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Renormalization-group approach to the problem of light-beam self-focusing
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A method of renormalization-group symmetries is applied for analytical solution to the nonlinear Schro¨-
dinger equation which describes the electromagnetic beam self-focusing in a medium with a cubic nonlinearity.
The boundary-value problem for the incident Gaussian light beam has been solved analytically in a cylindrical
geometry although the method could be applied to other boundary conditions too. The solution describes a
detailed structure of wave self-focusing and its global characteristics such as the light power trapped in the
singularity, laser beam radius, and self-focusing length. A comparison with the results of previous studies
demonstrates advantages of the renormalization-group symmetry method as a tool for the nonlinear electrody-
namics theory.

PACS number~s!: 42.65.Jx, 42.65.Tg, 02.20.2a, 52.35.Mw
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I. INTRODUCTION
The problem of self-focusing of a high-power light bea

@1–5# plays an important role in nonlinear electrodynam
since the early 1960s. As a detailed quantitative understa
ing of self-focusing is still far away, a search for effectiv
ways of its analytic description is an ongoing concern. F
example, self-guiding of an intense laser pulse in an und
dense plasma for many Rayleigh lengths without signific
losses has been demonstrated many times both experi
tally and in numerical simulations@6–8#. However, there is
no parametric scaling for the laser beam power trapped
self-focused channel. A mathematical model of wave s
focusing is based on the nonlinear Schro¨dinger~NLS! equa-
tion for the complex amplitude of the electric fieldE of
electromagnetic beam:

2ik0]zE1D'E1k0
2~e2 /e0!E50, E~0,r !5E0~r !. ~1!

It describes a stationary beam propagation in the directioz
with an assumption that the wave-amplitude scale len
along thez axis is much larger as compared to the charac
istic scale in the transversal direction. Here,k05(v/c)Ae0 is
the wave number,D' is the Laplace operator in the perpe
dicular planer , ande0 ande2 are the real parts of linear an
nonlinear dielectric permittivities, respectively. Regular a
explosivelike singular solutions to Eq.~1! have been inves
tigated by using various analytical and numerical metho
However, none of the analytical methods is able to prov
an exact solution to the NLS equation for arbitrary bound
conditions. Only some specific boundary value proble
~BVPs! that are far away from practical requirements ha
been solved analytically so far.

*On leave from P. N. Lebedev Physics Institute, Russian Ac
emy of Science, Moscow 117924, Russia.
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The studies of stationary light-beam self-focusing may
attributed to the following three categories. The first categ
includes rigorous analytical theories such as the inve
scattering method@9# and the classical group analys
@10,11#. Approximate analytical methods, such as t
paraxial ray~nonaberrational! approach@3,4,12#, the method
of moments@13#, the variational theory@14#, and modifica-
tions of the inverse-scattering method which empl
asymptotic@15# or perturbation@16# expansions, constitute
the second category. The third group enrolls various num
cal methods reviewed in Ref.@17#. The present paper falls
into the first and partly, the second category. It deals with
application of a method@18# of renormalization-group sym
metries~RGS! for the solution of a NLS equation.

A common disadvantage of rigorous mathematical me
ods is that they consider some special solution for a spe
BVP. The inverse-scattering method has been developed
a planar geometry and for a cubic nonlinear medium. It
designed for the derivation of single- and multiple-solit
NLS solutions @9,19#. Two ameliorations to the inverse
scattering method have been proposed for the descriptio
the radiation fields that may accompany the formation o
self-guided channel. One of them is based on a perturba
approach@16,20# and another on an asymptotic expansi
@15#. However, both methods inherited the same restricti
to the BVP solution as the basic inverse-scattering meth
A large variety of exact solutions to the NLS equation
one-dimensional~1D!, two-dimensional ~2D!, and three-
dimensional~3D! geometry for cubic and quintic nonlinea
ity and with additional linear inhomogeneous terms ha
been obtained in Refs.@10,11,21# by using the symmetry
groups. However, boundary conditions for these solutions
not correspond to a localized electromagnetic beam at
entry plane.

Approximate methods are relatively simple and flexib
They have been applied to a qualitative description of lig
beam self-focusing for a cubic and saturating nonlinea
-
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@22–24#. A weak point of approximate methods is ina priori
assumption about the light beam radial structure. T
paraxial ray approximation@3,4,25,26# is restricted to a smal
vicinity near the beam axis. The variational method@14,27#
involves a set of self-similar trial functions that descri
light-beam radial distribution with a fewz-dependent param
eters~wave amplitude, beam width, and phase front cur
ture!. They satisfy the equations that follow from minimiz
tion of the basic functional. For the NLS equation with
cubic nonlinearity both paraxial ray and variational metho
describe the beam behavior from the entrance boundary u
a singularity point where the beam intensity tends to infin
and the beam width turns to zero. However, numerical sim
lations for the Gaussian incident beam demonstrate a sig
cant modification of the radial beam profile near the sin
larity point: a narrow spike with a very large intensity on t
beam axis was found in Ref.@28#. This is in striking contrast
to the self-similar beam structure prescribed by the appr
mate methods. A modification of the method of mome
that has been proposed in Ref.@13# does not implya priori
assumption on the light-beam structure. It could provide b
ter description of the beam behavior near the singularity,
no analytical results have been obtained so far. There is
an unexplained four times difference in the value of the cr
cal power predicted by the paraxial ray theory@29# and the
method of moments@13#.

The numerical simulations of the light-beam self-focusi
@2,17,30–35# bear two main difficulties. First, they do no
define parametric scaling for a number of the input be
characteristics as the radial shape, power, and phase
curvature. Second, they cannot describe the beam beh
in the vicinity of singularity with sufficient accuracy@33,36#.
Singular solutions for various space dimensions and diffe
types of nonlinearity have been derived in Refs.@36–39#. For
a medium with the cubic nonlinearity a class of quasi-se
similar solutions has been found wherez-coordinate depen
dence of the electric-field intensity near the singularity po
zs exhibits the dependenceL(z)/(z2zs) @36,39# with a
slowly varying double logarithmic function L(z)
;u log log(z2zs)u @39–42#. However, another exact collaps
ing solution to the NLS equation has been constructed
@43# where the intensity enlarges to 1/(z2zs)

2.
Thus, more than 30 years of studying self-focusing h

not been crowned with success in constructing a method
allows us to find an analytical solution to the NLS equati
with arbitrary boundary conditions. There are also a num
of contradictions between different theories which have
been resolved yet. A parametric analysis of global s
focusing characteristics versus boundary conditions is
far away from its applications. In this paper we presen
rather general method for finding analytical solutions to
NLS equation by using the RGS approach. The paper is
ganized as follows: In Sec. II the RGS method is formula
for a cylindrical light beam. This method is applied to a BV
problem with a Gaussian beam profile at the entrance bou
ary in Sec. III. Global characteristics of self-focusing a
considered in Sec. IV and compared with results of previ
publications. Our results are summarized in Sec. V.
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II. APPLICATION OF THE RGS METHOD FOR A NLS
EQUATION FOR THE AXIALLY SYMMETRIC

CASE

The key idea of our approach to the solution of a NL
equation consists of finding a special class of symmetries
the chosen BVP@18#. These symmetries involve a group o
invariant transformations of dependent and independent v
ables and parameters defining the solution. For a given R
the required BVP solution can be obtained by using a fin
group transformation which associates a complex field a
plitude inside a nonlinear medium with its boundary valu

Long before the idea of applying RGS as a practical t
for the solution of BVP in mathematical physics had be
formulated, the renormalization-group transformations h
been used in the quantum field theory@44# to improve ap-
proximate solutions. The concept of renormalization-gro
transformations had also been applied to some areas of
croscopic physics for description of phase transitions in la
statistical systems like spin lattices and polymers@45#, and to
some problems of macroscopic physics like transport the
hydrodynamics, and turbulence@46#. Having the same goa
to improve the perturbation theory and to simplify the ana
sis of a singular behavior of a solution, the ideas of t
renormalization-group method have been introduced
mathematical physics. An exact group of point transform
tions has been used in a plasma theory@47# to find a strongly
nonlinear BVP solution to the system of equations that
scribe wave harmonics generation starting from a pertur
tive solution. Methods of quantum field theory and the W
son’s renormalization-group have also been applied for
asymptotic analysis of nonlinear parabolic equations, wh
describe surface gravitational waves in liquids, shock wa
dynamics, and radiative heat transport@48,49#. Recently the
perturbative renormalization-group theory@50# has been de-
veloped for a global asymptotic analysis.

The regular RGS method@51,52# involves a functional
self-similarity and algorithms of modern group analysis.
does not imply anya priori assumptions and provides a
approximate analytical solution to a specific BVP. The RG
method has been applied for the analysis of a numbe
particular solutions of BVP in nonlinear optics@53–57#.
However, there was no universal algorithm of findin
renormalization-group transformations until recently when
general RGS approach had been derived in Ref.@18# for
systems of differential equations. Depending on a ma
ematical model and boundary conditions, the procedure
finding RGS can be accomplished in different ways. F
finding a solution to the NLS equation we employ the alg
rithm of approximate symmetries@58# for systems of differ-
ential equations with small parameters. For Eq.~1! these
small parameters are the nonlinearity,a5e2(I 0)/2e0, and
the diffraction, b51/2k0

2r 0
2, where I 0 is the characteristic

intensity of the laser beam at the boundary andr 0 is the
initial beam radius. Both parameters can be made arbitra
small if one considers a converging beam and the entra
plane far away from the focal position.

We consider a cylindrically symmetric electromagne
beam incident atz50 on a homogeneous medium with
cubic nonlinearity, e2(I )5gI . The electric field, E
5AI exp(ikC), is represented in terms of two real function
9-2
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the intensityI and the phaseC, which satisfy the system o
two equations:

]zk1k ] rk2a ] r I 2b ] rF 1

rAI
] r~r ] rAI !G50,

~2!

]zI 1I ] rk1k ] r I 1kI/r 50.

Here,k5] rC is the radial phase derivative, both coordina
r andz are normalized by the initial beam radiusr 0, and the
intensity is normalized by the on-axis intensityI 0 at the en-
trance plane. The boundary conditions,

I ~0,r !5I 0N~r !, k~0,r !52r /R, ~3!

assume that the incident beam intensity is an arbitrary fu
tion of the radius,N(0)51, and that the incident beam has
spherical front,C(0,r )52r 2/2R, whereR is the radius of
the wavefront curvature (R.0 for a converging beam an
R→` corresponds to a collimated beam!.

The key point in finding the BVP solution is to constru
the RGS. For that purpose, following the general RGS the
@56,59#, we use the Lie-Ba¨cklund symmetries admitted b
original differential equations~2! and determined by the ca
nonical group operatorX̂5 f ]k1g] I . The coordinatesf and
g of this operator are found by solving the correspond
determining equations expressing the invariance condit
for system~2! with respect to the group with the operatorX̂.
We expandf andg in power series over the nonlinearity an
diffraction parameters

f 5 (
i , j 50

a ib j f i j , g5 (
i , j 50

a ib jgi j , ~4!

where the coefficientsf i j andgi j are functions ofz, r, k, and
I and of arbitrary-order derivatives ofk andI with respect to
r. Substituting Eq.~4! into the determining equations an
comparing the coefficients in powers ofa andb one can find
a system of equations for coefficients. We consider here o
low order equations, which are independent ona andb and
which are linear overa or b. This is justified if the coordi-
natesf andg contain only linear contributions with respect
the parametersa andb or the values of these parameters a
small. In the latter case, the neglect of higher-order te
means that we are finding an approximate symmetry.

The coordinatesf andg depend on a set of arbitrary func
tions that can be defined by the group restrictions. By us
the invariance condition,f 50, g50, for the particular BVP
solution and requesting the compatibility between this c
dition and the prescribed boundary data~3!, we obtain the
following RGS operator:

H f 5Dr

1

2R2 F r 1kRS 12
z

RD G2

~5!

2S 12
z

RD 2FaI 1
b

rAI
Dr~rD rAI !G1SJ ,
03380
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Dr H rI F 1

R S 12
z

RD ~r 1kR2kz!2z ]xSG J .

Here,Dr is the operator of total differentiation with respe
to r,

Dr[] r1(
s50

`

~ks11]ks
1I s11] I s

! ~6!

whereks5] r
sk and I s5] r

sI are the corresponding partial de
rivatives and the functionS depends onx5r 2kz and two
expansion parameters,

S~x!5aN~x!1
b

xAN~x!
]x@x]xAN~x!#. ~7!

The following point renormalization-group operator
equivalent to the canonical renormalization-group opera
with coordinates~5!:

X̂5F S 12
z

RD 2

1z2SxxG]z1F r

R2
1

k

R S 12
z

RD1SxG]k

1F2
r

R S 12
z

RD1zSx1kz2SxxG] r1F2I

R S 12
z

RD
2IzS 11

kz

r DSxx2
Iz

r
SxG] I . ~8!

Operator~8! serves as a tool for finding solutions of th
desired boundary value problem. It describes the finite-gr
transformation that relates the values of the beam inten
and phase for anyz.0 to the prescribed data at the boun
ary:

k~z,r !5
r 2x

z
, I ~z,r !5N~m!S 12

z

RD 21 x

r

]x2S

]m2S
. ~9!

The dependence of two additional functions,x andm, on z
and r is defined by the following relations:

r 5xS 12
z

RD F11
2z2]x2S

~12z/R!2G ,

S~m!2S~x!5
z2~]xS!2

2~12z/R!2
. ~10!

It is important to note that the solution~9! has been derived
with no a priori assumptions concerning the spatial structu
of beam inside the mediumN(r ). The perturbative approac
used to find RGS does not impose significant restrictions
Eq. ~9! because physically the focal point,z'R, can be
placed far away from the input boundary. A good accura
of solutions given by the RGS method has already been d
onstrated for the nonlinear geometrical optics equationsb
50) in Ref. @56#.
9-3
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III. BOUNDARY VALUE PROBLEM SOLUTION FOR A
GAUSSIAN BEAM

We analyze the general features of Eqs.~9! and~10! for a
Gaussian intensity profile,N(r )5exp (2r2). According to
Eq. ~7!, S(x)5a exp(2x2)1b (x222), and the beam struc
ture can be written from Eqs.~9! as follows:

k~z,r !5
r 2x

z
, I ~z,r !5e2m2S 12

z

RD 21 x

r

b2a e2x2

b2a e2m2 ,

~11!

where the parametersx andm are defined by the relations

b ~m22x2!1a ~e2m2
2e2x2

!52z2x2
~b2a e2x2

!2

~12z/R!2
,

~12!

r 5r~z,x![xS 12
z

RD F112z2
b2a e2x2

~12z/R!2G .

In the linear limit,a50, Eqs.~11! and~12! describe exactly
the well-known solution for a Gaussian beam in a line
medium~cf. Ref. @29# @Sec. 22#!:

I ~z,r !5
1

w2 expS 2
r 2

w2D ,

k~z,r !52
r

R

12~z/R! ~112bR2!

w2
, ~13!

where w(z)5A(12z/R)212bz2 is the effective beam ra
dius. The beam withR.0 converges up to the focal plane
z5zl5R/(112bR2), where the rays1 become parallel to the
beam axis. The focal plane is also a plane of turning poi
i.e., the place wherek50. Therefore, all rays turn away from
the z axis in the same plane. In the focal plane the be
radius achieves its minimum,wmin51/A111/2bR2. An-
other important parameter of the linear theory is the Rayle
length, LR5wmin

2 /A2b, which is a distance from the foca
plane to the plane where the beam intensity decreases
times.

In the nonlinear case turning points do not belong to
focal plane any more. Different rays turn away from the a
at different positions and the curve of turning points,r t(z), is
defined by the following equation~assuminga,b):

r t
25 ln

2azR2

z~112bR2!2R
. ~14!

It follows from the conditionr t.0 that this curve is defined
only for the intervalzl,z,znl , between the linear and non
linear focal planes. According to Eq.~14!, all turning points

1The ray direction at a given point is defined by the normal to
phase front surface.
03380
r

s,

h

wo

e
s

lay behind the linear focal plane. The rays that originate
larger distances from the beam axis turn away closer to
linear focal plane. The nonlinear focal plane,znl5R/@1
12(b2a)R2#, is defined as a position of the maximu
beam intensity,

I max511
1

2~b2a!R2
. ~15!

Such a consideration is valid for a weak nonlinearity,a,b.
In the limit a→b the beam intensity on the axis turns
infinity at z5R. For a collimated beam,R→`, the rays al-
ways diverge behind the entrance plane, provideda,b. The
radial dependence ofk and I for several cross sections an
the contour plots ofk and I in the (z,r ) plane are shown in
Figs. 1 and 2, correspondingly, for a converging and co
mated beam for the casea,b. The Rayleigh length in both
examples is approximately 7. The paraxial ray theory is
agreement with the RGS solution near the beam axisr
&0.2, while at larger distances the wave front is stron
bent. The maximum intensity position in the case of co
verging beam is moved due to the nonlinearity fromzf
52.2 toznl54 where the intensity increased in 1.25 times
accordance with Eq.~15!.

The case of a stronger nonlinearity,a.b, is where the
nonlinearity dominates diffraction. It requires more thoug
ful analysis. The dependence ofr uponx and, therefore, the
dependence ofk on r that is given by Eqs.~11! and ~12! is
not a single-valued function for the entire range ofz any
more. The ambiguity turns on provided two conditions f
the functionr(x) are satisfied,

]xr50, ]xxr50. ~16!

These two equations reduce in fact to a quadratic equa
for the coordinatez, and the position of ambiguity zone de
pends on the curvature radius of the incident beam. Fo
large wave-front radius,R.Rmin51/A2(a2b), the ambi-
guity region starts fromzf 15R/@11RA2(a2b)# and ex-
tends to infinity. The beginning of the ambiguity region,zf 1,
corresponds to the position of beam singularity found in
paraxial ray approximation@29#.

e

FIG. 1. Radial profiles of the light beam phase gradient a
intensity at axial positionsz50, 1, 2, 3, 4 in a nonlinear medium
with a50.005 andb50.01. Dashed lines demonstrate results
the paraxial ray theory. The upper row corresponds to a conver
beam,R520, and the bottom panels correspond to a collima
beam,R→`. The distance increases for curves from bottom to
on both panels fork and on the upper panel forI. The distance
increases from top to bottom on the bottom panel forI.
9-4
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For a tighter focused beam,R,Rmin , the ambiguity re-
gion has a finite extent along the propagation axis,zf 1,z
,zf 2, wherezf 25R/@12RA2(a2b)# is the second root o
Eqs.~16!. The lengthDz5zf 22zf 1 of the ambiguity region

Dz5
2R2A2~a2b!

122~a2b!R2
~17!

increases with the wave-front curvature.
The radius of the ambiguity regionDr depends on the

coordinatez,

Dr 52
4az2

12z/R
xmax

3 e2xmax
2

, ~18!

where xmax(z) corresponds to the local maximum of th
function r(z,x) and follows from the first relation in Eq
~16!,

S 12
z

RD 2

12z2@b1a ~2xmax
2 21! e2xmax

2
#50. ~19!

According to these equations, the radius of the ambigu
region equals zero at the beginning,z5zf 1, increases withz
up to z5R, and then decreases to zero atz5zf 2, provided
R,Rmin . The radiusDr goes to infinity forz→R. That can
be seen from Eq.~19! becausexmax has a finite value atz
5R. Although the present solution cannot be extended
yond this point, several conclusions of a physical sign
cance can be drawn for the regionz,R.

One can find the behavior of a NLS solution in the vici
ity of a singularity pointzf 1. It follows from Eqs.~11! and
~12! that the electric-field structure on the axis forz,zf 1 is
defined by the formula

FIG. 2. Contour plots ofk andI in the (z,r ) plane in a nonlinear
medium witha50.005 andb50.01 forR520 ~upper panels! and
R5` ~bottom panels!. The curves are marked by the magnitudes
k and I, correspondingly.
03380
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I ~z,0!5
zf 1zf 2

~zf 12z! ~zf 22z!
, k~z,0!50, ~20!

which describes an explosive intensity growth near the s
gularity point z5zf 1. At this axial position Eqs.~11! and
~12! demonstrate a fractional power radial dependenceI
andk near the axis (r→0)

I ~zf 1 ,r !5
~R/r !2/3

@2azf 1
2 ~R2zf 1!2#1/3

,

k~zf 1 ,r !5
r

zf 1
F12S 12zf 1 /R

2ar 2zf 1
2 D 1/3G .

According to these equations, the intensity depends on
radial coordinate asr 22/3 and the derivative] rk goes to in-
finity at the axis. The spatial distributions ofk and I for
focused and collimated beams for the casea.b are shown
in Figs. 3 and 4 before the singularity,z,zf 1. The conver-
gent beam withR520 is expected to have a singularity
zf 154 while zf 155 for the collimated beam. The wave fron
has a complicated structure: its central part,r &0.2, con-
verges in agreement with the paraxial ray theory, while
exterior part of the beam,r *1, diverges and does not pa
ticipate in self-focusing. One can see a significant differen
between the exact theory and the paraxial ray theory.

Singularities in the beam intensity and phase derivat
indicate the mathematical model based on the NLS equa
with a cubic nonlinearity is not complete. There are a nu
ber of physical effects which may resolve that singulari
Those are the nonlinearity saturation@60#, nonlinear absorp-
tion @61#, nonlocal nonlinearity@62#, etc. The RGS method
allows us to solve the BVP problem for NLS equation wi
an arbitrary nonlinearity and provides an appropriate al
rithm to derive such solutions. This could be performed
the future. However, the NLS equation with a cubic nonl
earity has its own merits, and it is of general interest
consider the beam characteristics following from Eqs.~11!
and ~12! in the ambiguity region by using some plausib
physical assumptions.

To resolve the ambiguity we restrict ourselves to cons
eration of the regionz,R and postulate that there are n

f

FIG. 3. Radial profiles ofk and I for z50, 1, 2, and 3.9
(R520, upper panels! and 0, 2, 3, 4, and 4.9 (R5`, bottom panels!
in a nonlinear medium witha50.03 andb50.01. The distance
increases for curves from top to bottom on both panels fork and
from bottom to top on both panels forI.
9-5
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rays intersecting the beam axis. This assumption means
all rays approaching the singularity continue their path p
allel to the beam axis; in other words, they constitute a ch
nel of a trapped light. Mathematically this assumption cor
sponds to the conditionx.xb , wherexb50, if z,zf 1, and

xb
25 ln

2az2

2bz21~12z/R!2
if zf 1,z,R. ~21!

Such a picture of channel formation is similar to the struct
described in Ref.@36# where it was called a ‘‘distributed
collapse.’’ It also agrees with the results of numerical sim
lations@28# where the formation of a narrow spike~solution
singularity! has been observed on the beam axis.

The radial dependence of intensity near the beam axr
→0 ~and, consequently,x→xb), follows from Eqs.~11! and
~12! for zf 1,z,R:

I ~z,r !5
xb e2m2

ae2m2
2b

R2z

2Rz2r
,

b m21ae2m2
5Fb1

~R2z!2

2R2z2 G ~11xb
2!. ~22!

Near the right boundary,z→R, wherexb
2' ln(a/b), the beam

intensity can be written explicitly,I (R,r )5Ab/2Rar . It is
important to note that such a dependence~22! is valid only in
a narrow vicinity of the axis wherem can be considered as
constant. For largerr the beam intensity sharply decreas
proportional to exp(2m2). The functionm(z,r ), according to
Eq. ~12!, becomes large at very small distances from
axis. Hence, the whole beam converges to the axis atz→R.
For a collimated beam,R→`, such a conversion occurs a
z→`.

FIG. 4. Contour plots ofk andI on the (z,r ) plane in a nonlinear
medium with a50.03 andb50.01 for R520 ~upper panel! and
R→` ~bottom panel!. The curves are marked by the magnitudes
k and I, correspondingly.
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IV. GLOBAL SELF-FOCUSING CHARACTERISTICS.
COMPARISON WITH PREVIOUS RESULTS

Although the RGS method provides a complete solut
to the NLS equation, it is also instructive to discuss integ
characteristics of a self-focused beam. The beam crit
power Pc is one of the important parameters. It defines
minimum beam power,P52p* Irdr , required to create a
self-focused channel. In the paraxial ray approximation@29#
the critical power of a collimated beam reads

Pc5pc2/gv2, ~23!

while the method of moments@13# predicts a four times
larger magnitude

Pc
(m)54Pc54pc2/gv2. ~24!

Our solution can explain both results, although they cor
spond to two different physical situations. We found that t
equalitya5b is a necessary condition for the singularity
occur. It coincides with Eq.~23! though the spatial beam
structure is quite different from a Gaussian-like beam t
the paraxial ray method predicts. This difference is illu
trated in Figs. 1 and 2 where the spatial profiles of be
intensity and the phase derivative following from th
paraxial ray approximation are plotted as dashed curves.
seen that both paraxial ray and RGS curves merge in
vicinity of the axis. In particular, the magnitude of the bea
on-axis intensity is exactly the same as in the paraxial
theory. However, the difference between these solutions
creases significantly with the radius.

The deficiency of the paraxial ray method is that it a
sumes the beam does not change its shape. Therefore
width of the beam tends to zero at the singularity poi
Oppositely, the RGS method proves that the on-axis sin
larity occurs while the beam width remains finite. Th
method of moments also does not assume the prescr
beam shape, but it defines the beam width in terms of
mean square radius,̂r 2&52p* Ir 3dr/P(0). For a colli-
mated beam the method of moments identifies the s
focusing threshold as a power where the mean square ra
does not depend onz. The mean square radius can also
found by using the RGS solution~11! and ~12!. The depen-
dence of^r 2& on z is shown in Fig. 5 for the case of

f

FIG. 5. Axial dependence of the mean square radius^r 2& ~solid
curve! for a collimated beam (R→`) in a nonlinear medium with
a50.03 anda/b53.2 ~a!, 6 ~b!, and 30~c!. Dashed curves dem
onstrate the same dependence that follows from the method of
ments.
9-6
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collimated beam,R→`. Results of the method of momen
are also shown for a comparison with dashed lines. One
see that forb,a,4b the beam radius calculated from bo
the RGS and the moments theories monotonically increa
with the distance while, according to the paraxial ray theo
the beam power is already above the critical power~23!. The
difference between our solution and the method of mome
is practically negligible, ifa&3b ~curve a), and the beam
radius found from the RGS theory is larger fora*3b. A
qualitative difference in behavior of̂r 2& defined from the
RGS theory and the method of moments is found fora
.4b, where according to the moments theory the beam
gins to converge and̂r 2& decreases monotonically. Th
RGS theory for this case predicts a nonmonotonous de
dence of̂ r 2& ~curveb in Fig. 5! which is in agreement with
numerical calculations@32#. Only for a very large nonlinear
ity, a@4b, does the RGS theory result in a converging va
of ^r 2&. This fact is an indication that this parameter cann
be attributed to the characteristic beam radius and a m
appropriate definition of the beam radius is needed. We
introduce it below in the context of the problem of trapp
power.

The above comparison of our results with the paraxial
approximation and the method of moments demonstrates
the RGS method resolves a contradiction in the definition
the critical power: Eq.~23! defines the power where the sin
gularity on the beam axis shows up, while Eq.~24! corre-
sponds to the power where the effective beam radius
creases at least at small distances from the entry plane.

A coordinate dependence of the beam intensity near
singularity point is also a widely discussed characteristic
self-focusing. In general, the RGS solution~11! correlates
well with the results of previous studies@27,33,36,38–
42,63#: I (z,0)}L(z)/(zs2z), whereL(z) is a slow varying
function of coordinatez and zs5zf 1 is the position of the
singularity. However, Eq.~11! predicts thatL(z) is a slow
algebraic function ofz but not a double logarithmic function
that has been discussed in@39–42#. This difference is prob-
ably due to the Gaussian boundary condition used in
RGS solution. Such a slow algebraic dependence is sim
to that which has been obtained for an exact explosive s
tion to the NLS equation with a different boundary conditi
in Ref. @59#.

One of the most important characteristics of self-focus
is the amount of power trapped in a singularity. Since
rays that enter the singularity are excluded from consid
ation, the beam power in the off-axis region,r .0 ~i.e., x2

.xb
2), P(z)52p*0

`rI (z,r ) dr, decreases withz. Corre-
spondingly, we define the trapped power part asptr(z)51
2P(z)/P(0) whereP(0) is the incident beam power. It i
also instructive to define the effective beam radius,r tr(z), as
a radius that encircles half of the incident powe
2p* r tr

` Irdr 5P(0)/2.

Algebraic expressions can be written for the trapp
power and the effective beam radius from Eqs.~11! and~12!.
The trapped power part,ptr(z), has to be found from the
equation
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ar
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e
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,

d

ln
1

12ptr
1

a

b
~12ptr !5F11

~12z/R!2

2bz2 G
3F11 ln

2az2

2bz21~12z/R!2G .

~25!

The effective beam radius is defined by the following re
tion:

r tr5Al S 12
z

RD F11
2bz2

~12z/R!2 S 12
a

b
e2lD G , ~26!

where the functionl(z) has to be found from the equation

b

a
~l2 ln 2!1e2l1

2laz2

~12z/R!2 S b

a
2e2lD 2

5
1

2
. ~27!

Figures 6 and 7 demonstrate thez dependence ofptr and
r tr for different values of the ratioa/b5P(0)/Pc . In Fig. 6
the point whereptr departs from zero is the singularity poin
It moves closer to the entrance as the beam power increa
The trapped power increases withz as more rays enter th
singularity. It also increases with the beam power. One
see in Fig. 6~a! that for a collimated beam witha/b53 the
trapped power approaches 67% forz→` while for a/b
530 the trapped power reaches 97%. This is an impor
result of analytic theory which quantifies the amount of e
ergy trapped in the channel. Our analysis for a converg
beam is restricted by the length of the geometrical op
focus,z<R. It is demonstrated in Fig. 6~b! that fora@b the
trapped power near the geometrical optics focus,z5R, is
also comparable to the total incident power. The trapp
power at the geometrical optics focusptr(R) might be con-

FIG. 6. Axial dependence of the trapped power partptr for a
collimated beam~upper panel! and a focused beam withR520
~bottom panel! in a medium withb50.001 anda/b53 ~1!, 6 ~2!,
and 30~3!.
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sidered as a global characteristic of a converging beam
focusing. Using the analytical solution~25! for z5R one
finds

ptr~R!512
b

a
[12

Pc

P~0!
. ~28!

That is, the trapped power is equal to the incident be
power with the exception of the critical power. This concl
sion is in an apparent contradiction with a heuristic expec
tion that the critical power should be trapped in a chan
while the rest of the incident power could be radiated.
would be interesting to investigate whether this result is s
cific for a cubic nonlinearity and a Gaussian incident be
profile or if it has a more general significance.

The effective beam radius in Fig. 7 decreases with
distance which is also an indication of self-focusing. T
distancel tr , wherer tr equals zero, can be considered as
self-trapping length, which is a length where 50% of t
beam power is trapped. The conditionr tr50 applied to Eq.
~26! defines the following expression for the self-trappi
length:

l tr5
R

11RA2~a e2k2b!
where

1

2
1

b

a
ln 25~11k!e2k.

~29!

The dependence of the self-trapping length on the be
power and the wave-front curvature is shown in Fig. 8. In
limit of high intensity,a/b@1, the self-focusing length ha
a simple asymptotics:l tr.1.6a21/2.

V. SUMMARY

An important result of the RGS theory consists of an a
lytical solution to the BVP problem for a NLS equation wi

FIG. 7. Axial dependence of the effective beam radiusr tr for a
collimated beam~a! and a focused beam withR520 ~b! in a me-
dium with b50.001 anda/b53 ~1!, 6 ~2!, and 30~3!. The dots on
the curves mark the position of singularity. The linear solutiona
50, is shown with a dashed line.
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a cubic nonlinearity and a Gaussian beam profile at the
trance boundary. It provides a quantitative description of
beam electric field everywhere in a nonlinear media and
lows us to define the global self-focusing characteristics i
more accurate way. In particular, we explain a contradict
in the definition of the critical power between the parax
ray approximation and the method of moments. We also s
gest another definition for the effective beam radius and
self-focusing length and compare them with the previo
definitions. Our solution indicates also that the singularity
the beam intensity shows up at low powers, before the wh
beam starts to converge, and the asymptotic behavior of
light intensity near the singularity depends on the incid
beam profile. The RGS solution allowed us to derive a pa
metric scaling for self-focusing. It predicts the dependence
the trapped power and the length of self-focusing on
nonlinearity, diffraction, and the wave-front curvature.

The assumptions about the Gaussian profile of the in
dent beam, axial symmetry, and a cubic nonlinearity are
restrictive. The RGS method is more general and can
applied to arbitrary boundary data, another type of nonline
ity, and to an inhomogeneous medium. The Gaussian b
profile provides an instructive example which has a lo
history and can be compared with a number of previou
published results. Such a comparison demonstrates ad
tages of the RGS method as a tool for the nonlinear elec
dynamics.
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FIG. 8. Upper panel: dependence of the self-focusing len
Ab l tr on a/b for a collimated beam~curve 1! and a focused beam
~curve 2! with the curvatureAbR520. Bottom panel: dependenc
of the self-focusing length on the wavefront curvature,AbR, for
a/b56.
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