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Rigorous calculation of heating in alkali-metal traps by background gas collisions
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The finite depth€ of an atom trap results in an upper bound for the energy transfer in collisions with the
background gas that will result in heating but not in loss of an atom. The energy transfer rate is accurately
predicted as function of the well depth by applying a versatile semiempirical model function for the small-
angle differential cross section, covering the full range from pure diffractive scattering to classical scattering.
Simple scaling laws for the energy transfer rate are presented that can be readily applied. For the diffraction
dominated regime we find an energy transfer rate proportionaf/tff)? with &= (kg Tp 03/4), a system-
dependent energy determined by the ambient temperdiy@nd the diffraction angled,. In the classical
regime we find the usual result of an energy transfer rate proportiondl &ia.§>*.

PACS numbd(s): 03.75.Fi, 34.50-s, 39.90+d

[. INTRODUCTION optical trap because of its superior confinement and rapid
control of trapping parameters. In this case, the trap depth is
In 1995, Bose-Einstein CondensatiBEC) was first ob- an important tool for minimizing the heating by the back-
served in a cold dilute sample of trapped alkali-metal atomsground gas collisions. The depth of a FORT covers a wide
by three groups using RpL], Na [2], and Li[3], respec- range from 4 ©K to 4 mK. In this case it is essential to have
tively. Recently, BEC was also achieved in a dilute gas of Hdetailed knowledge on the process of collisional heating.
atoms[4,5]. Since the first observation of BEC in a dilute  In this paper we calculate the energy transfer rate by
gas, a whole new field of atom optics and coherent mattebackground gas collisions very accurately. We treat both the
has emerged. At this moment, most efforts in the field aresmall-angle collisions in the quantum mechanical
directed to Bose-Einstein condensation of the alkali atomsdiffraction-dominated range within the diffraction angle, as
Emphasis has been laid on Rb, the workhorse in this newvell as the range of slightly larger angles which is dominated
field, with Na as the runner-up. For Cs it is not clear if BEC by classical scattering. Both ranges are connected smoothly
can be reached, due to the recent experimental evidence amd accurately by using a well-tested and versatile semi-
large spin-spin relaxation rates for the,mg)=[4,4) and  empirical model function for the small angle differential
|3,3) states. Progress toward achieving BEC in Cs withoutross section. All results are given as simple analytical for-
magnetic trapping is reported by DePaeal. [6], using a mulas. The effect of averaging over the thermal Maxwell
crossed far off-resonance optical trap. Boltzmann distribution is included as an additional convolu-
The road to BEC is well known: cold atoms are first tion factor. Typical results are given for the alkali-metal
trapped in a magneto-optical trap and then transferred to gases Li through Cs.
magnetic trap where evaporative cooling is applied to Recently, this approach has been applied in a study to
achieve the ultralow temperatures in the K to 10 nK  investigate the prospects for achieving BEC in a trapped
range where the transition to BEC takes place. At magnetisample of metastable neon and metastable helium d@jns
trap densities in the range<10'* cm™3, collisions with the  In this study, the collisional energy transfer rate is due to
background gas at ambient temperature are the dominasecondary collisions of the ionic and ground state products of
mechanism of trap loss: the energy transferred in these cotesidual ionizing collisions in a spin-polarized gas. For
lisions is much larger than the trap depth. However, for col-ground-state atom—metastable-atom collisions the diffractive
lisions with a scattering angle of a few mrad, the energycontribution is dominant; for(dimenion—metastable-atom
transfer is of the same order of magnitude as the trap deptleollisons the range of classical scattering is most important.
These atoms do not leave the trap, but dissipate the energyhe scaling of the collisonal energy-transfer rate with the
gained in secondary collisions with other trapped atoms. Ofrap depth and trap geometry helps to define the trapping
course, this effect is larger for deeper traps. For atoms in aonfiguration that is to be preferred for pursueing BEC in
magnetic trap the resulting energy transfer rate is usuallghese two metastable gases. However, in this study it was not
counteracted by using an rf shield which limits the trap deptmecessary to investigate the full transition region between the
to a small value, i.e., which pumps the hotter atoms to nonéliffractive and the classical regime.
trapped states. This is the same as keeping the evaporative In a recent paper by Bakt al. [10], the contribution of
cooling switched on at a certain cutdf,8]. Quantitative the quantum-mechanical diffraction-dominated range of scat-
data on heating in magnetic traps is still lacking. tering angles to the heating of trapped alkali atoms by back-
For atoms trapped in a far off-resonance t(&@RT), a  ground collisions is discussed. For the case of a shallow trap
very powerful tool for trapping atoms without the limitations with a depthmuch smallerthan a system dependent refer-
of trapping dc magnetic fields, there is no simple means foence value, e.g., 0.98 mK for Rb and 0.51 mK for(@sour
counteracting the collisional heating. Recently, there hasiotation of Table ), their results are in agreement with our
been a strong interest in trying to achieve BEC in such arcalculations. These conditions are typically met in a FORT.
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TABLE I. System parameters for the alkali gases, together with collision paranket@rsr(0), andé,
at a velocityv ,= (2kg T, /m)*? corresponding to the maximum of the Maxwell Boltzmann distribution of
the background gas atoms at temperaflye 300 K.

alkali Li Na K Rb Cs

m (a.u.) 7 23 39 87 133
Cs (a.up 1393 1556 3897 4691 6851
vy (M/S) 1034 570 438 293 237
k (A7Y 5.72 10.4 13.5 20.2 24.9
Q (A? 877 1163 1865 2359 2988
a(0) (A?sr) 2.44<10P 1.41x 10° 6.14x 10° 2.19x 10 5.37x 10
6y (mrad) 20.9 10.0 6.1 3.6 2.6
Ny (1—AQ/Q) (m3s) 1.10<10%  1.51x10%  1.22x10%  1.45x<10*  1.41x10%
Erer (MK) 32.8 7.54 2.77 0.982 0.507
UmQEer (M3K/s) 29810 500<10°Y 226x10Y 6.80x10°'8 3.60x10 8
aRef.[19]

When the trap depth is equal to this reference value, theies in the trap, the mass factor reduces to
approach of Baliet al. [10] results in heating rates that are (m,/m)Y%(m/u)=2. For collisions with thermal sodium at-
approximately 70% larger than our calculations, which takeoms atT,=300 K and a trap depth &=1 mK, the maxi-
into account a fully correct description of the small-anglemum scattering angle i9,,,=3.7 mrad. This determines
differential cross section. For deeper traps, as is the case ftie angular range where we need a correct description of the
magnetic traps, it is essential to cover the whole range oflifferential cross section(6).
scattering angles in full accuracy. Only then accurate heating For an inverse power-law potenti®l(R)=C./R® (with
rates of trapped alkali atoms by collisions with the back-s=6 for the induced dipole-dipole interaction of atom-atom
ground gas are obtained, as discussed in this work. scattering, simple analytical formulas for(6) are avail-

In Sec. Il we discuss small-angle collisions, including theable. The small-angle differential cross sectio(¥) scales
semiempirical model function for the small-angle differential with the characteristic diffraction angl@é1-15,
cross section. The calculation of the effective product of
cross section and energy transfer is presented in Sec. lIl, as a o= (47/k?Q)*?, 2
function of universal scaling parameters for all alkali atoms.
In Sec. IV we discuss the energy transfer rate for the trappeWith k= wv/% the wave number. This can be directly under-
alkali gases as a function of the trap depth. A comparison t§tood by considering the equivalent situation in physical op-
experimental data for Na, Rb, and Cs in magnetic traps antics. An orifice (or equivalent black digcwith areaA and
optical dipole traps is given in Sec. V. In Sec. VI we argueradiusb=(A/m)"? causes a small-angle diffraction pattern
that the glory oscillations will only have a negligible effect that scales as)3(kb6/2)/(kb@/2)%, with J; the spherical
on the calculated energy transfer rates for binary collisions oBessel function ané the optical wave number. The charac-
alkali atoms. Finally, in Sec. VII we present some conclud-teristic angle for diffraction in optics is thug= 2/kb, which
ing remarks. differs only by a factor 22 with the angle defined in Eq2)

for atomic diffraction.
Il. SMALL-ANGLE COLLISIONS For anglesf< 6, we obtain adiffraction peak, which can

. . be approximated bj15,16
The finite depth€ of the trap results in an upper bound for

the energy transfer that will still result in heating but not in a(0)/a(0)=1—a(s)(6/6)?, ®))
the loss of an atom. For a collision with scattering angia

the reduced system or center-of-mass system, the velocityith «;(6)=0.9975 a numerical constant. For anglés
transferred to the cold atom is equaldo =v Ou/m, with w > @, we find the classical resul.3—15

the reduced masg; the velocity of the impinging back-

ground gas atom with mass, , andmthe mass of the atoms a(0)/o(0)=ay(s)( 8l 6y) ~26+D, (4)

in the trap. The condition for collisional heating then is ) o
Im(Av)2<&. This in turn limits the range of scattering with the constanta,(6)=0.2846. This contribution corre-

angles that we have to take into account sponds tarefraction, in analogy to geometrical optics when
' light is scattered by an inhomogeneous medium. The abso-
o<(my /m)Y2(m/ w)(EIE)Y2= Oy, (1) lute value of the differential cross secti@r{0) in the for-

ward direction and the total elastic cross sectipare given
with E=2m,v? the kinetic energy of the background gas by [17,18

atom in the laboratory system. Of course, for binary colli-
sions of an alkali-metal background gas with the same spe- a(0)=k?Q?/[16m?cog(m/(s—1))]
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FIG. 1. Small-angle differential cross sectioi6)/o'(0) forthe  merical resulf{Eq. (9)]; dashed line: diffractive approximation

5 . e
case of aCq/R” potential for atom-atom thermal collisions. Full [gq (12)]; full line: classical or refractive approximatig&q. (12)].
curve: quantum-mechanical calculations; full line: classical me-

chanics. Filled squares: partial cross sectdd@ for heating colli- )

sions_ with a scattering gngle less tha#_'r 0max,_ norm_alize_d _to the AQ= f maxa( 0)27sing do
elastic total cross sectio; dashed line: diffractive limitAQ 0

=0.382 (Omax! b0)>

X
Q= ay(8)(Cyli0) 26D, ©) ~ 2[R ax,
2 cog[w/(s—1)]Jo
with a3(6)=8.083. The scattering parameterg0), Q and (7)
0y, are not independent, but related byag o(0)/Q
=4 co[m/(s—1)] = ay(s) with a,(6)=0.382. With Xmax= (Omax! 6o)- FOr small-angle scattering the approxi-

Various semiempirical formulas connecting the two re-mation sing=6 is fully justified. For s=6 we find
gions have been given by several authf8,15. A very  AQ(Xmax—)=1.002), illustrating the quality of the de-

accurate semiempirical representation is giverj 1% scription based oF(x;6). Thecalculated values cAQ/Q
are also shown in Fig. 1. We see that 26% of the total cross
F(x;8)=0(0)/a(0) section is determined by small angle scatteringxtarl, i.e.,
6< 6.

={1—cy(s)sinCcy(s)x?]+c5(s)x?}~F s,
, IIl. EFFECTIVE PRODUCT OF CROSS SECTION AND
1—{(s+1)/s}[cs(s)—ci(s)ca(s)]x", x<1 ENERGY TRANSFER

O e S x> 16 The essential input for the calculation of the energy trans-

©) fer rate of trapped atoms by collisions with the background
gas is the energy-transfer integtéde, i.e., the integral of
the product of the differential cross sectiot{#) and the
associated energy transfAiE(6) =3mAuv(6)? in the labo-
ratory system. This integral is given by

F(X;8)~

with x=6/6, and the constants equal to,(6)=3.75,
C,(6)=0.556 andc3(6)=2.94. The functionF(x;6) is
shown in Fig. 1, together with the refractive limit corre-
sponding to classical mechani¢gqg. (4)]. In the angular
range 0=x<3.9 the maximum relative deviation of the )
mod.el fl_Jnctlon]-'(x,G) from the qua_ntum-mgchamcql cross IQE:f maxo_( OAE(6)2sing do, ®
section is only 4.5%. The asymptotic behavior of this model

function is in excellent agreement with the predictions of the

semiclassical approximation at small angles1 [Eq. (3)]  where the integration ranges from=0 to the trap-depth
and the classical or high energy approximation at larg@imited valuef,,,. By using the approximation sifi~6 and
anglesx>1 [Eq. (4)]. The latter is valid for large impact the semiclassical approximation of E@), the collision in-
parameters where the collision energy is much larger thagegral of Eq.(8) can be written as

the intermolecular potential, due to its rapid fall-off, scaling

with R™6. The great advantage of(x;s) is the accurate £.Q «
description obtained in the transition region, smoothly con- Toe= re J' '”axj_-(x;s)xs dx, 9)
necting the two asymptotic regimes. The integral of the 2 cog[w/(s—1)]Jo

model functionF(x;6) over the rangx=0 to 6,,,, deter-
mines the cross sectiahiQ related to the heating of trapped with {2 cog[#/(s—1)]} 1=0.764 fors=6. The paramete®
atoms, as given by is the total elastic cross section as given by Es). The
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parameteré, is a system-dependent scaling value for the The calculation of the collision integral of E¢B) is thus

energy transfer, i.e., a reference value for the trap depth aeduced to calculating a nondimensional integral with a

given by scaled trap depth/&,es determining its range. The results of
Erer=E O /M) (mimy). (100  Ed.(9) are plotted in Fig. 2 as a function of the scaled trap

depth&/ Et.

The scaling factor of the integral can also be written as For the two limiting cases of pure diffractive scattering

EefQ=2mh?/m, a surprisingly simple result that only de- for x<1 and refractive scattering fox>1, the non-

pends on the mass of the trapped atoms. Please note thditnensional integral can be evaluated analytically. We then

X o= (Ormax! 00)°= €l Exet find the asymptotic results
J
. 0.19%,6(Q(E/Ere1)2=0.19X 27 2IM) (€l E0r)2 X<1 (11)
QE | 0.1315,0/Q(E/E 1) 6= 0.13X 2 wh 2/ M) (E1E,01)¥® x>1, (12)

where we have uses=6 to calculate the numerical factors. 1 10-° mbar. The figure gives the analytical result,/N
For comparison to the numerical results o5 we have  of Eq. (13) without the effects of convolution over the Max-
DAOHGS the two asymptotic exdpressmns in Fig. 2. |tr:f Cleﬁ‘rwell Boltzmann distribution. The convolution factby, de-
that the two approximations do not connect smoothly. The _ _
discrepancy between the numerical result and the diffractiw%reases from 1.03 al/£=0.04 10 0.96 att/&=2, fol-
owed by an increase to 1.06 &t&,=9 and a fall-off to

o ) 0 _
§p4p1r;xm:?:}|§n _nlcrle:aset.; frmf*r% 3t'/0 at f/ .gbreft. O(:ﬁ tg. 1.03 atél &= 36: in all cases the correction for the thermal
0 alclErer= 1. PO the relractive contribution the dis-— ., 01 tion is only a minor effect. Th€g values[19] used
crepancy with the refractive approximation first rises from as input are given in Table I, together with the scaling energy
—1409 = 0 = i )
+i§/ma?t§/§f9f_ BiLGtOFj(L)rsz/?:(?rtrge/(imf reérj,i(\:/'\t/iléi a(ﬁd ec:zi&tﬁi?]to &t @and the characteristic collision paramet&;so(0), and
0 ref =™ P QE 6. At low values of the trap depth we observe an increase of

10%, the range of validity of these approximations is re- . .
. N the energy transfer rate when going from Li to Cs, due to the
stricted 10£/£,¢<0.16 or £/&=4. The approximation of oo ntinfluence of the rapidly increasing valueftf, ;.

(I:Egl.c(ullgtilr?getqhuealetr?etrr;/?;(;r:?esrl?gtgsed by Batfial. [10] for For large values of we see a complete inversion of this
' order in Fig. 3: the light alkali gases suffer the largest energy
transfer rate. This can be directly understood if we consider
IV. ENERGY TRANSFER RATE the scaling of the energy transfer rate with the trap depth in
_ the limits £<&,; and £> &4, by combining Egs(11) and
The energy input) per second to the total numblirof  (12) with Eq. (13). For the former case of diffractive scatter-
trapped atoms is given by the usual expression ing, the energy transfer rate for the different alkali gases

U=Nny(vZge)r,=NnpwnZoe fr,=Unfr, (13

—_

Q
W

T

—_
o
[
T

with ny the density of the background gas. The notation
(), indicates an average over the Maxwell-Boltzmann

distribution of the relative velocity of the atoms in the
background gas with temperatufg. The last part of Eq.
(13) descibes the effect of the convolution over the Maxwell-
Boltzmann distribution in terms of the “velocityk cross

(dU/dt),, /N (uK/s atom)
3 2

section X energy transfer” factor at velocityvy, S

=(2kgT,/m)¥2 multiplied by a convolution factorfr, 10-2'/./. T R R
which is on the order of unity. The velocity,, corresponds 10” 10° 10°

to the maximum of the Maxwell-Boltzmann distribution. A € (mK)

subscriptm has been used to indicate that the energy transfer

integraIIQEm has been evaluated at velocity, . FIG. 3. Numerical results for the energy transfer rdig/N of

. trapped alkali atoms af,=300 K and a background gas density
The results for the energy transfer rdtg,/N of the  pn —242¢10"* m 3 corresponding to a pressure of

alkali-metal atoms Li through Cs are given in Fig. 3 as a1.0x10°° mbar, given as a function of the trap depfh The
function of the trap deptld in the range 0.1 to 50 mK. The dashed linegwith a slope equal to tworepresent the asymptotic
temperature of the background gasTig=300 K; the den- behavior of the heat input in the limit of diffractive scattering for
sity is n,=2.42 13 m™3, corresponding to a pressure of £<& [Eq. (11)].
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scales ag ngr_(_efl ; for the Ialt/%er case of refractive sc;a/ftst.ering The predicted energy transfer rateUs,/(Nkg) =35 uK/s;
the scaling is given by Q& . The additional factofief i the increase in temperature in the approximation of a har-

the refractive case is sufficient to reverse the order of energy, | .. potential then i§=11.5 uK/s. These are the bound-

transfer rates, with the largest rates for the light alkali atomsary conditions for all cooling efforts in this trap
Actually, the order of K and Na is not reversed: the energy For the BEC experiment in Na at MIT, the lifetime in the

transfer rate for K is slightly larger than for Na at even larger . . .
ghty 'arg 9 magnetic trap is very short unless the trap depth is lowered

values of€ than shown in Fig. 3. by rf shieldi lowi llisionallv h d
Usually, an accurate value of the density of the back2Y T shielding, allowing collisionally heated atoms to escape

ground gas in the trapping chamber is not available directly/ 8l If we assume a depth of the magnetic trap equal to
from the experimental setup. This would severly limit the €~10 MK, i.e., a depth of 150 G for Na with a magnetic
application of our model to predict absolute values of themoment of 1ug, we can calculate the energy transfer rate to
energy transfer rate. However, we can derive the backgroungtpport their observation. Using a number density
density from a simple decay measurement of the trap popu=5x 102 m~2 we findU,,/(Nkg) =43 wK/s. An rf shield
lation. We use the characteristic time constantfor the  at 20 uK directly results in a decrease of the energy transfer

densityindependentlecay of the trap population. The loss of (4ia o (J /(Nkg)=3.4x10"* uK/s as follows from the
atoms from the trap by these collisions is given by scaling WETt]hEZ 8

: Finally, we can apply our model to a condensate of Na
N=—Nny(v(Q=AQ))r,=— N/, (14 atoms, loaded in a FORT after having achieved Bose-
, . . ) Einstein condensation by the usual method of evaporative
with Q—AQ the partial cross section for scattering over ancooling in a magnetic trap. For this comparison we use the
anglelarger than 64, i.e., the cross section corresponding y4ia of the group of Ketterle at MI22]. For the “strong”
to collisions leading to trap loss. The value 60 can be optical trap with a deptlf=2 uK they find a loss time
calculated using the approximation of E&) and the inte- equal tor;~30 s. Using Table | we find/&,.=2.7x 10
gral expression of Eq(7). In Fig. 1 we show the numerical 047 /o ~1 6x10°2. The cross section for collisional
results forAQ/Q as a function of the scaled energy depth loss Crg? be calculated in the small angle limit, i£Q/Q
(Omaxl 60)°= (€1 Eer) . These results can be used to relafe  _( 385 42 1 03« 10~%; the lifetime then leads to a den-
~NpwmQ(1-AQ/Q) to the density of the background gas. g, nb=5n>1?X1012 m~3. The predicted energy transfer rate
Finally, for comparison with experimental data on trapthen isU_ /(Nkg)=3.4x10°5 KIs, fully determined by

temperatures, we have to convert the energy transfettate o iftractive contribution. This low energy transfer rate is

to an increasd of the temparature of the trapped atoms. Forcompletely due to the shallowness of the FORT.
an internal energy) =N7kgT this results in

T=U/(N7kg), (15 VI. GLORY OSCILLATIONS
with »=3/2 for a square-well potential ang=3 for a har- The semiclassical model function used to calculate the
monic trapping potential. energy transfer rate of alkali atoms in a trap fully describes
the contribution of the long range interaction to the total
V. COMPARISON TO EXPERIMENTS cross section and the differential cross section for elastic

scattering. Not included is the contribution of the glory os-

In a recent experiment on Raman cooling in a far-off reso-<illations, i.e., the extra contribution due to the interference
nance optical tragFORT) for Cs atoms a residual energy of the classical trajectory that also has a scattering afigle
transfer rate of=4uK/s has been observed@0]. The well =0 by the compensating effects of the attractive and repul-
depth is€=0.16 mK, leading to a value @f/£=0.32 and  sive interatomic forces. These glory oscillations as a function
Omax/ 6o=0.56. The cross section for collisional loss is deter-of the velocity can be fully described in semiclassical terms
mined byAQ/Q=0.105; the lifetimer;=2 s then leads to a [14], using the deptle,,;, and positionR,,;, of the potential
background density,=7.9x10'* m™® in the vapor cell. well as input. The amplitudéQ of the glory oscillations in
The energy transfer rate is then equallg,/(Nkg)=4.5 the total cross section scales 8@y ~7R¥:k ™2 and does
uKI/s. This result is in excellent agreement with the experi-not depend on the magnitude of the long-range interaction
mental data. Ce. For the alkali-metal—alkali-metal systems, with their

We can also apply our model to predict the energy translarge Cg value, the relative amplitudéQg/Q is rather
fer rate of Rb atoms in a circularly polarized FORT, usingsmall. For example, for the NaNa system at thermal veloc-
the experimental conditions in the recent paper of Corwinty v,,, we find 6Q4/Q=0.013 and 0.021 for the singlet
etal. [21]. Typical conditions are a trap depth of  and triplet potential, respectively; the relative amplitude of
=1.6 mK and a loss time due to background collisionsthe glory oscillations ino(0) is larger by a factor
equal tor;=10 s. Using Table | we find/&,=1.63, i.e., 2 cogn/(s—1)]=1.6.

Omax/ b=1.28. The cross section for collisonal loss by colli-  The phase of the glory oscillations scales
sions with the background gas is determined HQ®/Q ~0.9(2€minRmin/Av), resulting in a full glory periodsuv g
=0.35; the lifetimer;~10 s leads ta,=2.2x10"® m 3.  ~7(hv%/2€miRuin). FOr example, for the NaNa system we

033606-5



H. C. W. BEIJERINCK PHYSICAL REVIEW A 61 033606

find vy =3 m/s and 76 m/s for the singlet and the triplet erence value s, i.e., in the diffraction-dominated quantum
potential, respectively, as compared 4tg=570 m/s. Be- regime of small-angle collisions, is useful for minimizing the
cause the collisions with the background gas have a randoenergy transfer rate by relaxing the well depth during the
orientation of the spin vector of the background gas atoms;gooling phase. For a FORT, where different methods are
the glory oscillations of both the singlet and the triplet po-used for cooling down the trap temperature, it is good to
tentials will contribute. In general, these glory oscillationskeep this scaling rule in mind. For a magnetic trap, the usual
will not be in phase, adding to an effective damping. process of evaporative cooling takes care of this.

Taking the average over the Maxwell Boltzmann distribu- A final question that has to be answered: is the heating
tion will effectively wash out the net contribution of the rate by diffractive scattering the ultimate limiting factor in
glory oscillations inQ and o(0) if we consider the small reaching high phase-space densities in traps? In our opinion,
period of the oscillations as a function of the velocity. Thethis is not the case. With increasing dengity column den-
decreasing relative amplitude and oscillation period of thesity) of the trap, anew process of heating will start to be-
glory oscillations with increasing well depth, well position come increasingly effective. Primary collisions of the back-
and Cg, as is the case when going from Li to Cs, will em- ground gas with trapped alkali-metal atoms, resulting in an
phasize this effect for the heavier alkali atoms. We concludeenergy transfer that ikrger than the trap depth, will also
that the net effect of the glory oscillations on the calculatedstart to contribute to the heating process. The scattered low-
energy transfer rates for the alkali background collisions isnergy alkali-metal atom, with an energy in the range of 1
indeed very small. The approximation of only treating themK to 10 K or more, has a finite chance to collide with a
contribution of the long-range attractive forces is fully justi- trapped alkali-metal atorbeforeleaving the trap. This trans-
fied. fer of energy by low-energy secondary collisions is very ef-

ficient. The heating rate due to these secondary collisions is
VII. CONCLUDING REMARKS proportional to the column density of the trapped atoms, in
agreement with the experimental observations in many mag-

The results of this paper describe the boundary conditiongetic trapg23]. Work is in progress to treat these problems

for cooling experiments of the alkali-metal gases in a FORTjthin the same framework as presented in this paper.
and a magnetic trap in a very tractable fashion. The analyti-

cal results for the two limiting cases show where the experi-
ment can be optimized for obtaining low temperatures. The
numerical results for the energy transfer rate for a well depth The author gratefully acknowledges the support of a Cray
in the transition region 0 &/&,,<20 can be directly ap- research grant from Cray Research, Inc., and the Dutch Or-
plied using Figs. 1 and 2 or by calculating the nondimen-ganization for Fundamental Resear¢NWO)/Dutch Na-
sional integrals viaMAPLE Or MATHEMATICA . tional Supercomputing Facilitie€NCF). The author is in-
The scaling of the energy transfer rate wifi )2 for ~ debted to E. J. D. Vredenbregt and B. J. Verhaar for
values of the well depth that are small compared to the refstimulating comments while preparing the manuscript.
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