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1S-2S spectrum of a hydrogen Bose-Einstein condensate

Thomas C. Killian*
Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
~Received 2 August 1999; published 15 February 2000!

We calculate the two-photon 1S-2S spectrum of an atomic hydrogen Bose-Einstein condensate in the
regime where the cold collision frequency shift dominates the line shape. Wentzel-Kramers-Brillouin and static
phase approximations are made to find the intensities for transitions from the condensate to motional eigen-
states for 2S atoms. The excited-state wave functions are found using a mean field potential, which includes
the effects of collisions with condensate atoms. Results agree well with experimental data. This formalism can
be used to find condensate spectra for a wide range of excitation schemes.

PACS number~s!: 03.75.Fi, 32.70.Jz, 05.30.Jp, 34.50.2s
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I. INTRODUCTION

In the recent experimental observation of Bose-Einst
condensation~BEC! in atomic hydrogen@1#, the cold colli-
sion frequency shift in the 1S-2S photoexcitation spectrum
@2# signaled the presence of a condensate. The shift a
because electronic energy levels are perturbed due to i
actions, or collisions, with neighboring atoms. In the co
collision regime, the temperature is low enough that
s-wave scattering length,a, is much less than the thermal d
Broglie wavelength,lT5Ah2/2pmkBT, and only s waves
are involved in the collisions@3#.

The cold collision frequency shift has also been studied
the hyperfine spectrum of hydrogen in cryogenic masers@4#,
and cesium@5–7# and rubidium@8# in atomic fountains. The-
oretical explanations of these results and other work on
hydrogen 1S-2S spectrum@9,10# have focused on the mag
nitude of the shift, as opposed to a lineshape. In this article
we present a calculation of the hydrogen BEC 1S-2S spec-
trum. We also describe how the formalism can be used
other atomic systems and experimental conditions.

A. The experiment

The experiment is described in Refs.@1# and @2#, and we
summarize the important aspects here. Hydrogen atom
the 1S, F51, mF51 state are confined in a magnetic tr
and evaporatively cooled. The hydrogen condensate is
served in the temperature range 30–70mK and the conden-
sate fraction never exceeds a few percent. Nevertheless
peak density in the normal cloud is almost two orders
magnitude lower than in the condensate and in this study
will neglect the presence of the noncondensed gas.

The two-photon transition to the metastable 2S, F51,
mF51 state (t5122 ms! is driven by a 243 nm laser beam
which passes through the sample and is retroreflected. In
configuration, an atom can absorb one photon from each
rection. This results in Doppler-free excitation for whic
there is no momentum transferred to the atom and
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Doppler-broadening of the resonance. An atom can also
sorb two copropagating photons and receive a momen
kick. This is Doppler-sensitive excitation, and the spectr
in this case is recoil shifted and Doppler broadened. T
photoexcitation rate is monitored by counting 122 nm flu
rescence photons from the excited state. For a typical la
pulse of 500ms, fewer than 1 in 104 of the atoms are pro-
moted to the 2S state. 2S atoms experience the same tra
ping potential as 1S atoms because the magnetic momen
the same for both states, neglecting small relativistic corr
tions.

The natural linewidth of the 1S-2S transition is 1.3 Hz,
but the experimental width, at low density and temperatu
is limited by the laser coherence time. The narrowest
served spectra, obtained when studying a noncondensed
have widths of a few kHz@11#. For the condensate, the co
collision frequency shift is as much as one MHz and it dom
nates the line shape.

B. Mean field description of the spectrum

The frequency shift in maser and fountain experime
has traditionally been described using the quantum Bo
mann equation@4,5,8#. In this picture, the frequency shift i
the net result of the small collisional phase shifts aris
from forward scattering events in the gas. A mean field
scription, however, is more convenient for studying an inh
mogeneous Bose-Einstein condensate. We will derive
picture in detail, but we summarize the results here. Co
sions add a mean field energy to the atom’s potential ene
For a 2S atom excited out of a condensate the mean fi
term is dE2S(r )54p\2a1S22Sn1S(r )/m. For a 1S conden-
sate atom the mean field term isdE1S(r )
54p\2a1S21Sn1S(r )/m. ~The fraction of excited 2S atoms
is small, so 2S-2S interactions can be neglected.! The
ground states-wave triplet scattering length has been calc
lated accurately@a1S-1S50.0648 nm~Ref. @12#!#. The 1S-2S
scattering length, however, is less well known (a1S-2S
521.460.3 nm from experiment@2# and 22.3 nm from
theory @13#!.

We denote the sum of the magnetic trap potentialV(r )
and the mean field energydEx(r ) as the effective potential
Vx

e f f(r ) ~Fig. 1!. Here,x is either 1S or 2S. For 1S conden-
y,
©2000 The American Physical Society11-1
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sate atoms, the effective potential in the condensate is
Becausea1S-2S,0 and the condensate density is large,S
atoms experience a stiff attractive potential in the conden
which supports many bound 2S motional states.

The 1S-2S spectrum consists of transitions from the co
densate to 2S motional eigenstates of the effective 2S poten-
tial. For Doppler-free excitation, the final states are bound
the BEC well. Doppler-sensitive excitation populates sta
that lie about\2k0

2/2mkb5643 mK above the bottom of the
2S potential, where\k0 is the momentum carried by tw
laser photons. The latter states extend over a region m
greater than the condensate. Because the excited levels a
different for Doppler-free and Doppler-sensitive excitatio
we must treat the two spectra independently.

The rest of this article presents a derivation of the eff
tive potentials and a quantum mechanical calculation of
BEC 1S-2S spectrum.

II. 1 S-2S PHOTOEXCITATION SPECTRUM OF A
HYDROGEN BOSE-EINSTEIN CONDENSATE

A. Hamiltonian

We start with the many-body Hamiltonian for a syste
with N atoms,

H5(
j 51

N F pj
2

2m
1H j

int1V~r j !G1Hlas1Hcoll, ~1!

FIG. 1. Effective potentials for 1S atoms in the condensate an
excited 2S atoms. Selected single-particle wave functions are d
played at the height corresponding to their energy. The dashed
are the magnetic trapping potentialV(r ), which is identical for 1S
and 2S atoms. The thin solid lines are the effective potentia
which include the mean field interaction energy. The vertical lin
indicate allowed Doppler-free transitions from the condens
which must preserve mirror symmetry. The potentials and cond
sate wave function are for a peak condensate density o
31015 cm23 and a magnetic trap oscillation frequency of 4 kH
which are characteristic conditions for a hydrogen BEC and
strong confinement axis of the trap~Refs.@1# and@2#!. The scatter-
ing lengths used in the calculations area1S21S50.0648 nm and
a1S22S521.4 nm, and the chemical potential ism/kB'2 mK. The
2S levels form a near continuum of motional states in an ani
tropic three dimensional trap.
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wherepj , r j , andH j
int are the momentum operator, positio

operator, and internal state Hamiltonian, respectively for p
ticle j. V(r ) is the magnetic trapping potential, which is th
same for 1S and 2S atoms.

Hlas is the atom-laser interaction. After making the rota
ing wave approximation, it can be written

Hlas5(
j 51

N
\V~r j !

2
@~ u2S&^1Su! je

2 i4pnt

1~ u1S&^2Su! je
i4pnt#, ~2!

where n is the frequency of the laser field (2hn'E2S
2E1S[E1S-2S on resonance!. The laser beam is uniform
over the condensate, so we treat the excitation as a stan
wave consisting of two counterpropagating plane waves.
effective 2-photon Rabi frequency for Doppler-free exci
tion @14#,

VDF~r !5VDF5
2M2S,1S

3p2\c
S a

2R`
D 3

I , ~3!

is uniform in space. Here,I is the laser intensity in each
direction,M2S,1S511.78~Ref. @15#! is a unitless constant,c
is the speed of light in vacuum,a is the fine structure con
stant, andR` is the Rydberg constant. For Doppler-sensiti
excitation,

VDS~r !5VDS~eik0z1e2 ik0z!, ~4!

whereVDS5VDF/2.
Hcoll describes the effects of two-body elastic collision

In the cold collision regime, the interaction can be rep
sented by a shape-independent pseudopotential@16# corre-
sponding to a phase shift per collision ofka, where\k is the
momentum of each of the colliding particles in the center
mass frame,

Hcoll5
4p\2

m (
i , j

N

d~r i2r j !@a1S-1S~ u1S&^1Su! i~ u1S&^1Su! j

1a1S-2S~ ue3Su
1&^e3Su

1u! i j

1a2S-2S~ u2S&^2Su! i~ u2S&^2Su! j #. ~5!

The sum is overN(N21)/2 distinct pairwise interaction
terms. The 1S-2S interaction projection operator is writte
in terms of

ue3Su
1& i j 5

u1S& i u2S& j1u2S& i u1S& j

A2
~6!

because the doubly spin polarized atoms collide on thee3Su
1

potential durings-wave collisions@13#. As mentioned above
the 2S-2S scattering term is negligible for the hydrogen e
periment, but it is included here for completeness.

Inelastic collisions, such as collisions in which the hype
fine level of one or both of the colliding partners chang
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will contribute additional shifts, which are not included
this formalism, but these effects are expected to be sma
the experiment@2#.

B. System before laser excitation

We make the approximation that the system is atT50,
and all atoms are initially in the condensate.T50 models
have accurately described many condensate properties@17#,
and we leave finite temperature effects for future study. T
state vector can be written

~7!

whereu1S,0& refers to the single particle electronic and m
tional state of an atom in a 1S condensate withN atoms. We
use the ket notation (ua;b; . . . ;c&), in which the entry in the
first slot is the state of atom 1, the second entry is the stat
atom 2, etc.

Minimization of ^C0uHuC0& leads to the Gross
Pitaevskii, or nonlinear Schro¨dinger equation@18,19# for the
single particle BEC wave function,c(r )5^r u0&,

mc~r !5F2
\2¹2

2m
1V1S

e f f~r !Gc~r !. ~8!

The effective potential isV1S
e f f(r )5V(r )1Ũn(r ), whereŨ

54p\2a1S-1S /m. Here,n(r )5Nuc(r )u2 is the density dis-
tribution in the N-particle condensate. One can interp
uc(r i)u2 as the probability of finding condensate particlei at
position r i .

The kinetic energy is small and can be neglected. T
yields the Thomas-Fermi wave function@20#,

c~r !5H N21/2@n~0!2V~r !/Ũ#1/2 V~r !<n~0!Ũ

0 otherwise,
~9!

where n(0) is the peak density. The density profile is t
inverted image of the trapping potential. The chemical p
tential is m(N)5Ũn(0), and it isequal toV1S

e f f inside the
condensate. The energy of the system before laser excita
is the minimum of̂ C0uHuC0&. It satisfiesm(N)5]E0 /]N
and is given by

E05 5
7 Nm~N!. ~10!

From now on, when writing m we will drop the
explicit dependence onN. For a cylindrically symmetric
harmonic trap, it can be shown thatn(0)
5(15Nm3wr

2wz /\3a1S-1S
3/2 )2/5/8p, wherewr and wz are the

angular frequencies for radial and axial oscillations in
trap.

C. System after laser excitation

To describe the system after laser excitation we must
the orthonormal basis of 2S motional wave functions and
their energies. This is done by minimizinĝFq,i uHuFq,i&,
where
03361
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is a state withq 2S atoms in 2S motional leveli. The opera-
tor Ŝ symmetrizes with respect to particle label. We w
show below that the state vector of the system after la
excitation is actually expressed as a superposition of s
terms, but for now we need only consider a singleuFq,i&.

Calculating^Fq,i uHuFq,i& involves a somewhat length
calculation. Details are given in appendix A and the resul

^Fq,i uHuFq,i&5E081q ^2S,i uFHint1
p2

2m
1V2S

e f f~r !G u2S,i &

5E081q~E1S-2S1« i !. ~12!

E08 is the energy of a pure 1S condensate withN2q atoms
@see Eqs.~10! and ~A5!#, « i5^ i u@p2/2m1V2S

e f f(r )#u i &, and
the effective potential for the 2S atoms is

V2S
e f f~r !5V~r !1

4p\2a1S-2S

m
nN2q~r !. ~13!

The density of 1S atoms remaining isnN2q(r )5(N
2q)uc(r )u2.

Finding the 2S motional states which minimize
^Fq,i uHuFq,i&, with the requirement that they form an ortho
normal basis, is equivalent to finding the eigenstates of
effective 2S Hamiltonian

H2S
e f f5

p2

2m
1V2S

e f f~r !, ~14!

and the eigenvalue for statei is « i . The effective Hamil-
tonian @Eq. ~14!# is consistent with the two-componen
Hartree-Fock equations used to calculate the single-par
wave functions for double condensates@21#. The effective
potential and some 2S motional states are depicted in Fig.

If we denote the minimum of̂Fq,i uHuFq,i& asEq,i , us-
ing Eqs.~10! and~12!, the energy supplied by two photons
drive the transition to statei, for q!N, is

2hn5
Eq,i2E0

q
5

q~E1S-2S1« i !1E082E0

q

'E1S-2S1« i2m. ~15!

We have used (E02E08)/q']E0 /]N5m for small q. Note
that « i,0 for states bound in the BEC interaction we
Since many 2S motional levels may be excited, there will b
a distribution of excitation energies in the spectrum.

When condensate atoms are coherently excited to an
lated level u i & by a laser pulse of durationt, the single-
particle wave functions evolve according to@22#

u1S,0&⇒cosuu1S,0&1sinuu2S,i &, ~16!

where
1-3
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sin2u5
u^ i uV~r !u0&u2

u^ i uV~r !u0&u21dv2

3sin2@~ u^ i uV~r !u0&u21dv2!1/2t/2#. ~17!

The detuning from resonance isdv. In Eq. ~16!, we assume
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the excitation is weak enough to neglect the change in
single-particle wave function for atoms in the condens
@23,24#. Depending upon which excitation scheme is bei
described,V(r ) is eitherVDF(r ) or VDS(r ).

The state vector for the system after excitation can
written
~18!
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where the label̂q&5N sin2u is the expectation value of th
number of 2S atoms excited. Althoughq is not a good quan-
tum number foruC^q&,i&, the spread inq, given by a binomial
distribution, is strongly peaked around^q&.

For short excitation times, the population in statei grows
coherently ast2. For the hydrogen experiment, however, a
though the excitation is weak andu^ i uV(r )u0&ut!1, t is
longer than the coherence time of the laser (;200 ms). This
implies that the number of atoms excited to leveli must be
expressed in a form reminiscent of Fermi’s Golden Ru
Equation~17! can be rewritten in terms of a delta functio
using the relation sin2(xt)/px2t→d(x) as t→`. ~One can ne-
glect u^ i uV(r )u0&u compared todv becauseu^ i uV(r )u0&u is
small compared to the spread in frequency of the laser e
tation.! Then

^q&'
Np\t

2
u^ i uV~r !u0&u2 d~2hn2E1S-2S2« i1m!.

~19!

It is understood that Eq.~19! is to be convolved with the
laser spectrum or a density of states function. The totalS
excitation rate is

S~2hn!5
Np\

2 (
i

z^ i uV~r !u0& z2d~2hn2E1S-2S2« i1m!

5
Np\V2

2 (
i

Fi d~2hn2E1S-2S2« i1m!. ~20!

Equation ~20! defines the overlap factors, Fi

5u^ i uV(r )/Vu0&u2, which are analogous to Franck-Condo
factors in molecular spectroscopy. An expression equiva
to Eq. ~20!, the strength distribution function or dynam
form factor, is commonly used to describe collective exci
tions of many body systems@17#.

The BEC spectrum now appears asN times the spectrum
of a single particle inu0& excited to eigenstates of the effe
tive 2S potential. The broadening in the 1S-2S BEC spec-
trum is homogeneous because it results from a spread in
.

i-

nt

-

he

energy of possible excited states, not from a spread in
energy of initially occupied states.

The central results of this calculation are the effectiveS
potential@Eq. ~13!# and the Fermi’s Golden Rule expressio
for the excitation rate@Eq. ~20!#. Using this formalism we
can now calculate the observed spectrum for Doppler-f
and Doppler-sensitive excitation.

D. Doppler-free 1S-2S spectrum

Doppler-free excitation populates states which are bo
inside the BEC potential well~see Fig. 1!. For a condensate
in a harmonic trap, these states are approximately eigens
of a three-dimensional harmonic oscillator with trap freque
cies larger than those of the magnetic trap alone by a fa
of A12a1S-2S /a1S-1S'5 @see Eqs.~9! and~13!#. Because we
know the wave functions, we can numerically evaluate E
~20!. The result of such a calculation is shown in Fig. 2.

At large red detuning@2h dn'4p\2a1S-2Sn(0)/m2m#
transitions are to the lowest state in the BEC interaction w
The spectrum does not extend to the blue of 2h dn50 be-
cause states outside the well have negligible overlap with
condensate and are inaccessible by laser excitation. In
overlap integrals in Fig. 2, wave functions for an infini
harmonic trap were used for the 2S motional states. These
deviate from the actual motional states near the top of
BEC interaction well, introducing small errors in the stic
spectrum nearer zero detuning.

The envelope of the spectrum in Fig. 2 can be deriv
analytically and reveals some interesting physics. TheS
single-particle wave functionŝr u i & oscillate rapidly. Thus
the transition intensity to statei, governed by the overlap
factor FDF

i 5u^ i u0&u2, is most sensitive to the value ofc(r )
5^r u0&5An(r )/N at the state’s classical turning points. At
given laser frequency, the excitation is resonant with
states with motional energy«52hn2E1S-2S . This suggests
the excitation rate is proportional to the integral of the co
densate density in a shell at the equipotential surface defi
by the classical turning points of 2S states with motional
energy«.
1-4
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For a spherically symmetric trap, we can formally sho
this by making Wentzel-Kramers-Brillouin~WKB! and static
phase approximations@25,26#—a technique that has recent
been applied to describes-wave collision photoassociatio
spectra@27# and quasiparticle excitation in a condensate@28#.
One uses a WKB expression for the 2S eigenstate. Then
because of the slow spatial variation of the condensate w
function, the Doppler-free overlap factor only depends on
condensate wave function and the 1S and 2S potentials
where the phase of the upper state is stationary. This yie

FDF
i 5u^ i u0&u2'4pURiAn~Ri !

N
U2Y D, ~21!

whereRi is the Condon point, or the radius where the loc
wave vector of the excited state $k2S

5A2m@« i2V2S
e f f(r )#/\2% vanishes.Ri is equivalent to the

classical turning point for statei, and is defined through

« i5V2S
e f f~Ri !. ~22!

Also, in the limit that we can neglect the slow spatial var
tion of the BEC wave function, D'dV2S

e f f(r )/druRi

[V82S
e f f(Ri) is the slope of the effective 2S potential at the

Condon point.

FIG. 2. Calculated Doppler-free spectrum of a condensateT
50 in a three-dimensional harmonic trap. Zero detuning is the
perturbed Doppler-free transition frequency. The stick spectrum
sults from the sum over the transition amplitudes expressed in
~20! using the Thomas-Fermi density distribution for a peak c
densate density of 1016 cm23 @4p\2(a1S-2S2a1S-1S)n(0)/m'2h
320.95 MHz#. The trap is spherically symmetric withv trap

52p36 kHz. The stick heights represent the coefficients of de
functions which must be convolved with the laser spectrum of ab
1 kHz full width at half maximum. The dashed curve@Eq. ~25!#
follows from the integral over the BEC density distribution, E
~24!, for the same peak condensate density. The envelope is i
pendent of the symmetry of the trap, but the stick spectrum ble
into a continuum in a trap with one weak confinement axis such
in the experiment described in Refs.@1# and @2#. Resolution of the
individual transitions would require a stiff, near spherically sy
metric trap, very stable experimental conditions, and high sig
noise. It does not seem feasible with the hydrogen experiment in
near future.
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Using Eq.~21!, the Fermi’s Golden Rule expression fo
the spectrum@Eq. ~20!# becomes

SDF~2hn!5
Np\VDF

2

2 (
i

4pURiAn~Ri !

N
U2

V82S
e f f~Ri !

3d~2hn2E1S-2S2« i1m!. ~23!

The Doppler-free excitation field and the BEC wave functi
are spherically symmetric, so only 2S motional states with
zero angular momentum are excited. This implies that in
limit of closely spaced levels,S i→*d« in Eq. ~23!. Using
Eq. ~22! we can change variables:*d«5*dR V82S

e f f(R) and

d~2hn2E1S-2S2«1m!

5d@2hn2E1S-2S24p\2da n~R!/m#,

whereda5a1S-2S2a1S-1S . This yields

SDF~2hn!5
p\VDF

2

2 E 4pdr r 2n~r !

3dF2hn2E1S-2S2
4p\2da n~r !

m G . ~24!

Using the probabilistic interpretation ofuc(r i)u2 ~Sec.
II B !, one can interpret Eq.~24! in the following way. When
a 2S excitation is detected at a given frequency, it reco
the fact that a 1S atom was found at a position that had a 1S
density, which brought that atom into resonance with
laser. The rate of excitation is proportional to the probabil
of finding a condensate atom in a region with the corr
density. This is a local density description of the spectru
and it is justified by the slow spatial variation of the conde
sate wave function.

For a Thomas-Fermi wave function in a thre
dimensional harmonic trap, Eq.~24! reduces to

SDF~2hn!5
15p\VDF

2 N

8

~E1S-2S22hn!

~2h dnmax!
2

3F12
2hn2E1S-2S

2h dnmax
G1/2

, ~25!

for 2h dnmax,2hn2E1S-2S,0, and otherwiseSDF(2hn)
50. Here, 2h dnmax54p\2da n(0)/m.

Figure 2 shows that for a spherically symmetric trap, E
~25! agrees with the spectrum calculated directly with F
mi’s Golden Rule@Eq. ~20!# using simple harmonic oscilla
tor wave functions. For a trap that has a weak confinem
axis, such as described in Refs.@1# and @2#, discrete transi-
tions in the spectrum are too closely spaced to be resol
The envelope given by Eq.~25!, however, shows no depen
dence on the trap frequencies or the symmetry~or lack
thereof! of the harmonic trap.

Theory and experimental data are compared in Fig.
Although the statistical error bars for the data are large
to the small number of counted photons, the theoretical B
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spectrum for a condensate atT50 fits the data reasonabl
well. The deviations may indicate nonzero temperature
fects or reflect experimental noise. The smoothing of
cutoff at large detuning may be due to shot to shot variat
in the peak condensate density for the 10 atom-trapp
cycles which contribute to this composite spectrum. Also
low detuning the BEC spectrum is affected by the wing
the Doppler-free line for the noncondensed atoms.

Using this theory, from the peak shift in the spectrum,
trap oscillation frequencies, and knowledge ofa1S-1S and
a1S-2S , one can calculate the number of atoms in the c
densate. Assuming the experimental value ofa1S-2S , the re-
sult is larger than the number determined from a mode
the BEC lifetime and loss rates, which is discussed in R
@29#. The uncertainties are large for these results, but
disagreement could be due to error in the experimental v
of a1S-2S , uncertainty in the gas temperature or trap and la
parameters, or thermodynamic conditions in the trapped
which are different than assumed by the theories. For
ample, we have implicitly assumed local spatial cohere
@g(2)(0)51# @30# in our form of the BEC wave function
@Eq. ~7!#. It has not yet been experimentally verified that t
hydrogen condensate is coherent.

E. Doppler-sensitive 1S-2S spectrum

In contrast to the Doppler-free excitation spectrum,
Doppler-sensitive spectrum in principle reflects the fin
momentum spread in the condensate as well as the m
field effects. The relevant momentum spread is given by
uncertainty principle and is;\/dz wheredz'5 mm is the
length of the condensate along the laser propagation a
However, in the hydrogen experiment the cold collision f
quency shift (;1 MHz! dominates over the Doppler
broadening in the spectrum (\k0/2pmdz'100 Hz!. We can
thus neglect Doppler-broadening, which is equivalent to
glecting the spatial variation of the BEC wave function

FIG. 3. Doppler-free spectrum of a condensate: compariso
theory and experiment~from Ref.@1#!. The narrow feature near zer
detuning is the spectral contribution from the noncondensed at
~shown31/40). The broad feature is the spectrum of the cond
sate. The dashed curve is Eq.~25!, which comes from the integra
over the BEC density distribution@Eq. ~24!# assuming a Thomas
Fermi density distribution for a harmonic trap.
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any transition-matrix elements. In this regime it is possible
modify the derivation of the WKB and static phase appro
mations@25–28# to calculate the Doppler-sensitive spectru

We rewrite the Doppler-sensitive Rabi frequency@Eq. ~4!#
as

VDS~r !5VDS~eik0z1e2 ik0z!

52VDS (
l even

A4p~2l 11!i l j l~k0r !Yl
m50~u,f!,

~26!

where j l(k0r ) is the spherical Bessel function of orderl, and
Yl

m(u,f) is a spherical harmonic. This shows that t
Doppler-sensitive laser Hamiltonian can excite atoms toS
motional states with any even value of angular momentu
but with m50.

Transitions are to levels with motional energy;\2k0
2/2m

above the bottom of the 2S potential, so we label levels by
D, their energy deviation from this value. For simplicity, w
consider a spherically symmetric trap. This allows us
write a general expression for the 2S wave functionscD,l

5Yl
m50(u,f)uD,l(r )/r whereuD,l(r )/r satisfies

F2
\2

2m

d2

dr2
1

\2

2m

l ~ l 11!

r 2
1V2S

e f f~r !GuD,l~r !

5S E1S-2S1
\2k0

2

2m
1D DuD,l~r !. ~27!

Using Eq.~20!, the spectrum is

SDS~2hn!5
Np\

2 (
D,l

u^cD,l uVDS~r !u0&u2

3dS 2hn2E1S-2S2
\2k0

2

2m
2D1m D . ~28!

Using Eq.~26!, the overlap integral we must evaluate is

^cD,l ueik0z1e2 ik0zu0&5E dr ruD,l~r !2

3A4p~2l 11!i l j l~k0r !An~r !

N

~29!

for l even, and 0 otherwise. BecauseAn(r ) varies slowly,
one can find an approximate expression for this matrix e
ment. Appendix B gives the details of this derivation a
uses the result to reformulate Eq.~28! as

SDS~2hn!'p\VDS
2 (

D
4pRD

2 n~RD!

V82S
e f f~RD!

3dS 2hn2E1S-2S2
\2k0

2

2m
2D1m D . ~30!

of
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The matrix element@Eq. ~29!# gets its main contribution
at RD where the classical wave vector of the WKB appro
mation foruD,l equals the classical wave vector of the WK
approximation forj l . In effect, RD is the point where the
spatial period of the wave function matches the wavelen
of the laser field, 2p/k0 ~see Fig. 4!. This leads to a defini-
tion for RD

D5V2S
e f f~RD!, ~31!

which is identical to Eq.~22!, the definition of the Condon
point from the calculation of the Doppler-free spectrum. B
cause the transition is localized in this way, the matrix e
ment @Eq. ~29!# is proportional toAn(RD), as is evident in
Eq. ~30!.

Using Eq.~31!, we can replace the sum in Eq.~30! with
an integral and change variables, SD→*dD
5*dR V82S

e f f(R). This yields the Doppler-sensitive lin
shape

SDS~2hn!'p\VDS
2 E 4pdr r 2n~r !

3dF2hn2E1S-2S2
\2k0

2

2m
2

4p\2da n~r !

m G .
~32!

The Doppler-sensitive condensate spectrum has the s
shape as the Doppler-free spectrum, but it is shifted to
blue by photon momentum-recoil. BecauseVDS5VDF/2,
the Doppler-sensitive spectrum is half as intense as
Doppler-free.

FIG. 4. Effective potentials, wave functions and the laser fi
for Doppler-sensitive excitation of condensate atoms. The sp
period of the 2S wave function, the laser wavelength, and the v
tical axes for the potentials are not to scale. The vertical axes fo
wave functions and laser field are arbitrary. In the overlap integ
for the transition matrix element@Eq. ~29!#, the only nonzero con-
tribution comes from the region where the spatial period of theS
wave function matches the wavelength of the laser field. Thi
indicated by the locations of the vertical lines. As the laser f
quency is changed, the region of wavelength match moves.
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In Ref. @29#, experimental data are compared with E
~32!, and the agreement is good.

III. OTHER APPLICATIONS OF THE FORMALISM

A. Other atomic systems and excitation schemes

We have specifically considered 1S-2S spectroscopy of
hydrogen, but the formalism is more general. For instance
the ground-excited state interaction were repulsive, t
would simply modify the effective 2S potential @Eq. ~13!#
and the form of the motional states excited by the la
would change. Equations~24! and ~32! would still be accu-
rate for two-photon excitation to a different electronic sta
when the mean field interaction dominates the spectrum

In the recently observed rf hyperfine spectrum of a
bidium condensate@31#, the line shape is determined b
mean field energy and the different magnetic potentials
by atoms in the initial and final states. The theory presen
here can be modified to describe this situation as well.

For Bragg diffraction or spectroscopy as performed
Refs.@32# and @33#, atoms remain in the same internal sta
after excitation. Particle exchange symmetry of the wa
function modifies the mean field interaction energy of t
excited atoms with the atoms remaining in the condensate
terms of the hydrogen levels, 1S, F51, mf51 atoms not in
the condensate experience a potential
8p\2a1S-1Sn1S(r )/m. This is to be compared with the mea
field potential of 4p\2a1S-2Sn1S(r )/m experienced by 2S
particles excited out of the condensate a
4p\2a1S-1Sn1S(r )/m experienced by 1S atoms in the con-
densate. In Appendix A, the point in the derivation where
difference arises is indicated.

B. Doppler broadening in the Doppler-sensitive spectrum

To derive the Doppler-sensitive 1S-2S spectrum, we ne-
glected the variation of the condensate wave function, wh
is equivalent to neglecting the atomic momentum spre
This is well justified for the hydrogen experiment. The effe
of small but non-negligible momentum is discussed at
end of Appendix B. Now, we briefly describe the Dopple
sensitive line shape when Doppler-broadening is domin
The line shape turns out to be similar to that which was s
with Bragg spectroscopy of a Na condensate@33#.

When the mean field potential can be neglected, theS
motional wave functions are approximately those of t
simple harmonic oscillator potential produced by the ma
netic trap alone. Because the spatial extent for these moti
states is large compared todz, in the region of the conden
sate the wave functions can be represented as plane w
momentum eigenstatesup& @34#. The spectrum becomes

SDS~2hn!'
Np\

2 (
p

u^puVDS~r !u0&u2

3dS 2hn2E1S-2S2
p2

2m
1m D

5
Np\VDS

2

2

2

~2p\!3Epz.0
d3p uA~p2\k0ẑ!u2

al
-
e
l

is
-
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3dS 2hn2E1S-2S2
p2

2m
1m D . ~33!

The Fourier transform of the condensate wave functi
A(p)5*d3r e2 ip•r /\cN(r ), is nonzero for upxu&\/udxu,
upyu&\/udyu, andupzu&\/udzu.

The excited states havepz'\k0, so we definedp5pz
2\k0. Because the laser wavelength is small compared
the spatial extent of the condensate,p2/2m'\2k0

2/2m
1\k0dp/m and the spectrum reduces to

S~2hn!'
NpmVDS

2

k0~2p\!3E dpxdpyuA~pxx̂1pyŷ1dp~n!ẑ!u2,

~34!

where

\k0dp~n!

m
52hn2E1S-2S2

\2k0
2

2m
1m ~35!

defines the momentum class that is Doppler shifted into re
nance. The spectrum is centered at 2hn5E1S-2S1\2k0

2/2m
2m, and the line shape depends on the orientation of
condensate wave function with respect to the laser prop
tion axis.

For a Thomas-Fermi wave function in a spherically sy
metric harmonic trapuA(p)u2;u j 2(pr0 /\)/(pr0 /\)2u2 ~Ref.

@20#!, where r 05A2n(0)Ũ/mw2. Numerical evaluation of
the integral overpx and py shows that the line shape
approximately given by the power spectrum of the wa
function’s spatial variation alongz, S(2hn)}uA(dp(n) ẑ)u2.

In recent experiments with small angle light scatteri
@35#, the momentum imparted to atoms is small compared
A2mcs , wherecs5Am/m is the speed of Bogoliubov sound
In this case one can excite quasiparticles in the condensa
opposed to free particles. The theory described in this pa
only treats free particle excitation, but Bogoliubov forma
ism, combined with WKB and static phase approximatio
has been used to describe the spectrum for quasiparticle
citation @28#.

IV. DISCUSSION

To make the problem analytically tractable, we have o
derived the BEC spectrum for the specific case of a sph
cally symmetric trap. The trap shape does not appear in
final expressions@Eqs. ~24! and ~32!#, however, and with
reasonable confidence we can extend the results to any
ometry. In the experiment, the trap aspect ratio is as larg
400 to 1, but the data agrees well with this theory. The ph
cal picture of the transition occurring at the classical turn
points, and the probabilistic or local density interpretation
the spectrum also support the generalization of Eqs.~24! and
~32! to
03361
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SDF~2hn!5
p\VDF

2

2 E d3r n1S~r !

3dF2hn2E1S-2S2
4p\2da n1S~r !

m G ~36!

SDS~2hn!5p\VDS
2 E d3r n1S~r !

3dF2hn2E1S-2S2
\2k0

2

2m
2

4p\2da n1S~r !

m G .
~37!

Equations~36! and~37! take 4p\2da n1S(r )/m as a local
shift of the transition frequency and ascribe the excitation
a small region in space where the laser is resonant. T
approach is similar to a quasistatic approximation in stand
spectral line-shape theory@26#, which neglects the atomic
motion and averages over the distribution of interparti
spacings to find the spectrum. Atom pairs at different se
rations experience different frequency shifts due to ato
atom interactions. This broadens the line.

There are important differences between the theory p
sented here and the quasistatic approximation, however.
the standard quasistatic treatment to be valid, the lifetime
the excited state should be shorter than a collision time@36#.
For a condensate, the classical concept of a collision tim
inapplicable. We have shown that Eq.~36! and ~37! result
from a different approximation: neglecting the slow spat
variation of the BEC wave function. Also, for the condensa
spectrum, one integrates over atom position in the effec
potential, as opposed to integrating over the distribution
atom-atom separations. Finally, the BEC spectral broaden
is homogeneous, which is not normally the case when m
ing the quasistatic approximation.

It is interesting that although the atoms in the condens
are delocalized over a region in which the density var
from its maximum value to zero, the rapid oscillation of th
excited state wave function essentially localizes the tra
tion @Eq. ~22! and ~B9!#. In this way, the excitation probe
the condensate wave function spatially.

The description of the BEC spectrum developed here
provided insight into the excitation process and it is gene
We have shown that the formalism of transitions betwe
bound states of the effective potentials can be used w
either the mean field or Doppler broadening dominates
can describe a variety of excitation schemes such as t
photon Doppler-free or Doppler sensitive spectroscopy to
excited electronic state, or Bragg diffraction, which leav
the atom in the ground state.
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APPENDIX A: ENERGY FUNCTIONAL
FOR THE SYSTEM AFTER LASER EXCITATION

In this appendix, we derive Eq.~12!, the energy functiona
for the system after excitation which is minimized to find t
2S wave functions.

The Hamiltonian and the excited state vector,uFq,i&, are
defined in Eqs.~1! and ~11!. The symmetry operator is ex
plicitly written as

Ŝ5S N

q D 21/2

(
P

P,

where the sum runs over the

S N

q D 5
N!

q! ~N2q!!

distinct particle label permutationsP. The energy functiona
for N2q 1S condensate atoms andq 2S atoms in statei is

^Fq,i uHuFq,i&5^Fq,i u(
j 51

N F pj
2

2m
1V~r j !1H j

intG1HcolluFq,i&

5~N2q!^1S,0uF p2

2m
1V~r !1HintG u1S,0&

1q^2S,i uF p2

2m
1V~r !1HintG u2S,i &

1^Fq,i uHcolluFq,i&. ~A1!

We evaluate the interaction term,

^Fq,i uHcolluFq,i&

5^2S; . . . ;1S; . . . uŜHcollŜu2S; . . . ;1S; . . . &

5^2S; . . . ;1S; . . . uHcollŜŜu2S; . . . ;1S; . . . &

5^2S, . . . ;1S; . . . uHcollŜu2S; . . . ;1S; . . . &S N

q D 1/2

5^2S; . . . ;1S; . . . uHcoll(
P

Pu2S; . . . ;1S; . . . &,

~A2!

where we have used@Hcoll,Ŝ#50 and ŜŜ5Ŝ(q
N)1/2. Of the

N(N21)/2 terms inHcoll @Eq. ~5!#, (N2q)(N2q21)/2 of
them result in a 1S-1S interaction, (N2q)q of them result in
a 1S-2S interaction, and the rest result in a 2S-2S interac-
tion, which we can neglect. For the 1S-1S terms, only the
03361
.
-
-

e

identity permutation contributes. For the 1S-2S terms two
permutations contribute—the identity and switching the
bels on the two interacting particles. The expectation va
of Hcoll thus reduces to

2p\2

m
~N2q!~N2q21!a1S-1S^0;0ud~r12r2!u0;0&

1
4p\2

m
q~N2q!a1S-2S^ i ;0ud~r12r2!u i ;0&. ~A3!

As mentioned in Sec. III A, Eq.~A2! would be modified for
Bragg diffraction or spectroscopy as performed in Refs.@32#
and@33# because the internal state is unchanged during la
excitation. We do not explicitly treat this situation because
is not central to this study.

Inserting Eq.~A3! into Eq.~A1!, we find the energy func-
tional is

^Fq,i uHuFq,i&5E081q ^2S,i uFHint1
p2

2m
1V~r !

1
4p\2a1S22S

m
nN2q~r !G u2S,i &

5E081q~E1S22S1« i !, ~A4!

where

E085~N2q!^1S,0uF p2

2m
1V~r !1HintG u1S,0&1

2p\2

m

3~N2q!~N2q21!a1S-1S^0;0ud~r12r2!u0;0&,

~A5!

is the energy forN2q isolated 1S condensate atoms, an
« i5^ i u@p2/2m1V2S

e f f(r )#u i &. The density in the condensat
for N2q condensate atoms (q!N) is nN2q(r )5(N
2q)^0ud(r12r )u0&.

APPENDIX B: WKB AND STATIC PHASE
APPROXIMATIONS FOR THE DOPPLER-SENSITIVE

BEC SPECTRUM

In this appendix we calculate the Doppler-sensitive ov
lap integral, Eq.~29!, and simplify Eq.~28!. The derivation
is similar to the treatment of Refs.@27# and @28#.

The overlap integral we must evaluate is

I D,l5^cD,l ueik0z1e2 ik0zu0&

5E dr ruD,l~r !2A4p~2l 11!i l j l~k0r !An~r !

N

~B1!

for l even and 0 otherwise.
BecauseuD,l and j l are rapidly varying compared toAn it

is useful to expressuD,l and j l in phase-amplitude form
through a WKB approximation. We define the local wa
vectors foruD,l and j l
1-9
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ku~D,l ,r !5H k0
22

l ~ l 11!

r 2
2

2m

\2
@V2S

e f f~r !2D#J 1/2

,

~B2!

kj~k0 ,l ,r !5Fk0
22

l ~ l 11!

r 2 G 1/2

. ~B3!

Then, in the classically allowed region

uD,l~r !'
1

Aku~D,l ,r !
S 2m

p\2D 1/2

sinbu~D,l ,r !, ~B4!

j l~k0r !'
1

rAk0kj~k0 ,l ,r !
sinb j~k0 ,l ,r !, ~B5!

where

bu~D,l ,r !5E
RT

D,l

r

dr8 ku~D,l ,r 8!2p/4, ~B6!

b j~k0 ,l ,r !5E
R

T

k0 ,l

r

dr8 kj~k0 ,l ,r 8!2p/4 ~B7!

are the phases. The inner turning points against the cent
gal barriers are denoted byRT . Note that the approximation
are good for (k0r )2. l ( l 11). For (k0r )2, l ( l 11), neglect-
ing the smallV2S

e f f and D, the functions behave as dampe
exponentials. The outer turning points are of no concern
the calculation.

Now we write

I D,l even522A4p~2l 11!E drAn~r !

N

sinbu~D,l ,r !

Aku~D,l ,r !

3S 2m

p\2D 1/2
sinb j~k0 ,l ,r !

Ak0kj~k0 ,l ,r !

'2A4p~2l 11! S 2m

p\2D 1/2

3E drA n~r !

Nku~D,l ,r !k0kj~k0 ,l ,r !

3cos@bu~D,l ,r !2b j~k0 ,l ,r !#. ~B8!

We have used the fact thatAn(r ) varies slowly and have
dropped rapidly oscillating terms in the integral.

We make the static phase approximation that the ove
integral will only have contributions from the pointRD

where the difference in the phase factors is stationary. T
point is defined by 05d(bu2b j )/druRD

5ku(D,l ,RD)

2kj (k0 ,l ,RD), which is equivalent to anl-independent rela-
tion definingRD for excitation to states with energy defectD,

D5V2S
e f f~RD!. ~B9!
03361
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This is essentially identical to Eq.~22! from the calculation
of the Doppler-free spectrum.

We expand the difference in the phases in a Taylor se
aroundRD and write the overlap integral as

I D,l even'2A4p~2l 11!

3S 2m

p\2D 1/2A n~RD!

Nk0kj
2~k0 ,l ,RD!

E
2`

`

dx

3cosFbu~D,l ,RD!2b j~k0 ,l ,RD!

2
mV82S

e f f~RD!

2\2kj~k0 ,l ,RD!
x2G

52A 16p~2l 11! n~RD!

Nk0kj~k0 ,l ,RD!V82S
e f f~RD!

cos@bu~D,l ,RD!

2b j~k0 ,l ,RD!2p/4#. ~B10!

To obtain the last line we have used the Fresnel integ
*2`

` dx cos(a1bx2)5Ap/b cos@a1(b/ubu)p/4#. Equation
~B10! only holds for l ( l 11),(k0RD)2. For l ( l 11)
.(k0RD)2, I D,l even'0 becausej l(k0r ) is exponentially
damped atRD .

From Eqs.~28! and ~B10!,

SDS~2hn!'
p\VDS

2

2 (
D,l even

l ( l 11),(k0RD)2

16p~2l 11!n~RD!

k0kj~k0 ,l ,RD!V82S
e f f~RD!

3cos2@bu~D,l ,RD!2b j~k0 ,l ,RD!2p/4#

3dS 2hn2E1S22S2
\2k0

2

2m
2D1m D . ~B11!

We can replace the cos2 function with its average value o
1/2 because its phase varies rapidly withl. Thus

(
l even

l ( l 11),(k0RD)2
~2l 11!

k0kj~k0 ,l ,RD!
cos2@bu~D,l ,RD!

2b j~k0 ,l ,RD!#

'
1

4
E

0

l ( l 11)5(k0RD)2 dl ~2l 11!

k0
2A12

l ~ l 11!

~k0RD!2

5RD
2 /2, ~B12!
1-10
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and

SDS~2hn!5p\VDS
2 (

D
4pRD

2 n~RD!

V82S
e f f~RD!

3dS 2hn2E1S22S2
\2k0

2

2m
2D1m D .

~B13!

In the derivation given above, we neglected the variat
of the condensate wave function, which is equivalent to
glecting the atomic momentum spread;\/dr , wheredr is
the r extent of the condensate. When mean field effe
dominate the spectrum, but the atomic momentum is
completely negligible, the line shape will deviate from E
~32! only for small detunings,dn&\k0/2pmdr . One can see
this from the overlap integral@Eq. ~B8!# by expressing the
condensate wave function in terms of the radial Fourier co
ponents,Ar(p)5*dr e2 ipr /\c(r ), to obtain
,

,

J.

gt

ys

. J

.
M.

A

e

03361
n
-

ts
ot
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-

I D,l even5
22A4p~2l 11!

2p\ E dp Ar~p!E dr eipr /\

3
sinbu~D,l ,r !

Aku~D,l ,r !
S 2m

p\2D 1/2
sinb j~k0 ,l ,r !

Ak0kj~k0 ,l ,r !
. ~B14!

Each momentum component will only contribute to t
matrix element at the pointRD,l ,p where the total phase
under ther integral in Eq.~B14! is stationary. This leads
to a definition of RD,l ,p for each momentum,
p/\5uku(D,l ,RD,l ,p)2kj (k0 ,l ,RD,l ,p)u. When uDu@\2k0 /
mdr , p/\ is negligible and this yields the same relation
found by neglecting the curvature of the BEC wave functi
@Eq. ~B9!#. This implies S(2hudnu@\2k0 /mdr ) is unaf-
fected by the atomic momentum. WhenuDu&\2k0 /mdr ,
the momentum spread in the condensate altersI D,l even .
Thus S(2hudnu&\2k0 /mdr ) will show some Doppler-
broadening because of finite atomic momentum. This eff
is negligible for the hydrogen condensate because the
collision frequency shift (;1 MHz! is much greater than the
Doppler width resulting from a 5-mm-long condensate wa
function (\k0/2pmdz;100 Hz!.
v.

hn,

.

E.
-

E.

,

.
tt.
@1# D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. Moss
D. Kleppner, and T. J. Greytak, Phys. Rev. Lett.81, 3811
~1998!.

@2# T. C. Killian, D. G. Fried, L. Willmann, D. Landhuis, S. Moss
D. Kleppner, and T. J. Greytak, Phys. Rev. Lett.81, 3807
~1998!.

@3# P. S. Julienne and F. H. Mies, J. Opt. Soc. Am. B6, 2257
~1989!.

@4# J. M. V. A. Koelman, S. B. Crampton, H. T. C. Stoof, O.
Luiten, and B. J. Verhaar, Phys. Rev. A38, 3535~1988!.

@5# E. Tiesinga, B. J. Verhaar, H. T. C. Stoof, and D. van Bra
Phys. Rev. A45, R2671~1992!.

@6# K. Gibble and S. Chu, Phys. Rev. Lett.70, 1771~1993!.
@7# S. Ghezali, Ph. Laurent, S. N. Lea, and A. Clairon, Europh

Lett. 36, 25 ~1996!.
@8# S. J. J. M. F. Kokkelmans, B. J. Verhaar, K. Gibble, and D

Heinzen, Phys. Rev. A56, R4389~1997!.
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