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Dispersive atomic evolution in a dissipative-driven cavity
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We study the dynamics of a collection of two-level atoms interacting with a single mode of a quantized field
in a dissipative cavity in the dispersive regime. The quantized mode is driven by a classical driving field. The
steady-state density matrix is obtained. The influence of the driving field on the quantized driven field and on
atomic properties in both the dissipative and the lossless cases is studied. The atomic decoherence time in the
dissipative-driven case is obtained. We show that the external driving field strongly suppresses the atomic
coherence~in comparison with the dissipative cavity without the driving field!.

PACS number~s!: 42.50.Dv, 42.50.Fx
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I. INTRODUCTION

Recently, interesting experiments in the optical domain
cavity quantum electrodynamics~QED! have been per-
formed. In particular, the dynamics of resonant cold ato
crossing a cavity was studied for the case when the inte
tion energy is greater than the kinetic energy of the atom@1#.
The quantum output field provided information about t
atomic evolution during the atomic passage time. In this
periment an additional pumping field from a classical sou
was included to compensate for cavity energy loss. Exp
mental data have been compared both with a semiclas
theory and with a quantum description~the center of mass
motion was treated classically!. In the microwave regime o
cavity QED, an unusual experiment studying the revers
decoherence of superpositions of coherent states was
formed several years ago@2#, where superposition of coher
ent states was produced by making use of the disper
interaction of the quantum field with a single two-level ato
@3#. Due to atom-field coupling, the initial field splits int
two coherent states. These states lately lose their mutua
herence due to cavity losses. In this experiment the ca
was driven by a pulsed microwave source to create the in
coherent state.

The above-mentioned systems can be well described
quantum-optical Hamiltonians. It is well known that only
few nonlinear models of quantum optics, such as a Jay
Cummings model and evolution in the Kerr medium, adm
an exact solution. It is even more difficult to determine an
lytically the behavior of the quantum system when both d
sipation and a classical driving field are present. On the o
hand, only a restricted numerical analysis usually can be
ried out to describe the interaction of a quantum field with
collection of atoms in the presence of a driving field, due
the rapid increase of the dimension of the composed sys
Here we shall make use of analytical solutions for und
standing the long-time system dynamics.

The dynamics of the Dicke model in the dispersive lim
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has been studied for the generation of superpositions
atomic @4,5# and field @6,7# states. On the other hand, a
approximate analytic solution for the atomic system intera
ing with a strong quantum field in an ideal cavity has be
found in Ref. @8# and was generalized to include cavi
losses in Ref.@9#.

Following the above-mentioned experiments, in this wo
we study the dispersive limit of the atom-field interaction
a dissipative-driven cavity, in a case ofA atoms interacting
with a quantum field. Since in the dispersive regime there
no energy transfer between atomic levels, only field a
atomic coherence can be affected in the course of evolut
The main goal of this work is to study the effect of a clas
cal pump field and of cavity losses on atomic coherence.
note that loss of field coherence in a dissipative and dri
cavity ~in the absence of atoms! has been studied in a set o
papers@10# ~see also Ref.@3#!. The dynamics of field and
atomic decoherence in quantum nondemolition meas
ments during a dispersive evolution of a single atom in
context of the Lindblad approach was analyzed in Ref.@11#.
This has been also studied in a recent work@12#, where the
influence of field dissipation on atomic coherence proper
was emphasized.

This work is organized as follows: In Sec. II we find a
exact solution for the approximate master equation desc
ing the dispersive atom-field interaction in the presence
both an external driving field and field dissipation. In Sec.
we describe the main features of quantum dynamics in u
tary nondriven evolution. In Sec. IV we find the steady st
of this system and study the influence of the atomic sys
on the field properties both in the dissipative and the loss
cases. Here we concentrate on the modified atomic evolu
due to the presence of the driving field. In particular, w
analyze the loss of atomic coherence induced by field di
pation, which is essentially enhanced due to the presenc
the classical driving field.

II. MASTER EQUATION AND ITS SOLUTION

We consider cavity losses as a mechanism of dissipat
The corresponding master equation for the atom-field den
©2000 The American Physical Society14-1
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matrix, describing a collection ofA two-level atoms interact-
ing with a quantum field in a dissipative cavity in the pre
ence of a driving field, has a standard form (\51)

] tr52 i @H,r#1Lr, ~2.1!

with

Lr5
g

2
~2ara†2a†ar2ra†a!. ~2.2!

Here,H is the driven Dicke Hamiltonian which, in the dipol
and rotating wave approximations, takes the form (\51)

H5vaSz1v fa
†a1g~aS11a†S2!1V~aeivct1a†e2 ivct!,

~2.3!

where S1 ,S2 ,Sz are operators from anA11 dimensional
representation of su(2) algebra with commutation relatio

@S1 ,S2#52Sz , @S6 ,Sz#57Sz . ~2.4!

a (a†) is the common bosonic annihilation~creation! opera-
tor, i.e.,@a,a†#51 andV is the Rabi frequency of the clas
sical driving field.

We consider the far-off resonance limit for atom-field i

teraction ~dispersive interaction!, i.e., AAn̄g/D!1, where
D5va2v f and n̄ is the average number of photons in t
field. In this limit the HamiltonianH goes to an effective
Hamiltonian for describing the unitary contribution to th
dynamics in Eq.~2.1! which reads as~see the Appendix!

He f f5D1Sz1da†a1h~2a†a11!Sz1h~S22Sz
2!

1V~a1a†!, ~2.5!

where h5g2/D is the effective atom-field coupling in th
dispersive limit, d5v f2vc and D15D1d. This Hamil-
tonian is nonlinear in the atomic space and, as was show
Ref. @4#, leads to a number of collective effects such
atomic Schro¨dinger cat generation and atomic squeezing.

The effective Hamiltonian is further simplified by the fo
lowing transformation of the density matrix:

r̃5ei [D1Sz1h(S22Sz
2)] tre2 i [D1Sz1h(S22Sz

2)] t, ~2.6!

and takes the form

H̃e f f5da†a1h~2a†a11!Sz1V~a1a†!. ~2.7!

This transformed version of the Hamiltonian~2.7! is lin-
ear in the field space and diagonal in the atomic spa
(@H,Sz#50). Hence, the master equation can be ea
solved by applying the dynamical symmetry method p
posed in Ref.@13#. We introduce the following notations fo
operators that appear in the master equation:

N2r5ara†, Nlr5a†ar, Nrr5ra†a,

Alr5ar, A1 lr5a†r, Arr5ra, A1rr5ra†.
~2.8!
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It is clear that all the left operators commute with all th
right operators. The operatorsNl ,Nr , andN2 form a soluble
subalgebra,

@Nl ,N2#5@Nr ,N2#52N2 , @Nl ,Nr #50. ~2.9!

Ar , A1r , 1 andAl , A1 l , 1 are the two Heisenberg-Wey
subalgebras. The rest of the commutators are

@Nl ,Al #52Al , @Nl ,A1 l #5A1 l ,

@N2 ,Al #50, @N2 ,A1 l #5A1r ,

@Nr ,Ar #5Ar , @Nr ,A1r #52A1r ,

@N2 ,Ar #5Al , @N2 ,A1r #50. ~2.10!

In the bare atomic basis, which is defined by

Szuk&at5~k2A/2!uk&at,

the master equation takes a linear form with respect to
set of operators,

] tr̃pq5@gN21vpNl1 v̄qNr1 iV~Ar1A1r

2Al2A1 l !#r̃pq , ~2.11!

where r̃pq5at̂ puruq&at, vp52 id22ihlp2g/2 andlp5p

2A/2. Note thatr̃pq continue to be operators in the fiel
space. The solution of Eq.~2.11! is given by

r̃pq~ t !5empqev̄qtNrevptNlef pqN2

3eb̄pA1 lecpqAlebqArec̄qpA1r r̃pq~0!, ~2.12!

wherer̃pq(0) is the initial density matrix and

mpq~ t !

V2
5xpqt1

g

vpv̄q

~12e2vpt!~12e2 v̄qt!

vp1 v̄q

2S 11
g

vp1 v̄q
D S evpt21

vp
2

1
ev̄qt21

v̄q
2 D ,

~2.13!

xpq52
2h

uvpu2uvqu2
$gh~lp2lq!22 i ~lq2lp!@g2/4

1~d12hlp!~d12hlq!#%,

f pq~ t !5
g

vp1 v̄q

@e(vp1 v̄q)t21#, bq~ t !52 i
V

v̄q

~e2 v̄qt21!,

~2.14!
4-2
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DISPERSIVE ATOMIC EVOLUTION IN A . . . PHYSICAL REVIEW A61 033814
cpq~ t !52 iVF S 11
g

vp1 v̄q
D evpt21

vp

1
g

~vp1 v̄q!v̄q

~e2 v̄qt21!G .

Now, provided with the general solution~2.12!, we shall
concentrate on studying different limits in this model. A
mentioned before, we are interested in the effects of the d
ing field and of dissipation on atomic coherence.

III. NONDRIVEN LOSSLESS CASE

In the lossless case and in the absence of a driving fi
the dynamics of the Dicke model in the far-off resonan
case is described by the effective Hamiltonian~2.5! with V
50 andd50:

He f f
(0)5vaSz1v f n̂1h~2n̂11!Sz1h~S22Sz

2!, ~3.1!

where n̂5a†a. A similar effective atomic Hamiltonian wa
derived by Agarvalet al. @4# considering the evolution of a
collection ofA two-level atoms in a dissipative cavity in th
presence of thermal photons. The proposed Hamiltonian
independent of the field operators and has the form of
~3.1! with substitutionn̂→n̄, with n̄ being the average num
ber of thermal photons in the field. It was noted that t
effective atomic Hamiltonian, being a nonlinear form on t
generators of su(2) algebra@14#, leads to the generation of
superposition of atomic coherent states~atomic Schro¨dinger
cats! from an initial atomic coherent state. In contrast to R
@4#, where only the atomic dynamics has been conside
and the effect of the field on the atomic state is reduced
pure phase factor, the Hamiltonian~3.1! leads to the evolu-
tion of both field and atomic subsystems.

Moreover, due to the joint atom-field evolution, the b
havior of the atomic subsystem essentially depends on
initial field state and, in general, cannot be described by
effective atomic Hamiltonian. For instance, in the case of
arbitrary initial atomic

u in&at5 (
k50

A

cpup&at ~3.2!

and the field being initially in a coherent stateu in& f5ua& f ,
the atomic density matrix reduces to the following form:

rat~ t !5 (
p,q50

A

cpc̄qup&at at̂ quexp~2n̄$12exp@2i th

3~q2p!#%!exp$ i t @h~q1p11!1 i tva#~q2p!%,

~3.3!

wheren̄5a2.
It follows from Eq. ~3.3! that the initial atomic coheren

state is reconstructed at timest5mp/h, with m51,2, . . . .
At these instants the atomic and field systems become di
tangled, i.e., the whole system is in a factorized state. At
03381
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other time the atomic system remains in a mixed state du
its entanglement with the field.

Thus, the atom-field coupling, even in the dispersive
gime, drastically modifies the atomic coherence propertie
the course of evolution due to contributions from differe
field number states. In the following, we shall concentrate
studying atomic coherence properties including a class
driving field and cavity losses.

IV. DRIVEN AND DISSIPATIVE CASE

Using Eq.~2.12! we can study evolution of an arbitrar
atomic-field initial condition. Let us start with driven evolu
tion in a perfect cavity, i.e., where the system is described
the effective Hamiltonian~2.5!. From the general solution
~2.12! and~2.13! we obtain that for an arbitrary initial atomi
state~3.2! and vacuum initial field state, the field and atom
density matrices, respectively, take the following forms:

r f5 (
p50

A

ucpu2uap~ t !& f f^ap~ t !u, ~4.1!

rat5 (
p,q50

A

cp8c̄q8e
apāqup&at at̂ qu. ~4.2!

We have used the following definitions:

ap~ t !5
V

dp
~12eitdp!, ~4.3!

cp85cp expF i t S lp~va1h!2lp
2h1

V2

dp
D2

V

dp
āpG ,

~4.4!

wheredp5d12hlp .
As was expected from the diagonal structure of the eff

tive Hamiltonian~2.5! in atomic space, the field density ma
trix, as in the nondriven case, has the form of an incoher
superposition of coherent statesuap(t)& f which are generated
by the classical current from the initial vacuum state. T
atomic density matrix conserves its initial diagonal mat
elements. The modified coefficientscp8 have a nonlinear
phase factor and an amplitude modulation, which essenti
affect the atomic coherence. One can show that the am
tude of nondiagonal matrix elements decays by a factor

expS 2
V2

2 Fsindpt/2

dp
7

sindqt/2

dq
G2D . ~4.5!

Thus we can conclude that, due to the presence of the dri
field, the initial pure atomic state will never be reconstruct

Here we have to distinguish between two cases that
appear, depending on the relation between frequencies o
classical driving and quantum driven fields. In the absenc
atoms, one can transfer energy from the classical to the q
tum one if the resonance conditionv f5vc is satisfied. In the
presence of atoms, the field frequency is shifted due to
atom-field coupling. Thus, the resonance condition is mo
fied and takes the form
4-3
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v f2vc12hlk0
50. ~4.6!

In this case only the resonant term withk5k0 ~if it exists!
will increase its amplitude, i.e., the coherent state co
sponding to indexk0 grows with time: a(t)52 iVt. For
long times only this state will essentially contribute to t
average photon number, i.e., the field energy will quadr
cally grow with time according tôn̂&;uck0

u2(Vt)2. How-
ever, the photon number fluctuations for large enough in
action times depend on the initial atomic state. If the atom
population is distributed among different atomic states,
photon number fluctuations are of the order of the aver
photon numberDn̂;uck0

u2(12uck0
u2)(Vt)2. Nevertheless,

if only the resonant, satisfying condition~4.6!, atomic energy
level is excited, we obtainDn̂;Vt.

If the resonance condition~4.6! is not satisfied for any
atomic state, the amplitudes of the coherent statesuak(t)& f
oscillate between zero and 2V/dk . Nevertheless, due to th
appearance of pumping field dependent factors in the ato
density matrix, the initial atomic state will never be perfec
reconstructed—even at the moments 2pm/h—in contrast to
the nondriven case. Thus, in some sense, the classical p
ing field introduces a mechanism of decoherence in ato
dynamics. This fact is still more pronounced when we ta
into account~in addition to the driving field! the effect of
dissipation on the system dynamics.

Now, let us consider a purely dissipative case:V50.
Then, starting from the initial field coherent state and
arbitrary initial atomic state, we obtain from Eq.~2.12! the
system density matrix

r̃~ t !5 (
p,q50

A

cpc̄qup&at at̂ qu ^ uaevpt& f f^aevqtu

3exp@ uau2~ f pq1e2gt21!#, ~4.7!

where f pq is defined in Eq.~2.13!. One can observe that fo
large times (t→`) the atomic density matrix takes the for

r̃at~ t !5 (
p,q50

A

cpc̄qup&at atK qU
3expF22ihUaU2

lp2lq

g12ih~lp2lq!G , ~4.8!

while the field evolves into the vacuum state:r f→u0& f f^0u).
This means that atomic coherence is only partially lost in
presence of field dissipation, and is improving wheng grows
@12#.

Considering the evolution of the off-diagonal elements
the atomic density matrix to this steady state, we may n
that the factore2gt determines the envelope of the oscill
tions with the frequency 2h(lp2lq), while the first oscilla-
tion has a Gaussian envelope exp@22t2h2uau2(lp2lq)

2#
which does not depend ong. For the appropriate relation
between the parametershuau andg it can happen that only
the oscillation survives. In such a case we are faced wi
03381
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Gaussian decay, with the decay time being independentg
~while the steady state depends ong).

Finally, in the presence of both driving field and dissip
tion, we obtain that, starting with the initial coherent fie
stater f(0)5ua& f f^au and an arbitrary atomic state~3.2!, the
atomic density matrix for the characteristic timest;g21 ac-
quires a form similar to Eq.~4.8!:

r̃at~ t !5 (
p,q50

A

cpc̄qup&at at̂ quexp@V2xpqt#r̃at
pq, ~4.9!

where

r̃at
pq5expF S V2

vp
21 v̄q

21vpv̄q

~vpv̄q!2
2UaU2D S 11

g

vp1 v̄q
D G

3expF22V2ImH a

vp
S 11

g

vp1 v̄q
D J G , ~4.10!

and the time-dependent factor will be discussed below. I
easy to see thatr̃at

pp51, which means that no populatio
transfer is produced~as is to be expected in the dispersi
regime!.

The reduced field density matrix, as well as in the lossl
case, takes~in the initial reference frame! the form of an
incoherent superposition of coherent states:

r f~ t !5 (
p50

A

ucpu2uzp~ t !e2 ivct& f f^zp~ t !e2 ivctu, ~4.11!

where

zp~ t !5@a1b̄p~ t !#evpt, ~4.12!

andbp(t) is defined in Eq.~2.14!.
The steady state (t→`) field density matrix acquires the

following form:

r f
ss5 (

p50

A

ucpu2uzp
sse2 ivct& f f^zp

sse2 ivctu, ~4.13!

with zp
ss5 iV/vp . Thus the average photon number in t

steady state is

^n&5Tr~a†ar f
ss!5V2(

p50

A ucpu2

~d12hlp!21g2/4
.

~4.14!

Note that even in the far-off resonant regime, where ther
no energy transfer between the field and the atomic syst
the field steady state depends on the atomic indices. W
lustrate the quality of the approximations in Fig. 1, where
plot the average photon number,^n(t)&, as a function of
interaction time. We can observe that the approximat
gives us the evolution of̂n(t)& in perfect agreement with
exact numerical simulations. Here, small oscillations app
due to energy exchange between different atomic states
finite detuning. The agreement is better for large values
4-4
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detuning. In Fig. 2 we show the evolution of atomic entrop
This quantity is much more sensitive to any approximat
because it depends on all atomic density matrix eleme
However, it is still well described by the approximation a
we can see the existence of two different decoherence
scales as we discuss below.

As we can observe from expression~4.9!, the atomic den-
sity matrix for typical times of dissipative decoherencet
;g21 still depends on time through the factor

exp@V2xpqt#, ~4.15!

which goes to unity forp5q and decreases whenpÞq. This
leads to complete coherence loss among different ato
components for times

FIG. 1. Average photon number as a function of the adim
tional timegt. The field was assumed to be initially prepared in
coherent stateua5A0.5&. The collection ofA52 atoms was as-
sumed initially to be in a stateu in&at5(u0&at2u2&at)/A2. We have
consideredV/g51.75, g/g51.5, d/g52.5, D/g575. Solid line:
exact evolution. Dashed line: analytical approximation.

FIG. 2. Atomic entropy as a function of the adimentional tim
gt. All parameters are the same as in Fig. 1. Solid line: exact e
lution. Dashed line: analytical approximation.
03381
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pq ;

uvpu2uv̄qu2

gV2h2~lp2lq!2
, pÞq. ~4.16!

For typical values of the system variablesh!g, in reso-
nanced50, the decoherence time is of order

tdec;
g3

V2h2
, ~4.17!

which is usually much longer than the dissipative decoh
ence time;g21. This means that for timest;tdec the
atomic system reaches a purely mixed state:

rat~ t>tdec!. (
p50

A

ucpu2up&at at̂ pu. ~4.18!

Thus collective effects like atomic squeezing and atom
Schrödinger cats generation@4,6#, coming from the atomic
nonlinearity of the effective Hamiltonian~2.5!, have a tran-
sitional nature and will completely disappear after a tim
tdec.

V. CONCLUSIONS

We obtain and solve the effective master equation
scribing Dicke model dynamics in the dispersive regime
the presence of driving field and dissipation. We are es
cially interested in the influence of the driving field o
atomic coherence.

For a generic initial field state in the absence of drivi
field and in an ideal cavity, the initial atomic state is reco
structed at timest5mp/h, with m integer, when the com-
posed system becomes disentangled. The presence of a
ternal driving field essentially affects the system dynam
and introduces an additional mechanism for decaying of n
diagonal atomic density matrix elements. This has as a c
sequence, for instance, the impossibility of a perfect rec
struction of the initial atomic state even in the lossle
situation. In the dissipative case the driving field leads
complete loss of coherence in the atomic system.

Let us stress that dissipation alone does not produce
complete loss of atomic coherence. It is the simultane
influence of the driving field and dissipation which produc
the decay of the off-diagonal atomic density matrix elemen
This feature is in contrast to the usual action expected fr
the driving field—coherence induction to a single quantu
system, as happens, for example, in the case of field ev
tion in a driven dissipative cavity@10#.

Thus, one can distinguish between two temporal sca
while the atomic coherence is being lost. At first, atom
coherence is partially lost for times of orderg21 due to field
dissipation. Then, for timestdec @Eq. ~4.17!# the atomic den-
sity matrix acquires a diagonal form with the initial atom
population distribution~compare with the situation of field
coherence loss@10#!. One should note that terms which hav
been neglected in obtaining the efective Hamiltonian~2.3!
also produce coherence loss. In particular, apart from de

-

-

4-5
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of nondiagonal elements of the atomic density matrix, th
terms lead to randomization of the population distribution
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APPENDIX

In the interaction picture the Hamiltonian~2.3! takes the
form

H5DSz1g~aS11a†S2!1V~aeitd1a†e2 idt!, ~A1!

whereD5va2v f ,d5v f2vc .
In the large detuning limit we can adiabatically elimina

the transitions among different eigenstates ofSz . To achieve
this goal, we apply to the Hamiltonian~A1! a set of unitary
transformations, which correspond to small rotations in
SU(2) group with an operator parameter,

H15U2U1HU1
†U2

† , ~A2!

where

U15expS i
A2g

D
pSxD , U25expS i

A2g

D
qSyD , ~A3!

and

q5
1

A2
~a1a†!, p5

i

A2
~a†2a!, ~A4!

Sx5
1

2
~S11S2!, Sy52

i

2
~S12S2!. ~A5!

Keeping terms up to first order inA2g/D!1, we get~in
the frame rotating with the external field frequencyvc)

H15D1Sz1da†a1
g2

D
@~2a†a11!Sz1S22Sz

2#

1VFa1a†1
2A2g

D
SxG1

g2

2D
~S1

2 eitd1S2
2 e2 idt!,

~A6!
ys

e,

03381
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where D15va2vc ,S25(A/211), A/2 is the Casimir op-
erator of the su(2) algebra andn̂ is the photon number op
erator.

It is easy to see that the termA8VgSx /D in the above
equation can be eliminated by applying toH1 the transfor-
mation

U25expS 2 i
2A2Vg

D1
2

SyD , ~A7!

which does not affect the rest of the Hamiltonian~in the
given accuracy and for the not very strong external fie
whenVg!D1

2).
Also, the last term in Eq.~A6! does not essentially affec

the system dynamics and can be removed using a rota
such as in the rotating wave approximation. Actually, if w
consider this term as a perturbation to the rest of the Ham
tonian ~after the elimination of theVgSx /D term!, one can
note that the first-order correction to the eigenvalues v
ishes and the second-order correction is of order (g/AD)3.

Finally, the system Hamiltonian takes the form

He f f5D1Sz1da†az1h~2a†a11!Sz1h~S22Sz
2!

1V~a1a†!, ~A8!

whereh5g2/D. One can easily see that the dynamics of a
observable will not be affected by the transformationsU1 ,
U2, and U3, due to the fact that these transformations a
time independent and would only introduce small correctio
to the coefficients of the Heisenberg operators. The ti
range where the HamiltonianH2 describes the system dy
namics well is defined by the order of the neglected ter
and one can show that it is of the order

gt!~g/AD!3. ~A9!

To find the effective master equation which rules the s
tem in the dissipative case, we have to apply the transfor
tions U1 , U2, andU3 to the non-Hamiltonian part~2.2! of
the master equation. Nevertheless, it is easy to see that t
transformations result in adding terms of orderO(gg/D)
which can be neglected in the case of weak dissipationg
!g). Finally, the master equation for the driven Dick
model in the dispersive limit takes the form of Eq.~2.1!
where the Hamiltonian is given by Eq.~A8!.
ra,
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