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Probabilistic teleportation and entanglement matching
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Teleportation may be interpreted as sending and extracting quantum information through quantum channels.
In this report, it is shown that to get the maximal probability of exact teleportation through a partially entangled
quantum channel, the sender~Alice! need only operate a measurement that satisfies an ‘‘entanglement match-
ing’’ to this channel. An optimal strategy is also provided for the receiver~Bob! to extract the quantum
information by adopting a general evolution.

PACS number~s!: 03.67.Hk, 03.65.Bz
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Quantum teleportation, the process that transmits an
known qubit from a sender~Alice! to a receiver~Bob! via a
quantum channel with the help of some classical inform
tion, was originally concerned by Bennett, Brassard, Cr
eau, Jozsa, Peres, and Wootters~BBCJPW! @1#. In their
scheme, such a quantum channel is represented by a m
mally entangled pair~any of the Bell states! and the original
state can be deterministically transmitted to Bob.

The process of teleportation may be regarded as sen
and extracting quantum information via the quantum ch
nel. We will apply this picture to investigate a partially e
tangled quantum channel. Because a mixed state can be
rified to a Bell state with zero probability@2–4#, a quantum
channel of mixed states can never provide teleportation w
fidelity 1. Therefore only pure entangled pairs should be c
sidered if we want exact teleportation~even with some prob-
ability!. Because of Schmidt disposition@5#, a partially en-
tangled pair may be expressed as

uF&2,35au00&2,31bu11&2,3~ uau21ubu251,uau.ubu!. ~1!

~Hereafter, we assume particle 2 is at Alice’s site and part
3 at Bob’s site.! The absolute value of the Schmidt coef
cient ubu is an invariant under local operations, and it cor
sponds to the entanglement entropyE of the state@6#. Such a
state can be concentrated to a Bell state@6,7# with a prob-
ability of 2b2 and the concentrated pair may be used a
new quantum channel to carry out a teleportation.

In this report, Alice performs a Von Neumann measu
ment on her side while Bob performs a corresponding g
eral evolution to reestablish the initial state with a cert
probability. We will give a measure of the entanglement d
gree for Alice’s measurement and show that the optim
probability of an exact teleportation is determined by t
smaller of the entanglement degrees of Alice’s measurem
and the quantum channel. Thus the matching of these
tanglement degrees should be considered and the enta
ment degree of the measurement attains the meaning o
ice’s ability to send quantum information.

First, we consider the case in which Alice operates a B
measurement and give Bob’s proper general evolution to
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establish the initial state with optimal probability. Conside
ing the previously shared pair shown in Eq.~1! and the un-
known state~which is to be sent! of particle 1uf&15au0&1
1bu1&1, the total state can be written asuC&1,2,3
5uf&1uF&2,3 5aau000&1,2,3 1abu011&1,2,3 1bau100&1,2,3
1bbu111&1,2,3. If Alice operates a Bell measurement, Bo
will get the corresponding unnormalized states as follows

^F1,2
1 uC&1,2,35

A2

2
~aau0&31bbu1&3),

^F1,2
2 uC&1,2,35

A2

2
~aau0&32bbu1&3),

~2!

^C1,2
1 uC&1,2,35

A2

2
~bau0&31abu1&3),

^C1,2
2 uC&1,2,35

A2

2
~bau0&32abu1&3),

where$uF1,2
6 &5A2/2(u00&1,26u11&1,2), uC1,2

6 &5A2/2(u01&1,2

6u10&1,2)% are Bell states of particle 1 and particle 2. Alic
informs Bob of her measurement result, for example,uF1,2

1 &
@with the corresponding collapsed state of particle 3
^F1,2

1 uC&1,2,35A2/2(aau0&31bbu1&3), which is unnormal-
ized#, and Bob gives a corresponding general evolution.
carry out a general evolution, an auxiliary qubit with th
original state u0&aux is introduced. Under the basi
$u0&3u0&aux ,u1&3u0&aux ,u0&3u1&aux ,u1&3u1&aux%, a collective
unitary transformation

Usim5S b

a
0 A12

b2

a2
0

0 1 0 0

0 0 0 21

A12
b2

a2
0 2

b

a
0

D ~3!

transforms the unnormalized product sta
A2/2(aau0&3u0&aux1bbu1&3u0&aux) to the result
©2000 The American Physical Society01-1
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uF&3,aux5
A2

2 Fb~au0&31bu1&3)u0&aux

1aA12
b2

a2
au1&3u1&auxG , ~4!

which is also unnormalized. Then a measurement to the a
iliary particle follows. If the measurement result isu0&aux ,
the teleportation is successfully accessed, while if the re
is u1&aux , teleportation fails with the state of qubit 3 tran
formed to a blank stateu1&3 and no information about the
initial qubit 1 is left ~thus an optimal probability of telepor
tation is accessed!. The contribution of this unnormalize
state to the probability of successful teleportation may
expressed by the probabilistic amplitude ofau0&31bu1&3 in
Eq. ~4! as u(A2/2b)u25 1

2 ubu2.
Other states in Eq.~2! can be discussed in the same wa

and their contributions to the probability of successful te
portation may be calculated directly by using a gene
method: if the unnormalized state in Eq.~2! is written as
axu0&31byu1&3 or axu1&31byu0&3, after Bob’s optimal
operation, it gives a contribution to the whole success
probability of

p5~min$uxu,uyu%!2. ~5!

Adding up all the contributions, the optimal probability o
successful teleportation is obtained asP5 1

2 ubu23452ubu2.
Then consider more general cases: Alice operates a m

surement with the eigenstates

uF&1,2
1 5a8u00&1,21b8u11&1,2,

uF&1,2
2 5b8u00&1,22a8u11&1,2,

~6!
uF&1,2

3 5a8u10&1,21b8u01&1,2,

uF&1,2
4 5b8u10&1,22a8u01&1,2.

where (ua8u21ub8u251,ua8u>ub8u). Because of Schmidt dis
position, this basis represents all possible Von Neum
measurements of two particles when (a8,b8) varies. The
four states above are orthogonal and have the same enta
ment entropy, so the measurement’s entanglement degrE
can be defined as that of any of the four states. Collap
states of particle 3 corresponding to the four measurem
results can be written as

^F1,2
1 uC&1,2,35aaa8u0&31bbb8u1&3 ,

^F1,2
2 uC&1,2,35aab8u0&32bba8u1&3 ,

~7!
^F1,2

3 uC&1,2,35baa8u0&31abb8u1&3 ,

^F1,2
4 uC&1,2,35bab8u0&32aba8u1&3 ,

which is unnormalized. The general evolution to particle 3
similar to what is shown in Eq.~3!. From the result of Eq.
03430
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~6!, the probability of successful teleportation can be cons
ered directly in the following two cases:

~1! uau>ua8u>ub8u>ubu. In this case, becauseu(ab8)u2
5uau2 (12ua8u2) andu(ba8)u25ua8u2(12uau2), the inequal-
ity uab8u>uba8u is established, anduaa8u>ubb8u is obvious,
so the whole probability of successful teleportation may
written as

P5u~bb8!u21u~ba8!u21u~bb8!u21u~ba8!u252ubu2,
~8!

which is just the same as the case when Alice operates a
measurement.

~2! ua8u>uau>ubu>ub8u. In this case,uba8u>uab8u, and
the probability of successful teleportation is

P5u~bb8!u21u~ab8!u21u~bb8!u21u~ab8!u252ub8u2.
~9!

From the analysis above, the probability of success
teleportation is determined by the smaller ofubu and ub8u,
and may be regarded as being determined by the entan
ment degree of Alice’s measurement or the quantum ch
nel, whichever is less.

Just as discussed above, teleportation may be regarde
preparation of the quantum channel and as sending and
traction of quantum information. The result above may
explained clearly with this picture. The entanglement deg
of Alice’s measurement can be considered as Alice’s send
ability and the entanglement degree of the quantum cha
can be taken as the width of it. Then the amount of transm
ted quantum information is determined by the lower one
these two bounds: the width of the quantum channel 2ubu2

and the sending ability of Alice 2ub8u2. If they are just the
same, a condition of ‘‘entanglement matching’’ is satisfie
If Bob always reestablishes the state to be sent with an
timal probability ~which means he always extracts all th
quantum information he received!, an exact teleportation will
be performed with probability equal to the amount of t
quantum information transmitted, just as is shown in Eqs.~8!
and ~9!.

Though Bell measurement is an essential task of quan
teleportation, it is very difficult to fully access it. It has bee
shown that Bell states cannot be distinguished completely
using linear devices@8,9#, and this difficulty can be seen in
some teleportation experiments@10#. Von Neumann mea-
surements with less entangled eigenstates may be more
cient. From the result above, if a partial entanglement s
uF&2,35au00&2,31bu11&2,3 is adopted as the quantum cha
nel, the same optimal probability of successful teleportat
can be accessed if only Alice’s measurement satisfies
‘‘entanglement matching,’’ while a Bell measurement or
POVM is not necessary. The matching here is essential to
the optimal probability, and it can also be regarded as
matching between the quantum channel’s width and Alic
sending ability. Without such a matching, a waste of qu
tum information either at Alice’s site or through the quantu
channel will occur.

The result of entanglement matching can be generali
to the teleportation of a multiparticle system. Consider
k-particle systemP at Alice’s site with the state
1-2
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uC&P5a0u00•••00&P1 , . . . ,Pk
1a1u00•••01&P1 , . . . ,Pk

1•••

1a2k21u11•••11&P1 , . . . ,Pk
.

Without loss of generality, the quantum channel between
ice and Bob isk independent entangled pairs with the sta
) i 51

k (ai u00&Ai ,Bi
1bi u11&Ai ,Bi

) ~any other pure quantum
channel can be transformed to this by local operations!. Al-
ice makesk collective measurements, each of which is a V
Neumann measurement with the following eigenstates:

uF& i ,15ai8u00&Pi ,Ai
1bi8u11&Pi ,Ai

,

uF& i ,25bi8u00&Pi ,Ai
2ai8u11&Pi ,Ai

,

re

J.

03430
l-

uF& i ,35ai8u10&Pi ,Ai
1bi8u01&Pi ,Ai

,

~10!
uF& i ,45bi8u10&Pi ,Ai

2ai8u01&Pi ,Ai
.

where uai8u
21ubi8u

251, uai8u>ubi8u, and i 51,2, . . . ,k. Then
Bob reestablishes the original state asuC&B with a certain
probability by adopting a proper general evolution. Usi
similar methods as in the case of monoqubit teleportati
we may show that there also exists an entanglement ma
ing in multiqubit teleportation: If ci is defined as
min$ubi8u,ubiu%, the optimal probability of successful teleport
tion can be expressed as 2k) i 51

k ci
2 .
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