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Electrons above a helium surface and the one-dimensional Rydberg atom

Michael Martin Nieto*
Theoretical Division (MS-B285), Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545

~Received 13 September 1999; published 11 February 2000!

Isolated electrons resting above a helium surface are predicted to have a bound spectrum corresponding to
a one-dimensional hydrogen atom. But in fact, the observed spectrum is closer to that of a quantum-defect
atom. Such a model is discussed and solved in analytic closed form.

PACS number~s!: 34.50.Dy, 03.65.Ge, 73.20.2r
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Some time ago the prediction was made that an isola
electron resting on a helium~or some certain other! surface
should have a bound-state spectrum in the vertical direc
@1–3#. The idea is that the electron induces an image cha
in the helium, producing a potential on the electron of

V~x!52
Ze2

x
, x.0, Z5

~e21!

4~e11!
, ~1!

51`, x<0, ~2!

wheree is the dielectric constant@4#. For helium it is@5,6#

e51.05723, Z50.0069547. ~3!

The spectrum should thus be similar to that of a~weakly
coupled! one-dimensional hydrogen atom. This phenomen
has been observed@6–8#. ~See Ref.@9# for a current review
and @10# for a proposed application to quantum computin!

Consider the one-dimensional Schro¨dinger equation of
this system@11#:

S 2
\2

2m

d2

dx2
2

Ze2

x D cn~x!5Encn~x!. ~4!

Making the changes of variables

En52
E 0

n2
, E05

mZ2e4

2\2
, ~5!

zn5
x

nx0
, x05

\2

2mZe2
, ~6!

one obtains

S d2

dzn
2

1
n

zn
2

1

4D cn50. ~7!

Observe that the helium-surface ‘‘Rydberg’’ and ‘‘Bohr r
dius’’ have values

E05Z2R`50.658086 meV5159.123 GHz, ~8!
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b052x05a0 /Z576.01 Å . ~9!

By techniques similar to those used to obtain the soluti
for the three-dimensional hydrogen atom, one can obtain
normalized eigensolutions@12,13#

cn~z!5@2n3x0#21/2zn exp@2zn/2#Ln21
(1) ~zn!. ~10!

This agrees with particularn51,2,3 wave functions in the
literature@14#.

In Eq. ~10! we have used thegeneralizedLaguerre poly-
nomials commonly found in the modern mathematical ph
ics literature@15#:

Ln
(a)~x!5 (

k50

n S n1a

n2k D ~2x!k

k!
5

exx2a

n!

dn

dxn
@e2xxn1a#.

~11!

In Eq. ~11!, the generalized binomial symbol (b
a) means

G(a11)/@G(a2b11)G(b11)#. Also, Ln
(0)(x)5Ln(x),

whereLn(x) are the ordinary Laguerre polynomials norma
ized to unity at zero:Ln(0)51. These polynomials were
used instead of theassociatedLaguerre polynomials often
defined, for Coulomb wave functions@16#, as

Ln
j ~x![

dj L̄n~x!

dxj
5

dj

dxj Fex
dn

dxn
~e2xxn!G . ~12!

Here,L̄n(x)5(n!)Ln(x), the ordinary Laguerre polynomial
normalized toL̄n(0)5(n!). Equation~12! can be confusing,
since this definition only holds for integerj. Contrariwise,
Eq. ~11! is defined for arbitrarya. ~This will be very impor-
tant in the following.! Whena5 j , an integer, the connectio
between the two forms is

Ln1 j
j ~x!5~21! j@~n1 j !! #Ln

( j )~x!. ~13!

The experiments obtain transition energies from exci
states to the ground state:

Dn5uE1u2uEnu5E0S 12
1

n2D . ~14!

However, the experiments do not yield exact Balmer en
gies. TheDn are all of order 7 GHz too large@6,7#. This is
like a quantum defect, since if
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En→En* 52
E0

~n* !2
, n* 5n2d, ~15!

then

Dn* 5uE1* u2uEn* u5E0S 1

~12d!2
2

1

~n2d!2D ~16!

'E0F S 12
1

n2D 12dS 12
1

n3D 13d2S 12
1

n4D 1 . . . G .

~17!

The correction term,E0 2 d @121/n3#, varies by only
;10% asn varies from 2 to` @17#. Just fitting the 2*
→1* and 3* →1* transition energies@8# to this formula
yields,E05158.4 GHz andd50.0237 or an increase inD of
about 7.8 GHz. In other words, this is like a one-dimensio
Rydberg atom.

Elsewhere@18–21#, inspired by supersymmetry@22#, it
was shown how one can obtain exact, analytic, one-par
wave functions for real Rydberg atoms yielding the corr
eigenenergies. This also yielded.~a! transition matrix ele-
ments in agreement with experiment and complicated ma
body calculations@18#; ~b! good fine-structure splittings@19#;
and ~c! Stark splittings whose crossing/anticrossing patte
agree with experiment@20#.

The mathematical key to this success is the fact that
proper solutions of the~radial! hydrogen-atom equation on
does not really need thatl 5(integer) andn5(integer). One
only needs that (n2 l )5(integer), the two separately no
having to be integers. That is, the factorl ( l 11) in the effec-
tive 1/r 2 potential term need not havel be an integer for a
finite-order polynomial radial solution to exist. This is whe
the Ln

(a)(x) become of use@23#.
Applying this idea to the present case, we phenome

logically propose forx.0 thatV(x) becomes

V~x!52
Ze2

x
1

\2

2m

~2d!@~2d!11#

x2
, x.0. ~18!

Then the exact eigenenergies are given by Eq.~15! and the
exact wave functions are

cn* ~z!5Nn* zn*
12d exp@2zn* /2# Ln21

(122d)~zn* !, ~19!

Nn* 5F 1

2~n* !2x0

G~n!

G~n1122d!G 1/2

, zn* 5
x

n* x0

.

~20!

Thus, we have an exact analytic solution to the problem.
can also analytically calculate the expectation valu
^ j * uxtuk* & @24# as double sums of gamma functions@25#. In
particular@13#,

^x&n* 5x0@3n22d~6n2122d!#. ~21!

Whend50 this reduces to the standard result. Also,
03490
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^1* uxun* &5
x0g422d

2 S n*

1*
D dFG~n1122d!G~n!

G~222d! G1/2

3 (
k50

n21
~2g!k

k!

~k1322d!~k1222d!

~n212k!
,

g5
2•1*

n* 11*
. ~22!

Settingn* to 1* in Eqs.~21! and ~22!, makes them equal.
Unfortunately, this model does not resolve the physi

problem of how one realistically cuts off the unphysica
negatively infinite potential at the origin@26#. In fact, this
solution makes the problem slightly more difficult: at th
origin the potential now goes to negative infinity as21/x2.
If the experimental quantum defect had been of oppo
sign, then the added potential would have been positive,
an angular momentum barrier, making the states less bo
This also would have ‘‘realistically’’ modeled the positiv
work function at the surface of about 1 eV@8#.

There are inverse methods for generating inequiva
isospectral Hamiltonians@27–30#. What, in principle, would
be an isospectral Hamiltonian with the desired physical pr
erties is one with an added potential that~i! goes, at the
origin, to plus infinity at least slightly faster than@d(1
2d)#/z2, ~ii ! becomes negative for largerz, and~iii ! goes to
zero at infinity from below.

A first examination of the above inverse methods@27–30#
found potentials with the last two properties, but not the fir
These potentials go to zero at the origin. An example
@27,30#

V2~z!5
2

~1* !2 F S 222d

z1*
21D Y1Y2G , x.0, ~23!

Y5F exp@2z1* #z1*
222d

G~322d,z1* !2R
G , ~24!

whereR ~which can be chosen to be22) andG(a,z) ~the
incompleteG function! are

R[
g11

g ~1* ! N1*
2 5

g11

g
G~322d!,

G~a,z!5E
z

`

dyya21e2y, ~25!

andg is a dependent constant useful below. Taking units
x051, the orthonormal eigenfunctions are
1-2
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xn* ~z!5cn* ~z!1E
0

z

dyK~z,y!cn* ~y!, n.1, ~26!

K~z,y!5S 1

1*
D

3
exp@2z1* /2# ~z1*

12d
!exp@2y1* /2# ~y1*

12d
!

G~322d,z1* !2R
.

~27!

The exception, with normalizationg/(g11), is
.

o.

Lo
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03490
x1* ~z!5S 2G~322d!

g1/2 D c1* ~z!

G~322d,z1* !2R
. ~28!

There may well be analytic isospectral Hamiltonians with
the desired properties. But to determine their existence
quires more investigation.
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very helpful comments on the physics of electrons on a
lium surface. V. A. Kostelecky´ and P. W. Milonni kindly
reviewed a draft. The support of the U.S. Department
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@3# V. B. Shilkin, Zh. Éksp. Teor. Fiz.58, 1748~1970! @Sov. Phys.

JETP31, 936 ~1970!#.
@4# L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii,Electrody-

namics of Continuous Media, 2nd ed. ~Butterworth-
Heinemann, Oxford, 1984!, p. 37, problem 1.

@5# R. F. Harris-Lowe and K. A. Smee, Phys. Rev. A2, 158
~1970!.

@6# T. R. Brown and C. C. Grimes, Phys. Rev. Lett.29, 1233
~1972!; C. C. Grimes, T. R. Brown, M. L. Burns, and C. L
Zipfel, Phys. Rev. B13, 140 ~1976!.

@7# D. K. Lambert, Lawrence Berkeley Laboratory Report N
LBL-9553, 1979~unpublished!.

@8# D. K. Lambert and P. L. Richards, Phys. Rev. Lett.44, 1427
~1980!; Phys. Rev. B23, 3282~1981!.

@9# M. W. Cole, inTwo-Dimensional Electron Systems, edited by
E. Y. Andrei ~Kluwer, Dordrecht, 1997!, p. 1.

@10# P. M. Platzman and M. J. Dykman, Science284, 1967~1999!.
@11# There is a long and contentious history over the Schro¨dinger

systemV52e2/uxu, 2`<x<1`. The solutions so obtained
have very amusing mathematical properties. See, e.g., R.
don, Am. J. Phys.27, 649 ~1959!; T. D. Imbo and U. P.
Sukhatme, Phys. Rev. Lett.54, 2184 ~1985!. However, the
solutions for this complete-line problem are not physical. S
e.g., U. Oseguera and M. de Llano, J. Math. Phys.34, 4575
~1993!; R. G. Newton, J. Phys. A27, 4717~1994!; W. Fischer,
H. Leschke, and P. Mu¨ller, J. Math. Phys.36, 2313~1995!, and
references therein.

@12# M. M. Nieto, Am. J. Phys.47, 1067~1979!.
@13# To obtain this result, the integral~shown in Ref.@12#!

Jn,a
(b)5E

0

`

dt exp@2t#ta1b@Ln
(a)~t!#2

5
G~n111a!

G~n11! (
j50

n
~21!j2nG~ j111a1b!

G~ j11!G~ j111a!G~n112j!

3
G~ j111b!

G~ j111b2n!
. ~29!

is useful. Note, in particular, that whenb5(n2 j 21) is an
u-

,

integer, then the lastG function in the denominator cuts off th
sum.

@14# V. S. Edel’man, Usp. Fiz. Nauk130, 675 ~1980! @Sov. Phys.
Usp.23, 227 ~1980!#.

@15# W. Magnus, F. Oberhettinger, and R. P. Soni,Formulas and
Theorems for the Special Functions of Mathematical Phys,
3rd. ed.~Springer, New York, 1966!, Sec. 5.5.

@16# L. I. Schiff, Quantum Mechanics, 3rd ed.~McGraw-Hill, New
York, 1968!, p. 92.

@17# A similar, but much smaller shift, arises from radiative corre
tions. See R. Shakeshaft and L. Spruch, Phys. Rev. A22, 811
~1980!.
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