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Phase diagrams ofF =2 spinor Bose-Einstein condensates
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We show that there are three possible phases for a spin-2 spinor Bose condensate, one more compared to the
spin-1 case. The order parameters of these phases are the spontaneous magnetization and the singlet pair
amplitude. Current estimates of scattering lengths show that all three phases have realizations in optically
trapped alkali atoms. There is also a one-to-one correspondence between the structure of a spin-2 spinor Bose
condensate and that ofdawave BCS superfluid.

PACS numbse(s): 03.75.Fi, 05.30.Jp

One of the recent major developments in Bose-Einstein Because of the increase in spin value, spin-2 Bose gas has
Condensation(BEC) in atomic gases is the study of dilute one more interaction parameter than that of spin-1 Bose gas.
Bose gases with internal degrees of freedom. The first reas a result, there are three possible phases in zero magnetic
ization of such system is found in optically trappéiNa,  field (instead of two in the spin-1 caseThese phases are
which is a spin-1 Bose gdd]. Recently, JILA has also cre- characterized by a pair of order parametgfisand © de-
ated a “spin-1/2” Bose gas by continually cycling between scribing the ferromagnetic order and the formation of singlet

_ B . pairs, respectively. The order paramegris absent in the
theF=1 andF—? states of magnetically trappéﬂRb'[Z]. spin-1 case. The first two phases, which are characterized by
In the case of spin-1 Bose gas, the nature of the spinor coru f)|=2,0=0) and (f)=0,/0|=1) in zero field, are re-

densate depends crucially on the magnetic interaction. Ifgrred to as ferromagnetic and polar phases, respectively.
zero magnetic field, the spinor condensate can be either fefrhey are the analogs of the corresponding phases in the
romagnetic or “polar,” which has very different properties spin-1 case. The third phasgfY=0,0=0) is a nonmag-
[3,4]. netic but degenerate set of states which has no spin-1 analog.
Generally, only atoms in the low lying hyperfine multiplet They will be referred to as the “cyclic” states because of
are confined in the optical trap. Those in the higher hyperfinéheir close analog to thd-wave BCS superfluids which we

multiplet will leave the trap by spin-flip scattering. In the shall discuss at the end. In finite fiel@slongz), both (f_)
case of®Na and®’Rb, their hyperfine multipletsq=2 and and ©® are nonzero for all three phases. From the current

_ ; ; ; estimates of scattering lengths, we find that the spin-2 bosons
Ei hle)r :r:eerregusl?r:éel'z”iﬂﬁ h;gg;;r?nplqssé?rf%?q;? of ®/Rb and*Na will have a “polar” ground state, whereas

g ergy- RIN-HiIp SC 9 A those of ®Rb and #Rb will be cyclic and ferromagnetic,
may be difficult to groduce a spin-2 Bose gas in this systemyoqhoctively. All these phases can be distinguished by their
On the other h.anoff Rb has_much weaker splln—fllp scattering very different density profile§7].
and is a candidate for optically trapped spin-2 Bose gas. In | ow-energy Hamiltonian The effective low-energy
the case of°Rb, the lowest multiplet has spl=2.1t also  Hamiltonian of a spirf- Bose gas was derived earlig8]
has a negative-wave scattering length in zero field. Should with particle interactions of the formV(r;—r,)=4(r,
the current effort to Bose conden®®Rb in magnetic traps be — rZ)EELOQFPF , ge=4mh?ar/M, whereM is the mass of
successful, it is conceivable that &rs=2 spinor condensate the atom,Pg is the projection operator which projects the
can be trapped optically in low fields, if the three particle pair 1 and 2 into a total hyperfine spk state, andag the
losses when the field is reduced through the Feshbach resgwave scattering length in the total sgfnchannel. Symme-
nance is not too large. try implies that only ever terms appear iV. For spinf

In this paper, we study the ground state structure of a=2 bosons, we have=g,P,+g,P,+goPo. Using the fact

spin-2 Bose gas within the single condensate approximatiohat Po+P,+P,=1 [3] andf,-f,= (F?~f; —3)/2, P, and
In the case of spin-1 Bose gas, it has been realized recentfjs can be expressed in termsfgff, andP,. The resulting
that the ground state can be “fragmente(i’e., containing €xpression for the interaction is
more than one condensaf®,6]. Despite this fact, the phase = _ )
diagram for single spinor condensates remains highly valu- V1= 1) = or =) (at By -To+5yPo), @)
able and in fact gives the best agreement with experiments sshere a=$(49,+304),8=—3(9,—04), and y=2%(go
far [1]. This is because the spin-1 fragmented state is delicate g4) — 2(g,—9g4). The second-quantized Hamiltonian is
with respect to spin-nonconserving perturbations, which willthen
drive the system toward a single condensate state. For these 1
reasons, we shall first focus on the ground states of single HZ}C_J drp0¢;(fz)ab¢b+§f dr(ay; ,ﬂ; W
spinor condensates. We shall consider only linear Zeeman
effect, which is already much more subtle than the spin-1 + o+ T+ s
case. The actual fragmented structures as well as quadratic T Bia afan Tarnr o o+ S ¥4 1,(22:227(00)
Zeeman effects will be discussed elsewhere. X(00/2b;2b" Y ¢y ihy ), 2
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where (002b;2b’) is the Clebsh-Gordon coefficient for
combining two spin-2 particles witim,=b and b’ into a
spin singlet|0,0), #.(r) (a=2,...,—2) annihilates a bo-
son at pointr with spin a, and IC=fdr[(ﬁ2/2M)V¢;V¢a
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where \ is the Lagrange multiplier for the normalization
{'e=1.

By contracting Eq.(6) with ¢™ (and with {TA, respec-
tively) to the right and using the antisymmetric property of

+Vtrap¢;¢a] is the sum of kinetic energy and trap energy fA we obtain
Viap- Thep, term represents the linear Zeeman shift. It also

includes a Lagrange multipligy; to constrain the total spin
so that in an external fiel® along z its expression i,
=p,+gueBf [1]. If the ground statéG) is unfragmented,
the field operatory,(r) in Eq. (2) becomes ac-number
Wo(r)=(a(r))=n(r) Z4(r), wheren is the density and
the ¢ is a normalized spinor{}{,=1. The ground state
energy then becomes

1
(Hyo=K— [ npo(t+5 [ ni(act B+ v0P), @

where K=(K)g, (fy=¢*Tf{, the superscripT stands for
transpose, and® = /5(00/2b;2b’)¢,Z, . More explicitly,

O =CaPanlo=2L00 2= 2011+ {5 where Agp=8a.n0

2(f,)?+2%|0[>=p(f,) —A=0, (7)

®

Equation(8) leads to the following casea) ® #0, and(b)
0 =0. Casda), which implies\ =2, will be referred to as
the polar phase. In casé&), Egs.(6), (7) yield

O(A—2y)=0.

(2B(f)—p)(F,—(f))¢=0, (9)

which further divides intab1)(f,— (f,)) =0 (ferromagnet-
ic phasesand(b2) p=2p(f,) (cyclic). It is obvious that the

ground state is degenerate under gauge transformation and

spin rotation alongz. The family of degeneracy is larger
whenp=0 because of the full rotational symmetry. Without

(—1)2 Note that® represents a singlet pair of identical loss of generality, we only consider>0.
spin-2 particles and is therefore invariant under any rotation pg|gr phases Setting\ =2 in Eg. (6) and denoting¢

U=e"'"¢ (where c is the rotational ange i.e., {TAZ
=¢TUTAU¢. This implies¢T(fTA+ Af) ¢ =0 for arbitraryZ,
which in turn implies thatAf is antisymmetric, and hence
{TAfE=0.

It is useful to note tha® is the scalar product of a state
with its time-reversed state=A¢*, i.e.,®=¢"¢. That? is
the time-reversed state can be seen from the factHat
=TTATTA* = -7TfT¢* = — ("¢, When ¢ is equal to its
time-reversed partner up to a phase factéire., Al*
=a(,|a|]=1), we say that{ has no broken time-reversal
symmetry. In this case@|=1 [8]. Time-reversal symmetry
is broken ifA¢* #a¢ for any|a|=1.

Determination of spin structureThe first step to under-

. . . LT
stand the spin structure is to consider the homogeneous casg,-f -

where the spin configuratiod is controlled by the energy
function

Zpo)

E(0)= BN+ 1102~ p(f,) (p= =@

As we shall see, once the spin structure of the homogenous

=Az*, we find
(2B(f)F,~pt,—27)+2y07=0, (10)
(=2B(f)t,+pf,—29){+2y0* =0, (12)
[(2B()—p)?F2-4y*+4y%0[*]¢=0. (12

Equation(11) is obtained by multiplying Eq(10) with A to
the right and taking the complex conjugate. Equatitg)
shows is an eigenstate of> with possible eigenvaluet
=4,1,0, denoted as P, P1, and PO, respectively,

garyfis P oooi“fz\/l— 0 )
27 8p—2y " 2 88-2y)
P1:/T

_ iaq 1 P far_q l_—p )
‘(Qe N2 a9 N2 23— 0)

(13

—

P0:¢T=¢'0(0,0,1,0,0,

system is determined, the resulting phase diagram will pro-
vide a quick though qualitative determination of the actualwhereq; are arbitrary phases. At=0,0=1.

structure. It is easy to see from E¢) that the ground state
magnetization must be aligned with the external figld.,
alongz), implying (f,)=0, wheref , =f,+if,. Equation
(4) then becomes

E=B(f)*+ 40> —p(f,). ©)
Minimizing Eq. (5), we have the following Euler-Lagrange
equations:

(2B(f)—p)T L —N{+2yOAL* =0, (6)

Ferromagnetic phase<Case(bl) ®=0 and f,—(f,))¢

=0 leads to two ferromagnetic phases
F:{™=(1,0,0,0,0, F':{"=(0,1,0,0,0 (14)
with energie£=4B—2p and&= B—p respectively.

Cyclic phases Case(b2) corresponds tod®=0 and p
=2pB(f,). From Eq.(5), we see that the states satisfying
these two conditions are degenerate with enefip~
—p?14B. Explicitly, this degenerate family is specified by
the conditions
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TABLE I. Possible phases in finite field.

4 £
F (110501010 43_2p
F, (071501010 B_p
C 2 p2
: p p i p -
%(e¢(1+E 0, 2—8—/320,e ¢(—1+@> 43
P p?
1/ . p ) p ) —
—| elr2/1+ ,0,0,0e'%2/1— YT ap-
2( 4B—y ® 4B—y 4By
P1 p2
1 . p ' p ) —
—| 0e'*1y/1+ 0% 14/1-5———0 Y -
N 206~ 7) 206~ ) 4=
PO (0,0,1,0,0 Y

(F)=205 L+ 6L Lo+ BLE L 1+20% 1L »=0,

O=20,{ ,—2{1L-1+5=0,
P=2B(2|¢al* = 2|¢ o+ 1P~ [¢-4/7),
| G2+ &0 P+ Lol + (¢4l +]¢ 2P=1.
One example of such spinor is
1] p [P p
T__|¢gl¢ - - gl _ _
I4 5 e 1+4B 0,1/ 2 8ﬁz,o,e l+4ﬁ

where ¢ is an arbitrary phase.

Phase diagram in zero fieldTable | summarizes the
above results. Whep=0, all polar states are degenerate. By
searching for the lowest energy state in Table | for givenare
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FIG. 1. Phase diagram in zero field. The ferromagnetic, polar,
cyclic phases are denoted as F, P, and C, respectively. The phase
boundaries P-F and P-C are straight lines with slopd$10 and
7110, respectively. The boundary F-Cas—a,=0. All boundaries

scattering lengthghence giveng and y), we obtain the
phase diagram iny, 8) plane as shown in the inset of Fig. 1.
Among the two ferromagnetic phases only the state F is re-
alized. F is never the lowest energy state for ajl,3). The
three phases P, F, and C are separated by the boungaries
=0 (F-C), y=0 (C-P) and 48=1y (P-P.

The phases P, C, and F are characterized by the “order
parameter” (0]|=1(f,)=0), (®@=04f,)=0), and
=04f,)=2), respectively. Moreover, time-reversal symme-
try is broken for the cyclic and the ferromagnetic states but
not for the polar states, wheie and Ag* are related by a
phase factofsee Eq.(13)] [8]. Since the pair ®,(f,)) un-
dergoes discontinuous changes from one phase to another,
the transition between different phasespat0 are all first
order.

It is also useful to display the phase diagram in terms of
the differences in scattering lengtag—a, anda,—a, as
shown in Fig. 1. The regions occupied by the three phases

2 1
P:ap,—a,<0, 7|a2— ay| <§|a0— au,

1 2
F:(a,—a,)>0, g(ao—a4)+ 7(a2—a4)>0,

1 2
Ci(az—ay) <0, 5(30_34)_ 7(32_34)>0-

Based on the current estimates of scattering len@tha.u)
by Burke and Greenp9],

Spin-2 species ag a, ay
ZNa 34.9+1.0 45.8+1.1 64.5-1.3
8Rb 89.4+3.0 94.5+3.0 106.0-4.0
8Rb ~445.0°199 —440.0"332 —420.0°1%
8Rb 83.0-3  82.0+3 81.0+3

are first order lines. The locations of various alkali isotopes on thigve note from Fig. 1 that all the three phases can be realized
diagram are the symbol$ = 2*Na,x = 8Rb,A = ®Rb,@® = &Rb.

Inset: Zero-field phase diagram in the,8) plane.

in the above alkali metaland in fact in Rb isotopes. The

error bars in the estimates of scattering lengths, however,
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which will also be polarized by the external figdas in the
B>0 case. The phase boundary between the polar state and
the ferromagnetic state is again a second order line, given by
p=—(4|B8|+vy). Of course, time-reversal symmetry is bro-
ken for all phases whep=0.

Figures 2a) and Zb) also provide a quickKqualitative
determination of the spatial spin structure of nonmagnetic

c phases in optical traps. Singeis inversely proportional to

A the densityn [see Eq(4)], it generates a vertical trajectory in
the phase diagram as one moves from the center of the trap
to the surface of the atom cloud. Such trajectories are shown
in Figs. 2a) and 2b). The starting point#\, B, andC indi-
~ cate different kinds of spin states at the trap center. The fact
thatp diverges at the surface of the cloud means all nonmag-
netic states will develop an outer ferromagnetic layer when-
ever p#0. The above construction does not apply to the
ferromagnetic condensate as its spin structure is not affected
by p. Numerical calculation including the kinetic energy is
needed to determine the spatial spin configuration with fixed
total magnetization.

Because of the different “order parameter®’ and(f,),
these three phases have very different spinor structures. By
measuring the density in each spin component, they can be

FIG. 2. Spinor phase diagrams in finite field fay >0 and(b) easily distinguished from each other.

B<0. The thick and dashed lines are first and second order phase Finally, we note that there is a one-to-one corresponding
boundaries, respectively. For an atom cloud with a nonmagnetibetween the structure of a spin-2 spinor Bose condensate and
state(A, B, or C) at the center, as one moves from the center to thehat of ad-wave BCS superfluids. The latter is known to be
surface, a vertical line is generated in the phase diagram, showingharacterized by an order parameter which is a traceless 3
that the outer layer is always ferromagnetic. X3 symmetry matrixB;;, (B= BT, TrB=0). To see this
correspondence, we note from the property of spherical har-

_ o o monics that the sunP(k) =k?¢,,Yom(K) is a homogenous
introduce uncertainties in the predictions of ground Statepolynomial of degree 2 ik [P(k)=B;kik], and satisfies
structures.' The: case ofRb is'particglarly unclear, for it ¢, Laplace equatioﬁﬁP(k)=0. These conditions guaran-
barely resides in the polar region while the error bar covergee thatg is a traceless symmetric matrix. We can therefore

bOth pqlar and the the cyclic states. The fact_ that all thesgqqqiate with each spinor a traceless symmetric maijix
realizations are close to the phase boundaries means that

: - = [ (dk/4m)kik: £, Yom(K). Rewriting the energy in terms of

other physical effects such as gradient energy and magnet I RN Sm Z2mA R : _

field gradients will be important in determining the spatial '3‘: one finds that Eq(4) in zero f'_eld 0=0) reduqe_s to the
free energy of ad-wave superfluid. The exact minimization

structures of condensate, for they will compete with the en .
y P of this problem was solved by N.D. Merm|idQ]. Our zero

ergy differences between different phases. : . . . ;
Phase diagram in finite fieldVhenp+0, the phase dia- field results are in agreement with his exact solution. Be-
gram depends on the sign of the Heisenberg interagsion Cﬂuse of this c;nr:sspondgnce, Wﬁ h]:':lve namef(cjﬂ::: spnor
: - phases in zero field according to the features o ve
The phase diagrams fg#>0 and <0 are shown in Figs. solutions[10]. It is also clear from the above discussion that

2(a) and Zb), respectively. In all cases, only the polar state P ) i .
is realized as P1 and PO are never the lowest energy staté‘*tgfa structure of a spif-spinor condensateS= integer) cor-

When >0 [Fig. 2a)], the external fieldp polarizes the responds to that of a singlet BCS superfluid with orbital an-
nonmagnetic polar and cyclic states. Sir@eassumes dif- gular momentuns

ferent values in P and C, the boundary between them is first We would like to thank Eric Cornell and Carl Wieman for
order. Asp increases, both P and C gradually cross over taliscussions on their experiments &fRb, and Jim Burke
the ferromagnetic state. The second order phase boundaryatd Chris Greene for estimates of scattering lengths. This
which this occurs ip=48 (p=4B— ) for the C(P) state. = work was supported by NASA Grant No. NAG8-1441 and
When 8<0 [Fig. 2(b)], the only nonmagnetic state is P, NSF Grants No. DMR-9808125 and No. DMR-9708274.
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