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Description of a homogeneous electron gas with simple functionals
of the one-particle density matrix
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The momentum distributions of a homogeneous electron gas, arising from a simple one-matrix functional for
the electron-electron repulsion energy that generalizes the Hartree-Fock and Goedecker-Umrigar approxima-
tions, are analyzed in detail. Their properties are found to depend strongly on the exponentb that enters the
functional. Smooth momentum distributions that, together with the corresponding energies per particle, exhibit
simple scaling behavior with respect to the electron densityr, are obtained only for45 ,b,

4
3 andr<rcrit(b).

PACS number~s!: 31.15.Ew, 31.10.1z
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In recent years, there has been a renewed interes
density-matrix functional theory@1–6#. In this formalism, the
electron-electron repulsion energyVee@G# is the only contri-
bution to the total electronic energy without a known expli
dependence on the one-particle reduced density matrix~the
one-matrix! G @7,8#. One of the simplest approximate expre
sions forVee@G# reads

Vee@G#5 1
2 (

pÞq
@npnq^fp~x1!fq~x2!u r̂ 12

21ufp~x1!fq~x2!&

2~npnq!b/2^fp~x1!fq~x2!u r̂ 12
21ufq~x1!fp~x2!&#,

~1!

where $fp(x)% and $np% are, respectively, the natural sp
orbitals and the occupation numbers that correspond toG @in
Eq. ~1!, x stands for the combined spatial and spin coor
nates#. The common Hartree-Fock approximation@9# is re-
covered forb52, whereas settingb51 yields the recently
proposed Goedecker-Umrigar~GU! functional that, despite
the lack of any empirical parameters, produces surprisin
accurate estimates of electron correlation energy in sim
Coulombic systems@4#.

In the absence of symmetry-breaking phenomena~such as
the Wigner crystallization@10#!, functional ~1! leads to the
energy per volume of a homogeneous electron gas equ
«5«@n↑#1«@n↓#,

«@n#5~16p3!21E n~k!k2dk

2~32p5!21E E @n~k!n~k8!#b/2uk2k8u22dkdk8,

~2!

wheren↑(k) and n↓(k) are the spin-up and spin-down mo
mentum distributions. Extremization of«@n# under the con-
straint of a given densityr produces the Euler equation
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1
2 k22~2p2!21~b/2!n~k!b/221E n~k8!b/2uk2k8u22dk85m,

~3!

wherem is the chemical potential. Only the solutions of E
~3! that satisfy the inequalities 0<n(k)<1 for all values ofk
are admissible for fermionic systems@11,12#. Such solutions
are readily shown to satisfy the scaling equations@5#

n~k!5r1/~3b22!h@r~12b!/~3b22!k#, ~4!

e~r!5r~2b22!/~3b22!, ~5!

m~r!5~5b24!~3b22!21e~r!, ~6!

t~r!5~3b24!~3b22!21e~r!,
~7!

exc~r!52~3b22!21e~r!,

whereAe(b) is a proportionality factor that depends only o
b, e(r) is the energy per particle@equal to«(r)/r# as a
function of r, and t(r) and exc(r) are the corresponding
kinetic and exchange-correlation energies. One immedia
concludes from these scaling relationships that the adm
sible solutions of the Euler equation~3! exist only for
2
3 ,b, 4

3 , providedr<rcrit(b) @5#. In all other instances, the
physically admissible momentum distributions that minimi
«@n# do not satisfy Eq.~3!. This is indeed the case forb52,
as asserted by Lieb’s theorem@13#.

The Euler equation~3! was previously solved forb51
@5#, yielding

n~k!5512pr~114k2!24, rcrit~1!5~512p!21,
~8!

e~r!5m~r!52t~r!5 1
2 exc~r!52 1

8 ,

in accordance with Eqs.~4!–~7!. In this Brief Report, we
elucidate properties of the momentum distributions that c
respond to other values ofb.

A careful analysis of Eq.~3! furnishes the following exac
asymptotics forn(k):
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lim
k→`

n~k!k28/~b22!5Fb~2p!22E
0

`

n~k8!b/2dk8G22/~b22!

for b. 6
7 ~9a!

and

lim
k→`

n~k!k21/~b21!

5@~5b24!@2b~12b!#21sin@p~3b22!/~2b22!#

3$11cos@p~3b22!/~2b22!#%21#1/~b21!

for b, 6
7. ~9b!

Consequently, as the integrals that enter the expression
«@n# diverge forb, 4

5 , the interval ofb for which admis-
sible solutions of Eq.~3! exist is further reduced to~4

5,
4
3!. For

b5 4
5 , the @3/5# Padéapproximant

n~k!5~4p2/25!~a1bk1ck21k3!@~4p2/25!

3a1dk1ek21 f k31gk41k5#21, ~10!

with a50.739 487, b50.156 664, c52.388 30,
d50.244 253, e54.898 84, f 51.644 95, andg53.833 14
@which satisfies the asymptotics~9b!#, provides an accurate

representation ofn(k) at r5rcrit(
4
5 )'0.0225. The corre-

sponding chemical potential equals21.00831022, giving
rise to the asymptotic behavior of28.06431024(b2 4

5 )21

for Ae(b) asb→ 4
5

1 @compare Eq.~6!#.
The trial function

ñ~k!5C~11zk2!2g, ~11!

wherez andg are variational parameters, andC is a normal-
ization constant, closely approximates the actualn(k) for all

bP@ 4
5 , 4

3 #. For b51, it is identical with the exact solution
@Eq. ~8!#, whereas forb5 4

5 it yields n(k) with the proper

asymptotics (g5 5
2 ), together with rcrit(

4
5 )54p/375

'0.0335 and limb→4/51 Ae(b)(b24/5)522p3527'
27.93831024. Finally, for b5 4

3 , the variational exponen

g attains the value of 3, giving rise toAe(
4
3 )52(p/2)1/3 and

limb→4/32rcrit(b)(b2 4
3 )2352(2048p)21, both of which

are exact.
The estimates forAe(b),

Ae~b!5min
g

„~223b!~423b!21

3$ 1
4@6p/~2g25!#3b24~423b!2

3@G~g!/G~g2 3
2 !#2b@G~gb/22 1

2 !/G~gb/2!#4

3~gb22!22%1/~3b22!
…, ~12!

furnished by the trial function~11!, agree very well~Fig. 1!
with those obtained numerically forb. 6

7 by a constrained
minimization of«@n# with respect to the variational param
etersA, $Bj%, andk0 of the more flexible ansatz
03450
for

ñ~k!5cos8/~22b!S ~p/2!~w1A!~p/21A!21

1(
j 51

5

Bj@w~p/22w!# j D ,k5k0 tanw. ~13!

A similarly impressive agreement is observed among
computed estimates ofrcrit(b) ~Fig. 2!.

Ansatz ~13! also permits an accurate estimation ofe(r)
for r.rcrit(b). The results of such a calculation forb51
~which corresponds to the GU functional! are presented in
Fig. 3. These data are well represented by the empirical

FIG. 1. Ae(b) vs b. The solid line corresponds to the upp
bound provided by Eq.~12!, and the dots mark the results of con
strained minimizations carried out with ansatz~13! @the best results
for r,rcrit(b) are displayed#. The diamond stands for the exa

value Ae(
4
3 )52(p/2)1/3, and the broken line denotes the asym

totics of 28.06431024(b2
4
5 )21.

FIG. 2. rcrit(b) vs b. The meaning of the solid line and dots
the same as in Fig. 1. The diamond stands for the exact v

rcrit(
4
3 )50.0225, and the broken line denotes the asymptotics

2(2048p)21(b2
4
3 )3.
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e~r!/e~rcrit!5120.007 331~r/rcrit21!2

3@110.186 992~r/rcrit21!#21 ~14!

for a wide range ofr>rcrit(1)5(512p)21.
In summary, the description of a homogeneous elect

gas arising from functional~1! depends strongly on the ex
ponentb. For b< 4

5 , the energy per volume«@n# given by
Eq. ~2! is unbound from below and thus unphysical. F
4
5 ,b, 4

3 , «@n# is minimized by smooth momentum distr
butions providedr<rcrit(b). These momentum distribu
tions, which become progressively narrower with increas
b ~Fig. 4!, and the corresponding values ofe(r), exhibit a
simple scaling behavior. The magnitude ofrcrit(b) rapidly
decreases withb, becoming vanishingly small forb5 4

3 . For
b> 4

3 , the physically admissible momentum distributio

FIG. 3. e(r)/e(rcrit) vs r/rcrit for b51. The results of con-
strained minimizations carried out with ansatz~13! are marked by
dots, and the solid line represents the fit given by Eq.~14!.
03450
n

r

g

that minimize«@n# no longer satisfy the Euler equation~3!
for any value ofr. Such is the case forb52, where the
Hartree-Fockn(k) is discontinuous at the Fermi level.

We believe that the analysis presented in this Brief Rep
will facilitate a better understanding of the functionals
natural spinorbitals, and thus aid in the construction of be
approximations forVee@G#. One should note that many o
the properties ofn(k) uncovered here@most notably their
asymptotics~9!# are readily generalized to functionals
which the expression (npnq)b/2 that enters Eq.~1! is replaced
by V(np ,nq) such that limnp→0 V(np ,nq)np

2b/25v(nq);
0,v(nq),`.
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FIG. 4. The momentum distributions forr5rcrit(b). The solid
lines stand for the trial function~11!. For b51.0 and 1.2, the bro-
ken lines mark the results of constrained minimizations carried
with ansatz~13!, whereas forb50.8 it represents the@3/5# Padé
approximant@Eq. ~10!#.
@1# A. Klein and R. M. Dreizler, Phys. Rev. A57, 2485 ~1998!,
and references cited therein.

@2# J. Cioslowski and R. Lopez-Boada, J. Chem. Phys.109, 4156
~1998!.

@3# J. Cioslowski and R. Lopez-Boada, Chem. Phys. Lett.307, 443
~1999!.

@4# S. Goedecker and C. J. Umrigar, Phys. Rev. Lett.81, 866
~1998!.

@5# J. Cioslowski and K. Pernal, J. Chem. Phys.111, 3396~1999!.
@6# A. Holas, Phys. Rev. A59, 3454~1999!; G. Csanyi and T. A.

Arias, e-print http://xx.lanl.gov/abscond-mat/9805388.
@7# M. Levy, Proc. Natl. Acad. Sci. USA76, 6062~1979!.
@8# M. Levy, in Density Matrices and Density Functionals, edited

by R. Erdahl and V. H. Smith, Jr.~Reidel, Dordrecht, 1987!,
p. 479.

@9# A. Szabo and N. S. Ostlund,Modern Quantum Chemistry
~McGraw-Hill, New York, 1989!.

@10# E. P. Wigner, Phys. Rev.46, 1002 ~1934!; E. P. Wigner,
Trans. Faraday Soc.34, 678 ~1938!.

@11# A. J. Coleman, Rev. Mod. Phys.35, 668 ~1963!.
@12# D. W. Smith, Phys. Rev.147, 896 ~1966!.
@13# E. H. Lieb, Phys. Rev. Lett.46, 457 ~1981!.
3-3


