8] to this formula
yields, £,=158.4 GHz andb=0.0237 or an increase it of

about 7.8 GHz. In other words, this is like a one-dimensiona

Rydberg atom.
Elsewhere[18-21], inspired by supersymmetrj22], it

was shown how one can obtain exact, analytic, one-particl
wave functions for real Rydberg atoms yielding the correct

eigenenergies. This also yielde@) transition matrix ele-

ments in agreement with experiment and complicated many

body calculation$18]; (b) good fine-structure splittind4.9];

and (c) Stark splittings whose crossing/anticrossing pattern

agree with experimeri20].

The mathematical key to this success is the fact that fo
proper solutions of théradia) hydrogen-atom equation one
does not really need that (integer) anch= (integer). One
only needs thatr{—1)=(integer), the two separately not

having to be integers. That is, the fact¢r+ 1) in the effec-

tive 142 potential term need not havebe an integer for a
finite-order polynomial radial solution to exist. This is where

the L{®(x) become of us¢23].
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Xo9* 2% [ n* Th(n+1-26)T(n)]¥2
2 \1x

(1% xln*)= T(2—20)

n—-1 Kk
(—9)¢ (k+3-26)(k+2-26)
ngo k! (n—1-k) ’
B 2-1* 22
O e

Settingn* to 1* in Egs.(21) and(22), makes them equal.

Unfortunately, this model does not resolve the physical
problem of how one realistically cuts off the unphysical,
negatively infinite potential at the origif26]. In fact, this
solution makes the problem slightly more difficult: at the
‘)rigin the potential now goes to negative infinity as/x?.
f the experimental quantum defect had been of opposite
sign, then the added potential would have been positive, like
n angular momentum barrier, making the states less bound.
his also would have “realistically’” modeled the positive
work function at the surface of about 1 ¢8].

There are inverse methods for generating inequivalent
isospectral Hamiltonian27-30. What, in principle, would

é)e an isospectral Hamiltonian with the desired physical prop-

erties is one with an added potential th@t goes, at the
prlgm to plus infinity at least slightly faster thans(1
—8)]/22, (i) becomes negative for largerand(iii) goes to
zero at infinity from below.

A first examination of the above inverse meth¢as—3Q
found potentials with the last two properties, but not the first.
These potentials go to zero at the origin. An example is
[27,30

Applying this idea to the present case, we phenomeno- 2 2_925
logically propose forx>0 thatV(x) becomes V2(2)=W ( —1|Y+Y?|, x>0, (23
Z1%
z h2 (=O[(—6+1
V(x):——+—( =9) ], x>0. (18
X 2m X2 2-25
exd —z1x 127«
Then the exact eigenenergies are given by #§) and the - I'(3—26,2;+)—R ' @49

exact wave functions are

Ynr (2)=Npxzoe exf — 2+ /2] L2 (z00), (19
N 1 rimy |7 X
* = s Zox = .
" [2(n*)%, ['(n+1-26) T n*xg
(20

whereR (which can be chosen to be2) andI'(a,z) (the
incompletel” function) are

+1 +1
= =T "r-20),
Yy (1) N

Thus, we have an exact analytic solution to the problem. We
can also analytically calculate the expectation values

(j*|x'|k*) [24] as double sums of gamma functidizs)]. In
particular[13],
(X)nx =Xo[ 3N%— 8(6N—1—26)]. (21

When §=0 this reduces to the standard result. Also,

I'(a,z)= fwdyyafle*y, (25

and y is a dependent constant useful below. Taking units of
Xo=1, the orthonormal eigenfunctions are
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Xn*(z):’ﬂn*(z)‘{'JozdyK(Zay)wn*(Y)- n>1, (26)

1
1"

X -20/2) (25 exd —y /2] (33 )
[(3-26,2;+)—R '

K(Z,Y)=(

(27)

The exception, with normalizatiogp/(y+1), is
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1+(2)
I[(3-268,2;+)—R’

—1“(3—25)) 08

x1+(2)= ( 72
There may well be analytic isospectral Hamiltonians with all
the desired properties. But to determine their existence re-
quires more investigation.
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