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Rigorous calculation of heating in alkali-metal traps by background gas collisions
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The finite depthE of an atom trap results in an upper bound for the energy transfer in collisions with the
background gas that will result in heating but not in loss of an atom. The energy transfer rate is accurately
predicted as function of the well depth by applying a versatile semiempirical model function for the small-
angle differential cross section, covering the full range from pure diffractive scattering to classical scattering.
Simple scaling laws for the energy transfer rate are presented that can be readily applied. For the diffraction
dominated regime we find an energy transfer rate proportional to (E/Eref)

2 with Eref5(kBTb u0
2/4), a system-

dependent energy determined by the ambient temperatureTb and the diffraction angleu0. In the classical
regime we find the usual result of an energy transfer rate proportional to (E/Eref)

5/6.

PACS number~s!: 03.75.Fi, 34.50.2s, 39.90.1d
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I. INTRODUCTION

In 1995, Bose-Einstein Condensation~BEC! was first ob-
served in a cold dilute sample of trapped alkali-metal ato
by three groups using Rb@1#, Na @2#, and Li @3#, respec-
tively. Recently, BEC was also achieved in a dilute gas o
atoms@4,5#. Since the first observation of BEC in a dilu
gas, a whole new field of atom optics and coherent ma
has emerged. At this moment, most efforts in the field
directed to Bose-Einstein condensation of the alkali ato
Emphasis has been laid on Rb, the workhorse in this n
field, with Na as the runner-up. For Cs it is not clear if BE
can be reached, due to the recent experimental evidenc
large spin-spin relaxation rates for theuF,mF&5u4,4& and
u3,3& states. Progress toward achieving BEC in Cs with
magnetic trapping is reported by DePueet al. @6#, using a
crossed far off-resonance optical trap.

The road to BEC is well known: cold atoms are fir
trapped in a magneto-optical trap and then transferred
magnetic trap where evaporative cooling is applied
achieve the ultralow temperatures in the 1mK to 10 nK
range where the transition to BEC takes place. At magn
trap densities in the rangen<1014 cm23, collisions with the
background gas at ambient temperature are the domi
mechanism of trap loss: the energy transferred in these
lisions is much larger than the trap depth. However, for c
lisions with a scattering angle of a few mrad, the ene
transfer is of the same order of magnitude as the trap de
These atoms do not leave the trap, but dissipate the en
gained in secondary collisions with other trapped atoms.
course, this effect is larger for deeper traps. For atoms
magnetic trap the resulting energy transfer rate is usu
counteracted by using an rf shield which limits the trap de
to a small value, i.e., which pumps the hotter atoms to n
trapped states. This is the same as keeping the evapor
cooling switched on at a certain cutoff@7,8#. Quantitative
data on heating in magnetic traps is still lacking.

For atoms trapped in a far off-resonance trap~FORT!, a
very powerful tool for trapping atoms without the limitation
of trapping dc magnetic fields, there is no simple means
counteracting the collisional heating. Recently, there
been a strong interest in trying to achieve BEC in such
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optical trap because of its superior confinement and ra
control of trapping parameters. In this case, the trap dept
an important tool for minimizing the heating by the bac
ground gas collisions. The depth of a FORT covers a w
range from 4 mK to 4 mK. In this case it is essential to hav
detailed knowledge on the process of collisional heating.

In this paper we calculate the energy transfer rate
background gas collisions very accurately. We treat both
small-angle collisions in the quantum mechanic
diffraction-dominated range within the diffraction angle,
well as the range of slightly larger angles which is domina
by classical scattering. Both ranges are connected smoo
and accurately by using a well-tested and versatile se
empirical model function for the small angle differenti
cross section. All results are given as simple analytical f
mulas. The effect of averaging over the thermal Maxw
Boltzmann distribution is included as an additional convo
tion factor. Typical results are given for the alkali-met
gases Li through Cs.

Recently, this approach has been applied in a study
investigate the prospects for achieving BEC in a trapp
sample of metastable neon and metastable helium atoms@9#.
In this study, the collisional energy transfer rate is due
secondary collisions of the ionic and ground state product
residual ionizing collisions in a spin-polarized gas. F
ground-state atom–metastable-atom collisions the diffrac
contribution is dominant; for~dimer!ion–metastable-atom
collisons the range of classical scattering is most importa
The scaling of the collisonal energy-transfer rate with t
trap depth and trap geometry helps to define the trapp
configuration that is to be preferred for pursueing BEC
these two metastable gases. However, in this study it was
necessary to investigate the full transition region between
diffractive and the classical regime.

In a recent paper by Baliet al. @10#, the contribution of
the quantum-mechanical diffraction-dominated range of s
tering angles to the heating of trapped alkali atoms by ba
ground collisions is discussed. For the case of a shallow
with a depthmuch smallerthan a system dependent refe
ence value, e.g., 0.98 mK for Rb and 0.51 mK for Cs~in our
notation of Table I!, their results are in agreement with ou
calculations. These conditions are typically met in a FOR
©2000 The American Physical Society06-1
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TABLE I. System parameters for the alkali gases, together with collision parametersk, Q, s(0), andu0

at a velocityvm5(2kBTb /m)1/2 corresponding to the maximum of the Maxwell Boltzmann distribution
the background gas atoms at temperatureTb5300 K.

alkali Li Na K Rb Cs
m (a.u.) 7 23 39 87 133
C6 (a.u.)a 1393 1556 3897 4691 6851

vm (m/s) 1034 570 438 293 237
k (Å 21) 5.72 10.4 13.5 20.2 24.9
Q (Å 2) 877 1163 1865 2359 2988
s(0) (Å2 sr) 2.443105 1.413106 6.143106 2.193107 5.373107

u0 (mrad) 20.9 10.0 6.1 3.6 2.6

nbt1(12DQ/Q) (m23s) 1.1031014 1.5131014 1.2231014 1.4531014 1.4131014

Eref (mK) 32.8 7.54 2.77 0.982 0.507
vmQEref (m3K/s) 2.98310216 5.00310217 2.26310217 6.80310218 3.60310218

aRef. @19#
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When the trap depth is equal to this reference value,
approach of Baliet al. @10# results in heating rates that a
approximately 70% larger than our calculations, which ta
into account a fully correct description of the small-ang
differential cross section. For deeper traps, as is the cas
magnetic traps, it is essential to cover the whole range
scattering angles in full accuracy. Only then accurate hea
rates of trapped alkali atoms by collisions with the bac
ground gas are obtained, as discussed in this work.

In Sec. II we discuss small-angle collisions, including t
semiempirical model function for the small-angle different
cross section. The calculation of the effective product
cross section and energy transfer is presented in Sec. III,
function of universal scaling parameters for all alkali atom
In Sec. IV we discuss the energy transfer rate for the trap
alkali gases as a function of the trap depth. A compariso
experimental data for Na, Rb, and Cs in magnetic traps
optical dipole traps is given in Sec. V. In Sec. VI we arg
that the glory oscillations will only have a negligible effe
on the calculated energy transfer rates for binary collision
alkali atoms. Finally, in Sec. VII we present some conclu
ing remarks.

II. SMALL-ANGLE COLLISIONS

The finite depthE of the trap results in an upper bound f
the energy transfer that will still result in heating but not
the loss of an atom. For a collision with scattering angleu in
the reduced system or center-of-mass system, the velo
transferred to the cold atom is equal toDv5vum/m, with m
the reduced mass,v the velocity of the impinging back
ground gas atom with massmb , andm the mass of the atom
in the trap. The condition for collisional heating then
1
2 m(Dv)2<E. This in turn limits the range of scatterin
angles that we have to take into account,

u<~mb /m!1/2~m/m!~E/E!1/25umax, ~1!

with E5 1
2 mbv2 the kinetic energy of the background g

atom in the laboratory system. Of course, for binary co
sions of an alkali-metal background gas with the same s
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cies in the trap, the mass factor reduces
(mb /m)1/2(m/m)52. For collisions with thermal sodium at
oms atTb5300 K and a trap depth ofE51 mK, the maxi-
mum scattering angle isumax53.7 mrad. This determine
the angular range where we need a correct description o
differential cross sections(u).

For an inverse power-law potentialV(R)5Cs /Rs ~with
s56 for the induced dipole-dipole interaction of atom-ato
scattering!, simple analytical formulas fors(u) are avail-
able. The small-angle differential cross sections(u) scales
with the characteristic diffraction angle@11–15#,

u05~4p/k2Q!1/2, ~2!

with k5mv/\ the wave number. This can be directly unde
stood by considering the equivalent situation in physical
tics. An orifice ~or equivalent black disc! with areaA and
radiusb5(A/p)1/2 causes a small-angle diffraction patte
that scales asJ1

2(kbu/2)/(kbu/2)3, with J1 the spherical
Bessel function andk the optical wave number. The chara
teristic angle for diffraction in optics is thusu52/kb, which
differs only by a factor 21/2 with the angle defined in Eq.~2!
for atomic diffraction.

For anglesu!u0 we obtain adiffraction peak, which can
be approximated by@15,16#

s~u!/s~0!512a1~s!~u/u0!2, ~3!

with a1(6)50.9975 a numerical constant. For anglesu
@u0 we find the classical result@13–15#

s~u!/s~0!5a2~s!~u/u0!22(s11)/s, ~4!

with the constanta2(6)50.2846. This contribution corre
sponds torefraction, in analogy to geometrical optics whe
light is scattered by an inhomogeneous medium. The ab
lute value of the differential cross sections(0) in the for-
ward direction and the total elastic cross sectionQ are given
by @17,18#

s~0!5k2Q2/@16p2cos2„p/~s21!…#
6-2
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RIGOROUS CALCULATION OF HEATING IN ALKALI- . . . PHYSICAL REVIEW A 61 033606
Q5a3~s!~Cs /\v !2/(s21), ~5!

with a3(6)58.083. The scattering parameterss(0), Q and
u0 are not independent, but related bypu0

2 s(0)/Q
54 cos2@p/(s21)#215a4(s) with a4(6)50.382.

Various semiempirical formulas connecting the two
gions have been given by several authors@13,15#. A very
accurate semiempirical representation is given by@15#

F~x;s!5s~u!/s~0!

5$12c1~s!sin@c2~s!x2#1c3~s!x2%2(s11)/s,

F~x;s!'H 12$~s11!/s%@c3~s!2c1~s!c2~s!#x2, x!1

c3~s!2(s11)/sx22(s11)/s, x@1
~6!

with x5u/u0 and the constants equal toc1(6)53.75,
c2(6)50.556 and c3(6)52.94. The functionF(x;6) is
shown in Fig. 1, together with the refractive limit corr
sponding to classical mechanics@Eq. ~4!#. In the angular
range 0<x<3.9 the maximum relative deviation of th
model functionF(x,6) from the quantum-mechanical cro
section is only 4.5%. The asymptotic behavior of this mo
function is in excellent agreement with the predictions of
semiclassical approximation at small anglesx!1 @Eq. ~3!#
and the classical or high energy approximation at la
anglesx@1 @Eq. ~4!#. The latter is valid for large impac
parameters where the collision energy is much larger t
the intermolecular potential, due to its rapid fall-off, scali
with R26. The great advantage ofF(x;s) is the accurate
description obtained in the transition region, smoothly co
necting the two asymptotic regimes. The integral of t
model functionF(x;6) over the rangex50 to umax deter-
mines the cross sectionDQ related to the heating of trappe
atoms, as given by

FIG. 1. Small-angle differential cross sections(u)/s(0) for the
case of aC6 /R6 potential for atom-atom thermal collisions. Fu
curve: quantum-mechanical calculations; full line: classical m
chanics. Filled squares: partial cross sectionDQ for heating colli-
sions with a scattering angle less thanu5umax, normalized to the
elastic total cross sectionQ; dashed line: diffractive limitDQ
50.382 (umax/u0)

2.
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DQ5E
0

umax
s~u!2p sinu du

'
Q

2 cos2@p/~s21!#
E

0

xmaxF~x;s!x dx,

~7!

with xmax5(umax/u0). For small-angle scattering the approx
mation sinu5u is fully justified. For s56 we find
DQ(xmax→`)51.002Q, illustrating the quality of the de-
scription based onF(x;6). Thecalculated values ofDQ/Q
are also shown in Fig. 1. We see that 26% of the total cr
section is determined by small angle scattering forx,1, i.e.,
u,u0.

III. EFFECTIVE PRODUCT OF CROSS SECTION AND
ENERGY TRANSFER

The essential input for the calculation of the energy tra
fer rate of trapped atoms by collisions with the backgrou
gas is the energy-transfer integralIQE , i.e., the integral of
the product of the differential cross sections(u) and the
associated energy transferDE(u)5 1

2 mDv(u)2 in the labo-
ratory system. This integral is given by

IQE5E
0

umax
s~u!DE~u!2p sinu du, ~8!

where the integration ranges fromu50 to the trap-depth
limited valueumax. By using the approximation sinu'u and
the semiclassical approximation of Eq.~6!, the collision in-
tegral of Eq.~8! can be written as

IQE5
ErefQ

2 cos2@p/~s21!#
E

0

xmaxF~x;s!x3 dx, ~9!

with $2 cos2@p/(s21)#%2150.764 fors56. The parameterQ
is the total elastic cross section as given by Eq.~5!. The

FIG. 2. The productIQE of cross section and energy transfer
a function of the scaled trap depthE/Eref5(umax/u0)

2. Data points:
numerical result@Eq. ~9!#; dashed line: diffractive approximation
@Eq. ~11!#; full line: classical or refractive approximation@Eq. ~12!#.
-
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parameterEref is a system-dependent scaling value for t
energy transfer, i.e., a reference value for the trap dept
given by

Eref5Eu0
2~m/m!2~m/mb!. ~10!

The scaling factor of the integral can also be written
ErefQ52p\2/m, a surprisingly simple result that only de
pends on the mass of the trapped atoms. Please note
xmax

2 5(umax/u0)
25E/Eref .
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The calculation of the collision integral of Eq.~8! is thus
reduced to calculating a nondimensional integral with
scaled trap depthE/Eref determining its range. The results o
Eq. ~9! are plotted in Fig. 2 as a function of the scaled tr
depthE/Eref .

For the two limiting cases of pure diffractive scatterin
for x!1 and refractive scattering forx@1, the non-
dimensional integral can be evaluated analytically. We th
find the asymptotic results
IQE'H 0.191Ere fQ~E/Ere f!
250.191~2p\2/m!~E/Ere f!

2 x!1

0.131Ere fQ~E/Ere f!
5/650.131~2p\2/m!~E/Ere f!

5/6 x@1,

~11!

~12!
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where we have useds56 to calculate the numerical factor
For comparison to the numerical results forIQE we have
plotted the two asymptotic expressions in Fig. 2. It is cle
that the two approximations do not connect smoothly. T
discrepancy between the numerical result and the diffrac
approximation increases from23% at E/Eref50.04 to
241% atE/Eref51. For the refractive contribution the dis
crepancy with the refractive approximation first rises fro
214% atE/Eref51 to 139% atE/Eref54, with a decrease to
14% at E/Eref536. For a correct prediction ofIQE within
10%, the range of validity of these approximations is
stricted toE/Eref<0.16 or E/Eref>4. The approximation of
Eq. ~11! is equal to the expression used by Baliet al. @10# for
calculating the energy transfer rate.

IV. ENERGY TRANSFER RATE

The energy inputU̇ per second to the total numberN of
trapped atoms is given by the usual expression

U̇5Nnb^vIQE&Tb
5NnbvmIQEm

f Tb
5U̇mf Tb

, ~13!

with nb the density of the background gas. The notat
^ &Tb

indicates an average over the Maxwell-Boltzma

distribution of the relative velocityv of the atoms in the
background gas with temperatureTb . The last part of Eq.
~13! descibes the effect of the convolution over the Maxwe
Boltzmann distribution in terms of the ‘‘velocity3 cross
section 3 energy transfer’’ factor at velocity vm
5(2kBTb /m)1/2 multiplied by a convolution factorf Tb

which is on the order of unity. The velocityvm corresponds
to the maximum of the Maxwell-Boltzmann distribution.
subscriptm has been used to indicate that the energy tran
integralIQEm

has been evaluated at velocityvm .

The results for the energy transfer rateU̇m /N of the
alkali-metal atoms Li through Cs are given in Fig. 3 as
function of the trap depthE in the range 0.1 to 50 mK. The
temperature of the background gas isTb5300 K; the den-
sity is nb52.42 1013 m23, corresponding to a pressure
r
e
e

-

n

-

er

1 1029 mbar. The figure gives the analytical resultU̇m /N
of Eq. ~13! without the effects of convolution over the Max
well Boltzmann distribution. The convolution factorf Tb

de-

creases from 1.03 atE/Eref50.04 to 0.96 atE/Eref52, fol-
lowed by an increase to 1.06 atE/Eref59 and a fall-off to
1.03 atE/Eref536: in all cases the correction for the therm
convolution is only a minor effect. TheC6 values@19# used
as input are given in Table I, together with the scaling ene
Eref and the characteristic collision parametersQ, s(0), and
u0. At low values of the trap depth we observe an increase
the energy transfer rate when going from Li to Cs, due to
dominant influence of the rapidly increasing value ofE/Eref .

For large values ofE we see a complete inversion of th
order in Fig. 3: the light alkali gases suffer the largest ene
transfer rate. This can be directly understood if we consi
the scaling of the energy transfer rate with the trap depth
the limits E!Eref and E@Eref , by combining Eqs.~11! and
~12! with Eq. ~13!. For the former case of diffractive scatte
ing, the energy transfer rate for the different alkali gas

FIG. 3. Numerical results for the energy transfer rateU̇m /N of
trapped alkali atoms atTb5300 K and a background gas densi
nb52.4231013 m23 corresponding to a pressure o
1.031029 mbar, given as a function of the trap depthE. The
dashed lines~with a slope equal to two! represent the asymptoti
behavior of the heat input in the limit of diffractive scattering f
E!Eref @Eq. ~11!#.
6-4



g

rg
m
rg
e

ck
ct
he
th
u
p

of

an
ng

l
th

s.
ap
te
o

so
y

er

ri

ns
ng

i

n

lli-

ar-

-

e
red
pe
to

ic
to

fer

Na
se-
tive
the

l

-
te

is

the
es
tal
stic
s-
ce

le
ul-
ion
ms

tion
ir

-
t
of

RIGOROUS CALCULATION OF HEATING IN ALKALI- . . . PHYSICAL REVIEW A 61 033606
scales asvmQEref
21 ; for the latter case of refractive scatterin

the scaling is given byvmQEref
1/6. The additional factorEref

7/6 in
the refractive case is sufficient to reverse the order of ene
transfer rates, with the largest rates for the light alkali ato
Actually, the order of K and Na is not reversed: the ene
transfer rate for K is slightly larger than for Na at even larg
values ofE than shown in Fig. 3.

Usually, an accurate value of the density of the ba
ground gas in the trapping chamber is not available dire
from the experimental setup. This would severly limit t
application of our model to predict absolute values of
energy transfer rate. However, we can derive the backgro
density from a simple decay measurement of the trap po
lation. We use the characteristic time constantt1 for the
density-independentdecay of the trap population. The loss
atoms from the trap by these collisions is given by

Ṅ52Nnb^v~Q2DQ!&Tb
52N/t1 , ~14!

with Q2DQ the partial cross section for scattering over
anglelarger thanumax, i.e., the cross section correspondi
to collisions leading to trap loss. The value ofDQ can be
calculated using the approximation of Eq.~6! and the inte-
gral expression of Eq.~7!. In Fig. 1 we show the numerica
results forDQ/Q as a function of the scaled energy dep
(umax/u0)

25(E/Eref). These results can be used to relatet1
21

'nbvmQ(12DQ/Q) to the density of the background ga
Finally, for comparison with experimental data on tr

temperatures, we have to convert the energy transfer raU̇

to an increaseṪ of the temparature of the trapped atoms. F
an internal energyU5NhkBT this results in

Ṫ5U̇/~NhkB!, ~15!

with h53/2 for a square-well potential andh53 for a har-
monic trapping potential.

V. COMPARISON TO EXPERIMENTS

In a recent experiment on Raman cooling in a far-off re
nance optical trap~FORT! for Cs atoms a residual energ
transfer rate of'4mK/s has been observed@20#. The well
depth isE50.16 mK, leading to a value ofE/Eref50.32 and
umax/u050.56. The cross section for collisional loss is det
mined byDQ/Q50.105; the lifetimet152 s then leads to a
background densitynb57.931013 m23 in the vapor cell.
The energy transfer rate is then equal toU̇m /(NkB)54.5
mK/s. This result is in excellent agreement with the expe
mental data.

We can also apply our model to predict the energy tra
fer rate of Rb atoms in a circularly polarized FORT, usi
the experimental conditions in the recent paper of Corw
et al. @21#. Typical conditions are a trap depth ofE
51.6 mK and a loss time due to background collisio
equal tot1510 s. Using Table I we findE/Eref51.63, i.e.,
umax/u051.28. The cross section for collisonal loss by co
sions with the background gas is determined byDQ/Q
50.35; the lifetimet1'10 s leads tonb52.231013 m23.
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The predicted energy transfer rate isU̇m /(NkB)535 mK/s;
the increase in temperature in the approximation of a h

monic potential then isṪ511.5 mK/s. These are the bound
ary conditions for all cooling efforts in this trap.

For the BEC experiment in Na at MIT, the lifetime in th
magnetic trap is very short unless the trap depth is lowe
by rf shielding, allowing collisionally heated atoms to esca
@7,8#. If we assume a depth of the magnetic trap equal
E'10 mK, i.e., a depth of 150 G for Na with a magnet
moment of 1mB , we can calculate the energy transfer rate
support their observation. Using a number densitynb

5531012 m23 we find U̇m /(NkB)543 mK/s. An rf shield
at 20 mK directly results in a decrease of the energy trans

rate to U̇m /(NkB)53.431024 mK/s as follows from the
scaling withE 2.

Finally, we can apply our model to a condensate of
atoms, loaded in a FORT after having achieved Bo
Einstein condensation by the usual method of evapora
cooling in a magnetic trap. For this comparison we use
data of the group of Ketterle at MIT@22#. For the ‘‘strong’’
optical trap with a depthE52 mK they find a loss time
equal tot1'30 s. Using Table I we findE/Eref52.731024

and umax/u051.631022. The cross section for collisiona
loss can be calculated in the small angle limit, i.e.,DQ/Q
'0.382 xmax

2 51.0331024; the lifetime then leads to a den
sity nb5531012 m23. The predicted energy transfer ra
then is U̇m /(NkB)53.431026 mK/s, fully determined by
the diffractive contribution. This low energy transfer rate
completely due to the shallowness of the FORT.

VI. GLORY OSCILLATIONS

The semiclassical model function used to calculate
energy transfer rate of alkali atoms in a trap fully describ
the contribution of the long range interaction to the to
cross section and the differential cross section for ela
scattering. Not included is the contribution of the glory o
cillations, i.e., the extra contribution due to the interferen
of the classical trajectory that also has a scattering angu
50 by the compensating effects of the attractive and rep
sive interatomic forces. These glory oscillations as a funct
of the velocity can be fully described in semiclassical ter
@14#, using the depthemin and positionRmin of the potential
well as input. The amplitudedQgl of the glory oscillations in
the total cross section scales asdQgl'7Rmin

3/2k21/2 and does
not depend on the magnitude of the long-range interac
C6. For the alkali-metal–alkali-metal systems, with the
large C6 value, the relative amplitudedQgl /Q is rather
small. For example, for the Na1Na system at thermal veloc
ity vm , we find dQgl /Q50.013 and 0.021 for the single
and triplet potential, respectively; the relative amplitude
the glory oscillations in s(0) is larger by a factor
2 cos@p/(s21)#51.6.

The phase of the glory oscillations scales asFgl
'0.9(2eminRmin /\v), resulting in a full glory perioddvgl
'7(\v2/2eminRmin). For example, for the Na1Na system we
6-5
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H. C. W. BEIJERINCK PHYSICAL REVIEW A 61 033606
find dvgl53 m/s and 76 m/s for the singlet and the trip
potential, respectively, as compared tovm5570 m/s. Be-
cause the collisions with the background gas have a ran
orientation of the spin vector of the background gas ato
the glory oscillations of both the singlet and the triplet p
tentials will contribute. In general, these glory oscillatio
will not be in phase, adding to an effective damping.

Taking the average over the Maxwell Boltzmann distrib
tion will effectively wash out the net contribution of th
glory oscillations inQ and s(0) if we consider the smal
period of the oscillations as a function of the velocity. T
decreasing relative amplitude and oscillation period of
glory oscillations with increasing well depth, well positio
and C6, as is the case when going from Li to Cs, will em
phasize this effect for the heavier alkali atoms. We conclu
that the net effect of the glory oscillations on the calcula
energy transfer rates for the alkali background collisions
indeed very small. The approximation of only treating t
contribution of the long-range attractive forces is fully jus
fied.

VII. CONCLUDING REMARKS

The results of this paper describe the boundary conditi
for cooling experiments of the alkali-metal gases in a FO
and a magnetic trap in a very tractable fashion. The ana
cal results for the two limiting cases show where the exp
ment can be optimized for obtaining low temperatures. T
numerical results for the energy transfer rate for a well de
in the transition region 0.1,E/Eref,20 can be directly ap-
plied using Figs. 1 and 2 or by calculating the nondime
sional integrals viaMAPLE or MATHEMATICA .

The scaling of the energy transfer rate with (E/Eref)
2 for

values of the well depth that are small compared to the
et

er
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erence valueEref , i.e., in the diffraction-dominated quantum
regime of small-angle collisions, is useful for minimizing th
energy transfer rate by relaxing the well depth during
cooling phase. For a FORT, where different methods
used for cooling down the trap temperature, it is good
keep this scaling rule in mind. For a magnetic trap, the us
process of evaporative cooling takes care of this.

A final question that has to be answered: is the hea
rate by diffractive scattering the ultimate limiting factor
reaching high phase-space densities in traps? In our opin
this is not the case. With increasing density~or column den-
sity! of the trap, anew process of heating will start to be
come increasingly effective. Primary collisions of the bac
ground gas with trapped alkali-metal atoms, resulting in
energy transfer that islarger than the trap depth, will also
start to contribute to the heating process. The scattered
energy alkali-metal atom, with an energy in the range o
mK to 10 K or more, has a finite chance to collide with
trapped alkali-metal atombeforeleaving the trap. This trans
fer of energy by low-energy secondary collisions is very
ficient. The heating rate due to these secondary collision
proportional to the column density of the trapped atoms
agreement with the experimental observations in many m
netic traps@23#. Work is in progress to treat these problem
within the same framework as presented in this paper.
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