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Renormalization-group approach to the problem of light-beam self-focusing
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A method of renormalization-group symmetries is applied for analytical solution to the nonlinear Schro
dinger equation which describes the electromagnetic beam self-focusing in a medium with a cubic nonlinearity.
The boundary-value problem for the incident Gaussian light beam has been solved analytically in a cylindrical
geometry although the method could be applied to other boundary conditions too. The solution describes a
detailed structure of wave self-focusing and its global characteristics such as the light power trapped in the
singularity, laser beam radius, and self-focusing length. A comparison with the results of previous studies
demonstrates advantages of the renormalization-group symmetry method as a tool for the nonlinear electrody-
namics theory.

PACS numbes): 42.65.Jx, 42.65.Tg, 02.20a, 52.35.Mw

I. INTRODUCTION The studies of stationary light-beam self-focusing may be

The problem of self-focusing of a high-power light beam attributed to the following three categories. The first category
[1-5] plays an important role in nonlinear electrodynamicsincludes rigorous analytical theories such as the inverse-
since the early 1960s. As a detailed quantitative understandcattering method9] and the classical group analysis
ing of self-focusing is still far away, a search for effective [10,11. Approximate analytical methods, such as the
ways of its analytic description is an ongoing concern. Folparaxial ray(nonaberrationalapproaci3,4,12, the method
example, self-guiding of an intense laser pulse in an undelpf mements[13], the variational theory14], and modifica-
dense plasma for many Rayleigh lengths without significantions of the inverse-scattering method which employ
losses has been demonstrated many times both experimefsy mntotic[15] or perturbation[16] expansions, constitute
tally and in numerical simulation5—8]. However, there is o second category. The third group enrolls various numeri-

no parametric scaling for the laser beam power trapped in 85 methods reviewed in Ref17]. The present paper falls

self-focused channel. A mathematical model of wave selfjni, the first and partly, the second category. It deals with an
focusing is based on the nonlinear Satinger (NLS) equa-

application of a metho@18] of renormalization-group sym-
tion for the complex amplitude of the electric fiell of mpearies(RGS) for the sglut]ion of a NLS equatign. P sy
electromagnetic beam:

A common disadvantage of rigorous mathematical meth-
ods is that they consider some special solution for a specific
2ikod,E+A E+ki(e,/€0)E=0, E(0r)=Eq(r). (1) BVP.The inverse-scattering method has been developed for
a planar geometry and for a cubic nonlinear medium. It is
designed for the derivation of single- and multiple-soliton
It describes a stationary beam propagation in the diredion NLS solutions[9,19]. Two ameliorations to the inverse-
with an assumption that the wave-amplitude scale lengtRcattering method have been proposed for the description of
along thez axis is much larger as compared to the characterthe radiation fields that may accompany the formation of a
istic scale in the transversal direction. Hekg= (w/c) ey is self-guided channel. One of them is based on a perturbative
the wave number), is the Laplace operator in the perpen- approach[16,20 and another on an asymptotic expansion
dicular planer, ande, ande, are the real parts of linear and [15]. However, both methods inherited the same restrictions
nonlinear dielectric permittivities, respectively. Regular andto the BVP solution as the basic inverse-scattering method.
explosivelike singular solutions to E¢l) have been inves- A large variety of exact solutions to the NLS equation in
tigated by using various analytical and numerical methodsone-dimensional(1D), two-dimensional(2D), and three-
However, none of the analytical methods is able to providelimensional(3D) geometry for cubic and quintic nonlinear-
an exact solution to the NLS equation for arbitrary boundaryity and with additional linear inhomogeneous terms have
conditions. Only some specific boundary value problemseen obtained in Refg10,11,2] by using the symmetry
(BVPs) that are far away from practical requirements havegroups. However, boundary conditions for these solutions do
been solved analytically so far. not correspond to a localized electromagnetic beam at the
entry plane.
Approximate methods are relatively simple and flexible.
*On leave from P. N. Lebedev Physics Institute, Russian Acad-They have been applied to a qualitative description of light-
emy of Science, Moscow 117924, Russia. beam self-focusing for a cubic and saturating nonlinearity
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[22-24]. A weak point of approximate methods isarpriori [l. APPLICATION OF THE RGS METHOD FOR A NLS
assumption about the light beam radial structure. The EQUATION FOR THE AXIALLY SYMMETRIC

paraxial ray approximatiof8,4,25,2§ is restricted to a small CASE

vicinity near the beam axis. The variational metHdd,27| The key idea of our approach to the solution of a NLS

involves a set of self-similar trial functions that describe equation consists of finding a special class of symmetries for
light-beam radial distribution with a fewdependent param- the chosen BVR18]. These symmetries involve a group of
eters(wave amplitude, beam width, and phase front curvainvariant transformations of dependent and independent vari-
ture). They satisfy the equations that follow from minimiza- ables and parameters defining the solution. For a given RGS,
tion of the basic functional. For the NLS equation with a the required BVP solution can be obtained by using a finite
cubic nonlinearity both paraxial ray and variational methods3roup transformation which associates a complex field am-
describe the beam behavior from the entrance boundary up fjitude inside a nonlinear medium with its boundary value.
a singularity point where the beam intensity tends to infinity, -0N9 before the idea of applying RGS as a practical tool

. . . “for the solution of BVP in mathematical physics had been
and the beam width turns to zero. However, numerical simuzo .

) T >~ formulated, the renormalization-group transformations had
lations for the Gaussian incident beam demonstrate a signifsaan used in the quantum field thed®d] to improve ap-

cant modification of the radial beam profile near the singuproximate solutions. The concept of renormalization-group
larity point: a narrow spike with a very large intensity on the transformations had also been applied to some areas of mi-
beam axis was found in R28]. This is in striking contrast croscopic physics for description of phase transitions in large
to the self-similar beam structure prescribed by the approxistatistical systems like spin lattices and polyndis], and to
mate methods. A modification of the method of momentssome problems of macroscopic physics like transport theory,
that has been proposed in REE3] does not implya priori  hydrodynamics, and turbulen¢é6]. Having the same goal
assumption on the light-beam structure. It could provide betf© improve the perturbation theory and to simplify the analy-
ter description of the beam behavior near the singularity, bu$'S ©f @ singular behavior of a solution, the ideas of the

no analytical results have been obtained so far. There is alsrgnormallzatlon—group method have been introduced in

an unexplained four times difference in the value of the Criti_mathematlcal physics. An exact group of point transforma-

. . tions has been used in a plasma thddf¥] to find a strongly
cal power predicted by the paraxial ray the¢@] and the  ,hjinear BVP solution to the system of equations that de-

method of moment§13]. scribe wave harmonics generation starting from a perturba-
The numerical simulations of the light-beam self-focusingtive solution. Methods of quantum field theory and the Wil-
[2,17,30-35% bear two main difficulties. First, they do not son’s renormalization-group have also been applied for the
define parametric scaling for a number of the input beamasymptotic analysis of nonlinear parabolic equations, which
characteristics as the radial shape, power, and phase frodescribe surface gravitational waves in liquids, shock waves
curvature. Second, they cannot describe the beam behavidynamics, and radiative heat transpiet8,49. Recently the
in the vicinity of singularity with sufficient accurad33,36.  perturbative renormalization-group thed§0] has been de-
Singular solutions for various space dimensions and differeriteloped for a global asymptotic analysis.
types of nonlinearity have been derived in R¢&6—39. For The regular RGS methofb1,52 involves a functional
a medium with the cubic nonlinearity a class of quasi-self-self-similarity and algorithms of modern group analysis. It
similar solutions has been found whereoordinate depen- does not imply anya priori assumptions and provides an
dence of the electric-field intensity near the singularity pointapproximate analytical solution to a specific BVP. The RGS
z, exhibits the dependenck(z)/(z—z,) [36,39 with a  method has been applied for the analysis of a number of
slowly varying double logarithmic function L(z) particular solutions of BVP in nonlinear optid$3—-57.
~|log log(z—z)| [39-42. However, another exact collaps- However, there was no universal algorithm of finding
ing solution to the NLS equation has been constructed ifenormalization-group transformations until recently when a
[43] where the intensity enlarges to 24 z). general RGS approach had been derived in RE8] for
Thus, more than 30 years of studying self-focusing hasystems of differential equations. Depending on a math-
not been crowned with success in constructing a method th&matical model and boundary conditions, the procedure of
allows us to find an analytical solution to the NLS equationfinding RGS can be accomplished in different ways. For
with arbitrary boundary conditions. There are also a numbefinding a solution to the NLS equation we employ the algo-
of contradictions between different theories which have nofithm of approximate symmetrig$8] for systems of differ-
been resolved yet. A parametric analysis of global selfential equations with small parameters. For Ef). these
focusing characteristics versus boundary conditions is stilfmall parameters are the nonlinearity;= €,(l)/2¢,, and
far away from its applications. In this paper we present dhe diffraction, 8=1/2k3r3, wherel, is the characteristic
rather general method for finding analytical solutions to thentensity of the laser beam at the boundary agdis the
NLS equation by using the RGS approach. The paper is orinitial beam radius. Both parameters can be made arbitrarily
ganized as follows: In Sec. Il the RGS method is formulatedsmall if one considers a converging beam and the entrance
for a cylindrical light beam. This method is applied to a BVP plane far away from the focal position.
problem with a Gaussian beam profile at the entrance bound- We consider a cylindrically symmetric electromagnetic

ary in Sec. lll. Global characteristics of self-focusing arebeam incident az=0 on a homogeneous medium with a
considered in Sec. IV and compared with results of previougubic nonlinearity, e;(I)=1vyl. The electric field, E
publications. Our results are summarized in Sec. V. = /I exp(k¥), is represented in terms of two real functions:

033809-2



RENORMALIZATION-GROUP APPROACH TO TIE . .. PHYSICAL REVIEW A 61 033809

the intensityl and the phas&@, which satisfy the system of 1 1 z
two equations: g=FDr rl R 1—§ (r+kR—kz)—z4,S||.
ak+kak—adl—pB a{i 19r(“9r\ﬁ) -0, Here,D, is the operator of total differentiation with respect
ry1 tor,
2 »
dd +1d,k+ka l+kl/r=0. DrEar+520 (ks+l‘9ks+|s+l‘9ls) (6)

Here k= 4,V is the radial phase derivative, both coordinates S S : .
r andz are normalized by the initial beam raditg and the  Whereks=drk andl =7l are the corresponding partial de-
intensity is normalized by the on-axis intensftyat the en-  'vatives and the functioi depends ony=r —kz and two
trance plane. The boundary conditions, expansion parameters,

1(0,r)=1oN(r), Kk(Oy)=-r/R, () B
° S(x)=aN(x)+ Tax[wwmm. )
assume that the incident beam intensity is an arbitrary func- X VNGO
tion of the radiusN(0)=1, and that the incident beam has aThe following point renormalization-group operator is

. _ 2 . .
Spherical front,¥(0r) = —r%/2R, whereR is Fhe radius of equivalent to the canonical renormalization-group operator
the wavefront curvatureR>0 for a converging beam and _ ; .
) with coordinateg5):
R— oo corresponds to a collimated beam

The key point in finding the BVP solution is to construct

2
the RGS. For that purpose, following the general RGS theory ¥%=||1— z +2%S, |9,+ I + 5 1— E) +S, |dy
[56,59, we use the Lie-Beklund symmetries admitted by R s R? R R/ X
original differential equation§2) and determined by the ca- ol
nonical group operataX=fd,+gd, . The coordinate$ and +| - r 1— z +zS,+ kZZSXX d+|=|1- E)
g of this operator are found by solving the corresponding R R R R
determining equations expressing the invariance conditions 7 1z
for system(2) with respect to the group with the operador - |Z( I+ IS 75| 8
We expand andg in power series over the nonlinearity and
diffraction parameters Operator(8) serves as a tool for finding solutions of the
desired boundary value problem. It describes the finite-group
f= E ailgifij . g= 2 aiﬁigij , (4)  transformation that relates the values of the beam intensity
i.j=0 i.j=0 and phase for ang>0 to the prescribed data at the bound-

ary:
where the coefficient§;; andg;; are functions of, r, k, and y

| and of arbitrary-order derivatives &fand| with respect to r—x
r. Substituting Eqg.(4) into the determining equations and k(z,r)=—=, 1(z,r)=N(u)
comparing the coefficients in powers @fand 8 one can find z

a system of equations for coefficients. We consider here only

low order equations, which are independentwoandg and ~ The dependence of two additional functioysand ., on z
which are linear over or 3. This is justified if the coordi- andr is defined by the following relations:

natesf andg contain only linear contributions with respect to

z\ "ty 9,28
1——) X222 (g

R r (9#23.

the parametera andp or the values of these parameters are z 2220)(25
small. In the latter case, the neglect of higher-order terms r=x\1- R/ m '
means that we are finding an approximate symmetry.
The coordinate$ andg depend on a set of arbitrary func- ) )
tions that can be defined by the group restrictions. By using S(u)—S(x)= Z°(9,9) . (10)
the invariance conditiorf,=0, g=0, for the particular BVP 2(1-2z/R)?

solution and requesting the compatibility between this con-
dition and the prescribed boundary d&8, we obtain the It is important to note that the solutiq®) has been derived

following RGS operator: with no a priori assumptions concerning the spatial structure
of beam inside the medium(r). The perturbative approach
1 z\1? used to find RGS does not impose significant restrictions on
szrﬁ r+kR 1_§ ) Eq. (9) because physically the focal poire=~R, can be

placed far away from the input boundary. A good accuracy
of solutions given by the RGS method has already been dem-
+S], onstrated for the nonlinear geometrical optics equatighs (

B
al +——=D(rD 1) =0) in Ref.[56].

I

o
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I1l. BOUNDARY VALUE PROBLEM SOLUTION FOR A k I

GAUSSIAN BEAM 002 12

) 0.8

We analyze the general features of E@.and(10) for a -0.02 04
Gaussian intensity profileN(r)=exp (—r?). According to - 0.08 =

04 08 1.2

Eq. (7), S(x)=a exp(~x)+B(x*—2), and the beam struc-
ture can be written from Eq$9) as follows:

0.07) 1
1 ) 0.05 Z 08
r—x _ z\ " "x B—ae X 0.03 _
k(zr)=—7=, I(zr)=e “2(1——) AP 7= 001 02

2 - .
R/ T B—ae™# 04 08 12 04 08 12
11

FIG. 1. Radial profiles of the light beam phase gradient and

where the parameteps and u are defined by the relations intensity at axial positiong=0, 1, 2, 3, 4 in a nonlinear medium
with «=0.005 andB=0.01. Dashed lines demonstrate results of

(B—ae x2)2 the paraxial ray theory. The upper row corresponds to a converging
2021 (e F e X )=272,2 beam,R=20, and the bottom panels correspond to a collimated
B(p=x)+al ) X > _ :
(1-2/R) beam,R—c. The distance increases for curves from bottom to top

(12 on both panels fok and on the upper panel fdr The distance
increases from top to bottom on the bottom panellfor

_ .2
B—ae X

. lay behind the linear focal plane. The rays that originate at
(1-2z/R)

larger distances from the beam axis turn away closer to the
linear focal plane. The nonlinear focal plang,=R/[1

In the linear limit,a=0, Eqgs.(11) and(12) describe exactly +2(8—a)R?], is defined as a position of the maximum
the well-known solution for a Gaussian beam in a linearbeam intensity,

medium(cf. Ref.[29] [Sec. 22):

1+272

4
r=p(Z,X)EX(1—§)

1
1 r2 Imax=1+ ——. (15
I(z,r)zmexp<—w), 2(B-a)R
Such a consideration is valid for a weak nonlinearity; 3.
_ 2 In the limit «— B the beam intensity on the axis turns to
k(z,r)=— I 1~ (@R) (1+25R) , (13)  infinity at z=R. For a collimated beanR—, the rays al-
R w? ways diverge behind the entrance plane, provideds. The

radial dependence & and| for several cross sections and
wherew(z) =/(1—2z/R)?+23z° is the effective beam ra- the contour plots ok and! in the (z,r) plane are shown in
dius. The beam witlR>0 converges up to the focal plane at Figs. 1 and 2, correspondingly, for a converging and colli-
z=7=R/(1+2BR?), where the raysbecome parallel to the mated beam for the cage< 8. The Rayleigh length in both
beam axis. The focal plane is also a plane of turning points¢xamples is approximately 7. The paraxial ray theory is in
i.e., the place where=0. Therefore, all rays turn away from agreement with the RGS solution near the beam axis,
the z axis in the same plane. In the focal plane the beani=0.2, While at larger distances the wave front is stronger
radius achieves its minimumy,,,=1/V1+ 1/28R% An- bent_. The maximum intensity position in t_he case of con-
other important parameter of the linear theory is the Rayleigtyer9ing beam is moved due to the nonlinearity fram

—w2 P . =2.2 toz,;=4 where the intensity increased in 1.25 times in
planc i e pane where he beam ensiy decreases bSCOIIaNCe Wit EG1S)
P P y The case of a stronger nonlinearity> 3, is where the

times. nonlinearity dominates diffraction. It requires more thought-

In the nonlinear case turning points do not belong to theful analysis. The dependence ofipon y and, therefore, the
focal plane any more. Different rays turn away from the ax'sdependence of on r that is given by Eqs(11) and (12) is

at different positions and the curve of turning poimi$z), is not a single-valued function for the entire range zény

defined by the following equatiofassuminga < B): more. The ambiguity turns on provided two conditions for
the functionp(x) are satisfied,

(14 dwp=0, d,,p=0. (16)

2azR
n———.
z2(1+2BR?»—R

re=
N ) ) ] These two equations reduce in fact to a quadratic equation
It follows from the conditionr,>0 that this curve is defined o the coordinate, and the position of ambiguity zone de-
only for the intervalz <z<z,, between the linear and non- pends on the curvature radius of the incident beam. For a
linear focal planes. According to E¢l4), all turning points large wave-front radiusR>R,,;,=1/\2(a— g), the ambi-
guity region starts fronz;;=R/[1+Ry2(a—pB)] and ex-
tends to infinity. The beginning of the ambiguity regiag,,
The ray direction at a given point is defined by the normal to thecorresponds to the position of beam singularity found in the
phase front surface. paraxial ray approximatiof29].
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127 o———
1 0.4
0.8 0.6

0.8

FIG. 3. Radial profiles ofk and | for z=0, 1, 2, and 3.9
(R=20, upper paneJsand 0, 2, 3, 4, and 4. R=x, bottom panels
in a nonlinear medium withh=0.03 andB=0.01. The distance
increases for curves from top to bottom on both panelskfand
from bottom to top on both panels for

Zt1Z52
(21— 2) (21— 2)°

1(z,0)= k(z,00=0, (20)

FIG. 2. Contour plots ok and| in the (z.r) plane in a nonlinear which describes an explosive intensity growth near the sin-

medium withae=0.005 and8=0.01 for R=20 (upper panelsand gularity pointz=z;. At t_his axial positiqn Egs(11) and
R=c (bottom panels The curves are marked by the magnitudes Of(12) demonstrate a fractional power radial dependenck of

k andl, correspondingly. andk near the axis(—0)
. o (RIr)2?
For a tighter focused beamlR<R,i,, the ambiguity re- 1(Zf1,r)= ,
gion has a finite extent along the propagation axjs<z [2az(R—121)?]*
<Z;5, Wherez;,=R/[1-Ry2(a— B)] is the second root of 3
Egs.(16). The lengthAz=z;,—z; of the ambiguity region K(zi1.1)= r 1 (1—zf1/R
f1.)= |17 T
ZRZ\/Z(T—IB) Zfq Zarzzle
Az= 1-2(a—B)R? (17 According to these equations, the intensity depends on the
radial coordinate as~ % and the derivativel,k goes to in-
increases with the wave-front curvature. finity at the axis. The spatial distributions &fand | for
The radius of the ambiguity regioAr depends on the focused and collimated beams for the caseS are shown
coordinatez, in Figs. 3 and 4 before the singularity<z¢,. The conver-
gent beam withR=20 is expected to have a singularity at
Are 4az? 5 i (18 Z;1=4 while z;; =5 for the collimated beam. The wave front
r 1_2/RXma>ée ' has a complicated structure: its central pars0.2, con-

verges in agreement with the paraxial ray theory, while the
where yma{(2) corresponds to the local maximum of the exterior part of the beanr,=1, diverges and does not par-
function p(z,x) and follows from the first relation in Eq. ticipate in self-focusing. One can see a significant difference
(16), between the exact theory and the paraxial ray theory.
,\2 Singularities in the beam intensity and phase derivative
_ £ 2 2 1y e Xoad = indicate the mathematical model based on the NLS equation
(1 R T2 Bt a(2xma1) e Mme]=0. (19 with a cubic nonlinearity is not complete. There are a num-
ber of physical effects which may resolve that singularity.
According to these equations, the radius of the ambiguityrhose are the nonlinearity saturatigs0], nonlinear absorp-
region equals zero at the beginnirgs z;,, increases witlz  tion [61], nonlocal nonlinearityf62], etc. The RGS method
up to z=R, and then decreases to zerozatz;,, provided allows us to solve the BVP problem for NLS equation with
R<Rmin- The radiusAr goes to infinity forz—R. That can  an arbitrary nonlinearity and provides an appropriate algo-
be seen from Eq(19) becauseymax has a finite value at  rithm to derive such solutions. This could be performed in
=R. Although the present solution cannot be extended bethe future. However, the NLS equation with a cubic nonlin-
yond this point, several conclusions of a physical signifi-earity has its own merits, and it is of general interest to
cance can be drawn for the regiarcR. consider the beam characteristics following from Eddl)
One can find the behavior of a NLS solution in the vicin- and (12) in the ambiguity region by using some plausible
ity of a singularity pointz;;. It follows from Eqgs.(11) and  physical assumptions.
(12) that the electric-field structure on the axis or z;4 is To resolve the ambiguity we restrict ourselves to consid-
defined by the formula eration of the regiore<R and postulate that there are no
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0 0 il .
0 1 2 3 4 0 1 2 3 4 25 5 75 101251517.5
z 4
- FIG. 5. Axial dependence of the mean square radigs (solid
2 1.75 curve for a collimated beamR— ) in a nonlinear medium with
04 1.51753 a=0.03 anda/B8=3.2 (a), 6 (b), and 30(c). Dashed curves dem-
1511 5o 1.25 onstrate the same dependence that follows from the method of mo-
. o1y ments.
110.01 0.75
06 T
05| -0.0 05
’ -0.0 _00< 025} 1 IV. GLOBAL SELF-FOCUSING CHARACTERISTICS.
0 0 2 COMPARISON WITH PREVIOUS RESULTS
6 1 2 3 4 5 0 1 2 3 4 5 . _
z z Although the RGS method provides a complete solution

to the NLS equation, it is also instructive to discuss integral
medium with a—0.03 and8=0.01 for R—20 (upper pansl and characterl_stlcs of ? rs]elf.-focused beam. The bezzljmf.cnncal
R— oo (bottom panél The curves are marked by the magnitudes oquwer P¢ Is one of the important paramgters. It defines a
k andl, correspondingly. minimum beam powerP=27[lrdr, required to create a

’ self-focused channel. In the paraxial ray approximaf2®i

FIG. 4. Contour plots ok andl on the ¢,r) plane in a nonlinear

ravs i . . . . tt}e critical power of a collimated beam reads

ys intersecting the beam axis. This assumption means thal

all rays approaching the singularity continue their path par- P.=mc? yo?, (23
allel to the beam axis; in other words, they constitute a chan-

nel of a trapped light. Mathematically this assumption correswhile the method of momentgl3] predicts a four times
sponds to the conditiog> xy,, whereyx,=0, if z<z;;, and  larger magnitude

2072 P =4P =4mc? yw?. (24)

In if z;i<z<R. (22 ) )
2B7%+(1-2/R)? Our solution can explain both results, although they corre-

spond to two different physical situations. We found that the

Such a picture of channel formation is similar to the structure, G o P ; ;
| : : o quality = B is a necessary condition for the singularity to
described in Ref[36] where it was called a “distributed occur. It coincides with Eq(23) though the spatial beam

collapse.” It also agrees with the results of numerical simu-; ~ture is quite different from a Gaussian-like beam that
lations[28] where the formation of a narrow spiksolution o naraxial ray method predicts. This difference is illus-
singularity has been observed on the beam axis. . trated in Figs. 1 and 2 where the spatial profiles of beam

The radial dependence of intensity near the beam axis, intensity and the phase derivative following from the
—0 (and, consequently;— xp), follows from Eqs.(11) and  n4raial ray approximation are plotted as dashed curves. It is
(12) for z; <z<R: seen that both paraxial ray and RGS curves merge in the
vicinity of the axis. In particular, the magnitude of the beam
5 , on-axis intensity is exactly the same as in the paraxial ray
ag * =B 2RZT theory. However, the difference between these solutions in-
creases significantly with the radius.

The deficiency of the paraxial ray method is that it as-
sumes the beam does not change its shape. Therefore, the
width of the beam tends to zero at the singularity point.
Near the right boundarg,— R, wherexj~In(a/f), the beam  Oppositely, the RGS method proves that the on-axis singu-
intensity can be written explicitlyl(R,r)=B/2Rar. It is larity occurs while the beam width remains finite. The
important to note that such a depende(®® is valid only in  method of moments also does not assume the prescribed
a narrow vicinity of the axis wherg can be considered as a beam shape, but it defines the beam width in terms of the
constant. For larger the beam intensity sharply decreasesmean square radiugr?)=2x[Ir3dr/P(0). For a colli-
proportional to expf x?). The functionu(z,r), accordingto  mated beam the method of moments identifies the self-
Eqg. (12), becomes large at very small distances from thefocusing threshold as a power where the mean square radius
axis. Hence, the whole beam converges to the axis-aR. does not depend om The mean square radius can also be
For a collimated beanR— o, such a conversion occurs at found by using the RGS solutiofi1) and (12). The depen-
z—, dence of(r?) on z is shown in Fig. 5 for the case of a

Xb~=

Xb e* R-z

I(z,r)=

(R—2)?

ﬂ/_L2+a87M2: ,8‘9‘@](1"’)(%) (22)
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collimated beamR— . Results of the method of moments Ptr

are also shown for a comparison with dashed lines. One can 1

see that fo3< a<4p the beam radius calculated from both 0.8 3
the RGS and the moments theories monotonically increases 0.6

with the distance while, according to the paraxial ray theory, 0.4 o
the beam power is already above the critical po(@8. The 0.2

1

difference between our solution and the method of moments zB'2
is practically negligible, ifa<3p (curvea), and the beam 0.1020.3040506
radius found from the RGS theory is larger fa=38. A o

qualitative difference in behavior dfr?) defined from the 1 " 3
RGS theory and the method of moments is found dor 0.8 5
>4, where according to the moments theory the beam be- 0.6 1

gins to converge andr?) decreases monotonically. The 0'4

RGS theory for this case predicts a nonmonotonous depen- 0'2

dence ofr?) (curveb in Fig. 5 which is in agreement with ' 2512

numerical calculationg32]. Only for a very large nonlinear-
ity, >4, does the RGS theory result in a converging value
of (r?). This fact is an indication that this parameter cannot
be attributed to the characteristic beam radius and a mor

introduce it below in the context of the problem of trapped

power. _ _ _ N (1-2/R)?
The above comparison of our results with the paraxial ray +—(1-py)=|1+
approximation and the method of moments demonstrates that B ' 2B7?

the RGS method resolves a contradiction in the definition of
the critical power: Eq(23) defines the power where the sin-
gularity on the beam axis shows up, while Eg4) corre-
sponds to the power where the effective beam radius de-
creases at least at small distances from the entry plane.

A coordinate dependence of the beam intensity near th
singularity point is also a widely discussed characteristic o
self-focusing. In general, the RGS soluti¢hl) correlates
well with the results of previous studiel?7,33,36,38—
42,63: 1(z,0)«L(2)/(zs—2), whereL(z) is a slow varying
function of coordinatez and zg=1z;, is the position of the
singularity. However, Eq(11) predicts that_(z) is a slow

rt,=\/X(1—é)

0.10.20.30.4050.6

FIG. 6. Axial dependence of the trapped power paftfor a
collimated beam(upper panegl and a focused beam witR=20

. . o _(bottom panelin a medium with8=0.001 anda/B8=3 (1), 6 (2),
appropriate definition of the beam radius is needed. We will , , 30(33 9 A A=3(0.6(2

2a7?

X In
2B7°+(1—2/R)?

1+

(25

ftla'he effective beam radius is defined by the following rela-
ion:

2B7°

1+ —(1— Len|, (26)
(1-2/R)? B

algebraic function o but not a double logarithmic function Where the function\(z) has to be found from the equation

that has been discussed[89—42. This difference is prob-

ably due to the Gaussian boundary condition used in our
RGS solution. Such a slow algebraic dependence is similar
to that which has been obtained for an exact explosive solu-

E()\—In2)+e"‘+
o

2\ az? (,8 _A)Z

1
(i—zr?la ¢ 720 @

a

tion to the NLS equation with a different boundary condition Figures 6 and 7 demonstrate thelependence g, and

in Ref. [59]. , N _r,, for different values of the ratia/ 8= P(0)/P.. In Fig. 6
_ One of the most important characteristics of self-focusingne hoint wherep,, departs from zero is the singularity point.
is the amount of power trapped in a singularity. Slnce_ thqt moves closer to the entrance as the beam power increases.
rays that enter the smgularlty are e.xclud.ed from con23|der-|-he trapped power increases wittas more rays enter the
ation, the beam power in the off-axis regianz0 (.., x™  gingularity. It also increases with the beam power. One can
>Xp), P(2)=2m[orl(zr)dr, decreases witte. Corre-  geq in Fig. 6a) that for a collimated beam with/3=3 the
spondingly, we define the trapped power partpa$z) =1 trapped power approaches 67% for-c while for «/j
—P(2)/P(0) whereP(0) is the incident beam power. Itis —30 the trapped power reaches 97%. This is an important
also instructive to define the effective beam radiygz), as  yresult of analytic theory which quantifies the amount of en-
a r§d|us that encircles half of the incident power,grgy trapped in the channel. Our analysis for a converging
2m [ Irdr=P(0)/2. beam is restricted by the length of the geometrical optics
Algebraic expressions can be written for the trappedocus,z<R. It is demonstrated in Fig.(B) that fora> B the
power and the effective beam radius from Ed4) and(12).  trapped power near the geometrical optics foausR, is
The trapped power parf(z), has to be found from the also comparable to the total incident power. The trapped
equation power at the geometrical optics focpg(R) might be con-
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e '/2
1.2 a
1
08f 1
0.6
04 K
o 02 2
05 1 15 2 25 5 10 15 20 25 SOa/ﬂ
kB2
1.2 b
1
0.8
0.6
172 0.2 1/2
R
0.1 02030405 2 0.5 1 1.5 2 o
FIG. 7. Axial dependence of the effective beam radiygor a FIG. 8. Upper panel: dependence of the self-focusing length

collimated bean{a) and a focused beam witR=20 (b) in a me- /B, on a/B for a collimated beanfcurve 3 and a focused beam
dium with 8=0.001 ande/3=3 (1), 6 (2), and 30(3). The dots on  (curve 2 with the curvaturey8R=20. Bottom panel: dependence

the curves mark the position of singularity. The linear soluti@n, of the self-focusing length on the wavefront curvatuq@R, for
=0, is shown with a dashed line. alB=6.

sidered as a global characteristic of a converging beam sel& cubic nonlinearity and a Gaussian beam profile at the en-
focusing. Using the analytical solutiof25) for z=R one  trance boundary. It provides a quantitative description of the
finds beam electric field everywhere in a nonlinear media and al-
P P lows us to define the global self-focusing characteristics in a
py(R)=1-—=1— ——. (28) ~ more accurate way. In particular, we explain a contradiction
@ P(0) in the definition of the critical power between the paraxial
That is, the trapped power is equal to the incident beanh®y approximatio_n g_nd the method of moments. We also sug-
power with the exception of the critical power. This conclu- gest another definition for the effective bear_n radius anq the
sion is in an apparent contradiction with a heuristic expecta§elf'f99us'ng length .and_ compare them with the previous
tion that the critical power should be trapped in a Channepefmltlons_. Our _solutlon indicates also that the singularity at
while the rest of the incident power could be radiated. 1tthe beam intensity shows up at low powers, before the whole
would be interesting to investigate whether this result is speP€am starts to converge, and the asymptotic behavior of the
cific for a cubic nonlinearity and a Gaussian incident beanfight intensity near the singularity depends on the incident
proﬁ|e or if it has a more genera| Significance_ beam profile. The RGS solution allowed us to derive a para-
The effective beam radius in Fig. 7 decreases with thénetric scaling for self-focusing. It predicts the dependence of
distance which is also an indication of self-focusing. Thethe trapped power and the length of self-focusing on the
distancel,,, wherer,, equals zero, can be considered as anonlinearity, diffraction, and the wave-front curvature.
self-trapping length, which is a length where 50% of the The assumptions about the Gaussian profile of the inci-
beam power is trapped. The conditiop=0 applied to Eq. dent beam, axial symmetry, and a cubic nonlinearity are not
(26) defines the following expression for the self-trappingrestrictive. The RGS method is more general and can be
length: applied to arbitrary boundary data, another type of nonlinear-
ity, and to an inhomogeneous medium. The Gaussian beam
R 1 B i profile provides an instructive example which has a long
Itf:1+R\/m where 5+ —In2=(1+x)e *. history and can be compared with a number of previously
(29) published results. Such a comparison demonstrates advan-
tages of the RGS method as a tool for the nonlinear electro-
The dependence of the self-trapping length on the beartlynamics.
power and the wave-front curvature is shown in Fig. 8. In the
limit of high intensity, «/ 8> 1, the self-focusing length has
a simple asymptoticd;, =1.6a 12, ACKNOWLEDGMENTS
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