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1S-2S spectrum of a hydrogen Bose-Einstein condensate
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We calculate the two-photonSt2S spectrum of an atomic hydrogen Bose-Einstein condensate in the
regime where the cold collision frequency shift dominates the line shape. Wentzel-Kramers-Brillouin and static
phase approximations are made to find the intensities for transitions from the condensate to motional eigen-
states for & atoms. The excited-state wave functions are found using a mean field potential, which includes
the effects of collisions with condensate atoms. Results agree well with experimental data. This formalism can
be used to find condensate spectra for a wide range of excitation schemes.

PACS numbsgps): 03.75.Fi, 32.70.Jz, 05.30.Jp, 34.56.

I. INTRODUCTION Doppler-broadening of the resonance. An atom can also ab-
sorb two copropagating photons and receive a momentum
In the recent experimental observation of Bose-Einsteirkick. This is Doppler-sensitive excitation, and the spectrum
condensationlBEC) in atomic hydrogeri1], the cold colli- in this case is recoil shifted and Doppler broadened. The
sion frequency shift in the -2S photoexcitation spectrum photoexcitation rate is monitored by counting 122 nm fluo-
[2] signaled the presence of a condensate. The shift arisggscence photons from the excited state. For a typical laser
because electronic energy levels are perturbed due to inteulse of 500us, fewer than 1 in 1Dof the atoms are pro-
actions, or collisions, with neighboring atoms. In the coldmoted to the & state. I atoms experience the same trap-
collision regime, the temperature is low enough that theping potential as $ atoms because the magnetic moment is
swave scattering lengtka, is much less than the thermal de the same for both states, neglecting small relativistic correc-
Broglie wavelengthhAt=h%27mksT, and onlys waves tions.
are involved in the collision§3]. The natural linewidth of the $28S transition is 1.3 Hz,
The cold collision frequency shift has also been studied irbut the experimental width, at low density and temperature,
the hyperfine spectrum of hydrogen in cryogenic mapéks s limited by the laser coherence time. The narrowest ob-
and cesiuni5-7] and rubidium{8] in atomic fountains. The- served spectra, obtained when studying a noncondensed gas,
oretical explanations of these results and other work on th@ave widths of a few kH£11]. For the condensate, the cold
hydrogen B-2S spectrum[9,10] have focused on the mag- collision frequency shift is as much as one MHz and it domi-
nitude of the shift, as opposed to a liskape In this article  nates the line shape.
we present a calculation of the hydrogen BE&-AS spec-
trum. We also describe how the formalism can be used for B. Mean field description of the spectrum

other atomic systems and experimental conditions. . i )
The frequency shift in maser and fountain experiments

has traditionally been described using the quantum Boltz-
mann equation4,5,8. In this picture, the frequency shift is

The experiment is described in Refd] and[2], and we the net result of the small collisional phase shifts arising
summarize the important aspects here. Hydrogen atoms iifom forward scattering events in the gas. A mean field de-
the 1S, F=1, mg=1 state are confined in a magnetic trap scription, however, is more convenient for studying an inho-
and evaporatively cooled. The hydrogen condensate is ofnogeneous Bose-Einstein condensate. We will derive this
served in the temperature range 307K and the conden- picture in detail, but we summarize the results here. Colli-
sate fraction never exceeds a few percent. Nevertheless, th&ns add a mean field energy to the atom’s potential energy.
peak density in the normal cloud is almost two orders ofFor a 2S atom excited out of a condensate the mean field
magnitude lower than in the condensate and in this study wterm is 6E,s(r) =4mh2ass_»sn1s(r)/m. For a 1S conden-
will neglect the presence of the noncondensed gas. sate atom the mean field term isSE;4(r)

The two-photon transition to the metastablg, F=1, =4mh2a;5_1g015(r)/m. (The fraction of excited 8 atoms
me=1 state =122 mg is driven by a 243 nm laser beam is small, so &-2S interactions can be neglectgdThe
which passes through the sample and is retroreflected. In thiground states-wave triplet scattering length has been calcu-
configuration, an atom can absorb one photon from each diated accuratelya; s 15=0.0648 nm(Ref.[12])]. The 1S-2S
rection. This results in Doppler-free excitation for which scattering length, however, is less well knowa,4,s
there is no momentum transferred to the atom and ne= —1.4+=0.3 nm from experimenf2] and —2.3 nm from

theory[13]).
We denote the sum of the magnetic trap poteniial)
*Present address: National Institute of Standards and Technologgnd the mean field energjE,(r) as the effective potential,
Gaithersburg, MD 20899-8424. ve'(r) (Fig. 1). Here,x is either 1S or 2S. For 1S conden-

A. The experiment
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wherep;, r;, andH'jnt are the momentum operator, position
operator, and internal state Hamiltonian, respectively for par-
ticle j. V(r) is the magnetic trapping potential, which is the
same for 5 and 2S atoms.

H'3s is the atom-laser interaction. After making the rotat-
ing wave approximation, it can be written
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%_m — Effectve Potentio . , where v is the frequency of the laser field j2~E,g
2”7 5 0 5 0 5 10 15 —E;s=Ejs2s5 On resonande The laser beam is uniform

radius [um . . .
L) over the condensate, so we treat the excitation as a standing

FIG. 1. Effective potentials for & atoms in the condensate and wave consisting of two counterpropagating plane waves. The
excited 25 atoms. Selected single-particle wave functions are dis-effective 2-photon Rabi frequency for Doppler-free excita-
played at the height corresponding to their energy. The dashed lingfon [14],
are the magnetic trapping potent\{r), which is identical for B

and 2S atoms. The thin solid lines are the effective potentials, 2Mysis( a |\
which include the mean field interaction energy. The vertical lines Qpe(r)=Qpg= 5 : 5R ) l, 3
indicate allowed Doppler-free transitions from the condensate, 3mhe “

which must preserve mirror symmetry. The potentials and conden- ] ) ) ) o
sate wave function are for a peak condensate density of #S uniform in space. Herd, is the laser intensity in each

% 10'5 cm 2 and a magnetic trap oscillation frequency of 4 kHz, direction,M,g;5=11.78(Ref.[15]) is a unitless constant,
which are characteristic conditions for a hydrogen BEC and &S the speed of light in vacuune is the fine structure con-
strong confinement axis of the tréRefs.[1] and[2]). The scatter-  stant, andR,, is the Rydberg constant. For Doppler-sensitive
ing lengths used in the calculations gy 15=0.0648 nm and excitation,
a5 »s= — 1.4 nm, and the chemical potentialigkg~2 uK. The
2S levels form a near continuum of motional states in an aniso- Qpg(r)=Qpg(eXo?+ e ko?), (4
tropic three dimensional trap.
whereQps=Qpe/2.
sate atoms, the effective potential in the condensate is flat. H°'" describes the effects of two-body elastic collisions.
Becausea;s,5<0 and the condensate density is larg& 2 In the cold collision regime, the interaction can be repre-
atoms experience a stiff attractive potential in the condensatgented by a shape-independent pseudopotelrit@l corre-
which supports many bound2motional states. sponding to a phase shift per collisionldd, wherefik is the
The 1S-2S spectrum consists of transitions from the con-momentum of each of the colliding particles in the center of
densate to 3 motional eigenstates of the effectivé poten-  mass frame,
tial. For Doppler-free excitation, the final states are bound in \
the BEC well. Doppler-sensitive excitation populates states C0”_477ﬁ2
that lie abouti2k%/2mk, =643 K above the bottom of the H~ = ;J 8(ri—r[aisas(|18)(18)i(|18)(18]);
2S potential, wherefiky is the momentum carried by two
laser photons. The latter states extend over a region much +aysos(|€¥3 g (e¥S 1 ])j;
greater than the condensate. Because the excited levels are so
different for Doppler-free and Doppler-sensitive excitation, +a2528(|ZS><23|)i(|28><28|)i]- ()
we must treat the two spectra independently. _ . L _
The rest of this article presents a derivation of the effec-1N€ sum is overN(N—1)/2 distinct pairwise interaction
tive potentials and a quantum mechanical calculation of thd€'Ms. The B-2S interaction projection operator is written
BEC 1S-2S spectrum. in terms of

Il. 1S-2S PHOTOEXCITATION SPECTRUM OF A 85y, _[19)i|28);+|28)i18); ®
HYDROGEN BOSE-EINSTEIN CONDENSATE u/ 2

_ o because the doubly spin polarized atoms collide oreffts’
We start with the many-body Hamiltonian for a systempotential durings-wave collisiong13]. As mentioned above,

A. Hamiltonian

with N atoms, the 25-2S scattering term is negligible for the hydrogen ex-
N 2 periment, but it is included here for completeness.

H= Z {&_*_Hi_nt_}_v(r_) +H'as4 Heoll (1) Inelastic collisions, such as collisions in which the hyper-

i=112m ! ! ’ fine level of one or both of the colliding partners changes,
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will contribute additional shifts, which are not included in |®, N=8]2S,i...;28,i; 15,0;...:1S,0) (11)
this formalism, but these effects are expected to be small in e ~ -~ -\ -~ -
the experimen[Z]. q terms N—q terms

is a state withg 2S atoms in 25 motional leveli. The opera-

tor S symmetrizes with respect to particle label. We will
We make the approximation that the system iSTat0,  show below that the state vector of the system after laser

and all atoms are initially in the condensale=0 models  excitation is actually expressed as a superposition of such

have accurately described many condensate prop¢ifi@s  terms, but for now we need only consider a singhg, ;).

and we leave finite temperature effects for future study. The Calculating((bq,i|H|<I>q,i) involves a somewhat lengthy

B. System before laser excitation

state vector can be written calculation. Details are given in appendix A and the result is
|\II0>_|IS,O7,1S,O>, ( ) | , ere
e < q1|| | q,l) 6 q<28’|| I Ilnt+_2 VSSff(r) |2$,|>

where|1S,0) refers to the single particle electronic and mo-
tional state of an atom in aSlcondensate witiN atoms. We
use the ket notation;b; . . . ;c)), in which the entry in the
first slot is the state of atom 1, the second entry is the state
atom 2, etc.

Minimization of (Vo H|¥,) leads to the Gross-
Pitaevskii, or nonlinear Schdinger equatiori18,19 for the

=Ep+d(Eisoste). (12

o is the energy of a pureS.condensate wittN—q atoms
TSee Eqs(10) and (A5)], &;=(i|[ p2/2m+VEL(r)]]i), and
the effective potential for the@atoms is

: : 4 4mh?a
single particle BEC wave functionj(r)=(r|0), ngsf(r)=V(r)+TlSZS”N—q(r)- (13
72v?
Ml/l(r):{— >m +VEE() [g(r). (8 The density of B atoms remaining isny_q(r)=(N
— )|y (n)|>.
The effective potential isl‘igf(r)=V(r)+Dn(r),whereU Finding the X motional states which minimize

(®g.i|H|®g ), with the requirement that they form an ortho-
normal basis, is equivalent to finding the eigenstates of the
effective 2S Hamiltonian

=4mh2a;51s/m. Here,n(r)=N|y(r)|? is the density dis-
tribution in the N-particle condensate. One can interpret
|4(r;)|? as the probability of finding condensate partictet

positionr; . 2
The kinetic energy is small and can be neglected. This Hgfsf:p_+vggf(r), (14)
yields the Thomas-Fermi wave functi¢2o], 2m
N~Yqn(0)-V(r)/UI"2 V(r)=n(0)U and the eigenvalue for stateis ;. The effective Hamil-
h(r)= (9)  tonian [Eq. (14)] is consistent with the two-component

0 otherwise, Hartree-Fock equations used to calculate the single-particle

wave functions for double condensafegd]. The effective
Ppotential and some&motional states are depicted in Fig. 1.

If we denote the minimum of®, ;|H|®, ;) asEg;, us-
ing Egs.(10) and(12), the energy supplied by two photons to
Ytive the transition to state for q<N, is

wheren(0) is the peak density. The density profile is the
inverted image of the trapping potential. The chemical po
tential is «(N)=Un(0), and it isequal toVSY inside the
condensate. The energy of the system before laser excitati
is the minimum of{ W o|H| W ). It satisfiesu(N)=JEy/IN
and is given by Eqi—Eo  0(Eisostei)t Eo—Eo

5 2hy=
Eo=3Nu(N). (10 q q

From now on, when writingu we will drop the ~Eisostei—p. (15

explicit dependence oM. For a cylindrically symmetric ,
harmonic trap, it can be shown thatn(0) We have usedE{o—EO)/qwaE_o/aN=u for .smaIIq.. Note
=(15Nm3wr2WZ/ﬁ3af’§15)2’5/877, wherew, andw, are the that £;<0 for states bound in the BEC interaction well.

angular frequencies for radial and axial oscillations in the>iNc& many S motional levels may be excited, there will be
trap. a distribution of excitation energies in the spectrum.

When condensate atoms are coherently excited to an iso-
lated level|i) by a laser pulse of duratioty the single-
particle wave functions evolve according[22]

To describe the system after laser excitation we must find

C. System after laser excitation

the orthonormal basis of 2 motional wave functions and |1S,0y=>c0s6|1S,0) +sin 0] 2S,i), (16)
their energies. This is done by minimizingpi|H|®;),
where where

033611-3



THOMAS C. KILLIAN PHYSICAL REVIEW A 61 033611

(i|Q(r)|0)2 the excitation is weak enough to neglect the change in the
= — 5 5 single-particle wave function for atoms in the condensate
[(i1€2(r)|0)[*+ a [23,24). Depending upon which excitation scheme is being

X SirL(|(i]Q(r)|0)2+ 6w?)Y2/2]. (1) described Q) (r) is eitherQpg(r) or Qpg(r).
The state vector for the system after excitation can be
The detuning from resonance &&. In Eq. (16), we assume written

|

|W (4,1 =(cos 6]15,0)+5in 6]25,i))® ... ®(cos 0]15,0) +sin 6]25,i))

~-
N terms

S e N
:[120 cos” 4 @sin? 0 m|¢q,i>, (18)

where the labe{q)= N sir’d is the expectation value of the energy of possible excited states, not from a spread in the
number of 25 atoms excited. Although is not a good quan- energy of initially occupied states.
tum number foﬂ\If<q>,i>, the spread i, given by a binomial The central results of this calculation are the effecti®& 2
distribution, is strongly peaked arouxd). potentiallEq. (13)] and the Fermi’s Golden Rule expression
For short excitation times, the population in staggows  for the excitation ratd Eq. (20)]. Using this formalism we
coherently ag?. For the hydrogen experiment, however, al-can now calculate the observed spectrum for Doppler-free
though the excitation is weak anldi|Q(r)|0)|t<1, t is  and Doppler-sensitive excitation.
longer than the coherence time of the lase200 us). This
implies that the number of atoms excited to levehust be
expressed in a form reminiscent of Fermi's Golden Rule.
Equation(17) can be rewritten in terms of a delta function ~ Doppler-free excitation populates states which are bound
using the relation sfixt)/mx’t— &x) ast—o. (One can ne- inside the BEC potential wellsee Fig. 1. For a condensate
glect |(i|Q(r)|0)| compared todw becausd(i|Q(r)|0)] is in a harmonic trap, these states are approximately eigenstates
small compared to the spread in frequency of the laser exciPf & three-dimensional harmonic oscillator with trap frequen-
tation) Then cies larger than those of the magnetic trap alone by a factor
of V1—ajsss/a515~5 [see Eqs(9) and(13)]. Because we
Nwht ) know the wave functions, we can numerically evaluate Eq.
(@)~ ——[11QN|0)[* (2hv—Eso5~ i+ ). (20). The result of such a calculation is shown in Fig. 2.
(19) At large red detuning 2h dv~4mh?a;5,5n(0)/m— u]
transitions are to the lowest state in the BEC interaction well.
It is understood that Eq19) is to be convolved with the The spectrum does not extend to the blue bfé2=0 be-
laser spectrum or a density of states function. The tofl 2 cause states outside the well have negligible overlap with the
excitation rate is condensate and are inaccessible by laser excitation. In the
. overlap integrals in Fig. 2, wave functions for an infinite
™ . harmonic trap were used for théS2notional states. These
S(2hv)= TZ |<'|Q(r)|o>|25(2h”_E1923_8i+"’“) deviate from the actual motional states near the top of the
N ()2 BEC interaction well, introducing small errors in the stick
™ , spectrum nearer zero detuning.
-7 Z F'6(2hv—Eisos—eitp). (20 The envelope of the spectrum in Fig. 2 can be derived
analytically and reveals some interesting physics. Tlke 2
Equation (20) defines the overlap factors, F! single-particle wave functionér|i) oscillate rapidly. Thus
=[(i|Q(r)/©Q|0)|?, which are analogous to Franck-Condon the transition intensity to state governed by the overlap
factors in molecular spectroscopy. An expression equivalerfctor Fp=(i|0)|?, is most sensitive to the value g#(r)
to Eq. (20), the strength distribution function or dynamic =(r|0)=\n(r)/N at the state’s classical turning points. At a
form factor, is commonly used to describe collective excita-given laser frequency, the excitation is resonant with all
tions of many body systenjd7]. states with motional energy=2hv—E;5,5. This suggests
The BEC spectrum now appearsiddimes the spectrum the excitation rate is proportional to the integral of the con-
of a single particle if0) excited to eigenstates of the effec- densate density in a shell at the equipotential surface defined
tive 2S potential. The broadening in theS12S BEC spec- by the classical turning points ofSstates with motional
trum is homogeneous because it results from a spread in thenergye.

D. Doppler-free 1S-2S spectrum
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L S A A Using Eq.(21), the Fermi’'s Golden Rule expression for
1 the spectrumEq. (20)] becomes
10} h .
1 i A7 R @ i
EO.B‘ y \ X —- SD (2h ) NWﬁQZDF 2 TR N
: / '\ F(2hy)= . ;
B06f J y 7 2 ! \ g:fsf(Ri)
Soab 1 1 1 X 8(2hv—Ejsos—ei+u). (23
ook b The Doppler-free excitation field and the BEC wave function
! Tll ] are spherically symmetric, so onlyS2motional states with
] P e e —— zero angular momentum are excited. This implies that in the
-1.0 -08 -06  -04 -0.2 0 limit of closely spaced levels;— [de in Eq. (23). Using
loser detuning (V2] Eq. (22) we can change variablegde = [dR V' £L/(R) and
FIG. 2. Calculated Doppler-free spectrum of a condensaie at _ _
=0 in a three-dimensional harmonic trap. Zero detuning is the un- o(2hv=EBisos—et )
perturbed Doppler-free transition frequency. The stick spectrum re- =§[2hv—E;s,5— 4mh?San(R)/m],

sults from the sum over the transition amplitudes expressed in Eq.
(20) using the Thomas-Fermi density distribution for a peak con-where Sa=a;g,s—a;515. This yields
densate density of 10 cm™3 [477i2(a;5,5—a;1515)N(0)/m~2h
X —0.95 MHZ. The trap is spherically symmetric with,, wﬁQ%F )
=2m7x6 kHz. The stick heights represent the coefficients of delta Spr(2hv)= > Aardrren(r)
functions which must be convolved with the laser spectrum of about
1 kHz full width at half maximum. The dashed curjEq. (25)]
follows from the integral over the BEC density distribution, Eq.
(24), for the same peak condensate density. The envelope is inde-
pendent of the symmetry of the trap, but the stick spectrum blends Using the probabilistic interpretation df'ﬁ(ri)|2 (Sec.
into a continuum in a trap with one weak confinement axis such ag B), one can interpret Eq24) in the following way. When
in the experiment described in Refd] and[2]. Resolution of the 5 55 gy citation is detected at a given frequency, it records
individual transitions would require a stiff, near spherically sym-}he fact that a § atom was found at a position that had @ 1
metric trap, very stable eXp.e”me.ma' conditions, and h.'gh SI(~.:1n"’1|density, which brought that atom into resonance with the
noise. It does not seem feasible with the hydrogen experiment in th%ser The rate of excitation is bronortional to the babilit
near future. s p_ P . - probability
of finding a condensate atom in a region with the correct
For a spherically symmetric trap, we can formally ShoWdensity. This is a local density description of the spectrum,
this by making Wentzel-Kramers-BrillouitW/KB) and static :ggalu;\il;s;::]i?igx the slow spatial variation of the conden-
phase approximatiof®5,26—a technique that has recently For a Thomaé-Fermi wave function in a three-
been applied to describgwave collision photoassociation di ional h ic t £ red i
spectrd 27] and quasiparticle excitation in a condend2i@. imensional harmonic trap, E(4) reduces to

4ah?San(r)

2hV_ ElS—ZS_ I — I (24)

X6
m

One uses a WKB expression for thés Zigenstate. Then, 2 _
because of the slow spatial variation of the condensate wave Spe(2hv) = 157 256N (Ersos—2N1)
function, the Doppler-free overlap factor only depends on the 8 (2h 6vmay?
condensate wave function and thé& Bnd 2S potentials Shy—E U2
where the phase of the upper state is stationary. This yields x| £ =1s2s (25)
2h 8vmax '
L n(Ry|? .
For=Ki|0)|*~47|R; N D, (21)  for 2h Svpma<2hv—E;5,5<0, and otherwiseSpg(2hv)
=0. Here, 2 Svya=4mh%6an(0)/m.

- ; - Figure 2 shows that for a spherically symmetric trap, Eq.
whereR; is the Condon point, or the radius where the local . . |
: P (25 agrees with the spectrum calculated directly with Fer-

wave vector of the excited state {kog ; ; ) . .
B — et > . o . mi's Golden RulelEq. (20)] using simple harmonic oscilla-
= 2mle; —V3s(r)}/A°} vanishesR, is equivalent to the tor wave functions. For a trap that has a weak confinement

classical turning point for state and is defined through axis, such as described in Ref&] and[2], discrete transi-
_verfR 29 tions in the spectrum are too closely spaced to be resolved.
&i=Vas(Ri). (22 The envelope given by E¢25), however, shows no depen-

Also. in the limit th | he sl ial vari dence on the trap frequencies or the symmdty lack
so, in the limit that we can neglect the slow spatia varia-ihereof of the harmonic trap.

: el _ -
tion of the BEC wave function, D~dVas(r)/dr|g, Theory and experimental data are compared in Fig. 3.

=V'SH(R) is the slope of the effective®potential at the Although the statistical error bars for the data are large due
Condon point. to the small number of counted photons, the theoretical BEC
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120 — ' ' . . . any transition-matrix elements. In this regime it is possible to
modify the derivation of the WKB and static phase approxi-
100 X140 mations[25—-2§ to calculate the Doppler-sensitive spectrum.
We rewrite the Doppler-sensitive Rabi frequehEy. (4)]
7 or b as
8 o % }}{ Qps(r)=Qpg(eko?+e ko7
% wl } “ . " -
} { ¥ { ZZQDsl ezen Vam(21+1)i'j(kor) Y06, ),
K “e U
0t i o6
t (26)
0 L 1 1 1 1 Al
-6 08 06 04 02 0 wherej,(kor) is the spherical Bessel function of ordeand

foser detuning [V] Y™(6,4) is a spherical harmonic. This shows that the

FIG. 3. Doppler-free spectrum of a condensate: comparison oPoppler-sensitive laser Hamiltonian can excite atoms $o 2
theory and experimertfrom Ref.[1]). The narrow feature near zero motional states with any even value of angular momentum,
detuning is the spectral contribution from the noncondensed atomisut with m=20.

(shownx1/40). The broad feature is the spectrum of the conden- Transitions are to levels with motional energyisz/Zm
sate. The dashed curve is E@5), which comes from the integral aghove the bottom of the@potential, so we label levels by
over the BEC density distributiofEq. (24)] assuming a Thomas- A their energy deviation from this value. For simplicity, we
Fermi density distribution for a harmonic trap. consider a spherically symmetric trap. This allows us to
write a general expression for theSavave functionsy,
spectrum for a condensate B0 fits the data reasonably :Ylmzo(e,qg)u&,(r)/r whereu, ((r)/r satisfies
well. The deviations may indicate nonzero temperature ef-
fects or reflect experimental noise. The smoothing of the
cutoff at large detuning may be due to shot to shot variation
in the peak condensate density for the 10 atom-trapping
cycles which contribute to this composite spectrum. Also, at
low detuning the BEC spectrum is affected by the wing of =
the Doppler-free line for the noncondensed atoms.

Using this theory, from the peak shift in the spectrum, the . ,
trap oscillation frequencies, and knowledge afs ;s and Using Eq.(20), the spectrum is
a;525, One can calculate the number of atoms in the con- N
densate. Assuming the experimental valuegf,s, the re- Spe(2hv) = iy (s 1| Qos(1)|0)]2
sult is larger than the number determined from a model of 2
the BEC lifetime and loss rates, which is discussed in Ref.

[29]. The uncertainties are large for these results, but the %8
disagreement could be due to error in the experimental value

of a;5,5, uncertainty in the gas temperature or trap and laser

parameters, or thermodynamic conditions in the trapped gadsing Eq.(26), the overlap integral we must evaluate is
which are different than assumed by the theories. For ex-
ample, we have implicitly assumed local spatial coherence
[9?(0)=1] [30] in our form of the BEC wave function
[Eq. (7)]. It has not yet been experimentally verified that the

, n(r
hydrogen condensate is coherent. X Am(21+1)i'ji(Kor) (T)

h? d* A% 1(1+1)

2mgr2  2m

+V§fsf(r)1UA,|(r)

2k2

0
Elszs+m+A Uy, (). (27)

#2K2

———A+tpu

5m . (28

2hV_ ElS—ZS_

<¢A,llék02+e*ik02|0>=f drruy(r)2

E. Doppler-sensitive 1S-2S spectrum (29

In contrast to the Doppler_-free_ e>§citati0n spectrum, t_hefor | even, and 0 otherwise. Becausga(r) varies slowly,
Doppler-sensitive spectrum in principle reflects the f|n|teOne can find an approximate expression for this matrix ele-

momentum spread In ihe condensate as wgll as the Medent. Appendix B gives the details of this derivation and
field effects. The relevant momentum spread is given by th%ses the result to reformulate E@8) as

uncertainty principle and is-#/6z where §z=5 mm is the
length of the condensate along the laser propagation axis.

However, in the hydrogen experiment the cold collision fre- Sps(2hw)~7h O3>, 47R3 n(—m)

quency shift <1 MHz) dominates over the Doppler- 3 V'el(Ry)

broadening in the spectruniky/2mmész~100 Hz. We can 22

thus neglect Doppler-broadening, which is equivalent to ne- _ _ 0

glecting the spatial variation of the BEC wave function in X0\ 2hv=Eisos™ - At e ). (30
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In Ref. [29], experimental data are compared with Eq.
MV (32), and the agreement is good.

Ill. OTHER APPLICATIONS OF THE FORMALISM

1 A. Other atomic systems and excitation schemes

—2S Wave|function

2S energy

——-Magnetic| Potential

L — Effective Potential 1 We have specifically consideredS2S spectroscopy of
Loser Bxphation hydrogen, but the formalism is more general. For instance, if
i i R 1 the ground-excited state interaction were repulsive, this

would simply modify the effective 8 potential [Eq. (13)]
and the form of the motional states excited by the laser
would change. Equation@4) and (32) would still be accu-
e ———— rate for two-photon excitation to a different electronic state
[ Wagneti potontl | when the mean field interaction dominates the spectrum.
— Effective Potential .
: \ In the recently observed rf hyperfine spectrum of a ru-
bidium condensat¢31], the line shape is determined by
FIG. 4. Effective potentials, wave functions and the laser fieldmean field energy and the different magnetic potentials felt
for Doppler-sensitive excitation of condensate atoms. The spatid?y atoms in the initial and final states. The theory presented
period of the & wave function, the laser wavelength, and the ver-here can be modified to describe this situation as well.
tical axes for the potentials are not to scale. The vertical axes for the For Bragg diffraction or spectroscopy as performed in
wave functions and laser field are arbitrary. In the overlap integraRefs.[32] and[33], atoms remain in the same internal state
for the transition matrix elemefiEq. (29)], the only nonzero con- after excitation. Particle exchange symmetry of the wave
tribution comes from the region where the spatial period of t8e 2 function modifies the mean field interaction energy of the
wave function matches the wavelength of the laser field. This isexcited atoms with the atoms remaining in the condensate. In
indicated by the locations of the vertical lines. As the laser fre-terms of the hydrogen levelsSLF=1, m;=1 atoms not in
quency is Changed, the region of WaVeIength match moves. the Condensate experlence a potentlal Of
_ ) ) o 8mh?a,s,15N15(r)/m. This is to be compared with the mean
The matrix elemen.EEq. (29)] getS its main contribution ) field potentia' of 4;Th2a13—25n15(r)/m experienced by b2
at RA where the classical wave vector of the WKB approxi- partides excited out of the condensate and
mation fOI’UAJ equaIS the classical wave vector of the WKB 47771231318”15(")/”1 experienced by % atoms in the con-
approximation forj, . In effect, R, is the point where the densate. In Appendix A, the point in the derivation where the
spatial period of the wave function matches the wavelengthjifference arises is indicated.
of the laser field, 2Zr/k, (see Fig. 4. This leads to a defini-
tion for Ry

1S energy

.
z position

B. Doppler broadening in the Doppler-sensitive spectrum

A=VEL(R,) (31) To derive the Doppler-sensitiveSI2S spectrum, we ne-
28 ah glected the variation of the condensate wave function, which
is equivalent to neglecting the atomic momentum spread.

which is identical to Eq(22), the definition of the Condon This is well justified for the hydrogen experiment. The effect
point from the calculation of the Doppler-free spectrum. Be- J ' the hydrog periment.
of small but non-negligible momentum is discussed at the

cause the transition is localized in this way, the matrix ele-

. . —— . . .~ ~end of Appendix B. Now, we briefly describe the Doppler-
Ec?rltg[(l)z)q' (29]is proportional toyn(Ry), as is evident in sensitive line shape when Doppler-broadening is dominant.

. . . The line shape turns out to be similar to that which was seen
Using Eq.(31), we can replace the sum in EO) with :
an integral and  change  variables, S, [dA with Bragg spectroscopy of a Na condenda&8].

o . _ When the mean field potential can be neglected, tBe 2
_ reff
;h{';\?)EVZS(R). This yields the Doppler-sensitive line . ional wave functions are approximately those of the

simple harmonic oscillator potential produced by the mag-
netic trap alone. Because the spatial extent for these motional
SDs(ZhV)“WﬁQ%sf 47dr r2n(r) states is large comp_ared &z, in the region of the conden-
sate the wave functions can be represented as plane wave
momentum eigenstatép) [34]. The spectrum becomes

A h2k3  4mh2san(r)
X 6|2 V_ElS-ZS_ om - m . N .
Sps(2hw)~——2 [(pl€ps(r)|0)|
(32 p
2
The Doppler-sensitive condensate spectrum has the same X8| 2hv—Ejgps— =—+
shape as the Doppler-free spectrum, but it is shifted to the 2m

blue by photon momentum-recoil. Becau€g,s=Qpe/2, Nmh Q2 5
the Doppler-sensitive spectrum is half as intense as the _ Y3 bs
Doppler-free. 2 (27h)®

| lap-ikaP
pZ>O
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p? ThO5e [
><5 2h1/_E15_23_ﬁ+,u . (33) SDF(ZhV): 2 fd I’nls(l’)
. _ Amh?San,g(r)
The Fourier transform of the condensate wave function, X8 ZhV_Els-ZS_T (36)

A(p)=Jd3r e P hy (1), is nonzero for|p,|<#/|8x|,
[py|=#/|oyl, and|p,|=<1/|5z].

The excited states have,~fk,, so we definesp=p, SDS(ZhV):WﬁQZDSf d3r nys(r)
—fiky. Because the laser wavelength is small compared to
the spatial extent of the condensatg?/2m~#2k3/2m

h2k5  4mwh?s
+#koép/m and the spectrum reduces to X 6| 2hv—E 505~ 2m0 . ;nls(r) .
S(2h NwmQZDSfd dpy| A(pX+ pyy+ Sp(v)2)|? "
~— X+ pyy+ 2)|?, _
(hw) ko(27h)3 PARyIA(PX+PyY+ op(1)2) Equations36) and(37) take 4r#i28a n;5(r)/m as a local

(34  shift of the transition frequency and ascribe the excitation to
a small region in space where the laser is resonant. This
approach is similar to a quasistatic approximation in standard
spectral line-shape theoff26], which neglects the atomic
motion and averages over the distribution of interparticle

where

fikoop(v) hzkg spacings to find the spectrum. Atom pairs at different sepa-
———=2hv— ElS-ZS_W'F/-L (35  rations experience different frequency shifts due to atom-

atom interactions. This broadens the line.

There are important differences between the theory pre-
defines the momentum class that is Doppler shifted into resasented here and the quasistatic approximation, however. For
nance. The spectrum is centered w2 E,q,s+%%k3/2m  the standard quasistatic treatment to be valid, the lifetime of
—u, and the line shape depends on the orientation of théhe excited state should be shorter than a collision {i3&
condensate wave function with respect to the laser propagd:or a condensate, the classical concept of a collision time is
tion axis. inapplicable. We have shown that E@6) and (37) result

For a Thomas-Fermi wave function in a spherically sym-from a different approximation: neglecting the slow spatial
metric harmonic trapA(p)|?~|j.(pro/A)/(pro/#)?|? (Ref.  variation of the BEC wave function. Also, for the condensate
[20]), wherer,=/2n(0)U/mw2. Numerical evaluation of SPECtrum, one integrates over atom position in the effective
the integral overp, and p, shows that the line shape is potential, as opposed to integrating over the distribution of

approximately given by the power spectrum of the Wavegtom—atom separatiorjs. Finally, the BEC spectral broadening
function’s spatial variation along S(2hv)o|A(8p(#)2)[2. is homogeneous, which is not normally the case when mak-

. . : . ing the quasistatic approximation.
In recent experiments with small angle light scattering 9 q bp

[35], the momentum imparted to atoms is small compared t It is interesting that although the atoms in the condensate
’ P p %re delocalized over a region in which the density varies

V2me,, wherec,= \u/m is the speed of Bogoliubov sound. fronite maximum value to zero, the rapid oscillation of the

In this case one can excite guasiparticles in _the cpnde_:nsate BRcited state wave function essentially localizes the transi-
opposed to free part_lcles. The t.heory descnbgd in this Papgion [Eqg. (22) and (B9)]. In this way, the excitation probes
pnly treats free p_artlcle excitation, but Bogollubov. formal— the condensate wave function spatially.
ism, combined with WK.B and static phase approximations,  pq description of the BEC spectrum developed here has
has been used to describe the spectrum for quasiparticle ex;iged insight into the excitation process and it is general.
citation[28] We have shown that the formalism of transitions between
bound states of the effective potentials can be used when
either the mean field or Doppler broadening dominates. It
can describe a variety of excitation schemes such as two-
To make the problem analytically tractable, we have onlyphoton Doppler-free or Doppler sensitive spectroscopy to an
derived the BEC spectrum for the specific case of a spheriexcited electronic state, or Bragg diffraction, which leaves
cally symmetric trap. The trap shape does not appear in thédne atom in the ground state.
final expressiongEqgs. (24) and (32)], however, and with
reasonable confidence we can extend the results to any ge-
ometry. In the experiment, the trap aspect ratio is as large as
400 to 1, but the data agrees well with this theory. The physi- We thank D. Kleppner for comments on this manuscript
cal picture of the transition occurring at the classical turningand, along with T. Greytak, for guidance during the course of
points, and the probabilistic or local density interpretation ofthis study. Discussions of the hydrogen experimental results
the spectrum also support the generalization of E2®.and  with D. Fried, D. Landhuis, S. Moss, and in particular L.
(32 to Willmann inspired much of this theoretical work and pro-
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APPENDIX A: ENERGY FUNCTIONAL
FOR THE SYSTEM AFTER LASER EXCITATION

In this appendix, we derive E¢l2), the energy functional

ﬁ2

(N—q)(N—g—1)a;515(0;0/8(r;—r)[0;0)

Ah?

a(N—Q)assos(i;0[8(r1—r,)[i;0).  (A3)

for the system after excitation which is minimized to find the As mentioned in Sec. Il A, EqtA2) would be modified for

2S wave functions.
The Hamiltonian and the excited state vecidr,;), are
defined in Egs(1) and (11). The symmetry operator is ex-

plicitly written as
~ N —-1/2
3:( ) > P,
q P
where the sum runs over the
N!

o

q/ al(N-q)!

distinct particle label permutatiorid The energy functional
for N—qg 1S condensate atoms awd 2S atoms in staté is

N

(Dg,i[H[Dg )= <(Dq||2 +H D)

2
[p +V(r)) +H™

2

=(N— q)(180|{p +V(r)+ Hi”‘hlS,O}

2

+q(2S, ||{ P +V(r)+H'”t}|ZS i)

+<(Dq,i|HC0”|<Dq,i>- (Al)

We evaluate the interaction term,

<q)q,i|Hco”|q)q,i>
=(2S;...;1S;...|SHCNS|2S; ... 1S, .. )
=(2S;...;1S, ... |H°8§2s; .. .;1S; ...)

N 1/2
=(2S,...;1S; ... |HO§|2s; .. . ;1S .. .)(q)
=(2S;...;1S; ... [H®"Y P|2S;...;1S;...),

P

(A2)

where we have useH®",5]=0 andS5=8(f)*2 Of the
N(N—1)/2 terms inH®°" [Eq. (5)], (N—q)(N—q—1)/2 of
them result in a $-1S interaction, N—q)q of them result in
a 1S-2S interaction, and the rest result in &2S interac-
tion, which we can neglect. For theSAlS terms, only the

Bragg diffraction or spectroscopy as performed in RES8]
and[33] because the internal state is unchanged during laser
excitation. We do not explicitly treat this situation because it
is not central to this study.

Inserting Eq.(A3) into Eq.(Al), we find the energy func-
tional is

: e, PP
(Pg,ilH|Pq)=Eg+q <ZS,||[H”“+ ﬁ+v(|r)
+47Th2als,28

m

nN_q(r>}|zs,i>

=Ep+d(Eys—2st i), (A4)
where
p2 2
E)=(N— q)(lSOd +V(r)+H'm}|1so>+
X(N=q)(N—g—1)a;5150;0[6(r;—r)|0;0),
(A5)

is the energy folN—q isolated 1S condensate atoms, and
gi=(i|[p?/2m+V5L(r)]]i). The density in the condensate
for N—q condensate atomsqg{&N) is ny_q(r)=(N
—a){0|3(r,—1)|0).

APPENDIX B: WKB AND STATIC PHASE
APPROXIMATIONS FOR THE DOPPLER-SENSITIVE
BEC SPECTRUM

In this appendix we calculate the Doppler-sensitive over-
lap integral, Eq{(29), and simplify Eq.(28). The derivation
is similar to the treatment of Reff27] and[28].

The overlap integral we must evaluate is

Ia1= (s, |€%0?+e %7 0)

:j drruy (r)2y4m(21+1)i'j(Ker) \/%r)
(B1)

for | even and 0 otherwise.

Becauseu, | andj, are rapidly varying compared tén it
is useful to expressi,,; and j, in phase-amplitude form
through a WKB approximation. We define the local wave
vectors foru, | andj,
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I(1+1) 2m 12 This is essentially identical to Eg22) from the calculation
ky(A,l ,r):{ ke~ ———— —[Ve”(r) Al of the Doppler-free spectrum.
r We expand the difference in the phases in a Taylor series

(B2) aroundR, and write the overlap integral as

, 1a+1]*
Kj(ko.l,r)=| ko= ——— (B3)
r Ialeven~— V4m(21+1)
Then, in the classically allowed region \/T
A
1 ( Nkok (ko,I,Ry) f

2 1/2
Uy, (r)=~ m(w;:z) sinBy(A,lLr), (B4
XCO{IBU(A’IYRA)_ﬂj(kO’I’RA)

1
Ji(kor )~ —===—===sinBj(ko,I,1), (B5)
r kOkJ(k01| 1r) - mvlgg(RA) 2‘|

—== X
where 21%K;(Ko,|,Ra)

gu(A,l,r):f#ldr'ku(A,l,r')—wm, (B6) :_\/ 16m(21+1) n(R,) cod B(ALRY

Nkokj(ko,!,Ra)V'SE(Ry)

B;(ko,l,r)zﬂko,ldr'k,-(ko,l,r')—wm (B7) —Bj(Ko,l,Ry) — l4]. (B10)
T

are the phases. The inner turning points against the centrifdFo obtain the last line we have used the Fresnel integral

gal barriers are denoted R . Note that the approximations [“_dxcos@+bx?)=/m/b coga-+ (b/|b|)7/4]. Equation
are good for kor) >1(1+1). For (r)?<I(I+1), neglect-  (B10) only holds for I(1+1)<(koR,)?. For I(1+1)
ing the smallVSy' and A, the functions behave as damped >(koRa)?, laeven~0 becausej(kor) is exponentially
exponentials. The outer turning points are of no concern telamped aR, .

the calculation. From Egs.(28) and(B10),
Now we write

2
n(r sinBy(A,l,r) mh Q2 THRIT 16001+ 1)n(Ry)
I o) even=—2V4m(21+1) jdr So<(2hv)~ DS =
even™ Vky(AL1T) ps(2hv)=~— afeien  Kkokj(ko,l,RyV'SH(R,)
Zm)llzsinﬁj(ko,l,r) X CoZ[ By(A,1,Ry) — B;(Ko, I, Ry) — /4]
7hi?)  \koki(Ko.l,1) e
12 X5 2hV_ElS,25_2__A+/.L . (Bll)
2m m
~ = \/477(2| + 1) ?
We can replace the cb$unction with its average value of
% j dr \/ n(r) 1/2 because its phase varies rapidly witfhus
Nk, (A, r)koki(Kg,l,r)
X Cco AlLr)—Bi(kgy,l,r)]. B8
$Bu(A 1) = Bj(ko 1 1)] B v e
We have used the fact thain(r) varies slowly and have E ———————cog[By(A,l,Ry)
dropped rapidly oscillating terms in the integral. leven Kokj(ko,l,Rs)
We make the static phase approximation that the overlap —Bi(Ke,l,RY)]
] 15

integral will only have contributions from the poiriR,

where the difference in the phase factors is stationary. This 1 (1gsn-kry?  dl(21+1)
point is defined by 6-d(B,—pB;)/dr|r,=ku(A,l,Rs) ~ _f
—Kj(ko,l,Rs), which is equivalent to akindependent rela- 4Jo 5 [(1+1)
tion definingR,, for excitation to states with energy defekct ko 1- (KoRs)?
0MA
=V35d(Ry). (B9) =R}/2, (B12)
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and —2V4m(21+1) .
IA,Ieven:TJ dpAr(P)dee'p”h
n(Ry) i Y25ing:
Sps(2hn) =7 Q3> 4mRE ——— L SNBUALD) [ 2m | Fsingilko, 1) ©14)
A V'2s(Ra) Vko(A L)\ whi2] ok (ko,l,r)
A— 72k5 A Each momentum component will only contribute to the
X VTERIs-2sT 5y T Tl matrix element at the poinR, ,, where the total phase

under ther integral in Eq.(B14) is stationary. This leads
(B13)  to a definition of Rapp for each  momentum,
p/th=|ky(A,1,Ra 1 p) —Kj(Ko,l,Ra 1 p)|. When |A|>h2%Kg/
mdr, p/h is negligible and this yields the same relation as

In the derivation given above, we neglected the variationy, 4 1y neglecting the curvature of the BEC wave function
of the condensate wave function, which is equivalent to ne[Eq. (B9)]. This implies S(2h|6v|>#2k,/mér) is unaf-

glecting the atomic momentum spread:/ or, wheredr is — facted by the atomic momentum. Whén |<#2ky/mér,
the r extent of the condensate. When mean field effeCt§he momentum spread in the condensate altargs,en.
dominate the spectrum, but the atomic momentum is nofpys S(2h|5v|=h%ky/mésr) will show some Doppler-
completely negligible, the line shape will deviate from Eq. proadening because of finite atomic momentum. This effect
(32) only for small detuningsgv=ik,/2rmér. One can see s negligible for the hydrogen condensate because the cold
this from the overlap integrdlEq. (B8)] by expressing the collision frequency shift ¢ 1 MHz) is much greater than the
condensate wave function in terms of the radial Fourier comboppler width resulting from a 5-mm-long condensate wave
ponents A, (p)=fdr e P"%y(r), to obtain function (fiky/27rméz~100 H2.
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