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Quantum analysis and the classical analysis of spontaneous emission in a microcavity
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Starting from a quantum Maxwell equation for the vector potential operator, we study the spontaneous
emission properties of a two-level atom interacting with the electromagnetic field in a lossless and inhomoge-
neous dielectric structure and express the spontaneous emission rate, the external quantum efficiency, and the
spontaneous emission factor in terms of the classical Green function of the dielectric structure. Comparing
these results with the corresponding classical results, we show that the above quantities can be calculated from
the radiation field of a classical dipole. Based on this correspondence, a numerical algorithm is developed to
calculate the modification of spontaneous emission in microcavities. The line shape of the emission spectrum
of the light source and the decay of the cavity resonant modes are automatically taken into account in this
algorithm. The approximate expressions for the spontaneous emission rate and the spontaneous emission factor
are discussed.

PACS number~s!: 42.55.Sa, 42.70.Qs, 32.80.2t
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I. INTRODUCTION

It is well known that the radiation process of an ato
depends on its environment@1#, and the study of the interac
tion between the atom and the electromagnetic field insid
cavity structure has come to be called cavity quantum e
trodynamics~QED!. The most simple, and yet fundamenta
important, system of cavity QED is a single two-level ato
coupled with a single cavity electromagnetic mode, wh
was first studied theoretically by Jaynes and Cummings@2#.
An important parameter in such a system is the coup
constant between the atom and the cavity mode, which
be estimated ask5(m12/\)A2p\V/V, where V is the
atomic transition frequency,V is the cavity volume, andm12
is the dipole matrix element of the atom@3#. However, to
describe the radiation process of the atom, the dampin
the system must be taken into account. If we assume
atom has a dipole dephasing rateg12, and the decay rate o
the cavity photon isGcav , the radiation process falls into tw
physically distinctive regimes: the strong coupling regim
with k@(g12,Gcav), and the weak coupling regime withk
!(g12,Gcav) @3#. The strong coupling regime is characte
ized by the double peak in the emission spectrum, and
oscillatory behavior of the excited state occupation num
@4#. In this paper, we shall confine ourselves to the we
coupling regime, and study the correspondence between
quantum picture and the classical picture of spontane
emission.

One of the most interesting aspects of the weak-coup
radiation process is the spontaneous emission enhance
or inhibition by the cavity structure@1#. The enhancemen
was experimentally verified by Goyet al. @5#, and the inhi-
bition was first demonstrated by Kleppner@6#. Such cavity-
induced modification of spontaneous emission continue
be the subject of intense theoretical and experimental
search. Part of the reason is that these new phenomena
deepen our understanding of the atom-field interaction
are therefore theoretically important. Another factor, ho
ever, is the practical importance of controlling the light em
sion by means of cavities. For example, the external quan
efficiency of a light-emitting diode is significantly improve
1050-2947/2000/61~3!/033807~13!/$15.00 61 0338
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by using a structure similar to that of a vertical cavity surfa
emitting laser~VCSEL! @7#. It is also demonstrated theoret
cally that further improvement is possible by introducing
two-dimensional photonic crystal structure@8#. Another ex-
ample is the so-called ‘‘thresholdless laser’’@9–11#. From a
simple rate equation analysis, it is shown that if the spon
neous emission factor of the lasing mode is close to 1,
threshold in the light versus pumping curve disappea
Therefore, it is important to be able to theoretically calcula
the spontaneous emission properties of an atom in a mi
cavity.

Most of the theoretical analysis of the spontaneous em
sion in a cavity structure concentrated on the modification
spontaneous emission rate, which can be calculated u
either a classical approach or a quantum approach. In
classical picture, the modification of spontaneous emiss
rate is due to the radiation reaction of the reflected field
the classical dipole source@12–20#. The quantum description
of spontaneous emission treat it as an emission stimulate
the vacuum field fluctuation@18,19,21–30#. The similarity
between the classical approach and the quantum appr
has also been noticed@12,16,31#. Using these methods, th
modification of spontaneous emission rate has been ca
lated for various geometries, such as homogeneous abs
ing media @19,26#, parallel metal plates@18,22,31#, metal
spheres@31#, dielectric slab waveguides@27,28#, planar di-
electric microcavities@20,25#, and dielectric spheres@14#.
Unfortunately, such theoretical calculations have alwa
been quite difficult. And for complicated structures, such
the microdisk or the VCSEL, an analytical analysis of spo
taneous emission is only possible under some simplify
assumptions@25,32,33#. For more complicated structure
such as the two-dimensional or three-dimensional photo
crystals@34–37#, an analytical solution is even more prohib
tive. Therefore, to calculate the spontaneous emission p
erties in an arbitrary geometry, a numerical treatment can
more practical. In fact, a finite difference time domain alg
rithm ~FDTD! @38# has been applied to compute the spon
neous emission rate@39# and the external quantum efficienc
@23# in some dielectric structures. However, even though
©2000 The American Physical Society07-1
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equivalence of the quantum approach and classical appr
has been known for the case of spontaneous emission
@12,14–16,18–20#, to the authors’ knowledge, such equiv
lence has not been established for the external quantum
ciency and the spontaneous emission factor. Furthermore
algorithm capable of computing the spontaneous emis
rate, the external quantum efficiency, and the spontane
emission factor in the same framework is of great theoret
and practical interest. In this paper, we shall demonstrate
all these quantities can be calculated from classical elec
dynamics and propose a FDTD algorithm to analyze
spontaneous emission in an arbitrary lossless, inhomo
neous medium. In the following paper@40#, such an algo-
rithm is applied to calculate the modification of spontaneo
emission rate and spontaneous emission factor in a diele
microdisk.

To fully demonstrate the equivalence of classical elec
dynamics and quantum electrodynamics in the treatmen
spontaneous emission, we start from the quantum Maxw
equation, which has been extensively used in the literatur
quantize the electromagnetic field in a lossy medium@41–
45#. In this formalism, the quantization of the radiation fie
is based on the classical Green’s function and the quan
Langevin operators which account for the noise source n
essarily associated with the lossy medium and preserve
basic equal-time commutation relation of quantum electro
namics. In a similar way, Henry and Kazarinov@46# devel-
oped a quantum theory of lasers and amplifiers with arbitr
geometries ranging from closed cavities to traveling wa
amplifiers, where both the electromagnetic vector poten
and the current density are assumed to be quantum oper
that satisfy the Maxwell equation. The current density ope
tor can be split into two components: One part proportio
to the external electromagnetic field, which accounts for
stimulated emission, and another part represented by a q
tum Langevin operator that fluctuates randomly and acts
source for spontaneous emission. This approach is ado
by us to analyze the spontaneous emission of a two-le
atom embedded in an inhomogeneous and lossless diele
medium, since it has a form close to that of classical elec
dynamics and allows a direct comparison between the c
sical results and the quantum results.

An explanation of our notation is in order: Througho
this paper, all the quantum operators are denoted by an o
hat. All vectorial quantum operators are represented by b
letters, such as the vector potential operatorÂ. On the other
hand, the classical quantities do not have an overhat.
classical vectorial quantities, such as the vector potentia
the classical electromagnetic fieldAW , are indicated by an
overarrow. The classical vectors are not in bold letters
differentiate them from the quantum vectorial operators.
the later sections, all the quantities in the frequency dom
have a subscript or superscriptv. The subscripta or b refers
to the ath or bth component of the corresponding vect
quantity in Cartesian coordinates. The Gaussian units
used throughout this paper.

II. OPERATOR EQUATIONS

Let us consider the electromagnetic field in an inhomo
neous and lossless medium with dielectric constante(xW ).
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The vector potential operatorÂ(xW ,t) can be separated into
transverse component that satisfies the generalized Cou
gauge condition“•@e(xW )Â#50 @24#, and a longitudinal
component which is ignored since it does not contribute
the radiation process in a lossless medium@19#. Following
Ref. @24#, the transverse vector potential can be expan
into a complete set of orthonormal modes$AW n(xW )%

Â~xW ,t !5Â(2)~xW ,t !1Â(1)~xW ,t !, ~2.1a!

Â(2)~xW ,t !5(
n
A2p\c2

vn
ânAW n~xW !, ~2.1b!

Â(1)~xW ,t !5(
n
A2p\c2

vn
ân

†AW n* ~xW !, ~2.1c!

where we have separated the vector potential into a pos
frequency partÂ(1) and a negative frequency partÂ(2),
which are the Hermitian adjoints of each other. In the abo
equations,AW n(xW ) is thenth eigenmode as defined in Appen
dix A, and vn is its eigenfrequency.ân and ân

† are respec-
tively the photon destruction and creation operator wh
fulfill the canonical commutation relations

@ ân ,âm#5@ ân
† ,âm

† #50, @ ân ,âm
† #5dnm . ~2.2!

If a two-level atom with a transition frequencyV is lo-
cated within this dielectric medium at positionxW0 and inter-
acts with the quantized electromagnetic field, the to
Hamiltonian for such system can be written as@24#

Ĥ5E2b̂2
†b̂21E1b̂1

†b̂11(
n

\vnân
†ân

1(
n

@\knb̂2
†b̂1ân1\kn* ân

†b̂1
†b̂2#, ~2.3!

whereE2 is the energy of the excited atomic stateu2& andE1

is the energy of the ground stateu1&. b̂2
† and b̂1

† are, respec-
tively, the creation operators for the excited state and gro
state, whileb̂2 and b̂1 are the corresponding destruction o
erators. They satisfy the usual anticommutation rules:

b̂i b̂ j1b̂ j b̂i5b̂i
†b̂ j

†1b̂ j
†b̂i

†50, b̂i
†b̂ j1b̂ j b̂i

†5d i j , i , j 51,2.
~2.4!

The coupling coefficientkn in Eq. ~2.3! is defined as

kn52
e

\m
A2p\

vn
pW 12•AW n~xW0!, ~2.5!

wherepW 12 is the matrix element̂1uP̂u2& of the electron mo-
mentum operatorP̂ and is assumed to be a real quantity.

Using Fermi’s golden rule, the spontaneous emission
of a atom in the excited state can be calculate in a stand
way from the above Hamiltonian@24#. However, here we
shall deviate from this standard procedure and assume
7-2
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the atomic source has a ‘‘pure’’ dipole dephasing rateg12
which excludes the contribution from radiative decay. As
ciated with this nonzero dipole decay rate, a quantum Lan
vin operator must be introduced to preserve the commuta
relation in Eq.~2.4! @47#. Using the quantum Langevin equa
tion and the mode expansion relation Eq.~2.1!, a quantum
Maxwell equation can be derived for the operatorsÂ(2)(xW ,t)
and Ĵtot

(2)(xW ,t) which have only negative frequency comp
nents~see Appendix B for details!

e~xW !

c2

]2Â(2)~xW ,t !

]t2
52“3@“3Â(2)~xW ,t !#1

4p

c
Ĵtot

(2)~xW ,t !.

~2.6!

We can denote the Hermitian adjoints ofÂ(2)(xW ,t) and
Ĵtot

(2)(xW ,t), which contain only the positive frequency comp

nents, asÂ(1)(xW ,t) and Ĵtot
(1)(xW ,t). A similar equation for

them can be obtained from the Hermitian conjugation of
above equation. The quantum current sourceĴtot

(2) , as shown

in Appendix B, can be separated asĴtot
(2)5 Ĵf luc

(2) 1 Ĵind
(2) , con-

sisting of a fluctuating componentĴf luc
(2) whose ensemble av

erage satisfies

^Ĵf luc,a
(1) ~xW8,t8!Ĵf luc,b

(2) ~xW ,t !&

5S e

mD 2

p12,ap12,bd~xW2xW8!d~xW2xW0!

3n̄2e2 iV(t2t8)e2g12ut2t8u, ~2.7!

and an induced componentĴind
(2) proportional to the externa

vector potential

Ĵind,a
(2) ~xW ,t !5E

2`

t

dtxab~xW ,t2t!Âb
(2)~xW ,t!, ~2.8a!

xab~xW ,t!52
i

\c S e

mD 2

p12,ap12,bd~xW2xW0!~ n̄22n̄1!

3e2 iVte2g12t, ~2.8b!

where n̄1 and n̄2 are respectively the average occupati
number of the ground state and the excited state. As we h
mentioned before, the subscripta or b in Eq. ~2.7! and Eq.
~2.8a! refers to theath or bth component of a vectoria
quantum operator in the Cartesian coordinates.

Often it is more convenient to work in the frequency d
main. Hence we define the Fourier transformÔv of a quan-
tum operatorÔ(t) as

Ô~ t !5
1

A2p
E dv Ôve2 ivt, ~2.9a!

Ôv5
1

A2p
E dt Ô~ t !eivt. ~2.9b!
03380
-
e-
n

e

ve

Using these definitions, Eq.~2.7! and Eq.~2.8! can be rewrit-
ten as

^Ĵf luc,v8a
(1)

~xW8!Ĵf luc,vb
(2) ~xW !&

5S e

mD 2

p12,ap12,bd~v1v8!d~xW2xW8!

3d~xW2xW0!n̄2

2g12

~V2v!21g12
2

, ~2.10a!

Ĵind,va
(2) ~xW !5xab~v,xW !Âvb

(2)~xW !, ~2.10b!

xab~v,xW !52
i

\c S e

mD 2

p12,ap12,bd~xW2xW0!

3~ n̄22n̄1!
1

i ~V2v!1g12
. ~2.10c!

In laser theory@48#, xab(v,xW ) can usually be approximate
as a scalar quantityx(v,xW ) after averagingp12,ap12,b over
the polarizations of the gain medium . Thus in the frequen
domain the quantum Maxwell equation is

2“3@“3Âv
(2)#1F e~xW !

v2

c2
1

4p

c
x~v,xW !G Âv

(2)

52
4p

c
Ĵf luc,v

(2) . ~2.11!

An operator equation for the optical transition rate of t
electrons can also be derived from the Hamiltonian in E
~2.3! ~see Appendix B!

dN̂2

dt
5

i

\cE d3x @ Ĵtot
(1)

•Â(2)2Â(1)
• Ĵtot

(2)#, ~2.12!

whereN̂2 is defined asb̂2
†b̂2. This equation, together with th

quantum Maxwell equation, forms the basis of our calcu
tions in the later sections.

Having divided the current operatorĴtot
(2) into an induced

current and a fluctuating current, we can accordingly se
rate the optical transition of electrons as described by
~2.12! into two physically distinct processes: stimulate
emission and spontaneous emission@46#. The induced cur-
rent is the source of the stimulated emission, since it is p
portional to the vector potential of the electromagnetic fie
and the resulting electron transition rate is proportional to
photon density. On the other hand, the spontaneous emis
is caused by the fluctuating current@46#. At first, we might
guess that the ensemble average of the product of the
tuating current and the vector potential should be zero, si
they are independent of each other. However, this is not
because a small part of the vector potential is generated
the fluctuating current according to Eq.~2.11!. Therefore, the
ensemble average of this product has a nonzero compo
and accounts for the spontaneous emission.
7-3
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III. SPONTANEOUS EMISSION RATE

It is clear from Eq.~2.11! that the vector potential opera
tor Âv

(2) is a linear function of the current operatorĴf luc,v
(2) .

These two operators can be related to each other via
classical Green function defined as

2“3$“3@Gab
v ~xW ,xW8!eWa#%

1F e~xW !
v2

c2
1

4p

c
x~v,xW !GGab

v ~xW ,xW8!eWa

5eWbd~xW2xW8!. ~3.1!

Then we can expressÂv
(2) in terms ofĴf luc,v

(2) as

Âv
(2)~xW !52

4p

c E d3x8 eW aGab
v ~xW ,xW8!Ĵf luc,vb

(2) ~xW8!.

~3.2!

From the discussion following Eq.~2.12!, we find that the
spontaneous transition rate for the electrons in the exc
state is given by the beating between the fluctuating cur
and the vector potential radiated by this fluctuating curre

Ṅ̂2spon5
i

\cE d3x @ Ĵf luc
(1) ~xW ,t !•Â(2)~xW ,t !

2Â(1)~xW ,t !• Ĵf luc
(2) ~xW ,t !#. ~3.3!

Substituting Eq.~3.2! into Eq.~3.3!, and taking the ensembl
average using Eq.~2.10a!, we obtain

^ Ṅ̂2&spon5
4

\c2

e2

m2
p12,ap12,bn̄2

3E dv
2g12

~V2v!21g12
2

Im@Gab
v ~xW0 ,xW0!#.

~3.4!

The spontaneous emission rateg can be defined as

g52
4

\c2

e2

m2
p12,ap12,bE dv

2g12

~V2v!21g12
2

3Im@Gab
v ~xW0 ,xW0!#. ~3.5!

Similar results have been found in the literatu
@22,26,31,46#.

It has been noticed that the radiation power of a harmo
classical dipole current is proportional to the spontane
emission rate of a two-level atom wheng1250 @15,16,18–
20#. The result in Eq.~3.5!, which contains a Lorentzian
line-shape function, suggests that the total radiation ene
of a decaying classical dipole source should give us
spontaneous emission rate wheng12Þ0. To confirm this
conjecture, we split the dipole current density and the vec
potential into a positive frequency part and a negative
quency part, which are each other’s complex conjugate,
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JW~xW ,t !5
1

2A2p
F E

2`

1`

dv JWv~xW !e2 ivt1E
2`

1`

dv JWv* ~xW !eivtG ,
~3.6a!

AW ~xW ,t !5
1

2A2p
F E

2`

1`

dv AW v~xW !e2 ivt

1E
2`

1`

dv AW v* ~xW !eivtG . ~3.6b!

The classical wave equation at a given frequencyv is

2“3@“3AW v~xW !#1F e~xW !
v2

c2
1

4p

c
x~v,xW !GAW v~xW !

52
4p

c
JWv~xW !. ~3.7!

Using the Green function defined in Eq.~3.1!, the vector
potential is related to the current density via

AW v~xW !52
4p

c E d3x8 eW aGab
v ~xW ,xW8!Jv,b~xW8!. ~3.8!

In the following analysis, we assume the current densit
a d function located atxW0

JWv~xW !5
e

m
j vd~xW2xW0!pW 12. ~3.9!

The radiation field of this classical dipole current is eas
obtained from Eq.~3.8!

AW v~xW !5AW rad,v~xW ! j v , ~3.10a!

AW rad,v~xW !52
4pe

mc
eWaGab

v ~xW ,xW0!p12,b . ~3.10b!

Using Eq.~3.8!, we can also express the total energy
diated by this current source as

Erad52E dtE d3x JW~xW ,t !•EW ~xW ,t !

5
p

c2E d3xE d3x8E dv v@ iJv,a* ~xW !

3Jv,b~xW8!Ga,b
v ~xW ,xW8!1c.c.#. ~3.11!

Then for the current source in Eq.~3.9!, the total radiation
energy is

Erad52
2p

c2

e2

m2
p12,ap12,bVE dv u j vu2Im @Gab

v ~xW0 ,xW0!#,

~3.12!

where we have replacedv in Eq. ~3.11! as V, which is
equivalent to ignoring a small term of the orderg12/V.
7-4
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Notice that if we choosej v to be

j v5
1

i ~V2v!1g12
, ~3.13!

the classical radiation energy becomes proportional to
quantum spontaneous emission rate. Therefore, we have

gcav i ty

g f ree
5

Ecav i ty

Ef ree
, ~3.14!

wheregcav i ty is the spontaneous emission rate of the at
inside the dielectric microcavity, andg f ree is that of the atom
in free space,Ecav i ty is the total classical radiation energy
a corresponding dipole current in the same dielectric mic
cavity, Ef ree is the radiation energy of the same dipole cu
rent in free space. This proportionality allows us to calcul
the spontaneous emission rate from classical electrodyn
ics.

To numerically calculate the total radiation energy of
classical dipole, we can use the finite difference time dom
~FDTD! method@39#. In this method, we numerically solv
the following two equations:

1

c

]BW ~xW ,t !

]t
52¹3EW ~xW ,t !, ~3.15a!

e~xW !

c

]EW ~xW ,t !

]t
5¹3HW ~xW ,t !2

4p

c
JW~xW ,t !. ~3.15b!

The temporal dependence of the dipole current is fou
through using Eq.~3.6a!, Eq. ~3.9! and Eq.~3.13!, which
gives

JW~xW ,t !5H 0 t,0

pW 12

p12
d~xW2xW0!e2g12tcos~Vt ! t.0,

~3.16!

where we have normalized the current amplitude to 1.
should remember that the solutions of Eq.~3.15! contain
both a longitudinal field and a transverse field, while t
electromagnetic field satisfying Eq.~3.7! has a transverse
component only@49#. Correspondingly, in the numerical ca
culations, the influence of the longitudinal field should
carefully eliminated@39#.

IV. EXTERNAL QUANTUM EFFICIENCY

In Ref. @8#, a classical model was used to numerica
calculate the external quantum efficiencyh of a two-
dimensional photonic crystal structure, whereh is evaluated
as the ratio of the radiation power of a classical dipole sou
that goes through a given surfaceS divided by the total di-
pole radiation power. For a classical decaying source defi
in Eq. ~3.9!, it is more appropriate to use the radiation ener
rather than the radiation power. The radiation field of su
classical source is given in Eq.~3.10!, from which ES , the
total energy emitted through surfaceS, can be found by in-
tegrating the Poynting vector over surfaceS
03380
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ES5
c

4pE dt E
S
da nW •@EW 3HW #

52
1

8pES
daE dv vnW •Im $AW rad,v~xW !

3@¹3AW rad,v* ~xW !#% u j vu2. ~4.1!

Dividing ES by the total radiation energyEtotal , which is
obtained from the above equation after replacing the surf
Sby an arbitrary surface enclosing the dipole source, we fi
the classical expression for the quantum efficiencyh.

In the framework of quantum mechanics, the exter
quantum efficiencyh is defined as the amount of photons g
through surfaceS divided by the total photon emission an
can be easily found by using a quantum Poynting vec
which can be derived from Eq.~2.6! and its conjugate equa
tion for Â(1), Ĵtot

(1) :

e~xW !

c2

dȦ̂(2)

dt
1“3@“3Â(2)#5

4p

c
Ĵtot

(2) , ~4.2a!

e~xW !

c2

dȦ̂(1)

dt
1“3@“3Â(1)#5

4p

c
Ĵtot

(1) . ~4.2b!

Multiplying Ȧ̂(1) by Eq. ~4.2a! from the left, multiplying

Ȧ̂(2) by Eq. ~4.2b! from the right, and adding the two equa
tions, we get

d

dt H e~xW !

c2
Ȧ̂(1)

• Ȧ̂(2)1@“3Â(1)#•@“3Â(2)#J
1“•$2 Ȧ̂(1)3@“3Â(2)#1@“3Â(1)#3 Ȧ̂(2)%

5
4p

c
~ Ȧ̂(1)

• Ĵtot
(2)1 Ĵtot

(1)
• Ȧ̂(2)!, ~4.3!

which has the right form for energy conservation. Howev
we still need a constant factor to fully determine the ene
density and the Poynting vector. Notice that the last term
the above equation should represent the spatial density o
energy emission rate. Thus, apart from a constant factoC,
the spatial integration of this quantity should equal to t
atomic transition rate multiplied by the amount of ener
emission from each atomic transition. Consequently, fr
Eq. ~2.12! we have

2\V
dN̂2

dt
52\V

i

\cE d3x @ Ĵtot
(1)

•Â(2)2Â(1)
• Ĵtot

(2)#

5C
4p

c
~ Ȧ̂(1)

• Ĵtot
(2)1 Ĵtot

(1)
• Ȧ̂(2)!. ~4.4!

Approximate the time dependence ofÂ(2)(t) andÂ(1)(t) as
e2 iVt andeiVt, respectively, we find the constant factor to
7-5
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1/4p. Putting this constant factor into Eq.~4.3!, we get the
following equations for energy conservation

dÊ
dt

1“•Ŝ5P̂, ~4.5a!

Ê5
1

4p H e~xW !

c2
Ȧ̂(1)

• Ȧ̂(2)1@“3Â(1)#•@“3Â(2)#J ,

~4.5b!

Ŝ5
1

4p
$2 Ȧ̂(1)3@“3Â(2)#1@“3Â(1)#3 Ȧ̂(2)%,

~4.5c!

P̂5
1

c
$ Ȧ̂(1)

• Ĵtot
(2)1 Ĵtot

(1)
• Ȧ̂(2)%, ~4.5d!

where Ê is the energy density operator,Ŝ is the quantum
Poynting operator, and they closely resemble the result
classical electrodynamics@49#. Similar forms for the Poyn-
ting vectorŜ have been used in the literature@46,50#. With
this result, the amount of power emitted through surfacS
can be found by using Eq.~3.2!, integrating the quantum
Poynting vectorŜ over surfaceS, and taking ensemble ave
age by applying Eq.~2.10a!. The result is

^ŜS&52
1

4p2
n̄2E

S
daE dv vnW •Im $AW rad,v~xW !

3@“3AW rad,v* ~xW !#%
2g12

~V2v!21g12
2

. ~4.6!

Once again, choosingj v51/@ i (V2v)1g12# and com-
paring Eq.~4.6! with Eq. ~4.1!, we find the external quantum
efficiencyh satisfies

h5
^ŜS&

^Ŝtotal&
5

ES

Etotal
, ~4.7!

where^Ŝtotal& is calculated using Eq.~4.6! with the integra-
tion surfaceS replaced by a closed surface that contains
atomic source. From this relation, we conclude that the
ternal quantum efficiency can also be evaluated using a c
sical algorithm.

V. SPONTANEOUS EMISSION FACTOR

The spontaneous emission factorb of a given optical
mode is defined as the rate of spontaneous emission into
mode divided by the total spontaneous emission rate and
be derived from the photon rate equation in the followi
way.

We assume thatx(v,xW ) in Eq. ~2.11! is purely imaginary
with no frequency dependence, and contains two p
x(v,xW )52 ixa(xW )1 ixe(xW ), wherexa(xW ) gives the atomic
03380
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gain andxe(xW ) represents the mode loss. With this appro
mation, Eq.~2.6! becomes

e~xW !

c2

]2Â(2)

]t2
52“3@“3Â(2)#1

4p

c
@2 ixa~xW !

1 ixe~xW !#Â(2)1
4p

c
Ĵf luc

(2) . ~5.1!

From Sec. II, we know that the vector potential opera
Â(2)(xW ,t) in the above equation can be expanded as

Â(2)~xW ,t !5(
n
A2p\c2

vn
Ân~ t !e2 ivntAW n~xW !, ~5.2!

where ân(t) in Eq. ~2.1b! is replaced by ân(t)
5Ân(t)e2 ivnt and the operatorÂn(t) represents the slow
changing envelope ofân(t). If we are interested in an optica
modeAW 0(xW ), we can substitute Eq.~5.2! into Eq. ~5.1! and
multiply both sides byAW 0* (xW ). After spatial integration, we
obtain

dÂ0

dt
52

G0

2
Â01 iA 2p

\v0
E d3xAW 0* ~xW !• Ĵf luc

(2) ~xW ,t !eiv0t,

~5.3a!

G052
4pc

v0
E d3x„xa~xW !2xe~xW !…AW 0* ~xW !•AW 0~xW !,

~5.3b!

where the small termd2Â0 /dt2 is ignored. Taking the en-
semble average using Eq.~2.7!, from the above equation we
can derive the rate equation for the average photon num
in the 0th mode

d

dt
^Â0

†Â0&52G0^Â0
†Â0&1g0n̄2 , ~5.4a!

g05
4p

\vo

e2

m2
upW 12•AW 0~xW0!u2

g121
G0

2

~v02V!21S g121
G0

2 D 2 ,

~5.4b!

where g0 is the rate of spontaneous emission into the 0
mode. The spontaneous emission factorb for the this mode
can then be written as
7-6
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b5
g0

g

52
pc2

2v0

upW 12•AW 0~xW0!u2
g121

G0

2

~v02V!21S g121
G0

2 D 2

p12,ap12,bEdv
g12

~v2V!21g12
2

Im @Gab
v ~xW0 ,xW0!#

,

~5.5!

where g, the spontaneous emission rate of the two-le
atom in the microcavity, has been found in Eq.~3.5!.

It is also interesting to calculate the spontaneous emis
factor from another perspective. First we notice that
spontaneous emission rate is proportional to the imagin
part of the Green function

g;E dv
1

~v2V!21g12
2

Im @Gab
v ~xW0 ,xW0!#. ~5.6!

In Appendix C, we have expanded the Green function
terms of the optical modes$AW n%. For each resonance mode,
has a frequency dependence of the form 1/(v2vn1 iGn/2),
a function with a sharp peak for a highQ optical mode.
Therefore, it is natural to defineg0 as the rate of the spon
taneous emission as it goes into the frequency range
uv2v0u;G0. More specifically, from Eq.~3.5! and Eq.
~C5!, g0 is

g05
4

\v0

e2

m2
upW 12•AW 0~xW0!u2

3E dv
g12

~V2v!21g12
2

G0

2

~v2v0!21S G0

2 D 2 .

~5.7!

Since the convolution of two Lorentzian functions is still
Lorentzian function, we have the following result forg0:

g05
4p

\v0

e2

m2
upW 12•AW 0~xW0!u2

g121
G0

2

~v02V!21S g121
G0

2 D 2 ,

~5.8!

which is the same as Eq.~5.4b! derived from the photon rate
equation analysis.

In our previous analysis, we have shown that both
spontaneous emission rate and the external quantum
ciency can be calculated from the radiation field of a clas
cal decaying dipole. For the spontaneous emission facto
classical analogy would be the ratio of the energy emit
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into a given optical mode by a classical dipole. However,
need to specify what the ‘‘energy emitted into an optic
mode’’ is and how to calculate it.

For any classical electromagnetic field, we can expan
as

AW ~xW ,t !5
1

2 (
n

@an~ t !AW n~xW !1an* ~ t !AW n* ~xW !#, ~5.9a!

EW ~xW ,t !5(
n

H 2
1

2c
@ȧn~ t !AW n~xW !1ȧn* ~ t !AW n* ~xW !#J ,

~5.9b!

where an(t) represents the negative frequency part a
an* (t), its complex conjugate, is the positive frequency pa
The Fourier transforman,v of the expansion coefficien
an(t) is defined as

an~ t !5
1

A2p
E dv an,ve2 ivt. ~5.10!

Using the above definitions and the mode orthogonality c
dition, we have

an,v5E d3x e~xW !AW n* ~xW !•AW v~xW !, ~5.11!

whereAW v(xW ) is given in Eq.~3.6!. For a classical current in
Eq. ~3.9!, the radiation field is given by Eq.~3.10! and can be
expanded according to Eq.~5.9a!. The expansion coefficien
a0,v of the 0th mode is found from Eq.~5.11!

a0,v52
2pec

mv0
pW 12•AW 0* ~xW0!

j v

v2v01 i
G0

2

, ~5.12!

where we have used Eqs.~C5!, ~3.9!, ~3.10!, and the mode
orthogonality condition.

The energy emitted into the 0th modeAW 0 is naturally de-
fined as

E052E dt E d3x JW~xW ,t !•H 2
1

2c
@ȧ0~ t !AW 0~xW !

1ȧ0* ~ t !AW 0* ~xW !#J . ~5.13!

After using Eq.~5.12!, E0 becomes
7-7
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E05
e

8pmcE dt F E dv j ve2 ivt1c.c.G•F E dv8~2 iv8!

3a0,v8e
2 iv8tpW 12•AW 0~xW0!1c.c.G

5
pV

v0

e2

m2
upW 12•AW 0~xW0!u2E dv u j vu2

G0

2

~v2v0!21S G0

2 D 2 .

~5.14!

Once again, we choosej v to be j v51/@ i (V2v)1g12# and
carry out the frequency integration in Eq.~5.14! to get

E05
p2V

v0g12

e2

m2
upW 12•AW 0~xW0!u2

g121
G0

2

~V2v0!21S g121
G0

2 D 2 .

~5.15!

Finally, in the classical framework, we define the sponta
ous emission factor for the modeAW 0 as

b5
E0

E

52
pc2

2v0

upW 12•AW 0~xW0!u2
g121

G0

2

~v02V!21S g121
G0

2 D 2

p12,ap12,bEdv
g12

~v2V!21g12
2

Im @Gab
v ~xW0 ,xW0!#

,

~5.16!

whereE, the total energy emitted by this current source,
given by Eq.~3.12!. This equation shows that the spontan
ous emission factor obtained from classical electrodynam
is the same as our quantum result given in Eq.~5.5!.

This classical analysis can also be implemented num
cally to obtain the spontaneous emission factor. As bef
we can solve Eq.~3.15! to get the radiation field of the clas
sical dipole current source given in Eq.~3.16!. However, we
would like to find a simpler expansion scheme than E
~5.9a! and it is more convenient to work with real numb
instead of complex number. We recall that if the dielect
constante(xW ) is real, the eigenmode functionAW n(xW ) can be
chosen to be a real function. In this case, the electric field
be expanded as

EW ~xW ,t !5(
n

ãn~ t !AW n~xW !, ~5.17a!

ãn~ t !5E d3x e~xW !AW n~xW !•EW ~xW ,t !, ~5.17b!
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n

E052E dt E d3x ã0~ t !JW~xW ,t !•AW 0~xW !. ~5.17c!

Thus to calculate the spontaneous emission factor, first
find a properly normalized mode functionAW 0(xW ), either nu-
merically or analytically. Then we can use the above exp
sion relations to evaluateã0 from the dipole radiation field,
which in turn givesE0. Finally, dividing E0 by E, the total
dipole radiation energy, we obtain the spontaneous emis
factor b.

VI. DISCUSSION

As a simple exercise in using the previous theoretical
sults, we calculate the spontaneous emission rate in a
medium with dielectric constantebulk . Assuming the dielec-
tric medium is placed in a big box of volumeV, the appro-
priate normalized modes are simply

AW n,s~xW !5
1

AebulkV
eW se2 ikWn•xW, ~6.1!

whereeWs represents the polarization of the electromagne
mode. Applying Eq.~5.8! and averaging over the mode po
larization, the spontaneous emission rate into each individ
mode becomes

gn5
4pV

3\ebulkV
umW 12u2

g12

~vn2V!21g12
2

, ~6.2!

where we have usedpW 1252 imVmW 12/e and set the cavity
mode decay rate to 0. The total spontaneous emission ra
then obtained from multiplying Eq.~6.2! by the density of
modes,Vebulk

3/2 v2/p2c3, and integrating over the frequenc
domain

g5
4VAebulk

3p\c3
umW 12u2E dv v2

g12

~v2V!21g12
2

5
4V3AebulkumW 12u2

3\c3
, ~6.3!

which is identical to the quantum mechanical result@48#.
The previous theoretical analysis can also be directly

plied to estimate the spontaneous emission factor in
types of microcavities: the dielectric microcavity, such as
defect cavity in a photonic crystal@51# or a microdisk cavity
@36#, and the concentric or confocal cavities@52,53# ~see also
Fig. 1!. Since an analytical solution is very difficult for suc
complicated structures, the spontaneous emission rate
the spontaneous emission factor are usually estimated
making various approximations. These estimations h
been discussed, and their range of validity has been gen
ized in Ref.@52#. As we shall show here, these results can
directly derived from Eq.~5.8!.

The first type of microcavity can be designed such tha
supports a highQ mode. Usually we can define an effectiv
7-8
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cavity volumeVe such thatAW 0,s(xW0), the mode function at
xW0, can be approximated aseWs /AeVe, where eWs is a unit
vector ande is the dielectric constant of the cavity medium
With this approximation, the spontaneous emission rate
the cavity mode,gcav , is directly obtained from Eq.~5.8!

gcav5
4pV

\eVe
umW 12•eWsu2

g121
Gcav

2

~vcav2V!21S g121
Gcav

2 D 2 ,

~6.4!

where vcav is the cavity frequency andGcav is the cavity
photon decay rate. If we assume the total spontaneous e
sion rate is essentially the same as the bulk value give
Eq. ~6.3!, the spontaneous emission factor is

b5
3

8p2

le
3

Ve

umW 12•eWsu2

umW 12u2

VS g121
Gcav

2 D
~vcav2V!21S g121

Gcav

2 D 2 ,

~6.5!

wherele is the light wavelength in dielectric medium. Th
estimation is quite close to the ‘‘one photon per mode’’ a
proach in Ref.@52#. However, we should stress that in ma
cases, this estimation is only qualitatively correct, since
spontaneous emission rate can be greatly modified by
high Q cavity modes, such as the whispering gallery mod
in a dielectric sphere@14#. If an exact result is needed, w
can always use the algorithm described in Sec. V.

The second type of cavities, the concentric or the confo
cavities, which consist of two mirrors in free space with hi

FIG. 1. Spontaneous emission in an optical resonator:~a! The
end emission and the side emission;~b! the side mode and the en
mode.
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reflectivity, are widely used in atomic beam experimen
@3,53#. The spontaneous emission process in such cav
can usually be classified into two types: the side emiss
and the end emission@3# @see Fig. 1~a!#. In the side emission
process, the photons are radiated to the side of the cavity
enter into free space without passing through the end m
rors. Assuming that the end mirror of the cavity spans a so
angle ofDVcav to the emission atom, the side spontaneo
emission rate is just proportional to (12DVcav /4p)g f ,
whereg f is the free space spontaneous emission rate. In
end emission process, the photons are first radiated into
cavity mode, and then coupled to the outside free sp
mode through the decay of the cavity mode. Therefore,
end emission rate can be estimated from Eq.~6.4!. The total
spontaneous emission rate, as a result of the two emis
processes, becomes

g5g f S 12
DVcav

4p D

1g f

3

8p2

l3

Ve

VS g121
Gcav

2 D
~vcav2V!21S g121

Gcav

2 D 2 , ~6.6!

as has been shown in Ref.@52#.
The spontaneous rate can also be estimated in ano

way similar to the Fano-type approach in Ref.@52#. Instead
of using the cavity mode, we assume that the cavity is ins
a big box of volumeV and use the electromagnetic mod
within the whole box to calculate the spontaneous emiss
rate. Corresponding to the two emission processes in the
vious analysis, these electromagnetic modes can also be
sified into two types: the side modes and the end modes@see
Fig. 1~b!#. The side modes are defined as the modes wh
wave vectorkWn is mostly outside the solid angleDVcav
spanned by the end mirrors, and the rest modes are calle
end modes. Assuming that the box is big enough so that
mode density is not changed by the presence of the ca
the density of states for the side modes and the end mo
are, respectively, (12DVcav /4p)Vv2/p2c3, and
(DVcav /4p)Vv2/p2c3.

For the end modes, the field intensity inside the cavity
enhanced due to the interference of the two mirrors. T
enhancement factor is@52,54#

A~v!5
2v f sr

pGcav

S Gcav

2 D 2

~v2vcav!21S Gcav

2 D 2 , ~6.7!

where thevcav is the cavity resonant frequency,Gcav is the
cavity mode decay rate,v f sr is the free spectral range. Th
Gcav andv f sr are defined as follows:

Gcav5
12R

p
v f sr , ~6.8a!
7-9
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v f sr5
pc

L
, ~6.8b!

whereR is the intensity reflectivity of the end mirror, andL
is the cavity length. To find the spontaneous emission rat
the end modes, we multiply Eq.~6.2! by this enhancemen
factor A(v), and the density of end modes, which is
2DVcav /4p)Vv2/p2c3, then integrate the product, wit
the result

gend5
DVcav

4p

4V

3p\c3
umW 12u2E dv v2A~v!

g12

~v2V!21g12
2

5
DVcav

4p
g f

Gcav

12R

g121
Gcav

2

~vcav2V!21S g121
Gcav

2 D 2 . ~6.9!

For the side modes, such interference enhancement is
sent since the electromagnetic field of the modes does
propagate through the two mirrors. So the mode amplitud
AW n(xW0) is still 1/AV. We can use the density of modes giv
before to include the spontaneous emission rate of every
modes. The result is

gside5S 12
DVcav

4p D 4V

3p\c3
umW 12u2E dv v2

g12

~v2V!21g12
2

5S 12
DVcav

4p Dg f . ~6.10!

The total spontaneous emission rate is the sum ofgend and
gside

g5g f S 12
DVcav

4p D

1g f

DVcav

4p

Gcav

12R

g121
Gcav

2

~vcav2V!21S g121
Gcav

2 D 2 .

~6.11!

From diffraction considerations,Ve can be estimated a
@52#

Ve;
l2L

DVcav
. ~6.12!

Using this result, Eqs.~6.6! and~6.11!, which give the spon-
taneous emission rate using a different approach, agree
each other, as in Ref.@52#. The spontaneous emission fact
can also be estimated using either Eq.~6.6! or Eq.~6.11!, and
naturally the two results are essentially the same.
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VII. SUMMARY

Starting from the quantum Maxwell equation, we analy
the spontaneous emission process of a two-level atom
lossless and inhomogeneous dielectric cavity. We find th
decaying current source is the classical analogy of a t
level atom with finite dipole dephasing rate. By establishi
the equivalence between the classical approach and qua
approach, we show that a classical numerical algorithm
be used to simulate the spontaneous emission process
microcavity, as illustrated in Fig. 2. First we use the fin
difference time domain method to calculate the radiat
field of a classical current given by Eq.~3.16!. The modifi-
cation of the spontaneous emission rate can be found
calculating the total radiation energy of this classical dip
current source in the microcavity. The external quantum
ficiency is found from the energy emission by this curre
source through a given surfaceS divided by the total radia-
tion energy. The spontaneous emission factor of a gi
mode can also be obtained by calculating the energy em
sion into that particular mode and dividing the result by t
total radiation energy.

ACKNOWLEDGMENTS

This research was sponsored by the Army Research
fice and the Office of Naval Research. R. K. Lee also
knowledges support from the National Science and En
neering Research Council of Canada.

APPENDIX A

We summarize some important properties of the eig
modes$AW n(xW )% that were used by Glauber and Lewenstein
quantize the electromagnetic field in a linear, lossless die
tric medium@24#. First, they satisfy the following eigenmod
equations:

“3@“3AW n~xW !#5
vn

2e~xW !

c2
AW n~xW !, ~A1!

FIG. 2. Schematic of the classical algorithm for the calculat
of the spontaneous emission rate, external quantum efficiency,
spontaneous emission factor.
7-10
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wherevn is the eigenvalue for thenth eigenmode. Also, the
eigenmodes are orthonormal and complete

E d3x e~xW !AW m* ~xW !•AW n~xW !5dmn , ~A2a!

dab
e ~xW ,xW8!5e~xW !(

n
Ana~xW !Anb* ~xW8!, ~A2b!

where Ana(xW ) is the ath components of the vector eigen
mode AW n(xW ). This dab

e (xW ,xW8) is analogous to the standar
transversed function and was discussed in Ref.@24#. In this
paper, we approximate it as

dab
e ~xW ,xW8!5dabd~xW2xW8!. ~A3!

APPENDIX B

From the Hamiltonian in Eq.~2.3! and the Heisenberg
equation of motion, we can derive the following opera
equations:

d ân

dt
52 ivnân2 ikn* b̂1

†b̂2 , ~B1a!

d b̂1
†b̂2

dt
52 iVb̂1

†b̂21 i(
n

kn~ b̂2
†b̂22b̂1

†b̂1!ân ,

~B1b!

d b̂2
†b̂2

dt
52

d b̂1
†b̂1

dt
52 i(

n
knb̂2

†b̂1ân1 i(
n

kn* ân
†b̂1

†b̂2 .

~B1c!

To account for a finite dipole dephasing rateg12, Eq. ~B1b!
should also include a quantum Langevin operatorG12(t) @47#

d b̂1
†b̂2

dt
5~2 iV2g12!b̂1

†b̂21 i(
n

kn~ b̂2
†b̂22b̂1

†b̂1!ân

1Ĝ12~ t !. ~B2!

If we ignore the dipole dephasing due to radiative decay,
ensemble average of the Langevin operatorG12 is @47#

^Ĝ12
† ~ t !Ĝ12~ t8!&52g12n̄2d~ t2t8!, ~B3a!

^Ĝ12~ t !Ĝ12
† ~ t8!&52g12n̄1d~ t2t8!, ~B3b!

where n̄1 and n̄2 are the average occupation number of t
ground state and the excited state. If we define a dipole
larization operatorp̂tot as p̂tot5b̂1

†b̂2 and integrate Eq.~B2!,

we find that the operatorp̂tot can be separated into an in
duced partp̂ind proportional to the external electromagne
field and a randomly fluctuating partp̂f luc
03380
r

e

o-

p̂tot~ t !5 p̂ind~ t !1 p̂f luc~ t !, ~B4a!

p̂ind~ t !5~ b̂2
†b̂22b̂1

†b̂1!E
2`

t

dt i(
n

knân~t!e2( iV1g12)(t2t),

~B4b!

^ p̂f luc
† ~ t ! p̂f luc~ t8!&5n̄2eiV(t2t8)e2g12ut2t8u, ~B4c!

^ p̂f luc~ t ! p̂f luc
† ~ t8!&5n̄1eiV(t82t)e2g12ut2t8u, ~B4d!

where in the derivation of Eqs.~B4c! and ~B4d!, we have
used Eq.~B3!. Generally the termb̂2

†b̂22b̂1
†b̂1 can be re-

placed by its ensemble averagen̄22n̄1 @46#.
Taking the time derivative of Eq.~B1a!, we find

d2ân

dt2
52vn

2ân22vnkn* p̂tot , ~B5!

where the time derivativedp̂tot /dt is approximated by
2 ivnp̂tot . This approximation is legitimate in the weak co
pling regime, sincedp̂tot /dt is roughly 2 iV p̂tot and the
difference betweenvn andV is a small quantity of the orde
of g12. Using the mode expansion given in Eq.~2.1!, we find
the quantum Maxwell equation which takes the form of E
~2.6!, where the quantum current operatorĴtot

(2) is simply

Ĵtot
(2)5 Ĵf luc

(2) 1 Ĵind
(2) , ~B6a!

Ĵf luc
(2) 5

e

m
pW 12d~xW2xW0! p̂f luc , ~B6b!

Ĵind
(2)5

e

m
pW 12d~xW2xW0! p̂ind . ~B6c!

According to this relation, Eqs.~2.7! and ~2.8! can also be
derived from Eqs.~2.1! and ~B4!.

Similarly, from Eqs.~2.1! and~B1c!, we find the quantum
operator equation for the electron transition rate Eq.~2.12!.

APPENDIX C

The expansion of the classical Green function is deriv
in this section. Take the loss and the gain of the optical m
into account, the eigenmode equation becomes

2“3@“3AW n~xW !#1
4p i

c
@2xa~xW !1xe~xW !#AW n~xW !

52
e~xW !

c2
v̄n

2AW n~xW !, ~C1a!

v̄n5vn2 i
Gn

2
, ~C1b!
7-11



YONG XU, REGINALD K. LEE, AND AMNON YARIV PHYSICAL REVIEW A 61 033807
Gn52
4pc

vn
E d3x@xa~xW !2xe~xW !#AW n* ~xW !•AW n~xW !,

~C1c!

wherexa(xW ) andxe(xW ) are defined in Eq.~5.1!. Correspond-
ingly, the Green function satisfies

2“3$“3@Gab
v ~xW ,xW8!eWa#%1F e~xW !v2

c2
1

4p i

c
@2xa~xW !

1xe~xW !#GGab
v ~xW ,xW8!eWa5d~xW2xW8!eWb , ~C2!

and can be expanded as
e

J.

e

.

ys

ev

03380
Gab
v ~xW ,xW8!5(

n
gnAn,a~xW !. ~C3!

Using Eqs.~C1!, ~C2!, and~A2a!, we solve forgn and find

gn5
c2

2vn

An,b* ~xW8!

v2vn1 i
Gn

2

, ~C4!

where we have replacedv22vn
2 by 2vn(v2vn). Finally,

we have

Gab
v ~xW ,xW8!5(

n

c2

2vn

An,a~xW !An,b* ~xW8!

v2vn1 iGn/2
. ~C5!
um

nd

ys.
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