PHYSICAL REVIEW A, VOLUME 61, 033807

Quantum analysis and the classical analysis of spontaneous emission in a microcavity
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Starting from a quantum Maxwell equation for the vector potential operator, we study the spontaneous
emission properties of a two-level atom interacting with the electromagnetic field in a lossless and inhomoge-
neous dielectric structure and express the spontaneous emission rate, the external quantum efficiency, and the
spontaneous emission factor in terms of the classical Green function of the dielectric structure. Comparing
these results with the corresponding classical results, we show that the above quantities can be calculated from
the radiation field of a classical dipole. Based on this correspondence, a numerical algorithm is developed to
calculate the modification of spontaneous emission in microcavities. The line shape of the emission spectrum
of the light source and the decay of the cavity resonant modes are automatically taken into account in this
algorithm. The approximate expressions for the spontaneous emission rate and the spontaneous emission factor
are discussed.

PACS numbes): 42.55.Sa, 42.70.Qs, 32.8&

[. INTRODUCTION by using a structure similar to that of a vertical cavity surface

It is well known that the radiation process of an atomemitting laseVCSEL) [7]. It is also demonstrated theoreti-
depends on its environmefit], and the study of the interac- cally that further improvement is possible by introducing a
tion between the atom and the electromagnetic field inside avo-dimensional photonic crystal structur@]. Another ex-
cavity structure has come to be called cavity quantum elecample is the so-called “thresholdless las¢®-11]. From a
trodynamic QED). The most simple, and yet fundamentally simple rate equation analysis, it is shown that if the sponta-
important, system of cavity QED is a single two-level atomneous emission factor of the lasing mode is close to 1, the
coupled with a single cavity electromagnetic mode, whichthreshold in the light versus pumping curve disappears.
was first studied theoretically by Jaynes and Cumm{i@ys  Therefore, it is important to be able to theoretically calculate
An important parameter in such a system is the couplinghe spontaneous emission properties of an atom in a micro-
constant between the atom and the cavity mode, which cagavity.
be estimated asc=(u1,/%)V27hQIV, where Q is the Most of the theoretical analysis of the spontaneous emis-
atomic transition frequency is the cavity volume, angky,  sion in a cavity structure concentrated on the modification of
is the dipole matrix element of the atof]. However, to  spontaneous emission rate, which can be calculated using
describe the radiation process of the atom, the damping dafither a classical approach or a quantum approach. In the
the system must be taken into account. If we assume thelassical picture, the modification of spontaneous emission
atom has a dipole dephasing ratg,, and the decay rate of rate is due to the radiation reaction of the reflected field on
the cavity photon i3, , the radiation process falls into two the classical dipole sour¢&2—20. The quantum description
physically distinctive regimes: the strong coupling regimeof spontaneous emission treat it as an emission stimulated by
with «>(vy15,Ico,), and the weak coupling regime with  the vacuum field fluctuatiof18,19,21-30 The similarity
<(v12.I'ca,) [3]. The strong coupling regime is character- between the classical approach and the quantum approach
ized by the double peak in the emission spectrum, and thkas also been noticdd2,16,3]. Using these methods, the
oscillatory behavior of the excited state occupation numbemodification of spontaneous emission rate has been calcu-
[4]. In this paper, we shall confine ourselves to the wealated for various geometries, such as homogeneous absorb-
coupling regime, and study the correspondence between theg media[19,26], parallel metal plate$18,22,31, metal
quantum picture and the classical picture of spontaneousphereq31], dielectric slab waveguidg®7,28], planar di-
emission. electric microcavitieg 20,25, and dielectric spherefl4].

One of the most interesting aspects of the weak-couplingnfortunately, such theoretical calculations have always
radiation process is the spontaneous emission enhancemdsgen quite difficult. And for complicated structures, such as
or inhibition by the cavity structur¢l]. The enhancement the microdisk or the VCSEL, an analytical analysis of spon-
was experimentally verified by Gost al. [5], and the inhi- taneous emission is only possible under some simplifying
bition was first demonstrated by Kleppr&]. Such cavity- assumptions[25,32,33. For more complicated structures
induced modification of spontaneous emission continues tsuch as the two-dimensional or three-dimensional photonic
be the subject of intense theoretical and experimental reerystals[34—37], an analytical solution is even more prohibi-
search. Part of the reason is that these new phenomena ctive. Therefore, to calculate the spontaneous emission prop-
deepen our understanding of the atom-field interaction andrties in an arbitrary geometry, a numerical treatment can be
are therefore theoretically important. Another factor, how-more practical. In fact, a finite difference time domain algo-
ever, is the practical importance of controlling the light emis-rithm (FDTD) [38] has been applied to compute the sponta-
sion by means of cavities. For example, the external quantumeous emission ra{@9] and the external quantum efficiency
efficiency of a light-emitting diode is significantly improved [23] in some dielectric structures. However, even though the
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equivalence of the quantum approach and classical approagtye vector potential operataﬁr(i,t) can be separated into a

has been known for the case of spontaneous emission rafe, o ;
. nsverse component that satisfies the generalized Coulomb
[12,14-16,18-2]) to the authors’ knowledge, such equiva- P g

lence has not been established for the external quantum ef§i@uge conditionV -[¢(x)A]=0 [24], and a longitudinal
ciency and the spontaneous emission factor. Furthermore, &?MPonent which is ignored since it does not contribute to
algorithm capable of computing the spontaneous emissiofl€ radiation process in a lossless mediti]. Following
rate, the external quantum efficiency, and the spontaneouef. [24], the transverse vector potential can be expanded
emission factor in the same framework is of great theoreticainto a complete set of orthonormal mod{e@(i)}

and practical interest. In this paper, we shall demonstrate that

all these quantities can be calculated from classical electro- A(x,H)=AC)(x,t) + At (x 1), (2.13
dynamics and propose a FDTD algorithm to analyze the
spontaneous emission in an arbitrary lossless, inhomoge- . . 2mhcl. . .
neous medium. In the following papé40], such an algo- AC(x,H)=D, \/——a,A(X), (2.1b
rithm is applied to calculate the modification of spontaneous n @n
emission rate and spontaneous emission factor in a dielectric P
microdisk. ALY D N T TP
To fully demonstrate the equivalence of classical electro- Al )(X’t)_; n anAn (X), (219

dynamics and quantum electrodynamics in the treatment of
spontaneous emission, we start from the quantum Maxwellvhere we have separated the vector potential into a positive
equation, which has been extensively used in the literature tRequency partA(*) and a negative frequency pakt™),

quantize the electromagnetic field in a lossy medi#b— \\hich are the Hermitian adjoints of each other. In the above

45]. In this formalism, the quantization of the radiation field i X (%) is thenth ei d defined in A
is based on the classical Green’s function and the quantur‘ﬁqua ionsAn(x) is thenth eigenmode as defined in Appen-

Langevin operators which account for the noise source nedlix A, and w, is its eigenfrequencya,, anda; are respec-
essarily associated with the lossy medium and preserve tHévely the photon destruction and creation operator which
basic equal-time commutation relation of quantum electrodyfulfill the canonical commutation relations

namics. In a similar way, Henry and Kazarinp46] devel- o L o

oped a quantum theory of lasers and amplifiers with arbitrary [a,,am]=[a.a"1=0, [a,,a/]=6m. (2.2
geometries ranging from closed cavities to traveling wave

amplifiers, where both the electromagnetic vector potential If a two-level atom with a transition frequendy is lo-
and the current density are assumed to be quantum operataigted within this dielectric medium at positiog and inter-
that satisfy the Maxwell equation. The current density operaacts with the quantized electromagnetic field, the total

tor can be split into two components: Or_1e part proportionalyamiltonian for such system can be written[24]
to the external electromagnetic field, which accounts for the

stimulated emission, and another part represented by a quan- A oo ~ o ~tn

tum Langevin operator that fluctuates randomly and acts as a H=E,blb,+E,blb; + > #rwjala,

source for spontaneous emission. This approach is adopted "

by us to analyze the spontaneous emission of a two-level A A

atom embedded in an inhomogeneous and lossless dielectric +E [ﬁKanblan‘FﬁK: aﬁb{bz], (2.3
medium, since it has a form close to that of classical electro- "

d_ynamics and allows a direct comparison between the CIa%/Y/hereE is the energy of the excited atomic sti2é andE
sical results and the quantum results. 2 !

An explanation of our notation is in order: Throughout 'S the energy of the ground stgte). b and b are, respec-
this paper, all the quantum operators are denoted by an ovdively, the creation operators for the excited state and ground
hat. All vectorial quantum operators are represented by bolgtate, whileb, andb, are the corresponding destruction op-
letters, such as the vector potential oper#oiOn the other ~ €rators. They satisfy the usual anticommutation rules:
hand, the classical quantities do not have an overhat. The . . . Cetnt o atat fin o m oy .
classical vectorial quantities, such as the vector potential ofibj+bjbi=bibj+Dbjbi=0, bib;+bjbi=4;, i,j=12.

the classical electromagnetic field, are indicated by an (2.4
overarrow. The classical vectors are not in bold letters torhe coupling coefficient,, in Eq. (2.3 is defined as
differentiate them from the quantum vectorial operators. In

the later sections, all the quantities in the frequency domain e 2mh . . .

have a subscript or superscript The subscriptr or B refers K=~ % m w—n P12- An(Xo), (2.9

to the ath or Bth component of the corresponding vector
guantity in Cartesian coordinates. The Gaussian units al

Nherep,., is the matrix elementl1|P|2) of the electron mo-
used throughout this paper. P12 nt1|P|2)

mentum operatoP and is assumed to be a real quantity.
Il. OPERATOR EQUATIONS Using Fermi’s golden rule, the spontaneous emission rate
of a atom in the excited state can be calculate in a standard

Let us consider the electromagnetic field in an inhomogeway from the above Hamiltoniaf24]. However, here we
neous and lossless medium with dielectric constepd).  shall deviate from this standard procedure and assume that
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the atomic source has a “pure” dipole dephasing rgte  Using these definitions, E¢R.7) and Eq.(2.8) can be rewrit-
which excludes the contribution from radiative decay. Asso+ten as

ciated with this nonzero dipole decay rate, a quantum Lange- A A

vin operator must be introduced to preserve the commutation (0 (X6 L 500)

relation in Eq.(2.4) [47]. Using the quantum Langevin equa-

tion and the mode expansion relation Eg.1), a quantum
Maxwell equation can be derived for the operat.é%)()?,t)

and J{,)(x,t) which have only negative frequency compo-

2
e - -
= (a) P124P1250(0+ @") S(X—X")

nents(see Appendix B for details % 5(;_;0)6%, (2.10a
Q=)+
€ 02'&(7)(;'0— VX[VXAC)(x,t +47T I (x,t
e e (DIF 7 Jod ). 3:d e =Xap@DAC)(R), (210D
(2.6 . 5
. ife Siz

We can denote the Hermitian adjoints f~)(x,t) and Xapl®X)= hc(m) P124P1259(X~X0)
36 (x,t), which contain only the positive frequency compo- -
nents, asA(*)(x,t) and 3{{)(x,t). A similar equation for X (Ny—Ny)s (2.100

them can be obtained from the Hermitian conjugation of the Q= o)ty

above equation. The quantum current soulgg , as shown In laser theory{48], Xaﬁ(w’)z) can usually be approximated

ir_1 Appendix B, can be separated «i*fﬁ_t):Jgﬂj)chJi(ﬁd)a CON" as a scalar quantity(w,x) after averaging;, P12 OVer
sisting of a fluctuating componedf;, whose ensemble av- the polarizations of the gain medium . Thus in the frequency
erage satisfies domain the quantum Maxwell equation is

Ik A I s(x,1) R C 0 Am L.
Wi fue,a%)) ~VX[VXAD T+ e(X) =5 + —x(w,x) |AL)
C

e\? I,

— S(X—X")8(X—Xp)
m) P124P12,50( ( 0 am
= 3¢ (2.11

fluc,w *

Xﬁze*iﬂ(t*t’)efylzltftrl, (27) __T
An operator equation for the optical transition rate of the

. 3 7) .
and an induced componedf, ] proportional to the external electrons can also be derived from the Hamiltonian in Eqg.

vector potential (2.3 (see Appendix B
t A~
Hdok0= [ dryopit- AL, (280 dR, _ | S A A5 A
ind, o B B W: %J d?’X[JSt)-A( )_A(+).J§0t)], (2.12
H 2
Xaﬁ()-()! 7)=— hl_ E) |012,QP12¢35(>2—>20)(F2—F1) whereN, is defined a$}b,. This equation, together with the
c\m quantum Maxwell equation, forms the basis of our calcula-
X e 107g= 7127, (2.8b tions in the later sections.

Having divided the current operatdf,, into an induced
wheren; and n, are respectively the average occupationcurrent and a fluctuating current, we can accordingly sepa-
number of the ground state and the excited state. As we havate the optical transition of electrons as described by Eqg.
mentioned before, the subscriptor 8 in Eq. (2.7) and Eq.  (2.12 into two physically distinct processes: stimulated
(2.83 refers to theath or Bth component of a vectorial €mission and spontaneous emissjés]. The induced cur-
guantum operator in the Cartesian coordinates. rent is the source of the st|mglated emission, since it is pro-

Often it is more convenient to work in the frequency do- portional to the vector potential of the electromagnetic field

. . . P _and the resulting electron transition rate is proportional to the
main. Hence we define the Fourier transfoy of a quan photon density. On the other hand, the spontaneous emission

tum operatoiO(t) as is caused by the fluctuating currd6]. At first, we might
guess that the ensemble average of the product of the fluc-

O(t)z Lf dw O, e-iot, (2.99 tuating cgrrent and the vector potential should bg zero, since
27 @ they are independent of each other. However, this is not true
because a small part of the vector potential is generated by
1 the fluctuating current according to Eg.11). Therefore, the
()w:_f dt O(t)e'“!. (2.0p  ensemble average of this product has a nonzero component
\/ﬁ and accounts for the spontaneous emission.
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III. SPONTANEOUS EMISSION RATE 1 o o
v +) — T (v)\a—iot T* (o) ai ot
It is clear from Eq.(2.1]) that the vector potential opera- %!~ == J',w do J,(0e "+ f,m do J, ()&,
tor A7) is a linear function of the current operatdl,), ,,. (3.69
These two operators can be related to each other via the '
classical Green function defined as A0 1 fwd A (De-ot
X,t)= wA,(x)e '?
0 2 ong 2\2m| )
— VXYV X[Ggp(x,X")e,]}

2

O T - . (3.6b
E(X)§+ TX(w.X)

+ N N .
+ f do A¥(x)ei“!

+ Gus(X.X")E,

The classical wave equation at a given frequencig

=eg8(X—x'). (3.1 )
. . N - T S
Then we can express!, ) in terms ofd{ ) , as —VX[VXA,(X)]+ G(X)?ﬁL < X(@X) |Ay(X)
AC )=~ 2T [ 636 8,G,0, )3 0p3) aANE
® c aap\ ™ fluc,wB . = — TJ“’(X) (37)

(3.2

From the discussion following E¢2.12, we find that the USIng the Green function defined in E.1), the vector
spontaneous transition rate for the electrons in the exciteBOtential is related to the current density via
state is given by the beating between the fluctuating current

and the vector potential radiated by this fluctuating current A, (X)=— 4_7TJ d3x’ éang(i x')J /3()2')- (3.9
c a ’ w,
5 i N N
NZSpon:%f d3x [ Ik (x, 1) - ACI(x,b) In the following analysis, we assume the current density is
a ¢ function located atzo
—AD(x,1)- I L (x, 0. (3.3 .
Substituting Eq(3.2) into Eg.(3.3), and taking the ensemble Jo(X)= ijﬁ(x_x")pﬁ' (3.9

average using Eq2.103, we obtain
The radiation field of this classical dipole current is easily
e? obtained from Eq(3.8)

<N2>sponzﬁ Eplz,aplzﬂnZ oo N
Aw(x) _Arad,w(x)] [OR] (3103
2y12 - -
xfdw—lm[G‘;’ (Xg,X0) - . - dme . ..
(Q—w)?+ 3, prono Arad,o(X) =~ oo €,Gap(X,X0)P12g-  (3.10D
(3.9 )
Using Eq.(3.8), we can also express the total energy ra-
The spontaneous emission ratecan be defined as diated by this current source as
4 e J 2Y12 f f 3y (e t). B(w
== — ——Diog do ——— 22 Erag=— | dt| d°xJ(x,t)-E(x,t)
Y 762 2 P12aP12p Q- w2t %, ra
XIM[G4(Xo.,Xo) - (3.5 =12f d3xf d3x'f do w[iJ% (X)
c
Similar results have been found in the literature R .
[22,26,31,4% XJy p(X")Gy s(X,X")+c.Cl. (3.11

It has been noticed that the radiation power of a harmonic
classical dipole current is proportional to the spontaneoudhen for the current source in E(B.9), the total radiation
emission rate of a two-level atom when,=0 [15,16,18— energy is
20]. The result in Eqg.(3.5), which contains a Lorentzian

. . . . 2

line-shape function, suggests that the total radiation energy,, 27 € . 0 > =

of a decaying classical dipole source should give us thegfad__?ﬁplzvaplzﬁﬂ do |1, Im [Gg4(Xo,%o) ],
spontaneous emission rate whem,#0. To confirm this (3.12

conjecture, we split the dipole current density and the vector
potential into a positive frequency part and a negative frewhere we have replaced in Eqg. (3.11) as Q, which is
guency part, which are each other’s complex conjugate, equivalent to ignoring a small term of the ordef,/(}.
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Notice that if we choosg¢,, to be C .
gsz_j dtJdan[EXH]
1 4 S

Ti(Q-0) 249

Jo
=—if daJ dw wn-1m {Araq o(X)
the classical radiation energy becomes proportional to the 87Js '
guantum spontaneous emission rate. Therefore, we have - SN,
X[VXArad,w(X)]} |Jw| . (4-1)
Toaly _ Zeavity (3.149  Dividing & by the total radiation energg,o.s, Which is
obtained from the above equation after replacing the surface

where y.a,ity is the spontaneous emission rate of the atomSby an arbitrary surface enclosing the dipole source, we find
inside the dielectric microcavity, ang . is that of the atom  the classical expression for the quantum efficiency

in free spaceé,,, ity is the total classical radiation energy of ~ In the framework of quantum mechanics, the external
a corresponding dipole current in the same dielectric microguantum efficiencyy is defined as the amount of photons go
cavity, &,ec is the radiation energy of the same dipole cur-through surfaces divided by the total photon emission and
rent in free space. This proportionality allows us to calculatecan be easily found by using a quantum Poynting vector,
the spontaneous emission rate from classical electrodynanthich can be derived from E¢2.6) and its conjugate equa-

H
Ytree Eree

ics. tion for ACH), 3(1):
To numerically calculate the total radiation energy of a
classical dipole, we can use the finite difference time domain 60;) d,&(*) A A .
(FDTD) method[39]. In this method, we numerically solve — +VX[VXAO=—13), (4.29
the following two equations: c dt ¢
19B(x0) _ = €(X) dACD A,
- T VXEXY, (3.153 ((:—Z)T+V><[V><A(*>]=T X, @2o

Lo Ao, . X

XHH—-J(xt).  (3.15D  Multiplying A™) by Eq. (4.29 from the left, multiplying
A5 by Eq.(4.2b from the right, and adding the two equa-

The temporal dependence of the dipole current is foundions, we get

through using Eq(3.6a, Eqg. (3.9 and Eq.(3.13, which

e(x) JE(X,t)
c o

gives d 6()2) A A ~ ~
— A A TV XA [V XA
0 t<0 dt| ¢2 : I ]
Jx,t)=1 p 1 A e N 5
CO=) Pz 2 e micogor >0, 10 £V (= ADXV XAV XACXAC)
P12
AT A3 150 AC)
where we have normalized the current amplitude to 1. We = (AT o H i AT, 4.3

should remember that the solutions of E&.15 contain
electromagnetic field satisfying Eq3.7) has a transverse \ye stjll need a constant factor to fully determine the energy
component only49]. Correspondingly, in the numerical cal- gensity and the Poynting vector. Notice that the last term of

carefully eliminated 39]. energy emission rate. Thus, apart from a constant factor
the spatial integration of this quantity should equal to the
IV. EXTERNAL QUANTUM EFFICIENCY atomic transition rate multiplied by the amount of energy

emission from each atomic transition. Consequently, from

In Ref. [8], a classical model was used to numericallyEq (2.12 we have

calculate the external quantum efficiency of a two-
dimensional photonic crystal structure, wheyés evaluated < .
as the ratio of the radiation power of a classical dipole source  _ ) % — _hQ'_f d3x [j§+t) AG)Z A, jg—t)]
that goes through a given surfaBalivided by the total di- dt hc ° ©

pole radiation power. For a classical decaying source defined dn _

in Eq.(3.9), it is more appropriate to use the radiation energy :C_W(AH).j(—)+j(+).A(—)). (4.4)
rather than the radiation power. The radiation field of such c fot - et

classical source is given in E3.10, from which &g, the

total energy emitted through surfaGecan be found by in- Approximate the time dependenceAf)(t) andA(™)(t) as
tegrating the Poynting vector over surfa8e e '™ ande'™, respectively, we find the constant factor to be
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1/4. Putting this constant factor into Eq4-3), we get the gain andxe()_()) represents the mode loss. With this approxi-

following equations for energy conservation mation, Eq.(2.6) becomes
d&¢ _ . .
G VS=P (4.53 e(x) 92A() Ay AT
? 2 =—-VX[VXA ]+?[—I)(a(X)
- 1 6()2) A A ~ ~
E=—{ — L AL AC)I LTV XA TV XA}, 4
47| o2 [ I ] +ixe(X)]AC >+—Jf,uc (5.0
(4.5b
~ 1 A A ~ A i
3=~ (—AOX[VXAO]H[VXAM] XA, Ifrczm QSec?. II, we know tha‘E the vector potential operator
7T A)(x,t) in the above equation can be expanded as
(4.50
~ 1 = ~ ~ X A N 27ThC ~ N
P= A 30+ 3 - Ay, (4.50 A= a(e ' MAy(x), (5.2

n Wn

where & is the energy density operataS, is the quantum ~
Poynting operator, and they closely resemble the results iwhere a,(t) in Eg. (2.1 is replaced by a,(t)
classical electrodynamidg9]. Similar forms for the Poyn- =4 (t)e ' and the operator4,(t) represents the slow
ting vectorS have been used in the literatu6,50. With  changing envelope a,(t). If we are interested in an optical
this result, the amount of power emitted through surf&ce modeﬁ\o(i) we can substitute Eq5.2) into Eq. (5.1) and

can b'e found tzy using Ed3.2), mtegr:';ltlng the quantum multiply both sides byA¥ (x). After spatial integration, we
Poynting vectorS over surfaceS and taking ensemble aver-

age by applying Eq(2.103. The result is obtain
ey L — - : dd, To.  [2m o
<SS>__4_772n2deaJ' do wn-Im {Arad,w(x) W:_?AO-FI ﬁ_a)()f d3XA3(X)'Jf|UC(X t)e""ot
(5.39
12

X[VXALy w(X)]}W (4.6
I Fo=— [ )~ e DA (- Aol ),

Once again, choosing,=1/[i(Q)— w)+ y1,] and com-

paring Eq.(4.6) with Eq. (4.1), we find the external quantum (5.3b
efficiency » satisfies

3 c where the small ternil®4,/dt? is ignored. Taking the en-

(Ss) __°s (4.7) semble average using E@.7), from the above equation we
<Swta,> Etotal’ can derive the rate equation for the average photon number
in the Oth mode

where(S,o1a) is calculated using Eq4.6) with the integra-

tion surfaceS replaced by a closed surface that contains the

atomic source. From this relation, we conclude that the ex- £<AT:40>: —To{ A Ao) + yona, (5.49
ternal quantum efficiency can also be evaluated using a clas-

sical algorithm.

V. SPONTANEOUS EMISSION FACTOR Yot E
4 €2 1272
The spontaneous emission fact6r of a given optical Yo~z - |p12 Ao(Xo)| T2
mode is defined as the rate of spontaneous emission into that (wo— Q)%+ yppot 0
mode divided by the total spontaneous emission rate and can 2
be derived from the photon rate equation in the following (5.4D

way.

We assume thak(w,x) in Eq.(2.11) is purely imaginary where y, is the rate of spontaneous emission into the Oth
with no frequency dependence, and contains two partfode. The spontaneous emission fagiofor the this mode
x (o, x)— —IXa(X)+|Xe(X) wherexa(x) gives the atomic can then be written as
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Yo into a given optical mode by a classical dipole. However, we
B= 7 need to specify what the “energy emitted into an optical
mode” is and how to calculate it.
Ty For any classical electromagnetic field, we can expand it
Yt & as
P12 Ao(Xo)|? To)2
2 (00— Q)?+| vt 1
mC 2 . Lol . w2
- , A D=5 2 [an(DA(X)+ah (DAT (0], (5.9a
2woIO b jdeIm[G‘” (X0, X0)] "
12aM123 (w_Q)2+y%2 ap\0170
5. Lo 1 . I I
59 D=3 | ~golanDA()+ a3 (VAT (],
where y, the spontaneous emission rate of the two-level (5.9H

atom in the microcavity, has been found in E8.5).
It is also interesting to calculate the spontaneous emission
factor from another perspective. First we notice that thewhere «,(t) represents the negative frequency part and
spontaneous emission rate is proportional to the imaginary} (t), its complex conjugate, is the positive frequency part.
part of the Green function The Fourier transformay, , of the expansion coefficient
ay(t) is defined as

’y~j dwm Im [Ga,B(XO!XO)]- (56)

_ 1 —iot
ay(t)= Ej do ay, 7' (5.10

In Appendix C, we have expanded the Green function in

terms of the optical modgs,,}. For each resonance mode, it

has a frequency dependence of the formnwt(w,+il",/2), ) . )

a function with a sharp peak for a higd optical mode. Using the above definitions and the mode orthogonality con-
Therefore, it is natural to defing, as the rate of the spon- dition, we have

taneous emission as it goes into the frequency range of

|o—wo|~Ty. More specifically, from Eq.(3.5 and Eqg. o

(C5, 7o is o [ ORI AL, 61D

2
e” . 5 .

= — . A X 2 N N

7o hwg m2|p12 olXo)| whereA (x) is given in Eq.(3.6). For a classical current in

Eq.(3.9), the radiation field is given by E¢3.10 and can be

o expanded according to E¢.9a9. The expansion coefficient

XJ do Y12 2 ag,, Of the Oth mode is found from E@5.11)
_ 2 2 .
(Q—w)+ vy, (w—wo)2+

_ 2mecC . A5 Jo 51
(5.7) ag,= Mwg P12-Ag (Xo) _‘_.Fo’ (5.12
w — (1)0 | —
Since the convolution of two Lorentzian functions is still a 2

Lorentzian function, we have the following result fgg:
r where we have used Eq&5), (3.9), (3.10, and the mode
0

Vit = orthogonality condition.
47 € 1272 . . -
Yo=— _|5 Ag(x )| The energy emitted into the Oth modg is naturally de-
0= 7 o 21 P12 AolXo 2 ,
om 2 0 fined as
(wo= Q)"+ y12t >
(5.9 .
which is the same as E(5.4b derived from the photon rate o= _J dtj d*x J(th)'[_ el @(DA(X)

equation analysis.
In our previous analysis, we have shown that both the TN
spontaneous emission rate and the external quantum effi- +ag (DA ()] (5.13
ciency can be calculated from the radiation field of a classi-
cal decaying dipole. For the spontaneous emission factor, a
classical analogy would be the ratio of the energy emittedAfter using Eq.(5.12), &, becomes
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e . ~ N S
50:87-rmcf dt“dije-'wt+c.c.. fdw'(—iw’) 50=—fdtf d3x () I(x,1) - Ag(X).  (5.179

Cio'ts r o= Thus to calculate the spontaneous emission factor, first we
Xaomre @ plz'Ao(X0)+C.C.

find a properly normalized mode functid}b(i), either nu-
merically or analytically. Then we can use the above expan-

I'o : . ~ : o
0 ;
Q e > sion relations to evaluate, from the dipole radiation field
_ M e s R 2 L2 which in turn gives&,. Finally, dividing & by &, the total
[P12-Ao(X0)|* | dw ], 2 : S . .
wo m? (0—wg)2+ Iy dipole radiation energy, we obtain the spontaneous emission
— wg -0
2 factor B.
(5.19

VI. DISCUSSION
Once again, we chooge, to bej,=1/[i(Q— )+ y4,] and

. v As a simple exercise in using the previous theoretical re-
carry out the frequency integration in E&.14) to get

sults, we calculate the spontaneous emission rate in a bulk
medium with dielectric constarg, . Assuming the dielec-

+ E tric medium is placed in a big box of volumé the appro-
2() g2 Y12T 5 . - .
£ ™ o SPNNT priate normalized modes are simply
0T —2|p12~A0(X0)| T2
0Y12m 2 0
(Q_wO) +(712+? N _,) 1 N KX ( )
An (X)= e,e Y 6.1
(5.19 " VépuikY
Finally, .|n -the classical framewoﬁrk, we define the Spontanei/vhereé(, represents the polarization of the electromagnetic
ous emission factor for the mod, as mode. Applying Eq(5.8) and averaging over the mode po-
larization, the spontaneous emission rate into each individual
_ é mode becomes
=%
4779 - Y12
Iy = 2 , (6.2
Yzt & 7 3ﬁ5bulkv|’u12| (0n— Q)%+ 93,

P12 Ao(Xo)|?

2 - >
) (w0_9)2+( P & where we have usefd;,=—imQuq,/e and set thg (;avity .
_mc 2 mode decay rate to 0. The total spontaneous emission rate is
2w Vip o then obtained from multiplying Eq6.2) by the density of
plzﬂplzﬁjdwﬁIm[G‘;’ﬁ(Xo,Xo)] modes,V e, w? w2c3, and integrating over the frequency
(0=Q)™ 71 domain
(5.1
AQVepuik, - |, de 02 Y12
where &, the total energy emitted by this current source, is Y= 375 C3 |12 ww (0—0)2+ 72
given by Eq.(3.12. This equation shows that the spontane- Y12
ous emission factor obtained from cI.assm.aI electrodynamics 403 m| ﬁ12|2
is the same as our quantum result given in &g5). =— (6.3
This classical analysis can also be implemented numeri- 3hc

cally to obtain the spontaneous emission factor. As before, =~ ) )

we can solve Eq(3.15 to get the radiation field of the clas- Which is identical to the quantum mechanical re$d8].

sical dipole current source given in EG.16. However, we _The previous theoretical analysis can al_so be dlrec_tly ap-

would like to find a simpler expansion scheme than EqPlied to estimate the spontaneous emission factor in two

(5.99 and it is more convenient to work with real number types of microcavities: th_e dielectric microcavity, such as the

instead of complex number. We recall that if the dielectricdefect cavity in a photonic crystgh1] or a microdisk cavity

constante(x) is real, the eigenmode functiok,(x) can be 36], and the concentric or confocal cavitigs?,59 (see also

chosen to be a real function. In this case, the electric field caﬁ'g' 1).' Since an analytical solution is very d'ff'.CU|.t for such

be expanded as ' complicated structures, _the spontaneous emission rate and

the spontaneous emission factor are usually estimated by

making various approximations. These estimations have

E(x,t)= 2, an(t)AL(X), (5.17a  been discussed, and their range of validity has been general-

n ized in Ref[52]. As we shall show here, these results can be

directly derived from Eq(5.8).

~ _ 3 TN The first type of microcavity can be designed such that it

a”(t)_f d*x e(X)An(X) - E(X.1), (5.179 supports a higl) mode. Usually we can define an effective
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reflectivity, are widely used in atomic beam experiments
. Dipole [3,53. The spontaneous emission process in such cavities
* — can usually be classified into two types: the side emission
o — and the end emissidi8] [see Fig. 1a)]. In the side emission
/ ’ \ End Emission

Qo
2 .
g process, the photons are radiated to the side of the cavity and
enter into free space without passing through the end mir-
rors. Assuming that the end mirror of the cavity spans a solid
angle ofAQ).,, to the emission atom, the side spontaneous
emission rate is just proportional to {IAQ g, /47) s,
wherey; is the free space spontaneous emission rate. In the
end emission process, the photons are first radiated into the

Side Emission

\

(@)

Side ode cavity mode, and then coupled to the outside free space
mode through the decay of the cavity mode. Therefore, the
end emission rate can be estimated from @wd). The total
spontaneous emission rate, as a result of the two emission
processes, becomes

s End Mode 1 A Qcav
Y=Y+ 47T
(b
O ooy Lo
FIG. 1. Spontaneous emission in an optical resond®rThe 3 A3 Y12 2

end emission and the side emissidm); the side mode and the end + YfF VA T 2 (6.6)
s e cav

mode. (wcav_Q)2+ Y12t T)

anty volumeV, such thatAq,(Xo), the mode function at as has been shown in R§62].

Xo, Can be gpproxmated'aa;,/\/e_\/e, wheree, is a unit The spontaneous rate can also be estimated in another
vector ande is the dielectric constant of the cavity medium. way similar to the Fano-type approach in RE2]. Instead
With this approximation, the spontaneous emission rate intg sing the cavity mode, we assume that the cavity is inside
the cavity modeyyc,, , is directly obtained from Eq(5.8) a big box of volumeV and use the electromagnetic modes

I within the whole box to calculate the spontaneous emission
Y1t _ca rate. Corresponding to the two emission processes in the pre-
_@| i1y 6,2 2 vious analysis, these electromagnetic modes can also be clas-
Yo =g ey, 1412 S ) Teap |2’ sified into two types: the side modes and the end mésies

(weqy— Q)+ _) Fig. 1(b)]. The side modes are defined as the modes whose

Y2t
(6.4  wave vectork, is mostly outside the solid anglAQ).,,
spanned by the end mirrors, and the rest modes are called the
where w,, is the cavity frequency anf,, is the cavity end modes. Assuming that the box is big enough so that the
photon decay rate. If we assume the total spontaneous emigode density is not changed by the presence of the cavity,
sion rate is essentially the same as the bulk value given ithe density of states for the side modes and the end modes

Eq. (6.3), the spontaneous emission factor is are, respectively, (3AQ, /4m)Vo?/7?c®, and
(AQ,, 14m)Vw? w2cs.
4 - - Q( it —2 For the end modes, the field intensity inside the cavity is
B 3 NS |upe,l? 1272 enhanced due to the interference of the two mirrors. The
T a2V, | 2 2 enhancement factor [$2,54
B e |M12| (wcav_Q)2+(712+ =
r 2
6.5 ( cav)
_ EWigy 2

where), is the light wavelength in dielectric medium. This Alw)= T F12 (6.7)
estimation is quite close to the “one photon per mode” ap- 0 (w—wcav)z-l-( 5 )

proach in Ref[52]. However, we should stress that in many
cases, this estimation is only qualitatively correct, since the _ . .
spontaneous emission rate can be greatly modified by th¥Nere thewc,, is the cavity resonant frequendycy, is the
high Q cavity modes, such as the whispering gallery mode&aVvity mode decay rateys, is the free spectral range. The
in a dielectric sphergl4]. If an exact result is needed, we ! caw @Ndwts; are defined as follows:
can always use the algorithm described in Sec. V.

The second type of cavities, the concentric or the confocal r :ﬂw (6.8
cavities, which consist of two mirrors in free space with high ca g s '
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_mC A classical dipole current source
Wfsr— L (6.80 embedded in a dielectric structure
whereR is the intensity reflectivity of the end mirror, ahd . ‘ S i
is the cavity length. To find the spontaneous emission rate o Calculate the dipole radiation field using
the end modes, we multiply E@6.2) by this enhancement the finite difference time domain method

factor A(w), and the density of end modes, which is (1 / ‘ \
—AQ.,, /14m)\Vw?lw?c, then integrate the product, with

the result The radiation energy The total The radiation energy|
through a surface S | | radiation energy| | into a given mode

A‘()’Cav 40 > 2 2 Y12 ‘ / ‘

Yend= 71— |u1d? | do 0®A(0) ————
end™ 4n g3 12 (0— Q)2+ 42 External Quantum Spontaneous Spontaneous
12 efficiency 1 emission rate Yy emission factor 3
Fca
AQ T Y12t TU FIG. 2. Schematic of the classical algorithm for the calculation
== oy 1 Cal’; 5. (6.9  of the spontaneous emission rate, external quantum efficiency, and
. —

cav spontaneous emission factor.

(wcau_Q)2+ Yot 2

VIl. SUMMARY

For the side modes, such interference enhancement is ab- Starting from the quantum Maxwell equation, we analyze
sent since the electromagnetic field of the modes does ngf,, spontaneous emission process of a two-level atom in a
propagate through the two mirrors. So the mode amplitude Qssjess and inhomogeneous dielectric cavity. We find that a
An(Xo) is still 1/yV. We can use the density of modes given decaying current source is the classical analogy of a two-
before to include the spontaneous emission rate of every sidevel atom with finite dipole dephasing rate. By establishing

modes. The result is the equivalence between the classical approach and quantum
approach, we show that a classical numerical algorithm can
AQ 40 Y be used to simulate the spontaneous emission process in a
_ cav Y 2 12 . . . ) . . .
Yside™ | 1~ - ———lud J do 0 ————5- microcavity, as illustrated in Fig. 2. First we use the finite
3mhe (0=Q)+ 1, difference time domain method to calculate the radiation

AQ.., fiel_d of a classical current given b_y E(B.16. The modifi-
)yf. (6.10 cation of the spontaneous emission rate can be found by
4 calculating the total radiation energy of this classical dipole
o ) current source in the microcavity. The external quantum ef-
The total spontaneous emission rate is the sumegfiand  ficiency is found from the energy emission by this current

Vside source through a given surfa&divided by the total radia-

tion energy. The spontaneous emission factor of a given
B AQcq mode can also be obtained by calculating the energy emis-
=7 1- A sion into that particular mode and dividing the result by the

total radiation energy.

I'cay
AQg, T vzt
cav 1 cav ACKNOWLEDGMENTS
Y 4r 1-R S .

(wcav_g)2+( V1ot ﬂ) This research was sponsored by the Army Research Of-
2 fice and the Office of Naval Research. R. K. Lee also ac-

(6.10) knowledges support from the National Science and Engi-
neering Research Council of Canada.

From diffraction considerations/, can be estimated as

[52] APPENDIX A
N2 We summarize some important properties of the eigen-
Ve~ O (6.12  modes{A,(x)} that were used by Glauber and Lewenstein to
cav

quantize the electromagnetic field in a linear, lossless dielec-

) . o tric medium[24]. First, they satisfy the following eigenmode
Using this result, Eqs6.6) and(6.11), which give the spon-  equations:

taneous emission rate using a different approach, agree with

each other, as in Ref52]. The spontaneous emission factor wze(i)
can also be estimated using either Egj6) or Eq.(6.11), and VX[VXAL(X)]=— A(X), (A1)
naturally the two results are essentially the same. c?
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vv.herewn is the eigenvalue for theth eigenmode. Also, the E)tot(t): f)ind(t)"‘ bfluc(t) (B4a)

eigenmodes are orthonormal and complete
t

. oL o —hih. —RhTH ; A —([(Q+y)(t—17)

f 43X €(X)A%(X) - An(X) = S, (A2a) Pina(t) = (bzb, blbl)ledlen: Kndn(T)€ " ,

(B4b)

855(X,X )—e(X)E Ana(X)Ax5(X"), (A2b) (Phuc(D)Pruc(t’))=n,pe! 2= e7dt=t'l - (B4g)

whereAna(i) is the ath components of the vector eigen- (Priuc(DPfye(t))=ny et Ve 7dt=t'l - (B4d)

mode An(x) This & B(x X ") is analogous to the standard _ o
transverses function and was discussed in RE24]. In this ~ Where in the derivation of Eq¥B4c) and (B4d), we have

paper, we approximate it as used Eq.(B3). Generally the ternblb,—blb; can be re-
R o placed by its ensemble averagg—n, [46].
Oep(X,X') = 8,p0(X—X"). (A3) Taking the time derivative of EqB1la), we find
d?a . .
APPENDIX B dtzn __ wﬁan— anK: Prot (B5)

From the Hamiltonian in Eq(2.3) and the Heisenberg
equation of motion, we can derive the following operator

equations: where the time derivativelp,,,/dt is approximated by
A —i wnﬁtot. This approximation is legitimate in the weak cou-
da, = . * BB pling regime, sincedp,.,/dt is roughly —iQp,, and the
dt  '@n@nT 1Ky D10z, (B1a  jifference betweem, and() is a small quantity of the order
of y1,. Using the mode expansion given in Eg.1), we find
db'h the quantum Maxwell equation which takes the form of Eq.
TZZ —iQblb,+i> kn(bib,—bliby)a,, (2.6), where the quantum current operafiy;,) is simply
n
(B1b)
Jgot) ‘]fluc+‘]|nd ' (B6a)
dblb,  dblb,
=— =—i bibia,+iY, «*alblb,. 5 e. - - -
dt dt 2“: 2R En: n SnP102 J%r)(IZEp].Za(X_XO)pfluca (B6b)
(Blc
To account for a finite dipole dephasing ratg, Eq. (B1b) e
should also include a quantum Langevin operatg(t) [47] Jnd ——p125(x X0)Ping - (B6c)
d blbz According to this relation, Eqg2.7) and (2.8) can also be
dt =(=i0Q~-y1)b] b2+'2 xn(b3b,—b1b1)a, derived from Eqgs(2.1) and (B4).
Similarly, from Eqgs.(2.1) and(B1c), we find the quantum
+f12(t). (B2)  Operator equation for the electron transition rate @ql12).
If we ignore the dipole dephasing due to radiative decay, the APPENDIX C

ensemble average of the Langevin operatgyis [47] i i L )
The expansion of the classical Green function is derived

in this section. Take the loss and the gain of the optical mode
<F T 1At )= 27128(t=t), (B33 jntg account, the eigenmode equation becomes

I rt ey — N Y :
TOTA)=2ymst-t), (63 XL X AR o xalX) e AR

Whereﬁl ansz are the average occupation number of the

ground state and the excited state. If we define a dipole po- B €(X) DA (%

larization operatop,,; asp.=b1b, and integrate Eq(B2), e O An(X). (€13
we find that the operatop,,, can be separated into an in-

duced parlﬁind proportional to the external electromagnetic — Iy

field and a randomly fluctuating papt;,. @n=@n =150 (Clb
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41rC - . ..
== " [ Pt~ e 1A (- A,

w
(Clo

wherey,(X) and x¢(x) are defined in Eq(5.1). Correspond-
ingly, the Green function satisfies

e()Z)a)2 Ari -
& + o [xa¥)

—VX{VX[GEa(X,X" )&, ]} +

+Xe(X)][GE4(X, X )8, = S(X—X")€p, (o%)

and can be expanded as

PHYSICAL REVIEW A 61 033807

Gzﬁ(f,i’)=; 9nAn,o(X). (C3)

Using Egs.(C1), (C2), and(A2a), we solve forg,, and find

2 AR HX)
T,

2

On (C4

2w, .
w—wytI

where we have replacadz—wﬁ by 2w,(w— w,). Finally,

we have

c? A ()AL 5(X")
20, w—w,+il,/2°

Gap(xX) =2, (CH)
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