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Description of a homogeneous electron gas with simple functionals
of the one-particle density matrix
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The momentum distributions of a homogeneous electron gas, arising from a simple one-matrix functional for
the electron-electron repulsion energy that generalizes the Hartree-Fock and Goedecker-Umrigar approxima-
tions, are analyzed in detail. Their properties are found to depend strongly on the exgahahienters the
functional. Smooth momentum distributions that, together with the corresponding energies per particle, exhibit
simple scaling behavior with respect to the electron densigyre obtained only fo§<,8<§ andp<p.i(B).

PACS numbes): 31.15.Ew, 31.10tz

In recent years, there has been a renewed interest i{\ 5 — o1 - .
density-matrix functional theod—6]. In this formalism, the ~ zk°—(27%) " *(B/2)n(k)” f n(k")P2k—k'|"2dk' = p,
electron-electron repulsion enerfyd I'] is the only contri- (3)
bution to the total electronic energy without a known explicit
dependence on the one-particle reduced density mdle&  \here . is the chemical potential. Only the solutions of Eq.
one-matriy I' [7,8]. One of the simplest approximate expres- (3) that satisfy the inequalitiesn(k)<1 for all values ofk
sions forVed I'] reads are admissible for fermionic systerfisl,12. Such solutions

are readily shown to satisfy the scaling equatiffis

Ved T']= %;q [NoNe{ Bp(X1) ba(X2) [P 15 Dp(Xe) (X))

n(k) = p 320 plt=AIEE=2], @
= (NpNg) " bp(X0) bq(X2) 7 15| b X0) bp(X2)) ], 522,
e(p)=p : )
1
where{$,(x)} and{n,} are, respectively, the natural spin w(p)=(58—4)(3B—2) *e(p), (6)
orbitals and the occupation numbers that corresporid[io
Eqg. (1), x stands for the combined spatial and spin coordi- t(p)=(3B—4)(38—2) te(p),
nateg. The common Hartree-Fock approximatif®] is re- (7)
covered forB=2, whereas settingg=1 yields the recently e(p)=2(38-2) te(p),

proposed Goedecker-Umrigé&U) functional that, despite
the lack of any empirical parameters, produces surprisingly,narea (B
accurate estimates of electron correlation energy in simpl €
Coulombic system§4].

In the absence of symmetry-breaking phenom@neh as
the Wigner crystallizatior10]), functional (1) leads to the
energy per volume of a homogeneous electron gas equal
e=¢g[n;]+e[n],

) is a proportionality factor that depends only on
B e(p) is the energy per particleequal toe(p)/p] as a
function of p, andt(p) and e,(p) are the corresponding
kinetic and exchange-correlation energies. One immediately
concludes from these scaling relationships that the admis-
Qole solutions of the Euler equatiof8) exist only for
£<B<3, providedp=<p.(B) [5]. In all other instances, the

physically admissible momentum distributions that minimize
s[n]=(16773)‘1f n(k)k2dk e[ n] do not satisfy Eq(3). This is indeed the case f@=2,

as asserted by Lieb’s theordr3].

B B The Euler equatior{3) was previously solved fog=1
—(327°) 1f f [n(k)n(k’)]Plk—k'|~2dkdk’, [5], yielding
2 n(k)=512mp(1+4k>) "%  pau(1)=(512m) "1,
wheren, (k) andn (k) are the spin-up and spin-down mo- (8)
mentum distributions. Extremization ef n] under the con- e(p)=pu(p)=—t(p)=3ex(p)=—73,

straint of a given density produces the Euler equation
in accordance with Eq94)—(7). In this Brief Report, we
elucidate properties of the momentum distributions that cor-
* Author to whom correspondence should be addressed. Electroniespond to other values ¢f.
address: jerzy@kyoko.chem.fsu.edu. URL: http://www.scri.fsu.edu/ A careful analysis of Eq(3) furnishes the following exact
~jerzy asymptotics fom(k):
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o ~2/(p-2) 0.0 e
lim n(k)k8/<ﬁ2):{3(2w)zj n(k’)A2dk’ AP ¢
koo 0 02
for p>¢ (9a) o4
and
-0.6
lim n(k)k~#8-1
ko -0.8
=[(58-H[2B(1-p)] 'sifm(3B-2)/(28~2)] ‘o
x{1+cog m(3B—2)/(2B—2)]} L MAE-1 ' 5
for p<S. (9b) "'20.7 08 09 10 14 12 13

Consequently, as the integrals that enter the expression for FIG. 1. A,(8) vs 8. The solid line corresponds to the upper
e[n] diverge for 3<%, the interval of for which admis-  bound provided by Eq12), and the dots mark the results of con-
sible solutions of Eq(3) exist is further reduced t(,%). For  strained minimizations carried out with ansét8) [the best results

B:%' the[3/5] Padeapproximant for p<pqi(B) are displayefl The diamond stands for the exact
5 b s 5 value A,(3)=—(7/2)*® and the broken line denotes the asymp-
n(k)y=(4n /25)(a+ bk+cks+k )[(47T 125) totics of — 8.064x 1074([3_%)71
X a+dk+ekl+ fk3+gk*+ k> 1, (10
with a=0.739487, b=0.156664, c=2.38830,
d=0.244253,e=4.89884, f =1.644 95, andg=3.83314 Ti(K) = Cogs«zﬁ)( (712) (@+A) (/24 A) L
[which satisfies the asymptoti¢8b)], provides an accurate
representation oh(k) at p=p.(2)~0.0225. The corre- 5
sponding chemical potential equats1.008<10 2, giving +> Bi[p(m/2— o) | k=kotane. (13
rise to the asymptotic behavior 6f8.064x 10 4(B—2) ! =1

for A.(B) asB—2"* [compare Eq(6)].
The trial function o ) ) )
A similarly impressive agreement is observed among the

A(k)=C(1+¢k?) 7, (1) computed estimates @f.(8) (Fig. 2.

o Ansatz (13) also permits an accurate estimationefp)
where{ and y are variational parameters, a@ds a normal- ¢, p>pen(B). The results of such a calculation f@r= 1

ization constant, closely approximates the act&) for all - ynich corresponds to the GU functiopare presented in
Bels,3]. For B=1, itis identical with the exact solution Fig. 3. These data are well represented by the empirical fit
[Eq. (8)], whereas for8=1# it yields n(k) with the proper
asymptotics §¢=3), together with p.(2)=4m/375
~0.0335 and lim 45+ A(B)(B—4/5)=—275" '~

10° ,
—7.938<10 “. Finally, for B=%, the variational exponent Perit(B,
y attains the value of 3, giving rise (%)= — (7/2)"° and
lim _.43- pert( B) (B—5) ~=—(20487) ~*, both of which 105 |
are exact.
The estimates foA.(8),
. -1 1010} 1
Ae(B)=min((2—3B)(4—3p)
Y
X {i67/(2y—5)1% *(4-3p)2 108
X[CNIT(y=3)PPT (yBl2—)IT (yBI2)]* 5
— — -20 L L L L L s
X (yB—2)"2HM3k72), (12 10707 08 09 10 11 12 13 14
furnished by the trial functiorill), agree very wellFig. 1) FIG. 2. pgi(B) vs B. The meaning of the solid line and dots is

with those obtained numerically fg8>$ by a constrained the same as in Fig. 1. The diamond stands for the exact value

minimization ofe[n] with respect to the variational param- p.;(3)=0.0225, and the broken line denotes the asymptotics of
etersA, {B;}, andk, of the more flexible ansatz —(20487) " Y(B—2)°.
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FIG. 4. The momentum distributions fer=p.(8). The solid
lines stand for the trial functiofl1). For 3=1.0 and 1.2, the bro-
ken lines mark the results of constrained minimizations carried out
with ansatz(13), whereas for8=0.8 it represents thg3/5] Pade
approximan{Eg. (10)].

FIG. 3. e(p)/e(peait) VS plpeir for B=1. The results of con-
strained minimizations carried out with ans&i8) are marked by
dots, and the solid line represents the fit given by @4).

e(p)/e(peir) =1—0.007 331p/ perir— 1)?
_ that minimizee[n] no longer satisfy the Euler equatid®)
X[1+0.186 992p/perir= )] " (14 o any value ofp. Such is the case foB=2, where the
Hartree-Fockn(k) is discontinuous at the Fermi level.
We believe that the analysis presented in this Brief Report
| facilitate a better understanding of the functionals of
natural spinorbitals, and thus aid in the construction of better
. - approximations fotV.JI']. One should note that many of
Eq. (2) is unbound from below and thus unphysical. Fory,e properties of(k) uncovered herémost notably their
5<fB<3, g[n] is minimized by smooth momentum distri- 55ymptotics(9)] are readily generalized to functionals in
butions providedp=<pc;(8). These momentum distribu- hich the expressiomi,n,)?” that enters Eq(1) is replaced
tions, which become progressively narrower with increasing:by Q(n,,n,) such that lim__oQ(n,,n)n- 2= w(ny);

- : g piilg —0 ptig/tlp q/s
B (Fig. 4), and the corresponding values &fp), exhibit a 0< w(ng) <o P
simple scaling behavior. The magnitude @f;(B) rapidly 4 '
decreases witl, becoming vanishingly small fg8=3. For This work was supported by the National Science Foun-
B=%, the physically admissible momentum distributions dation under Grant No. CHE-9632706.

for a wide range op=p.(1)=(512m7) 1.
In summary, the description of a homogeneous eIectroniI

gas arising from functionall) depends strongly on the ex-

ponentB. For 8<%, the energy per volume[n] given by
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