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Spontaneous emission between two parallel plates, one or both infinitely permeable
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We compute the influence on the spontaneous-emission rate for a two-level atom when it is located between
two parallel plates of a different nature, namely a perfectly conducting plate (e→`) and an infinitely perme-
able one (m→`). We also discuss the case of two infinitely permeable plates. We compare our results with
those found in the literature for the case of two perfectly conducting plates.

PACS number~s!: 12.20.2m, 32.80.2t
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Using thermodynamic arguments and assuming that t
mal equilibrium between matter and radiation is alwa
achieved, Einstein@1# was able to demonstrate that, oth
than stimulated emisson, excited atoms must also de
spontaneously. Even an ‘‘isolated’’ excited atom in t
vacuum must inevitably decay to the ground state. In ot
words, an excited stationary state of an atom is not actua
stationary state and we can say that spontaneous emiss
in fact not a property of an isolated atom, but of an ato
vacuum system@2#. In the context of quantum electrodynam
ics ~QED!, we can say that the ultimate reason for sponta
ous emission of excited atoms is the interaction of the a
with the quantized electromagnetic field of the vacuum st
As a consequence, any modification in the vacuum elec
magnetic field caused, for instance, by cavities, can in p
ciple modify the radiative properties of atomic systems. W
can say that the presence of material walls in the vicinity
atomic systems renormalizes their transition frequencies
well as the widths of their spectral lines. The former effe
corresponds to the influence of boundary conditions~BC! on
the analog of the Lamb shift, while the latter corresponds
the change in the spontaneous-emission rate of excited
oms. The branch of physics that is concerned with the in
ence of the environment of an atomic system on its radia
properties is generically called cavity QED and the abo
examples are only two among many others@for a review see
for instance Refs.@3,4#. Here we shall be concerned with on
of the above effects, namely, the influence of BC imposed
the radiation field on the spontaneous-emission rate of a t
level atom. It is worth mentioning that cavity QED was bo
precisely from the observation of Purcell@5# half a century
ago when he realized that a spontaneous-emission pro
associated with nuclear magnetic moment transitions at r
frequencies could be enhanced if the system were couple
a resonant external electric circuit placed in the vicinity
the system. However, we can say that the first detailed pa
on this subject were those written by Casimir and Polder@6#
in which, among other things, forces between polariza
atoms and metallic walls were treated, and by Casimir in
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seminal work that brought about the Casimir effect@7#. Since
then, cavity QED has attracted the attention of many phy
cists, both theoretical and experimentalists. Particularly,
effects of the proximity of plane walls to atomic system
have been investigated: for instance, Morawitz@8# discussed
both classically and quantum mechanically the influence o
plane mirror on the spontaneous-emission rate of a two-le
atom. A few years later, Drexhage@9# observed experimen
tally the oscillatory behavior of the lifetime on the distan
to the mirror. The QED of charged particles between t
parallel mirrors was discussed extensively by Barton@10,11#,
who was the first to compute explicitly the influence of tw
parallel perfect conducting plates on the spontaneo
emission rate for a spherically averaged atomic transit
@10#. Barton’s result was rederived by Philpott@12# with a
similar method and by Milonni and Knight@13# in the con-
text of the image method. An interesting feature of the mo
fied spontaneous-emission rate between two conducting
rors is the fact that for the case of a transition dipole mom
parallel to the plates there must be a strong suppression
2L/l0,1, whereL is the distance between the plates a
l0, the transition wavelength~see for instance Ref.@14#!.
This inhibited spontaneous emission has been observed
perimentally by Hulet, Hilfer, and Kleppner@15#. Many
other interesting experiments have been done and we sug
for the interested reader the reviews by Haroche and Kle
ner @2# and Hinds@16# and references therein. It is wort
mentioning that outside the context of QED, toy models c
be very useful in the understanding of the main features
the influence of boundary conditions on the radiative pro
erties of atomic systems; see, for example Ref.@17#.

In this paper we compute the spontaneous-emission
for a two-level atom when it is located between two para
plates of different nature (e→` and m→`) and between
two infinitely permeable plates (m→`), and then we com-
pare our results with those found in the literature@10,12,13#
for the case of two perfectly conducting plates. Thou
analogous, the results are different, since when we cha
the boundary conditions on the photon field, the vacu
field modes also change. The unusual pair of plates descr
above were first employed by Boyer@18# in the context of
random electrodynamics, a version of classical electro
namics that includes the zero-point electromagnetic osc
tions. These plates provide the simplest example where
©2000 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW A 61 034102
can find Casimir forces@7# of a repulsive nature at work
Recently, Boyer’s result and its thermal corrections were
derived in the context of quantum field theory@19#. Also
recently, Boyer’s boundary conditions were employed
Hushwater@20# as a counterexample in order to prove th
the naive interpretation of the Casimir atraction force as d
to a difference between the number of vacuum modes in
region between the plates and the region outside the plat
not correct. These boundary conditions were also emplo
in connection with the Scharnhorst effect@21# where they
provide one more example in which it is shown that t
speed of light in regions where the electromagnetic vacu
is confined is altered with respect to the situation in whi
the propagation is in unconfined vacuum@22,23#. As ex-
pected, a strong suppression also occurs for both c
treated here. However, curious as it may seem, this supp
sion occurs when the transition dipole moment is perp
dicular to the plates, in contrast to the suppression when
dipole moment is parallel to the plates which occurs for t
two perfectly conducting plates.

Our starting point is the general expression for t
spontaneous-emission rate of a transition 2→1 of a two-
level atom, which is given by

A21~r!5
4p2v0

2

\ (
a

1

va
uAa~r!•d12u2d~va2v0!, ~1!

wherev0 corresponds to the transition frequency,d12 is the
transition dipole moment, and each modeAa(r) of the
vacuum field is characterized by a wave vectork and a given
polarization~see for instance Ref.@14#!.

The first setup we will consider consists of two infini
parallel surfaces~the plates!, one of which will be considered
to be a perfect conductor (e→`) while the other is supposed
to be perfectly permeable (m→`). Also, we will choose
Cartesian axes in such a way that the axisOZ is perpendicu-
lar to both surafces. The perfectly conducting surface will
placed atz50 and the permeable one, atz5L. The electro-

FIG. 1. The ratioA21/A21
0 as a function of the dimensionles

variable s5z/l0 for the case of two perfectly conducting plate
~dashed curve! and the case of a perfectly conducting plate and
infinitely permeable plate~solid curve!. The range of the variables
is a typical one.
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magnetic fields must satisfy the following boundary con
tions: ~a! the tangential componentsEx andEy of the electric
field as well as the normal componentBz of the magnetic
field must vanish on the metallic plate atz50. ~b! The tan-
gential componentsBx and By of the magnetic field mus
vanish on the permeable plate atz5L. It is convenient to
work with the vector potentialA(r,t) in the Coulomb gauge
in which “•A(r,t)50, E(r,t)52]A(r,t)/]t, and B(r,t)
5“3A(r,t). With this choice of gauge, the above bounda
conditions can be written as conditions imposed on the v
tor potential components,

Ax~x,y,0,t!5Ay~x,y,0,t!5
]Az

]z
~x,y,0,t!50, ~2!

]Ax

]z
~x,y,L,t !5

]Ay

]z
~x,y,L,t !5Az~x,y,L,t !50. ~3!

The mode functions for this case are@23#

Ak1~r!5S 2

VD 1/2

~ k̂i3 ẑ!sinF S n1
1

2D pz

L Geiki•ri ~4!

and

Ak2~r!5 S 1

kD S 2

VD 1/2

eiki•riH kiẑcosF S n1
1

2D pz

L G
2 i

p

L S n1
1

2D k̂i sinF S n1
1

2D pz

L G J . ~5!

The contributions for the spontaneous-emission rate ass
ated withd 12

' andd 12
i are given, respectively, by

A21
' ~z!5

3p

k0L
A21

0' (
n50

N F 12

S n1
1

2D 2

k0
2L2 p2G cos2F S n1

1

2D pz

L G
~6!

and

A21
i ~z!5

3p

2k0L
A21

0i (
n50

N F 11

S n1
1

2D 2

k0
2L2 p2G

3sin2F S n1
1

2D pz

L G , ~7!

whereA21
0' and A21

0i are the corresponding contributions fo
the spontaneous-emission rate in unbounded~free! space,
namely,

A21
0i5

4ud 12
i u2v0

3

3\c3 and A21
0'5

4ud 12
' u2v0

3

3\c3 ~8!

and N is the greatest integer part ofk0L/p21/2. The total
emission coefficient is given byA215A21

' 1A21
i . Recall that

Einstein’s coefficient for spontaneous emission is sim
given by

n

2-2
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A21
0 5A21

0i1A21
0'5

4ud12u2v0
3

3\c3 . ~9!

The graph displayed in Fig. 1 shows the ratio betwe
A21 and A21

0 as a function of the dimensionless variab
sªz/l0 for the case of two conducting plates~dashed line!
and the case of a conducting plate and a permeable p
~solid line!. Although the two curves are analogous in t
sense that both present oscillations withs, they are different
curves since the mode functions of the vacuum field in e
case are not the same. It is worth emphasizing the lack
symmetry of the latter curve around the point that is equid
tant from the plates. This was expected because in this
the two plates correspond to distinct electromagnetic me
with different properties.

The second example we shall be concerned with cons
of two perfectly permeable plates. The boundary conditio
for this case can be cast into the form

FIG. 2. The ratioA21/A21
0 as a function of the dimensionles

variable s5z/l0 for the case of two perfectly conducting plate
~dashed curve! and the case of two infinitely permeable plates~solid
curve!. The range of the variables is a typical one.

FIG. 3. The ratioA21
i /A21

0i for the case of two perfectly conduct
ing plates~dashed curve! and the ratioA21

' /A21
0' for the case of two

infinitely permeable plates~solid curve! as functions of the dimen-
sionless variablel 5L/l0.
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]Ax

]z
~x,y,0,t!5

]Ay

]z
~x,y,0,t!5Az~x,y,0,t!50, ~10!

]Ax

]z
~x,y,L,t !5

]Ay

]z
~x,y,L,t !5Az~x,y,L,t !50. ~11!

The corresponding mode functions are

Ak1~r!5S 2

VD 1/2

~ k̂i3 ẑ!cosS n
pz

L Deiki•ri ~12!

and

Ak2~r!5 S 1

kD S 2

VD 1/2

eiki•riH kiẑsinS n
pz

L D
1 i S np

L D k̂i cosS n
pz

L D J . ~13!

The contributions for the spontaneous-emission rate a
ciated withd 12

' andd 12
i are given, respectively, by

A21
' ~z!5

3p

k0L
A21

0' (
n51

N S 12
n2p2

k0
2L2 D sin2S npz

L D ~14!

and

A21
i ~z!5

3p

2k0L
A21

0i H 11 (
n51

N S 11
n2p2

k0
2L2 D cos2S npz

L D J ,

~15!

whereN is the greatest integer part ofk0L/p.
Figure 2 shows the ratio betweenA21 andA21

0 as a func-
tion of s5z/l0 for the case of two conducting plates~dashed
line! and the case of two permeable plates~solid line!. The
curve for this latter case also presents oscillations in
spontaneous-emission rate as the distance from the ato
each plate varies and is also symmetric with respect to
equidistant point to the plates. However, there is a rema
able difference between these two curves: whenever the
an enhancement in the spontaneous-emission rate of
former, there will be a depletion for the latter and vice ver
Particularly, their behavior near the plates are quite differe

The strong suppression that occurs in the case of
conducting plates forA21

i has its counterpart in the two case
discussed previously, as we shall see. However, we sh
emphasize that in the case of two permeable plates as we
in the case of a conducting plate and a permeable one,
suppression occurs forA21

' , in contrast with the case of two
conducting plates. For simplicity, let us just fix the atom a
point equidistant from the parallel infinite plates in both s
ups and vary the distanceL between the plates. Also, fo
convenience, in the remaining figures of this paper we s
plot the graphs of the ratiosA21

i /A21
0i and A21

' /A21
0' as func-

tions of the dimensionless parameterlªL/l0. Figure 3
shows jointly the suppression ofA21

' for the case of two
permeable plates~solid line! and the suppression ofA21

i for
the case of two conducting plates~dashed line!. Observe that
2-3



th
bl
n

t t
d

ar
cu
as
or
er
st
ce

no
the

gy
ng
ble
nd-

e
ly

sim-
the
m
es
a-
first
ce

us-

for
S

nk

t-
at

BRIEF REPORTS PHYSICAL REVIEW A 61 034102
both occur for the same value of the distance between
plates. Though not obvious, this result is quite reasona
since for the case of two permeable plates the mode fu
tions of the vacuum field are also symmetric with respec
s5 l /2. In this sense, for the case of a conducting plate an
permeable one, for which mixed boundary conditions
used, it is natural to expect that the suppression will oc
for a different value ofl. This is indeed what happens and
is shown separately in Fig. 4, the suppression occurs f
value ofl which is smaller than the value found for the oth
cases~shown in Fig. 3!. Concerning Figs. 3 and 4, a la
comment is in order: observe that in Fig. 3 the distan

FIG. 4. The ratioA21
' /A21

0' for the case of one perfectly conduc
ing and one infinitely permeable plate. Suppression occursl
5L/l05

1
4.
rd
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between two successive peaks forA21
i /A21

0i ~dashed curve! or
discontinuities in the derivative ofA21

' /A21
0' ~continuous

curve! areD l 5l0, in contrast with the valueD l 5l0/2 ob-
served for the discontinuities in the derivative ofA21

' /A21
0' in

Fig. 4, since for the situation described by Fig. 4 there are
nodes for the vacuum modes at the midpoint between
two plates.

It is interesting to notice that though the Casimir ener
density for the case of two perfectly parallel conducti
plates is exactly the same as that for two infinitely permea
parallel plates, the influence of these two different surrou
ings on radiative properties of an atomic system~like the
spontaneous-emission rate of an atom! can be quite different.
In other words, though the Casimir effect is ‘‘blind’’ to th
change of the two conducting plates by the two infinite
permeable ones, the atom is not. The reason for that is
ply because only the possible field frequencies enter in
calculation of the Casimir energy density, while the ato
interacts directly with each vacuum field mode. It prob
locally the vacuum field. Though highly idealized, the situ
tions that we have examined here can be considered as a
step towards more realistic situations in which the influen
of a finite magnetic permeability on the spontaneo
emission rate would be taken into account.
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