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Dispersive atomic evolution in a dissipative-driven cavity
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We study the dynamics of a collection of two-level atoms interacting with a single mode of a quantized field
in a dissipative cavity in the dispersive regime. The quantized mode is driven by a classical driving field. The
steady-state density matrix is obtained. The influence of the driving field on the quantized driven field and on
atomic properties in both the dissipative and the lossless cases is studied. The atomic decoherence time in the
dissipative-driven case is obtained. We show that the external driving field strongly suppresses the atomic
coherencdin comparison with the dissipative cavity without the driving field

PACS numbsd(s): 42.50.Dv, 42.50.Fx

[. INTRODUCTION has been studied for the generation of superpositions of
atomic [4,5] and field[6,7] states. On the other hand, an
Recently, interesting experiments in the optical domain ofapproximate analytic solution for the atomic system interact-
cavity quantum electrodynamicéQED) have been per- ing with a strong quantum field in an ideal cavity has been
formed. In particular, the dynamics of resonant cold atomdound in Ref.[8] and was generalized to include cavity
crossing a cavity was studied for the case when the interadosses in Ref[9]. . _ o
tion energy is greater than the kinetic energy of the atbm Following the above-mentioned experiments, in this work
The quantum output field provided information about theWe Study the diSperSive limit of the atom-field interaction in
atomic evolution during the atomic passage time. In this ex2 dissipative-driven cavity, in a case Afatoms interacting
periment an additional pumping field from a classical sourcaVith a quantum field. Since in the dispersive regime there is
was included to compensate for cavity energy loss. ExperiD0 energy transfer between atomic levels, only field and
mental data have been compared both with a semiclassic@{omic coherence can be affected in the course of evolution.
theory and with a quantum descripti(ﬁme center of mass The main goal of this work is to Study the effect of a classi-
motion was treated classicallyin the microwave regime of cal pump field and of cavity losses on atomic coherence. We
cavity QED, an unusual experiment studying the reversibldote that loss of field coherence in a dissipative and driven
decoherence of superpositions of coherent states was péfavity (in the absence of atombas been studied in a set of
formed several years add], where superposition of coher- Papers[10] (see also Ref[3]). The dynamics of field and
ent states was produced by making use of the dispersivaomic decoherence in quantum nondemolition measure-
interaction of the quantum field with a single two-level atomments during a dispersive evolution of a single atom in the
[3]. Due to atom-field coupling, the initial field splits into context of the Lindblad approach was analyzed in [REf].
two coherent states. These states lately lose their mutual cdhis has been also studied in a recent widrg], where the
herence due to cavity losses. In this experiment the cavitjnfluence of field dissipation on atomic coherence properties
was driven by a pulsed microwave source to create the initiaivas emphasized.
coherent state. This work is organized as follows: In Sec. Il we find an
The above-mentioned Systems can be well described b?X&Ct solution for the apprOXimate master equation describ-
quantum-optical Hamiltonians. It is well known that only a ing the dispersive atom-field interaction in the presence of
few nonlinear models of quantum optics, such as a Jayne§0th an external driving field and field dissipation. In Sec. Il
Cummings model and evolution in the Kerr medium, admitWe describe the main features of quantum dynamics in uni-
an exact solution. It is even more difficult to determine anafary nondriven evolution. In Sec. IV we find the steady state
lytically the behavior of the quantum system when both dis-Of this system and study the influence of the atomic system
sipation and a classical driving field are present. On the othe?n the field properties both in the dissipative and the lossless
hand, only a restricted numerical analysis usually can be caf@ses. Here we concentrate on the modified atomic evolution
ried out to describe the interaction of a quantum field with adue to the presence of the driving field. In particular, we
collection of atoms in the presence of a driving field, due toanalyze the loss of atomic coherence induced by field dissi-
the rapid increase of the dimension of the composed systerRation, which is essentially enhanced due to the presence of
Here we shall make use of analytical solutions for underthe classical driving field.
standing the long-time system dynamics.
The dynamics of the Dicke model in the dispersive limit Il. MASTER EQUATION AND ITS SOLUTION
We consider cavity losses as a mechanism of dissipation.
*Electronic address: csaavedr@phys.cfm.udec.cl The corresponding master equation for the atom-field density
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matrix, describing a collection &k two-level atoms interact- It is clear that all the left operators commute with all the
ing with a quantum field in a dissipative cavity in the pres-right operators. The operataxg,N, , andN_ form a soluble
ence of a driving field, has a standard fori=1) subalgebra,

dw=~ilH.pl*Lp, @ [N/.N_J=[N; N-J==N_, [N;.NJ]=0. (2.9
with

A, A, 1andA;, A,,, 1 are the two Heisenberg-Weyl
% subalgebras. The rest of the commutators are
Lp= E(ZapaT—aTap—paTa). (2.2
[NLAT==AL [INLALI=AL,
Here,H is the driven Dicke Hamiltonian which, in the dipole
and rotating wave approximations, takes the form=(1) [N_,A]=0, [N_,A,]=A.,,

H=0,S,+wsa’a+g(aS, +a'S_)+Q(ae!+ale o),
[NGAT=A NG AL ]= AL,

(2.3
whereS, ,S_,S, are operators from aA+1 dimensional N A=A N_ A.1=0 21
representation of su(2) algebra with commutation relations [N- A=A, [N-A1=0. (2.19
[S.,S.]1=2S,, [S.,S,]=%S,. (2.4) In the bare atomic basis, which is defined by
a (a') is the common bosonic annihilatidoreation opera- S,|K) 2= (k= AI2)|K) 4,
tor, i.e.,[a,a’]=1 andQ is the Rabi frequency of the clas-
sical driving field. the master equation takes a linear form with respect to this

We consider the far-off resonance limit for atom-field in- set of operators,
teraction (dispersive interaction i.e., A\/ﬁ—g/A<1, where

A=w,— w; andn is the average number of photons in the &t;pqz[yN_+UpN|+v_(]Nr+iQ(Ar+A+r
field. In this limit the HamiltonianH goes to an effective _
Hamiltonian for describing the unitary contribution to the A=A ]ppg; (211

dynamics in Eq(2.1) which reads assee the Appendix
herepye=af Plp|Q)at, vo=—16—2i 7\~ y/2 and\,=p
- 1 satat tat 1)S. 4 p( 2 2 w pg~ alPIPId/at, Up p p
Herr=41S,+ oa'at n(2a’at1)S,+ n(S'—S,) —AJ2. Note thatp,, continue to be operators in the field
+Q(a+ah), (2.5 space. The solution of E42.1]) is given by

where =g?/A is the effective atom-field coupling in the

dispersive limit, = w;—w, and A;=A+ 5. This Hamil- B B

tonian is nonlinear in the atomic space and, as was shown in x ePpA+1gpatielatreCartirp  (0),  (2.12)

. pq 1

Ref. [4], leads to a number of collective effects such as

atomic Schrdinger cat generation and atomic squeezing.
The effective Hamiltonian is further simplified by the fol-

lowing transformation of the density matrix:

qu(t) — eupqevqtNrevptMequN,

Wheref)pq(O) is the initial density matrix and

_ A vupt _ —U_t
Mpg(t) r Y (1-e p)(1_ e va)

H=ellMiS S-Sty e-ilasS+ oS-t (2.6 Tz Xed T = bt
pUq pTUqg

and takes the form y e'pl—1  evd—1

B —| 1+ — —t—=—|,

Hei=sa’a+ p(2ata+1)s,+Q(a+a’). (2.7 vptug/ | vy Vg

2.1
This transformed version of the Hamiltonid®.7) is lin- 213

ear in the field space and diagonal in the atomic space, )
([H,S,]=0). Hence, the master equation can be easily __ U N2 iy 2
solved by applying the dynamical symmetry method pro- Xpq |vp|2|vq|2{7’77()\‘J o) "1 (g Ap)L /4
posed in Ref[13]. We introduce the following notations for
operators that appear in the master equation: +(8+29\p)(6+279\g) ]},

N_p=apa'’, Nyp=a'ap, N,p=pa'a,

f — Y (v +;)t b — Q —u,t
B e A A oot pq(D) = +_[e pTvat =11, by(t)=—i=(e "a—-1),
Ap=ap, Aip=ap, Arp=pa, Agp=pa. vptug Uq

(2.8 (2.149
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y | evnt—1 other time the atomic system remains in a mixed state due to
Cpg()=—i1Q| | 1+ — its entanglement with the field.
UpTUg Up Thus, the atom-field coupling, even in the dispersive re-
gime, drastically modifies the atomic coherence properties in
+ %(e—qut_l) ' the course of evolution due to contributions from different
(vptvgug field number states. In the following, we shall concentrate on

studying atomic coherence properties including a classical
Now, provided with the general solutiq@.12), we shall  driving field and cavity losses.
concentrate on studying different limits in this model. As
mentioned before, we are interested in the effects of the driv- IV. DRIVEN AND DISSIPATIVE CASE
ing field and of dissipation on atomic coherence.
Using EQ.(2.12 we can study evolution of an arbitrary
lIl. NONDRIVEN LOSSLESS CASE atomic-field initial condition. Let us start with driven evolu-
tion in a perfect cavity, i.e., where the system is described by
In the lossless case and in the absence of a driving fieldhe effective Hamiltonian2.5). From the general solution
the dynamics of the Dicke model in the far-off resonance(2.12) and(2.13 we obtain that for an arbitrary initial atomic
case is described by the effective Hamiltoni@m®) with O state(3.2) and vacuum initial field state, the field and atomic

=0 and6=0: density matrices, respectively, take the following forms:
HO=w,S,+ o+ n(2n+1)S,+ (- 2), (3.1 A
N i pr= 2 lepllap(t)eren(D)], (4.1
wheren=a'a. A similar effective atomic Hamiltonian was -
derived by Agarvakt al. [4] considering the evolution of a A B
collection of A two-level atoms in a dissipative cavity in the Pa= 2 ChCae | PYarafdl- (4.2
presence of thermal photons. The proposed Hamiltonian was p.q=0

independent of the field operators and has the form of Ec\'/\/

(3.1) with substitutionn—n, with n being the average num-
ber of thermal photons in the field. It was noted that the O _
effective atomic Hamiltonian, being a nonlinear form on the ap(t)= 5—(1—e't‘sp), 4.3
generators of su(2) algebfa4], leads to the generation of a P
superposition of atomic coherent statasomic Schrdinger 2

f initial atomic coh | Ref : ; L B
cat9 from an initia atomic coherent state. In contrast to Ref. ch=cpexp it| Np(wat 7)—N2np+ —| = —ap,
[4], where only the atomic dynamics has been considered p Op
and the effect of the field on the atomic state is reduced to a (4.9
pure phase factor, the Hamiltoni&B.1) leads to the evolu-

tion of both field and atomic subsystems. As was expected from the diagonal structure of the effec-

Moreover, due to the joint atom-field evolution, the be- . S . i ) .

; . X tive Hamiltonian(2.5) in atomic space, the field density ma-
havior of the atomic subsystem essentially depends on thge. . ; .
S . . tfix, as in the nondriven case, has the form of an incoherent
initial field state and, in general, cannot be described by an

effective atomic Hamiltonian. For instance, in the case of arLUptig)%cl’ng?C: Cci?fgﬁp tfrsotriarﬁﬁg)i%ﬁtﬁ?lsgcirjn?esqggte'?he
arbitrary initial atomic y :

atomic density matrix conserves its initial diagonal matrix

e have used the following definitions:

where d,= 6+27\,.

A elements. The modified coefficients, have a nonlinear
lin)o= >, CplP)at (3.2  phase factor and an amplitude modulation, which essentially
k=0 affect the atomic coherence. One can show that the ampli-
and the field being initially in a coherent stdte);=|a);, tude of nondiagonal matrix elements decays by a factor
the atomic density matrix reduces to the following form: 02 sin St12 _sinsgt/2 2
A ex;( - 7 5p + 5q (45)

t)= CoCe exp( —n{1—exq2it
pait) p%o oCal Phata alexpt = n{ ity Thus we can conclude that, due to the presence of the driving

. . field, the initial pure atomic state will never be reconstructed.
X(q=p)Ihexpit[ n(a+p+1)+itwal(a—p)}, Here we have to distinguish between two cases that can
(3.3 appear, depending on the relation between frequencies of the

classical driving and quantum driven fields. In the absence of

wheren= a?. atoms, one can transfer energy from the classical to the quan-
It follows from Eq. (3.3) that the initial atomic coherent tum one if the resonance conditian = w, is satisfied. In the
state is reconstructed at times m#/ 7, with m=1,2,... . presence of atoms, the field frequency is shifted due to the

At these instants the atomic and field systems become diseatom-field coupling. Thus, the resonance condition is modi-
tangled, i.e., the whole system is in a factorized state. At anjied and takes the form
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wf—wc+27,)\k0=o_ (4.6) Gaussian decay, with the decay time being independent of
(while the steady state depends gh

In this case only the resonant term wih-k, (if it exists . Finally, in the presence of both driving field and dissipa-
will increase its amplitude, i.e., the coherent state correlion, we obtain that, starting W'Ith the |n|t|'al coherent field
sponding to indexk, grows with time: a(t)=—iQt. For statep;(0)=|a)¢f(a| and an arbitrary aFom'C,Sta(@-?)l, the
long times only this state will essentially contribute to the &0mic density matrix for the characteristic timtesy~ ac-
average photon number, i.e., the field energy will quadrati9uires a form similar to Eq4.8):
cally grow with time according tciﬁ)~|ck0|2(9t)2. How- A
ever, the photon number fluctuations for large enough inter- pa)= > CoCqlD)aralaleX Q2xpatlplf, (4.9
action times depend on the initial atomic state. If the atomic p.a=0
population is distributed among different atomic states, thg,ere
photon number fluctuations are of the order of the average

photon numberAn~|c, |2(1—|c, |?)(Qt)2. Nevertheless, - 02402400, y

. 0 " 0 . pq:ex QZM_ a 2 1+

if only the resonant, satisfying conditig4.6), atomic energy Pat T2 -
(vpvg) vptug

level is excited, we obtaitn~Qt.
If the resonance conditiofd.6) is not satisfied for any

o
2
atomic state, the amplitudes of the coherent sthigét)); Xexr{ —20m

Up

, (4.10

147 ) ]
. +
oscillate between zero and¥ §,. Nevertheless, due to the Up™lq

appearance of pumping field dependent factors in the atomignq the time-dependent factor will be discussed below. It is
density matrix, the initial atomic state will never be perfectly easy to see thaﬁ§f= 1, which means that no population

reconstrupted—even at the_ momentsra/ z—in contrast o o sfer is producedas is to be expected in the dispersive
the nondriven case. Thus, in some sense, the classical pum'%-gime

ing field introduces a mechanism of decoherence in atomic

dynamics. This fact is still more pronounced when we take The reduced field density matrix, as well as in the lossless
into account(in addition to the driving field the effect of case, takegin the initial reference framethe form of an

ST . incoherent superposition of coherent states:
dissipation on the system dynamics.

Now, let us consider a purely dissipative casg=0. A
Then, starting from the initial field coherent state and an pi(t)= 2 |cp|2|zp(t)e*i“’ct)ff<zp(t)e"‘°ct
arbitrary initial atomic state, we obtain from E(.12) the p=0
system density matrix

, (4.11

where
A

p(h= z0 CDEq|p)ataKQ|®|aevpt>ff<aevqt| zp(t)=[a+gp(t)]e”pt, (4.12
p.a=

5 o andb(t) is defined in Eq(2.14).
xexf|a|“(fqte "—1)], (4.7 The steady statet{~) field density matrix acquires the

following form:
wheref , is defined in Eq(2.13. One can observe that for

large times {—«) the atomic density matrix takes the form < A o s it s iut
Py = 2 |Cp| |Zp e v >ff<zp e e |, (4.13
A p=0
pa‘(t):pqz:o Cpcq|p>ata‘<q with z3°=iQ/v,. Thus the average photon number in the
steady state is
Xex;{—Zinaz&} 4.9 A 2
+2inp(Ny—Ny) |’ ' c
y+2in(p = ko) (ny=Tr(atap®) =02, Sl

i - ; p=0 (8+27\,)2+ y24

while the field evolves into the vacuum stagg:—|0):+(0]). P (4.14

This means that atomic coherence is only partially lost in the

presence of field dissipation, and is improving whegrows  Note that even in the far-off resonant regime, where there is

[12]. no energy transfer between the field and the atomic system,
Considering the evolution of the off-diagonal elements ofthe field steady state depends on the atomic indices. We il-

the atomic density matrix to this steady state, we may notdéustrate the quality of the approximations in Fig. 1, where we

that the factore™ "' determines the envelope of the oscilla- plot the average photon numbemn(t)), as a function of

tions with the frequency #(\,—\), while the first oscilla- interaction time. We can observe that the approximation

tion has a Gaussian envelope Ex@t’7|a’(\,—\y)?]  gives us the evolution ofn(t)) in perfect agreement with

which does not depend om. For the appropriate relation exact numerical simulations. Here, small oscillations appear

between the parameterga| and y it can happen that only due to energy exchange between different atomic states for

the oscillation survives. In such a case we are faced with finite detuning. The agreement is better for large values of
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Jopl?vgl?

tPd
702772()\p_}\q)

181 E dec

5 P#Q. (4.16

For typical values of the system variablgs< vy, in reso-
nanced=0, the decoherence time is of order

’)’3

thec™ 92—7]2 (4.17)

] which is usually much longer than the dissipative decoher-
L ence time~+y . This means that for time$~ty.. the
atomic system reaches a purely mixed state:

A
get 8 10 ? Pat(tztdea:pz‘do |Cp|2|p>at a&p|- (4.18
FIG. 1. Average photon number as a function of the adimen-
tional timegt. The field was assumed to be initially prepared in a
coherent statéa=0.5). The collection ofA=2 atoms was as-
sumed initially to be in a statBn),= (|0)x—|2)a)/ V2. We have
considered(}/g=1.75, y/g=1.5, 6/g=2.5, A/g=75. Solid line:
exact evolution. Dashed line: analytical approximation. dec:

Thus collective effects like atomic squeezing and atomic
Schralinger cats generatiof#,6], coming from the atomic
nonlinearity of the effective Hamiltoniaf®.5), have a tran-
sitional nature and will completely disappear after a time

detuning. In Fig. 2 we show the evolution of atomic entropy.
This quantity is much more sensitive to any approximation
because it depends on all atomic density matrix elements. We obtain and solve the effective master equation de-
However, it is still well described by the approximation and scribing Dicke model dynamics in the dispersive regime in
we can see the existence of two different decoherence timgne presence of driving field and dissipation. We are espe-
scales as we discuss below. cially interested in the influence of the driving field on
As we can observe from expressi@h9), the atomic den- atomic coherence.
sity matrix for typical times of dissipative decoherentce For a generic initial field state in the absence of driving
~ v~ 1 still depends on time through the factor field and in an ideal cavity, the initial atomic state is recon-
structed at time$=m/»n, with m integer, when the com-
exp[QZqut], (4.19 posed system becomes disentangled. The presence of an ex-

which goes to unity fop=q and decreases when#q. This  ternal driving field essentially affects the system dynamics

leads to complete coherence loss among different atomi@nd introduces an additional mechanism for decaying of non-
components for times diagonal atomic density matrix elements. This has as a con-

sequence, for instance, the impossibility of a perfect recon-
struction of the initial atomic state even in the lossless
situation. In the dissipative case the driving field leads to
oozs| . complete loss of coherence in the atomic system.

Let us stress that dissipation alone does not produce the
complete loss of atomic coherence. It is the simultaneous
influence of the driving field and dissipation which produces
the decay of the off-diagonal atomic density matrix elements.
This feature is in contrast to the usual action expected from
the driving field—coherence induction to a single quantum
system, as happens, for example, in the case of field evolu-
tion in a driven dissipative cavity10].

Thus, one can distinguish between two temporal scales
while the atomic coherence is being lost. At first, atomic
coherence is partially lost for times of order ! due to field
dissipation. Then, for timeke.[Eq. (4.17)] the atomic den-
sity matrix acquires a diagonal form with the initial atomic
population distribution(compare with the situation of field

FIG. 2. Atomic entropy as a function of the adimentional time coherence losglL0]). One should note that terms which have
gt. All parameters are the same as in Fig. 1. Solid line: exact evobeen neglected in obtaining the efective Hamilton{ars)
lution. Dashed line: analytical approximation. also produce coherence loss. In particular, apart from decay

V. CONCLUSIONS
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of nondiagonal elements of the atomic density matrix, thesevhere A ;= w,— w.,S?=(A/2+1), A/2 is the Casimir op-

terms lead to randomization of the pOpulation distribution. erator of the SU(Z) a|gebra arﬁdis the photon number op-
erator.
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APPENDIX U2=exp(—i \/—2 gsy
Al

: (A7)

In the interaction picture the Hamiltonig®.3) takes the

form which does not affect the rest of the Hamiltoniéin the
H=A s tg Q(adts aTe- i) (AL given accuracy and for the not very strong external field,
=AS,+g(aS,+a'sS )+ Q(ae'’+a'e™'?), (Al) whenQg<A?2).

Also, the last term in Eq(A6) does not essentially affect
the system dynamics and can be removed using a rotation
such as in the rotating wave approximation. Actually, if we
consider this term as a perturbation to the rest of the Hamil-
éonian (after the elimination of th&€)lgS,/A term), one can
note that the first-order correction to the eigenvalues van-
ishes and the second-order correction is of ordgAQ)3.

whereA=w,— ws,0=wi— w.

In the large detuning limit we can adiabatically eliminate
the transitions among different eigenstate$of To achieve
this goal, we apply to the Hamiltonia\1) a set of unitary
transformations, which correspond to small rotations in th
SU(2) group with an operator parameter,

H,=U,U,;HUlU], (A2) Finally, the system Hamiltonian takes the form
where Hei=41S,+ da'a,+ n(2a'a+1)S,+ (S~ S)
\2g g +Q(a+al), (A8)
A A wheren=g“/A. One can easily see that the dynamics of any

observable will not be affected by the transformatidhsg,
U,, and U3, due to the fact that these transformations are
1 i time indeper)d.ent and would o_nly introduce small correctipns
q=—=(a+a'), p=—(a'—a), (A4)  to the coefficients of the Heisenberg operators. The time
2 V2 range where the HamiltoniaH, describes the system dy-
namics well is defined by the order of the neglected terms
and one can show that it is of the order

and

1 i
gt<(g/AA)3. (A9)
Keeping terms up to first order igf2g/A<1, we get(in

the frame rotating with the external field frequenay) To find the effective master equation which rules the sys-

tem in the dissipative case, we have to apply the transforma-
g2 tionsU,, U,, andUj; to the non-Hamiltonian par2.2) of
H,=A;S,+sa'a+ K[(ZaTaJr 1)S,+ 82—83] the master equation. Nevertheless, it is easy to see that these
transformations result in adding terms of ordefyg/A)
2\/59 g2 , , which can be neglected in the case of weak dissipatipn (
at+a'+ TSX +E(S+e“5+8,e"&), <g). Finally, the master equation for the driven Dicke
model in the dispersive limit takes the form of E@.1)
(A6)  where the Hamiltonian is given by EGA8).
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