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Phase diagrams ofFÄ2 spinor Bose-Einstein condensates
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We show that there are three possible phases for a spin-2 spinor Bose condensate, one more compared to the
spin-1 case. The order parameters of these phases are the spontaneous magnetization and the singlet pair
amplitude. Current estimates of scattering lengths show that all three phases have realizations in optically
trapped alkali atoms. There is also a one-to-one correspondence between the structure of a spin-2 spinor Bose
condensate and that of ad-wave BCS superfluid.

PACS number~s!: 03.75.Fi, 05.30.Jp
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One of the recent major developments in Bose-Eins
Condensation~BEC! in atomic gases is the study of dilut
Bose gases with internal degrees of freedom. The first r
ization of such system is found in optically trapped23Na,
which is a spin-1 Bose gas@1#. Recently, JILA has also cre
ated a ‘‘spin-1/2’’ Bose gas by continually cycling betwe
the F51 andF52 states of magnetically trapped87Rb @2#.
In the case of spin-1 Bose gas, the nature of the spinor c
densate depends crucially on the magnetic interaction
zero magnetic field, the spinor condensate can be either
romagnetic or ‘‘polar,’’ which has very different propertie
@3,4#.

Generally, only atoms in the low lying hyperfine multipl
are confined in the optical trap. Those in the higher hyper
multiplet will leave the trap by spin-flip scattering. In th
case of23Na and87Rb, their hyperfine multiplets (F52 and
F51) are regular, i.e., the higher spin state (F52) has
higher energy. Since spin-flip scattering is strong in23Na, it
may be difficult to produce a spin-2 Bose gas in this syste
On the other hand,87Rb has much weaker spin-flip scatterin
and is a candidate for optically trapped spin-2 Bose gas
the case of85Rb, the lowest multiplet has spinF52.It also
has a negatives-wave scattering length in zero field. Shou
the current effort to Bose condense85Rb in magnetic traps be
successful, it is conceivable that anF52 spinor condensate
can be trapped optically in low fields, if the three partic
losses when the field is reduced through the Feshbach r
nance is not too large.

In this paper, we study the ground state structure o
spin-2 Bose gas within the single condensate approximat
In the case of spin-1 Bose gas, it has been realized rece
that the ground state can be ‘‘fragmented’’~i.e., containing
more than one condensate! @5,6#. Despite this fact, the phas
diagram for single spinor condensates remains highly v
able and in fact gives the best agreement with experiment
far @1#. This is because the spin-1 fragmented state is deli
with respect to spin-nonconserving perturbations, which w
drive the system toward a single condensate state. For t
reasons, we shall first focus on the ground states of sin
spinor condensates. We shall consider only linear Zeem
effect, which is already much more subtle than the spi
case. The actual fragmented structures as well as quad
Zeeman effects will be discussed elsewhere.
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Because of the increase in spin value, spin-2 Bose gas
one more interaction parameter than that of spin-1 Bose
As a result, there are three possible phases in zero mag
field ~instead of two in the spin-1 case!. These phases ar
characterized by a pair of order parameters^f& and Q de-
scribing the ferromagnetic order and the formation of sing
pairs, respectively. The order parameterQ is absent in the
spin-1 case. The first two phases, which are characterize
(u^f&u52,Q50) and (̂ f&50,uQu51) in zero field, are re-
ferred to as ferromagnetic and polar phases, respectiv
They are the analogs of the corresponding phases in
spin-1 case. The third phase, (^f&50,Q50) is a nonmag-
netic but degenerate set of states which has no spin-1 an
They will be referred to as the ‘‘cyclic’’ states because
their close analog to thed-wave BCS superfluids which we
shall discuss at the end. In finite fields~along z), both ^ f z&
and Q are nonzero for all three phases. From the curr
estimates of scattering lengths, we find that the spin-2 bos
of 87Rb and23Na will have a ‘‘polar’’ ground state, wherea
those of 85Rb and 83Rb will be cyclic and ferromagnetic
respectively. All these phases can be distinguished by t
very different density profiles@7#.

Low-energy Hamiltonian. The effective low-energy
Hamiltonian of a spin-f Bose gas was derived earlier@3#
with particle interactions of the formV(r12r2)5d(r1
2r2)(F50

2 f gFPF , gF54p\2aF /M , whereM is the mass of
the atom,PF is the projection operator which projects th
pair 1 and 2 into a total hyperfine spinF state, andaF the
s-wave scattering length in the total spinF channel. Symme-
try implies that only evenF terms appear inV. For spin f
52 bosons, we haveV5g4P41g2P21g0P0. Using the fact
that P01P21P451 @3# and f1•f25(F22f1

22f2
2)/2, P2 and

P4 can be expressed in terms off1•f2 andP0. The resulting
expression for the interaction is

V~r12r2!5d~r12r2!~a1bf1•f215gP0!, ~1!

where a5 1
7 (4g213g4),b52 1

7 (g22g4), and g5 1
5 (g0

2g4)2 2
7 (g22g4). The second-quantized Hamiltonian

then

H5K2E drp0ca
1~ f z!abcb1

1

2E dr ~aca
1ca8

1 ca8ca

1bca
1ca8

1 fab•fa8b8cb8cb15gca
1ca8

1 ^2a;2a8u00&

3^00u2b;2b8&cbcb8!, ~2!
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where ^00u2b;2b8& is the Clebsh-Gordon coefficient fo
combining two spin-2 particles withmz5b and b8 into a
spin singletu0,0&, ca(r ) (a52, . . . ,22) annihilates a bo-
son at pointr with spin a, andK5*dr @(\2/2M )“ca

†
“ca

1Vtrapca
†ca# is the sum of kinetic energy and trap ener

Vtrap. Thepo term represents the linear Zeeman shift. It a
includes a Lagrange multiplierp1 to constrain the total spin
so that in an external fieldB along z its expression isp0
5p11gmBB\ @1#. If the ground stateuG& is unfragmented,
the field operatorca(r ) in Eq. ~2! becomes ac-number
Ca(r )5^ca(r )&5An(r )za(r ), where n is the density and
the z is a normalized spinor,za* za51. The ground state
energy then becomes

^H&G5K2E np0^ f z&1
1

2E n2~a1b^f&21guQu2!, ~3!

where K5^K&G , ^f&5z* Tfz, the superscriptT stands for
transpose, andQ5A5^00u2b;2b8&zbzb8 . More explicitly,
Q5zaÂabzb52z2z2222z1z211z0

2, where Âab5da1b,0

(21)a. Note thatQ represents a singlet pair of identic
spin-2 particles and is therefore invariant under any rota
U5e2 i f•c ~where c is the rotational angle!, i.e., zTÂz

5zTUTÂUz. This implieszT(fTÂ1Âf)z50 for arbitraryz,
which in turn implies thatÂf is antisymmetric, and henc
zTÂfz50.

It is useful to note thatQ is the scalar product of a statez

with its time-reversed statez̃[Âz* , i.e., Q5 z̃†z. That z̃ is
the time-reversed state can be seen from the fact thatz̃†fz̃
5 z̃TÂTfÂz* 52 z̃TfTz* 52z†fz. When z is equal to its
time-reversed partner up to a phase factor,~i.e., Âz*
5az,uau51), we say thatz has no broken time-reversa
symmetry. In this case,uQu51 @8#. Time-reversal symmetry
is broken if Âz* Þaz for any uau51.

Determination of spin structure. The first step to under
stand the spin structure is to consider the homogeneous
where the spin configurationz is controlled by the energy
function

E~z!5b^f&21guQu22p^ f z& S p5
2p0

n D . ~4!

As we shall see, once the spin structure of the homogen
system is determined, the resulting phase diagram will p
vide a quick though qualitative determination of the act
structure. It is easy to see from Eq.~4! that the ground state
magnetization must be aligned with the external field~i.e.,
along z), implying ^ f 1&50, wheref 15 f x1 i f y . Equation
~4! then becomes

E5b^ f z&
21guQu22p^ f z&. ~5!

Minimizing Eq. ~5!, we have the following Euler-Lagrang
equations:

~2b^ f z&2p! f̂ zz2lz12gQÂz* 50, ~6!
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where l is the Lagrange multiplier for the normalizatio
z†z51.

By contracting Eq.~6! with z† ~and with zTÂ, respec-
tively! to the right and using the antisymmetric property
fÂ, we obtain

2b^ f z&
212guQu22p^ f z&2l50, ~7!

Q~l22g!50. ~8!

Equation~8! leads to the following cases:~a! QÞ0, and~b!
Q50. Case~a!, which impliesl52g, will be referred to as
the polar phase. In case~b!, Eqs.~6!, ~7! yield

~2b^ f z&2p!~ f̂ z2^ f z&!z50, ~9!

which further divides into~b1!( f̂ z2^ f z&)z50 ~ferromagnet-
ic phases! and~b2! p52b^ f z& ~cyclic!. It is obvious that the
ground state is degenerate under gauge transformation
spin rotation alongz. The family of degeneracy is large
whenp50 because of the full rotational symmetry. Witho
loss of generality, we only considerp.0.

Polar phases. Settingl52g in Eq. ~6! and denotingz̃
5Âz* , we find

~2b^ f z& f̂ z2p f̂z22g!z12gQz̃50, ~10!

~22b^ f z& f̂ z1p f̂z22g!z̃12gQ* z50, ~11!

@~2b^ f z&2p!2 f̂ z
224g214g2uQu2#z50. ~12!

Equation~11! is obtained by multiplying Eq.~10! with Â to
the right and taking the complex conjugate. Equation~12!
showsz is an eigenstate off z

2 with possible eigenvaluesf z
2

54,1,0, denoted as P, P1, and P0, respectively,

P:zT5S eia2A1

2
1

p

8b22g
,0,0,0,eia22A1

2
2

p

8b22g D ,

P1:zT

5S 0,eia1A1

2
1

p

4~b2g!
,0,eia21A1

2
2

p

4~b2g!
,0D ,

P0:zT5eia0~0,0,1,0,0!, ~13!

wherea i are arbitrary phases. Atp50,Q51.
Ferromagnetic phases.Case~b1! Q50 and (f̂ z2^ f̂ z&)z

50 leads to two ferromagnetic phases

F:zT5~1,0,0,0,0!, F8:zT5~0,1,0,0,0! ~14!

with energiesE54b22p andE5b2p respectively.
Cyclic phases. Case ~b2! corresponds toQ50 and p

52b^ f z&. From Eq. ~5!, we see that the states satisfyin
these two conditions are degenerate with energyEC5
2p2/4b. Explicitly, this degenerate family is specified b
the conditions
7-2
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TABLE I. Possible phases in finite field.

zT E
F ~1,0,0,0,0! 4b22p
F8 ~0,1,0,0,0! b2p
C

1
2XeifS 11

p

4b D ,0,A22
p2

8b2
,0,e2 ifS 211

p

4b D C 2
p2

4b

P 1

A2
S eia2A11

p

4b2g
,0,0,0,eia22A12

p

4b2g D g2
p2

4b2g

P1 1

A2
S 0,eia1A11

p

2~b2g!
,0,eia21A12

p

2~b2g!
,0D g2

p2

4(b2g)

P0 ~0,0,1,0,0! g
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^ f 1&[2z2* z11A6z1* z01A6z0* z2112z21* z2250,
~15!

Q[2z2z2222z1z211z0
250, ~16!

p52b~2uz2u222uz22u21uz1u22uz21u2!, ~17!

uz2u21uz1u21uz0u21uz21u21uz22u251. ~18!

One example of such spinor is

zT5
1

2 FeifS 11
p

4b D ,0,A22
p2

8b2
,0,e2 ifS 211

p

4b D G ,

~19!

wheref is an arbitrary phase.
Phase diagram in zero field. Table I summarizes the

above results. Whenp50, all polar states are degenerate.
searching for the lowest energy state in Table I for giv

FIG. 1. Phase diagram in zero field. The ferromagnetic, po
cyclic phases are denoted as F, P, and C, respectively. The p
boundaries P-F and P-C are straight lines with slopes27/10 and
7/10, respectively. The boundary F-C isa22a450. All boundaries
are first order lines. The locations of various alkali isotopes on
diagram are the symbolsL5 23Na,35 87Rb,n5 85Rb,d5 83Rb.
Inset: Zero-field phase diagram in the (g,b) plane.
03360
n

scattering lengths~hence givenb and g), we obtain the
phase diagram in (g,b) plane as shown in the inset of Fig. 1
Among the two ferromagnetic phases only the state F is
alized. F8 is never the lowest energy state for all (g,b). The
three phases P, F, and C are separated by the boundarb
50 ~F-C!, g50 ~C-P! and 4b5g ~P-F!.

The phases P, C, and F are characterized by the ‘‘o
parameter’’ (uQu51,̂ f̂ z&50), (Q50,̂ f̂ z&50), and (Q
50,̂ f̂ z&52), respectively. Moreover, time-reversal symm
try is broken for the cyclic and the ferromagnetic states
not for the polar states, wherez and Âz* are related by a
phase factor@see Eq.~13!# @8#. Since the pair (Q,^ f̂ z&) un-
dergoes discontinuous changes from one phase to ano
the transition between different phases atp50 are all first
order.

It is also useful to display the phase diagram in terms
the differences in scattering lengthsa02a4 and a22a4 as
shown in Fig. 1. The regions occupied by the three pha
are

P:a02a4,0,
2

7
ua22a4u,

1

5
ua02a4u,

F:~a22a4!.0,
1

5
~a02a4!1

2

7
~a22a4!.0,

C:~a22a4!,0,
1

5
~a02a4!2

2

7
~a22a4!.0.

Based on the current estimates of scattering lengths~in a.u.!
by Burke and Greene@9#,

Spin-2 species a0 a2 a4
23Na 34.961.0 45.861.1 64.561.3
87Rb 89.463.0 94.563.0 106.064.0
85Rb 2445.02300

1100 2440.02225
1150 2420.02140

1100

83Rb 83.063 82.063 81.063

we note from Fig. 1 that all the three phases can be real
in the above alkali metal~and in fact in Rb! isotopes. The
error bars in the estimates of scattering lengths, howe

r,
ase

is
7-3



at

er
es
t
e

ia
en

P
at

fir
r t
ry

,

and
by

o-

tic

n
trap

own

fact
ag-
en-
he
cted
is
ed

. By
be

ing
and
e
s 3

ar-

-
re

f

n

e-
inor

at

n-

r

his
d

ha
et
th
wi

C. V. CIOBANU, S.-K. YIP, AND TIN-LUN HO PHYSICAL REVIEW A 61 033607
introduce uncertainties in the predictions of ground st
structures. The case of87Rb is particularly unclear, for it
barely resides in the polar region while the error bar cov
both polar and the the cyclic states. The fact that all th
realizations are close to the phase boundaries means
other physical effects such as gradient energy and magn
field gradients will be important in determining the spat
structures of condensate, for they will compete with the
ergy differences between different phases.

Phase diagram in finite field. WhenpÞ0, the phase dia-
gram depends on the sign of the Heisenberg interactionb.
The phase diagrams forb.0 andb,0 are shown in Figs.
2~a! and 2~b!, respectively. In all cases, only the polar state
is realized as P1 and P0 are never the lowest energy st
When b.0 @Fig. 2~a!#, the external fieldp polarizes the
nonmagnetic polar and cyclic states. SinceQ assumes dif-
ferent values in P and C, the boundary between them is
order. Asp increases, both P and C gradually cross ove
the ferromagnetic state. The second order phase bounda
which this occurs isp54b (p54b2g) for the C~P! state.
When b,0 @Fig. 2~b!#, the only nonmagnetic state is P

FIG. 2. Spinor phase diagrams in finite field for~a! b.0 and~b!
b,0. The thick and dashed lines are first and second order p
boundaries, respectively. For an atom cloud with a nonmagn
state~A, B, or C! at the center, as one moves from the center to
surface, a vertical line is generated in the phase diagram, sho
that the outer layer is always ferromagnetic.
ur

.J
ll,
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which will also be polarized by the external fieldp as in the
b.0 case. The phase boundary between the polar state
the ferromagnetic state is again a second order line, given
p52(4ubu1g). Of course, time-reversal symmetry is br
ken for all phases whenp50.

Figures 2~a! and 2~b! also provide a quick~qualitative!
determination of the spatial spin structure of nonmagne
phases in optical traps. Sincep is inversely proportional to
the densityn @see Eq.~4!#, it generates a vertical trajectory i
the phase diagram as one moves from the center of the
to the surface of the atom cloud. Such trajectories are sh
in Figs. 2~a! and 2~b!. The starting pointsA, B, andC indi-
cate different kinds of spin states at the trap center. The
thatp diverges at the surface of the cloud means all nonm
netic states will develop an outer ferromagnetic layer wh
ever pÞ0. The above construction does not apply to t
ferromagnetic condensate as its spin structure is not affe
by p. Numerical calculation including the kinetic energy
needed to determine the spatial spin configuration with fix
total magnetization.

Because of the different ‘‘order parameters’’Q and^ f z&,
these three phases have very different spinor structures
measuring the density in each spin component, they can
easily distinguished from each other.

Finally, we note that there is a one-to-one correspond
between the structure of a spin-2 spinor Bose condensate
that of ad-wave BCS superfluids. The latter is known to b
characterized by an order parameter which is a traceles
33 symmetry matrixBi j , (B5BT,TrB50). To see this
correspondence, we note from the property of spherical h
monics that the sumP(k)5k2zmY2m( k̂) is a homogenous
polynomial of degree 2 ink @P(k)5Bi j kikj #, and satisfies
the Laplace equation¹k

2P(k)50. These conditions guaran
tee thatB is a traceless symmetric matrix. We can therefo
associate with each spinor a traceless symmetric matrixBi j

5*(dk̂/4p) k̂i k̂ jzmY2m( k̂). Rewriting the energy in terms o
B, one finds that Eq.~4! in zero field (p50) reduces to the
free energy of ad-wave superfluid. The exact minimizatio
of this problem was solved by N.D. Mermin@10#. Our zero
field results are in agreement with his exact solution. B
cause of this correspondence, we have named the sp
phases in zero field according to the features of thed-wave
solutions@10#. It is also clear from the above discussion th
the structure of a spin-S spinor condensate (S5 integer) cor-
responds to that of a singlet BCS superfluid with orbital a
gular momentumS.

We would like to thank Eric Cornell and Carl Wieman fo
discussions on their experiments on85Rb, and Jim Burke
and Chris Greene for estimates of scattering lengths. T
work was supported by NASA Grant No. NAG8-1441 an
NSF Grants No. DMR-9808125 and No. DMR-9708274.
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