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Scattering of light and atoms in a Fermi-Dirac gas with Bardeen-Cooper-Schrieffer pairing

J. Ruostekoski
Abteilung für Quantenphysik, Universita¨t Ulm, D-89069 Ulm, Germany

~Received 19 August 1999; published 10 February 2000!

We theoretically study the optical properties of a Fermi-Dirac gas in the presence of a superfluid state. We
calculate the leading quantum-statistical corrections to the standard column density result of the electric
susceptibility. We also consider the Bragg diffraction of atoms by means of light-stimulated transitions of
photons between two intersecting laser beams. Bardeen-Cooper-Schrieffer pairing between atoms in different
internal levels magnifies incoherent scattering processes. The absorption linewidth of a Fermi-Dirac gas is
broadened and shifted. Bardeen-Cooper-Schrieffer pairing introduces a collisional local-field shift that may
dramatically dominate the Lorentz-Lorenz shift. For the case of the Bragg spectroscopy the static structure
function may be significantly increased due to superfluidity in the near-forward scattering.

PACS number~s!: 03.75.Fi, 42.50.Vk, 05.30.Fk
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I. INTRODUCTION

As a result of dramatic progress in cooling and trapping
alkali-metal atomic gases the quantum statistics of atoms
observable consequences. Perhaps, the most striking eff
the Bose-Einstein~BE! condensation of bosonic atom
@1–3#. Nevertheless, Fermi-Dirac~FD! gases are also ex
pected to exhibit a rich and complex behavior. One es
cially fascinating property of FD gases is that with effe
tively attractive interaction between different particles t
ground state of the system may become unstable with res
to the formation of bound pairs of quasiparticles or Coo
pairs @4,5#. This effect is analogous to the Bardeen-Coop
Schrieffer ~BCS! transition in superconductors. FD gas
have been an active subject of research already quite s
time @6–22#.

We recently showed@17# that the coherent quasipartic
pairing between atoms in different internal levels may e
hance the optical interactions. In particular, the resona
line of a FD gas~the extinction of light from coherent lase
beam! is broadened and shifted as a result of the BCS p
ing. In this paper we present a more detailed study of
propagation of light in a dilute FD gas in the presence o
superfluid state. We also investigate the signatures of
BCS pairing in light-stimulated transitions of photons b
tween two intersecting nonparallel laser beams. We dem
strate the dramatic dependence of the Bragg diffraction
on the BCS order parameter. The Bragg diffraction of ato
has already been experimentally used as a method to sp
BE condensate@23# and to perform spectroscopic measu
ments on the condensates@24,25#.

In this paper we theoretically study the optical response
a superfluid state in a zero-temperature FD gas. First,
consider the propagation of low-intensity light and calcul
the leading low-density correction to the standard centu
old column density result of the electric susceptibility, al
known as the Clausius-Mossotti relation@26#. This correc-
tion is a direct consequence of the quantum-statistical p
tion correlations between different atoms that modify the
tical interactions at small interatomic separations.

FD statistics exhibit a short-range ordering of atoms in
gas. In the absence of a superfluid state the FD statis
1050-2947/2000/61~3!/033605~12!/$15.00 61 0336
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force a regular spacing between the atoms in the same in
nal state within the characteristic correlation lengthj↑↑
;1/kF . HerekF denotes the Fermi wave number. Fermion
atoms repel each other and short interatomic separations
suppressed by the Pauli exclusion principle. The pair co
lation function between two atoms displays antibunching

The resonant dipole-dipole interactions between differ
atoms, which behave as 1/r 3, are dominant at small inter
atomic separations. The Fermi repulsion suppresses thes
tical interactions and therefore the incoherent scattering
light in the atomic sample is reduced. As a result a FD g
exhibits a dramatic narrowing of the absorption line for t
coherently scattered light@15,16#.

In the s-wave BCS transition the particles near the Fer
surface having opposite momenta and different inter
quantum numbers tend to appear in pairs. This leads, e.g
a finite energy gapD in the excitation spectrum of the syste
and to a nonvanishing expectation value of the anomal
correlation function for the matter-field annihilation oper
tors ^c↑(r )c↓(r )&. Here the two internal states are referr
to as↑ and↓.

The BCSs-wave pairing also introduces short-range o
dering of atoms within the characteristic correlation leng
j↑↓;eF /(DkF) between atoms in different internal stat
@4#. Here eF denotes the Fermi energy. Due to the mac
scopic two-particle coherence the atoms in different inter
levels attract each other and the BCS pairing enhances s
interatomic separations. The pair correlation function b
tween two atoms with different quantum numbers displa
bunching. As a result the optical interactions and the in
herent scattering of light in the atomic gas areenhanced.
This broadens the absorption line for the coherently scatte
light.

As a second topic we study the Bragg spectroscopy o
FD gas with BCS pairing. In the Bragg spectroscopy an
tical potential couples to the local number density of ato
and connects two external atomic states of different m
menta. The scattering rate of atoms is proportional to
dynamical structure function of the atomic gas@6,24,25#. The
structure function has been extensively studied for the c
of incoherently scattered light in optically thin BE@6,27–29#
and FD@6,10,14# atomic gases.
©2000 The American Physical Society05-1
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J. RUOSTEKOSKI PHYSICAL REVIEW A 61 033605
The structure function contains distinct quantu
statistical features in the case of fermionic and boso
atomic gases@6#. For a FD gas it demonstrates the Fer
inhibition of the spontaneous scattering of photons@6,10,14#.
The structure function may also be used as a method of
termining the relative phase between two BE condens
@28,30#.

In this paper we show that a superfluid state may sign
cantly increase the value of the static structure function. T
is because due to the BCS pairing atoms and holes nea
Fermi surface are mixed; with a given recoil momentu
there exist more unoccupied states to which atoms can s
ter. The effect of superfluidity is stronger for nearforwa
scattering.

In Sec. II we introduce the Hamiltonian density fo
ground-state atoms in the absence of the driving light fie
The analysis of the quasiparticles follows the standard B
theory@4#. We emphasize the effect of the quantum statis
on the pair correlation function. In Sec. III we study th
propagation of light in a FD atomic gas. The interaction b
tween light and matter is discussed in general terms in S
III A. The atomic polarization is solved for the low-densi
atomic gas, complete with the dependence on the ato
level scheme and on various light polarizations in Sec. III
The electric susceptibility representing the damping and
phase velocity of the light beam is obtained in Sec. III
The effects of the quantum statistics and thes-wave interac-
tions manifest themselves in two distinguishable paramet
A few remarks about the light propagation are made in S
III D. In Sec. IV we consider the possibilities to observe t
BCS pairing via Bragg spectroscopy. The Bragg diffracti
of atoms in the laser field probes the structure function of
gas. In Sec. IV B we calculate the structure function fo
superfluid state. A few concluding remarks are made
Sec. V.

II. GROUND-STATE ATOMS

A. Hamiltonian

We assume a FD gas occupying two different inter
sublevelsug,↑& and ug,↓& of the same atom with electron
cally excited levelsue,n&. In the absence of the driving ligh
field, atoms in the electronic ground state are describe
second quantization by the Hamiltonian densityHg @4,5#:

Hg5(
n

cgn
† ~Hc.m.

gn 2mgn!cgn1\ugcg↑
† cg↓

† cg↓cg↑ , ~1!

where cgn(r t) denotes the atom-field annihilation operat
for level ug,n& in the Heisenberg picture,mgn is the corre-
sponding chemical potential, andHc.m.

gn stands for the center
of-mass ~c.m.! Hamiltonian. We have approximated th
finite-range interparticle potential by a contact interact
with the strength given byug54pag\/m. Here ag and m
denote thes-wave scattering length and the mass of the ato
The atoms in different internal states can interact vias-wave
scattering. On the other hand, due to the Pauli exclus
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principle there only is a very weakp-wave scattering be-
tween two atoms in the same level, which is ignored in E
~1!.

B. BCS pairing

Before the light is switched on, the system is described
the Hamiltonian densityH5Hg @Eq. ~1!#. The assumption
that the driving light only weakly disturbs the system allow
us to evaluate the electric susceptibility by using the grou
state atom correlations determined byHg , even in the pres-
ence of the driving light. We assume a homogeneous ato
sample and introduce a plane-wave basis for the field op
tors:

cgn~r !5
1

AV
(

k
bkneik•r. ~2!

In the Hamiltonian~1! we introduce the standard canonic
transformation to the Bogoliubov quasiparticles@4,5#

ak5ukbk↓2vkb2k↑
† , ~3a!

b2k5ukb2k↑1vkbk↓
† , ~3b!

whereuk andvk are real, depend only only onuku, and sat-
isfy uk

21vk
251. The requirement that linearized mean fie

fluctuations ofHg in Eq. ~1! be diagonal in the quasiparticl
representation sets an additional constraint and we obta

uk
25

1

2 S 11
jk

Ek
D , vk

25
1

2 S 12
jk

Ek
D , ~4!

where Ek5AD21jk
2, jk5ek2m̄1\ug(r↑1r↓)/2, and the

energy gap

D52
\ug

V (
k

ukvk~12n̄ak
q 2n̄bk

q !. ~5!

In equilibrium, the quasiparticle occupation numbersn̄ak
q

[^ak
†ak& and n̄bk

q [^bk
†bk& satisfy FD statistics withn̄ak

q

5n̄bk
q 5(eEk /kBT11)21 . The dispersion relation for free

particles is given byek5\2k2/(2m) and the average of the
chemical potentials ism̄5(m↑1m↓)/2. For simplicity, we
assumem↑5m↓ . For the gap parameter atT50 we use the
weak-coupling approximationD.1.76kBTc @4,9#, where

kBTc.
8eF

p
eg22 expF2

p

2kFuaguG . ~6!

Here the Fermi wave numberkF5(6p2r)1/3 is defined in
terms of the atom densityr, Tc denotes the critical tempera
ture of the BCS phase transition, andg.0.5772.

In the superfluid phase transition the atoms in the diff
ent internal states↑ and↓ form quasiparticle pairs resulting
in a nonvanishing anomalous correlation^c↑(r1)c↓(r2)&.
The effect of this macroscopic two-particle coherence on
atomic position correlations is particularly transparent in
case of the pair correlation function:
5-2
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SCATTERING OF LIGHT AND ATOMS IN A FERMI- . . . PHYSICAL REVIEW A 61 033605
r2~r1nh,r2st![^cgn
† ~r1!cgs

† ~r2!cgt~r2!cgh~r1!&. ~7!

In the ground state ofHg @Eq. ~1!#, determined by the
vacuum of the Bogoliubov quasiparticles@Eq. ~3!#, the pair
correlation function reads~for nÞs!

r2~r1nn,r2ss!5rnrs1u^cgn~r1!cgs~r2!&u2, ~8a!

r2~r1nn,r2nn!5rn
22u^cgn

† ~r1!cgn~r2!&u2. ~8b!

The pair correlation function represents the joint probabi
distribution for the positions of two atoms. We note from E
~8b! that the fermionic atoms in the same internal state re
each other analogously to antibunching of photons and s
interatomic separations are inhibited. For an ideal homo
neous FD gas, in the absence of a superfluid state, we
analytically evaluate Eq.~8b!. We obtain@16#

r2~r ;nn,nn!5r2H 12
9

kF
4r 4 FsinkFr

kFr
2coskFr G2J , ~9!

wherer[ur12r2u. In Fig. 1 we have shown the pair corre
lation function ~9!. The FD repulsion between different a
oms results in suppressed dipole-dipole interactions an
the Fermiinhibition of incoherently scattered light@15,16#.

As a result of the BCS pairing atoms in different intern
states attract each other analogously to bunching of pho
according to Eq.~8a!. Therefore short interatomic separ
tions are enhanced. In the next section we find that this m
lead toenhancedoptical interactions and incoherent scatte
ing of light.

III. LIGHT PROPAGATION

A. Basic relations

In this section we introduce terms in the Hamiltonian th
result from the electromagnetic fields. We briefly recapi
late and generalize our previous quantum field-theoret
analysis of the light-matter interactions@31,32,15–17#. As a
basic assumption, atoms are represented as point dipole
the radiated field in a medium has the familiar expression
the dipolar field@Eq. ~15b!#.

FIG. 1. The pair correlation function for an ideal homogeneo
Fermi-Dirac gas at zero temperature. The two atoms have the s
internal quantum numbers. The pair correlation function repres
the joint probability distribution for the position of the second ato
given that the first atom sits at the origin. Two fermionic atom
repel each other and small interatomic separations are suppre
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1. Electromagnetic field

We consider the nonrelativistic Hamiltonian formalism
electrodynamics. It is advantageous to study the propaga
of light by introducing the dipole approximation for atom
and the corresponding Hamiltonian in thelength gauge ob-
tained in the Power-Zienau-Woolley transformation@33–35#.

The electromagnetic field introduces additional terms
the system Hamiltonian. The Hamiltonian for the free ele
tromagnetic field-energy is

HF5E d3r HF5(
q

\vqaq
†aq . ~10!

Herevq andaq denote the mode frequency and the phot
annihilation operator. The mode indexq incorporates both
the wave vectorq and the transverse polarizationêq . In the
length gauge the basic dynamical degree of freedom for
light field is the electric displacementD(r ) which interacts
with the atomic polarizationP(r ),

HD52
1

e0
P~r !•D~r !. ~11!

In the dipole approximation the polarization is given in term
of the density of atomic dipolesP(r )5( idid(r i2r ). Heredi
and r i denote the dipole operator and the c.m. position
erator for thei th atom. In second quantization the positiv
frequency component of the polarization is given by

P1~r !5(
n,h

dgnehcgn
† ~r !ceh~r ![(

n,h
Pnh

1 ~r !, ~12!

Pnh
1 ~r ![dgnehcgn

† ~r !ceh~r !, ~13!

where dgneh stands for the dipole matrix element for th
transitionue,h&→ug,n&

dgneh[D(
s

ês^eh;1gu1s;gn&. ~14!

HereD denotes the reduced dipole matrix element, which
chosen to be real, anddehgn5dgneh* . The summation in Eq.
~14! runs over the unit circular polarization vectorss561,0
weighted by the Clebsch-Gordan coefficients of the cor
sponding optical transitions. Here light fields with the pola
izationsê6 andê0 drive the transitionsug,n&→ue,n61& and
ug,n&→ue,n&, respectively.

For a weak external magnetic field the nuclear spinI, the
electron spinS, and the orbital angular momentumL may be
coupled. In that caseF andmF , defined byF5I1S1L , are
good quantum numbers. With stronger magnetic fields
nuclear spin decouples and the optical transitions are
tween different sublevels ofJ, whereJ5S1L . In the latter
case we may assume that the atoms occupy a single man
of mI . In the following calculation we consider atomic su
levels determined bymF .

The positive frequency component of the electric fieldE1

may be expressed in terms of the positive frequency com

s
me
ts

ed.
5-3
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J. RUOSTEKOSKI PHYSICAL REVIEW A 61 033605
nent of the driving electric displacementDF
1 , with the wave

numberk, and the dipole radiation field@31#:

e0E1~r !5DF
1~r !1E d3r 8G~r2r 8!P1~r 8!, ~15a!

Gi j ~r !5F ]

]r i

]

]r j
2d i j“

2G eikr

4pr
2d i j d~r !. ~15b!

We also have the familiar relation

D~r !5e0E~r !1P~r !. ~16!

Equation~15! is the integral representation for the Ma
well’s wave equation of the electric field in the presence
dipole atoms and the monochromatic dipole radiation ker
G(r ) coincides with the corresponding classical express
@26#. The explicit form of the radiated field from a dipol
with the amplitudep̂ reads

G~r !p̂5
k3

4pH ~ n̂3p̂!3n̂
eikr

kr
1@3n̂~ n̂•p̂!2p̂#

3F 1

~kr !3 2
i

~kr !2Geikr J 2
p̂d~r !

3
, ~17!

wheren̂5r /r . The volume integral over 1/r 3 in Eq. ~17! is
not absolutely convergent in the neighborhood of the orig
The expression~17! should be understood in such a way th
the integral of the term inside the curly brackets over
infinitesimal volume enclosing the origin vanishes@31#. We
note that Eq.~15a!, with the correct delta function contribu
tion from Eq.~17!, yields“•D(r )50 for neutral atoms jus-
tifying the use of the electric displacement, instead of
electric field, in Eq.~11!.

The nonrelativistic propagator~17! involves an explicit
high-frequency cutoff@31#. In situations where integral ex
pressions containing the propagatorG(r ) are not absolutely
convergent the integrals are defined in such a way that
integration over spherical angles should be performed
@31#.

In the length gauge the Hamiltonian also contains the
larization self-energy term:

HP5
1

2e0
P~r !•P~r !. ~18!

However, this is proportional to the overlap of the atom
dipoles and, in the limit of low light-intensity, all contac
interaction terms between different dipole atoms were sho
in Ref. @32# to be inconsequential for light-matter dynamic
Although the result is valid for an arbitrary number of atom
the cancelation of the contact interactions is especially tra
parent in the case of a superradiant decay of only two p
dipoles@32#.

2. S-wave interactions

Two cold fermionic atoms in different internal states i
teract by means ofs-wave scattering. This introduces inte
03360
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action terms between ground-state atoms in Eq.~1!. In the
presence of driving light we also haves-wave scattering be-
tween different electronically excited levels and betwe
electronically excited and ground-state atoms.

We write the contribution to the Hamiltonian density th
consists of the excited-level operators as

He5(
n

cen
† ~Hc.m.

en 1\v02men!cen

1
\

2 (
nhst

uenh,estcen
† ceh

† cescet . ~19!

Here uenh,est54p\aenh,est /m describes the two-body
s-wave scattering between the atoms. For simplicity, the
quency of the optical transitionv0 is assumed to be indepen
dent of the atomic sublevel. For typical values of the opti
linewidth the c.m. motion for the excited atoms may be om
ted @6#. In this paper we consider a situation where the
tensity of the driving light field is low and therefore th
density of the excited atoms is low. Hence, to leading or
in the limit of low light-intensity the second term in Eq.~19!
makes no contribution to the optical response, and we do
address its explicit form in more detail.

We assume that to leading order all remaining interacti
between the ground-state and excited-state atoms, w
cannot be accounted for when the atoms are modeled
point dipoles, are governed by the following interactio
@35#:

Hge5\ (
nhst

ugnhestcgn
† ceh

† cescgt . ~20!

If we assume the conservation of the angular momentum
the colliding particles, the two-body interaction can be wr
ten in the following form@36#:

Hge5\ (
F5u f a2 f bu

f a1 f b

(
mF52F

F

uF,mF
OFmF

† OFmF
, ~21!

whereuF,mF
54p\aF,mF

/m and

OFmF
[ (

mamb

^FmF ; f af bu f a ,ma ; f b ,mb&c f ama
c f bmb

.

~22!

Here ^FmF ; f af bu f a ,ma ; f b ,mb& is the Clebsch-Gordan co
efficient for forming the stateuFmF& from two colliding par-
ticles in the angular momentum statesu f ama& and u f bmb&.

As an example we consider thef 51/2→3/2 transition.
By expanding Eq.~21! we obtainHge5H ge

A 1H ge
B , where

H ge
A does not mix the population between the different su

levels. The explicit form reads

H ge
A 5\(

n,s
ugn,esces

† cgn
† cgnces . ~23!

For the f 51/2→3/2 transition the summation runs ove
n561/2 ands561/2,63/2. The interaction strengthsugn,es
5-4
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are determined in terms of the interaction strengthsuF,mF
for

the scattering channelsuFmF&:

ug6
1
2 ,e6

3
2
5u2,62 ,

ug6
1
2
,e7

1
2
5

1

2
~u1,01u2,0!,

ug6
1
2 ,e7

3
2
5

3

4
u1,711

1

4
u2,71 ,

ug6
1
2
,e6

1
2
5

1

4
u1,611

3

4
u2,61 .

On the other hand,H ge
B consists of spin-exhange collisio

terms

H ge
B /\5

1

2
~u2,02u1,0!ce

1
2

†
c

g2
1
2

†
cg

1
2
ce2

1
2

1A3

4
~u2,12u1,1!ce

3
2

†
c

g2
1
2

†
cg

1
2
ce

1
2

1A3

4
~u2,212u1,21!c

e2
3
2

†
c

g
1
2

†
cg2

1
2
ce2

1
2
1H.c.

~24!

Similar nonlinear wave-mixing terms can have interest
effects on the dynamics of spinor BE condensates@37#.

If the s-wave scattering amplitudeuF,mF
is independent of

F we obtainH ge
B 50. Furthermore, if the scattering is als

independent ofmF , ugn,es in Eq. ~23! does not depend on
sublevelsn and s. For simplicity, in the following we as-
sume thatH ge

B 50.

B. Atomic polarization

The dipole radiation@Eq. ~15!# describes the scattere
light in a medium. In this section we study the optical r
sponse of an atomic gas by solving nonperturbatively
polarization of the matter-field for a low-density atomic g
in the limit of low light-intensity. The main items are th
steady-state equation of the atomic polarization@Eq. ~29!#
and its solution by means of the low-density decorrelat
approximation@Eq. ~32!#.

1. Equation of motion

We consider the optical response of the atomic polar
tion in the limit of low light-intensity. We derive the corre
sponding Heisenberg equations of motion for the matter-fi
operators. Alternative approaches have used, e.g.,
Schwinger-Keldysh techniques@38#. We assume that the
spin-exchanging collisions between the ground-state and
excited-state atoms vanish indicatingHge5H ge

A . Then the
Heisenberg equations of motion for atomic field operat
are obtained from the Hamiltonian densitiesHg @Eq. ~1!#,
HD @Eq. ~11!#, He @Eq. ~19!#, andH ge

A @Eq. ~23!#.
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In the limit of low light-intensity we derived from the
Heisenberg equations of motion a hierarchy of equations
correlation functions involving atomic polarization and ato
density @31,32#. In the case of the present system we m
proceed similarly. As far as the optical response is concer
it is again assumed that we can concentrate on the dyna
of internal degrees of freedom for the atoms and the lig
Hence, in the equation of motion for the atomic polarizati
the kinetic energy of the atoms is neglected. Neverthel
the quantum statistics of the different c.m. motional state
still fully included.

The vacuum electromagnetic fields are eliminated by p
forming the field-theory version of the Born and Marko
approximations@31#. We then obtain the equation of motio
for the polarization operator componentPnh

1 (r ),

d

dt
Pnh

1 5~ id2g!Pnh
1 1 ikcgh

† cgsPhs
nh
•DF

1

1 ikE d3r 8 Phs
nh
•G8~r2r 8!cgn

† P1~r 8!cgs

2 ikE d3r 8 Psn
nh
•G8~r2r 8!ces

† P1~r 8!cen

2 ikces
† cenPsn

nh
•DF

11 iug~12dn,s!cgn
† cgs

† cgsceh

1 iugn,escgn
† ces

† cesceh2 iugs,ehcgn
† cgs

† cgsceh

1 i ~uejh,est2uehj,est!cgn
† cej

† cescet . ~25!

Here we use the notational convention that the repeated
dices s, t, and j indicate the summation over the corr
sponding sublevels. In Eq.~25! we have shown explicitly
only the nonlocal position dependence. The atom-light
tuning is denoted byd and the Kronecker delta function b
dn,s . The spontaneous linewidthg is given by

g[
D 2k3

6p\e0
. ~26!

We have also definedk[D 2/(\e0) in terms of the reduced
dipole matrix elementD. In Eq. ~25! we introduced the fol-
lowing projection operator:

Pjt
nh[

dgnehdejgt

D 2

5 (
s1 ,s2

ês1
ês2
* ^eh;1gu1s1 ;gn&^ej;1gu1s2 ;gt&, ~27!

to include the dependence of the scattered light on the po
izations and on the atomic level structure.

In the present formalism the atoms are represented
ideal point dipoles which may overlap. Obviously, real a
oms with a hard-core interatomic potential cannot overl
We remove the contact dipole-dipole interactions betwe
different atoms. This is done by introducing in Eq.~25! the
propagator
5-5
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Gi j8 ~r ![Gi j ~r !1
d i j d~r !

3
~28!

that explicitly cancels the contact interaction ofG(r ) dis-
played in Eq.~17!. The purpose of this definition is to yiel
a vanishing integral forG8(r ) over an infinitesimal volume
enclosing the origin. As shown for the case of low-intens
light in Ref. @32#, we can make the substitution~28! without
changing the outcome of the optical response, and with
any additional assumption of the hard-core interatomic
tentials, even for ideal point dipoles. This is because du
the divergent dipole-dipole interactions all correlation fun
tions for atomic dipoles vanish whenever two position arg
ments are the same. As a result the contact interaction te
between different dipole atoms do not have any effect on
light-matter dynamics. The independence of the optical
sponse of the collection of dipole atoms on the substitut
~28! is the underlying explanation for the Lorentz-Lore
local-field correction to the electric susceptibility.

We consider the limit of low intensity of the driving light
Obviously, light has to be present in order to produce po
lation in the electronically excited levels and an excited-st
field amplitude is proportional to the light field amplitud
Therefore, we take the low-intensity limit by retaining on
those products of operators in Eq.~25! that involve at most
one excited state field operator or the electric displacem
amplitude@31#. Then, e.g., the third line and the last line
Eq. ~25! make no contribution to the equation of motion f
P1(r ) for low light-intensity.

We also note that in the low-intensity limit the pair co
relation function~7! is determined by the Hamiltonian den
sity in the absence of the driving lightHg @Eq. ~1!#. This is
because the effect of the light on the ground-state field
plitudes involves terms that contain at least one excited-s
field operatorand one light-field amplitude:

ċg~r !}dge•D2~r !ce~r !.

Thus, to leading order in the low-intensity limit the effect
the driving light on the ground-state atom correlation fun
tions vanishes.

For the expectation value of the polarization we use
notationP1nh[^Pnh

1 &, with n andh denoting the atomic sub
level. The steady-state solution ofP1nh in the limit of low
light-intensity is given by

P1nh~r1!5arnPhn
nh
•DF

1~r1!1(
s

F sn
shP2~r1ss;r1nh!

1a(
stj

E d3r 2 Phs
nh
•G8~r12r2!P2~r1ns;r2tj!.

~29!

Herea52D 2/@\e0(d1 ig)# is the polarizability of an iso-
lated atom andrn[^cgn

† cgn& denotes the ground-state ato
density in leveln. We have also defined

P2~r1nh;r2st![^cgn
† ~r1!Pst

1 ~r2!cgh~r1!&, ~30!
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F tn
sh[

1

d1 ig
@ugseh2~12dtn!ug#. ~31!

The normally ordered expectation valueP2(r1nh;r2st) de-
scribes correlations between an atomic dipole atr2 and a
ground-state atom atr1 . In the integral of Eq.~29! it repre-
sents a process in which an excited atom atr2 emits a photon
and excites a ground-state atom atr1 . The tensorF tn

sh gen-
erates the collisionally induced level shifts.

2. Low-density approximation

So far, we have obtained a steady-state solution for
atomic polarization~29! that acts as a source for the secon
ary radiation in Eq.~15a!. Equation~29! involves unknown
correlation functionP2 . Basically, we could continue the
derivation and obtain the equations of motion forP2 and for
the higher-order correlation functions. This would eventua
result in an infinite hierarchy of equations analogous to
equations in Ref.@31#. However, even in the case of a simp
level structure and in the absence of thes-wave interactions
the solution for the whole system by stochastic simulation
demanding on computer time@15#. In the studies of the re-
fractive index of a quantum degenerate BE gas Moriceet al.
@39,40# considered a density expansion in terms of the nu
ber of atoms repeatedly exchanging a photon by introduc
certain approximations to the ground-state atom correlatio
Although the lowest-order density correction to the susc
tibility of a zero-temperature FD gas may be obtained a
lytically @16#, in the presence of highly nontrivial quantum
statistical position correlations a rigorous density expans
is in most cases a very challenging task. In this paper
consider low atom densities~in terms ofr/k3) and approxi-
mate Eq.~29! by the decoupling that is analogous to th
lowest-order correction in Ref.@39#,

P2~r1nh;r2st!.
r2~r1nh,r2ss!

rs
P1st~r2!, ~32!

where the ground-state pair correlation functionr2 is defined
by Eq. ~7!.

The decorrelation approximation~32! introduces the
lowest-order correction to the optical response in terms
the number of microscopic optical interaction processes
tween the atoms by ignoring the repeated scattering o
photon between the same atoms@40#. As shown in Ref.@16#
in the absence of a superfluid state it also correctly gener
the leading low-density correction. The predictions of t
expansion by Moriceet al. @39# were tested for a zero
temperature FD gas in one dimension@15#. The agreement
with the exact solution obtained by the numerical simu
tions was found to be semiquantitative and in the low-den
limit excellent.

The dependence of the light propagation on the den
fluctuations may now be observed by inserting Eq.~32! into
Eq. ~29!. If the emitting atom atr2 and the absorbing atom a
r1 have the same internal state, the pair correlation func
displays repulsion and is determined by Eq.~8b!. In the case
5-6
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SCATTERING OF LIGHT AND ATOMS IN A FERMI- . . . PHYSICAL REVIEW A 61 033605
of different internal states the atoms attract each other
the pair correlation function is obtained from Eq.~8a!.

It is crucial for the low-density limit that the atom oper
tors in Eq.~25! were arranged to normal order. Otherwis
commutators are generated for higher-order correlation fu
tions P2 , . . . , that could be of the same order in atom de
sity as the terms in the equation forP1nh .

C. Electric susceptibility

In the previous section we obtained the steady-state s
tion for the atomic polarization~29! by means of the low-
density approximation~32!. The optical response may no
be evaluated by eliminatingDF

1 and P2 from Eqs. ~15a!,
~29!, and~32!. As an example we calculate the vector co
ponents ofP1 for the f 51/2→3/2 transition having the elec
tronically excited sublevelsmf561/2,63/2. The pair corre-
lation function in Eq.~32! is nonvanishing only withn5h.
Because we are dealing with a linear theory, the electric fi
and the polarization are related by the susceptibility asP1

5e0xE1 . We consider a situation where FD gas fills t
half-infinite spacez.0. For simplicity, we assume equal an
constant atom densities for the spin statesr↑5r↓[r. To
simplify further, we assume that scattering lengthagnes is
independent ofn and s corresponding to the case that th
s-wave interactions in Eq.~23! are independent of the sca
tering channeluFmF&. We write the incoming free field as
plane wave

DF~r !5DF êeikz. ~33!

We assume that it is linearly polarized withê parallel to
dg

1
2 e

1
2

. By choosingê[êx we have the following represen
tation for the circular polarization vectors in terms of the u
Cartesian coordinate vectors:

ê657
1

A2
~ êy6 i êz!, ê05êx . ~34!

With the ansatzP1nn(r )5Pêexp(ik8z), for Im(k8).0, we
then immediately see thatP1nh50 for nÞh. Finally, by us-
ing Eq. ~8!, and by ignoring the effects of the surface of t
atomic gas@15#, we obtain a spatially constant susceptibili
for the sample as

x5
k82

k2
215

2Car

122Car/31S11S2
, ~35!

with

S152
Ca

r E d3r e2 ikzê* •G8~r !•ê@ u^cg↑~r !cg↓~0!&u2

2u^cg↓
† ~r !cg↓~0!&u2#, ~36!

S252
1

r (
s

F ↑s
↑sr2~r↑,rs!. ~37!
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Here we have used the obvious relationr2(r1s,r2n)
[r2(r1ss,r2nn)5r2(r1nn,r2ss). The parameterC de-
notes the value of the Clebsch-Gordan coefficientC
5u^e1

2 ;1gu10;g 1
2 &u252/3 in the case of thef 51/2→3/2

transition. By writing r̄[kr the propagator in Eq.~36! has
the following expression in the spherical coordinates:

êx* •G8~ r̄ !•êx5
k3eir̄

4p F ~12sin2 u cos2 f!
1

r̄

1~3 sin2 u cos2 f21!S 1

r̄ 3
2

i

r̄ 2D G .

~38!

In Eq. ~35! S1 is solely generated by the quantum
statistical position correlations between different atoms. T
effect of s-wave interactions is encapsulated inS2 . In an
uncorrelated atomic sample the atomic positions are stat
cally independent and the pair correlation function~7! satis-
fies r2(rn,r 8s)5rnrs resulting inS150. For the case of
uncorrelated atoms, and in the absence of thes-wave scatter-
ing, we would obtain Eq.~35! with S15S250. This is the
standard column density result stating that susceptib
equals polarizability of an atom times atom density. Equat
~35! also involves the Lorentz-Lorenz local-field correctio
in the denominator.

The quantum-statistical corrections to the column den
result are introduced byS1 . It describes the modifications o
the optical interactions between neighboring atoms due
the position correlations. The second term in Eq.~36! repre-
sents the quantum-statistical contribution to the scatte
process in which a photon emitted by an atom in inter
staten at positionr is reabsorbed by another atom in intern
staten and located at the origin. According to FD statisti
two fermions with the same quantum numbers repel e
other and FD statistics forces a regular spacing between
atoms. The optical interactions are dominantly generate
small interatomic distances and the corrections to the sus
tibility due to the second term in Eq.~36! correspond to
inhibitited multiple scattering of light resulting in suppresse
diffusive radiation. In the absence of a superfluid state
gas exhibits a dramatic narrowing of the absorption lin
width for coherently scattered light@15,16#.

The first term in Eq. ~36! represents the quantum
statistical corrections to the reabsorption process betwee
oms in different internal states due to the two-particle coh
ence. This term is nonvanishing only in the presence o
superfluid state. Because the total spin of an interacting a
pair in Eq.~1! is an integer, the pairs behave as bosons@4#.
According to the Bose-Einstein statistics two bosons attr
each other and the BCS pairing favors small interatom
spacing. This results inenhancedoptical interactions and
incoherent scattering of light.

The electric susceptibility exhibits a Lorentzian lin
shape. The optical line shiftS and linewidthG for the atomic
sample are obtained from Eq.~35!
5-7
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S/g5
4prC

k3
1Scol /g2

6p

k3 ReS S1

a D , ~39!

G/g512
6p

k3 ImS S1

a D . ~40!

The collisional line shiftScol , which results fromS2 @Eq.
~37!#, is generated by thes-wave interactions. It depends o
the BCS order parameterD:

Scol[~ug2uge!
r2~r↑,r↓ !

r

5r~ug2uge!F11S D

\ugr D 2G . ~41!

The first term in the optical lineshift~39! corresponds to
the Lorentz-Lorenz local-field correction. As far as t
s-wave interactions can be considered local on the scal
the optical wavelength in Eqs.~1! and~20! also the line shift
Scol may be considered as a local-field shift. In that case
local-field shift due to thes-wave scattering in Eq.~39! is
larger than the Lorentz-Lorenz shift for6Li if

g&210F11S D

\ugr D 2G~ag2age!

a0l3
mm3 s21.

Herel denotes the wavelength of the incoming light anda0
is the Bohr radius. Because (D/\ugr)2 is expected to be o
the order of one@9#, the local-field shift could strikingly
depend on the BCS order parameterD. The collisional line
shift was recently observed for a hydrogen BE condensat
using a two-photon 1S→2S spectroscopy@41#.

If the effective ranger u of the triplets-wave potential in
Eqs.~1! and~20! is very short,r u!1/k, the resonant dipole
dipole interactions may suppress the effect of thes-wave
scattering on the line shift just as they cancel the effect of
polarization self-energy@32#. However, for a metastabl
state,g21 may be large on the time scale of the atom
interactions. In that case the collisional shift could be obse
able even for very smallr u .

To calculate the linewidth~40! and line shift~39! from
integral~36! we need to evaluate the spatial correlation fun
tions by using Eqs.~3! and~4!. For instance, the expectatio
value for the anomalous correlation function reads

^c↓~r !c↑~0!&5
1

V (
k

eik•r
D

2Ek
~12n̄ak

q 2n̄bk
q !. ~42!

The chemical potential is solved fromrn5rn(m̄). Here
^c↓(0)c↑(0)&52D/(\ug) is ultraviolet divergent, resulting
from the assumption of the contact two-body interaction
Eq. ~1!. This interaction is momentum independent and it
not valid at high energies. To estimate the pairing a stand
procedure is to remove the high-energy divergence by in
ducing a high-momentum cutoffkc . Nevertheless, we find
that the optical linewidth of a FD gas@Eq. ~40!# is finite even
without any high-momentum cutoff. This is because the
03360
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pole radiation already involves a high-frequency cutoff@31#
that regularizes smallr behavior. The contribution to the
optical line shift@Eq. ~39!# from the integral~36! is not finite.
The lower limit of the integral diverges logarithmically. Al
though the radiation kernel~15b! involves a cutoff@31#, the
Lamb shift is not treated rigorously. The small-distance s
gularities of the dipole radiation kernel may be regulariz
by introducing explicit regularization factors@42#. However,
for the present purposes we may at least obtain an estim
for the shift by using the cutoffkc51/r u in the anomalous
correlation function~42! with the realistic valuer u5100a0
of the triplets-wave potential@9#.

In Fig. 2 we have shown~a! the absorption linewidth and
~b! the line shift for coherently scattered light from Eq.~39!
without the collisional shift, i.e., by assumingug5uge in Eq.
~39!, for l5900 nm and for the value of thes-wave scatter-
ing length of 6Li, ag522160a0 @9#. In ~a! the solid line
represents the linewidth in the absence of the superfluid s
~D50!. The line narrows as a function of the density alrea
at very low densities@16#. The presence of the superflui
state broadens the optical linewidth~the dashed line!. For the
BCS state, even without the collisional shift, also~b! the
optical line shift is increased.

It is interesting to emphasize that the optical linewidth
almost independent of the high-momentum behavior of
anomalous correlation function~42!. This can be seen by
introducing a cutoffkc in Eq. ~42!. We found@17# that the
optical linewidth is almost independent of the cutoff fro
kc5` to kc51/(500a0) indicating that the exact short-rang
behavior of the two-bodys-wave potential is not very crucia
for the value of the linewidth. Furthermore, the contributi

FIG. 2. The optical~a! linewidth and~b! the line shift for the
electric susceptibility, in the absence of the collisional line shift,
a function of the atom density per cubic optical wave number of
driving light. The scaling of all the variables is linear. The solid lin
represents the optical response in the absence of a superfluid
~D50!. The BCS pairing broadens the resonance line and incre
the line shift already at low atom densities.
5-8
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of integral~36! in the close neighborhood of the origin to th
linewidth is vanishingly small, and therefore the effects
the BCS pair correlations do not result from short-range c
relations.

D. Summary remarks

We calculated the leading quantum-statistical and co
sional corrections to the standard century-old column den
result for the electric susceptibility. In Eq.~35! the correc-
tions to the susceptibility are encapsulated in the two par
etersS1 andS2 . HereS2 represents the collisional line shi
due to thes-wave interactions andS1 position correlations
between different atoms. The susceptibility was obtained
means of the decorrelation approximation~32! which ne-
glects all the repeated photon exchange between the s
atoms. These are the microscopic mechanism for the co
tive optical linewidths and line shifts@31#. Therefore,S1 is a
direct consequence of the quantum-statistical correlatio
for an uncorrelated atomic sample, withr2(rn,r 8s)
5rnrs , S1 vanishes. In the case of uncorrelated atoms
lowest-order correction to the optical linewidth results fro
the collective light scattering@16,39,40#. This correction is
proportional to atom density. The quantum statistics is d
ferent because the correlation length itself depends on
density. For instance, in the low-density limit for an ideal F
gas we obtain@16# S1}(r/k3)(j↑↑k)}r2/3/k2 . Hence, at
least in the absence of a superfluid state, Eq.~35! not only
represents the lowest-order correction to the susceptibilit
terms of microscopic optical interaction processes betw
the atoms, but it also correctly generates the leading l
density correction.

IV. BRAGG SPECTROSCOPY

A. Diffraction of atoms

In this section we consider diffraction of atoms by mea
of light-stimulated transitions of photons between two no
parallel laser beams. When an atomic beam interacts wi
periodic potential formed by a standing light wave, it c
Bragg diffract, analogous to the Bragg diffraction of x ra
from a crystal@23#. The Bragg diffraction has been exper
mentally used as a technique to split a BE condensate@23#
and as a spectroscopic method to probe the density fluc
tions of a BE condensate@24,25#.

In an nth order Bragg scattering process photons are
sorbed from one beam and stimulated to emit into the othn
times@23,24#. Two different momentum states are connec
by a 2n-photon process. The change of the energy of a p
ton upon the scattering satisfiesE5n\v, wherev stands for
the frequency difference of the two lasers with wave num
k. The fractional change of frequency upon scattering is
sumed to be negligible,uvu!kc, so that one finds the famil
iar relation between the change of the wave vectorDk and
the scattering angleu,

uDku52nk sin~u/2!. ~43!
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B. Dynamical structure function

In Bragg spectroscopy, the two intersecting laser bea
create a moving standing wave with a periodic intens
modulation I (r t)5I cos(Dk•r2vt) @25#. The intensity
modulation creates an optical potentialV(r t)[V0 cos(Dk•r
2vt) which couples to the local number density of groun
state atoms. The dependence ofV0 on the atomic level
scheme and on light polarizations is analyzed in Ref.@6#. We
consider a situation where the internal sublevel of
ground-state atom does not change in the scattering proc
The corresponding Hamiltonian density reads

HB5V0 cos~Dk•r2vt !cgn
† ~r !cgn~r !. ~44!

According to Fermi’s golden rule the excitation rate is th
2p/\(V0/2)2S(Dk,v) @25#, whereS(Dk,v) is the dynami-
cal structure function@43#

S~Dk,v![
1

Z (
i , f

e2Ei /kBTu^ i ur̂~Dk!u f &u2d~\v1Ef2Ei !.

~45!

HereZ denotes the grand partition function and the expec
tion value of the density fluctuation operator

r̂~q!5(
n
E d3r e2 iq•rcgn

† ~r !cgn~r ! ~46!

is summed over all possible final statesu f &, with the energy
Ef , and thermally averaged over initial statesu i &, with the
energyEi . By using the completeness ofu f & and r̂(2q)
5 r̂†(q) we may write Eq.~45! as

S~Dk,v!5
1

2p\ (
n,h

E dt d3r 1 d3r 2 eivteiDk•(r12r2)

3^cgn
† ~r10!cgn~r10!cgh

† ~r2t !cgh~r2t !&.

~47!

We define the static structure function by

S̄~Dk![\E
2`

`

dv S~Dk,v!. ~48!

The dynamical structure function mirrors the velocity d
tribution of atoms and contains qualitative signatures of
and FD statistics@6#. It displays the modifications of the
velocity distribution due to the quantum statistics includi
the Fermiinhibition and the Boseenhancementof the scat-
tering process. For the case of two BE condensates it
also exhibit a dramatic dependence of the spectrum on
relative phase between the two condensates@28,30#, and the
Bragg diffraction could possibly be used as a technique
measuring the relative condensate phase. This is beca
due to the macroscopic quantum coherence of the BE c
densates, the uncertainty in the initial state of the Bragg
fraction may result in a destructive or constructive interf
ence of the transition amplitudes. The structure function m
also provide information about the high-energy quasipart
5-9
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excitations@29#. Here we study the qualitative signatures o
superfluid state in the structure function of a FD gas.

1. Ideal Fermi-Dirac gas

First, we consider an ideal FD gas studied in Ref.@6#. We
assume a translationally invariant space. In that case the
relation function in Eq.~47! depends only onr[r22r1 . We
are interested in the incoherent scattering processes c
sponding to nonforward directions withDkÞ0. In the ab-
sence of a superfluid state the correlation function in Eq.~47!
with nÞh represents only coherent scattering events. W
n5h we obtain

^cgn
† ~00!cgn~00!cgh

† ~r t !cgh~r t !&

5r21^cgn
† ~00!cgh~r t !&^cgn~00!cgh

† ~r t !&. ~49!

For DkÞ0 we obtain the dynamical structure function fro
Eq. ~47!

S5
1

\ (
k,n

dS v1vR2
\k•Dk

m D n̄k,n~12n̄k2Dk,n!.

~50!

Here n̄k,n[@exp(ek /kBT)/z11#21 denotes the FD occupa
tion numbers andz fugacity. We have also defined the effe
tive recoil frequencyvR by

vR5
\uDku2

2m
. ~51!

Expression~50! describes a scattering process in which
atom in the ground staten with the c.m. statek scatters to the
c.m. statek2Dk still remaining in the staten. The delta
function dictates the energy conservation, which coinci
with the theory for Doppler velocimetry of atoms@44#
shifted by the effective recoil frequencyvR @6#.

Classical atoms obey Maxwell-Boltzmann statistics a
their velocities are normally distributed resulting in
Gaussian-shaped dynamical structure function@6#. First, FD
statistics modifies the velocity distribution; even an ideal
gas atT50 exhibits a finite width in Eq.~50!. Secondly, the
quantum degeneracy affects the scattering processes.
product of the occupation numbers in Eq.~50! indicates the
Fermi inhibition: The scattering events in which an ato
recoils to an already occupied state are forbidden by
Pauli exclusion principle.

It is illustrative to describe the Fermi inhibition in mo
mentum space@16#. At T50 the fermionic atoms fill the
Fermi sphere withn̄k,n5Q(kF2uku). The scattering satisfie
Eq. ~43!. For the first-order Bragg diffraction, withn51, all
atoms are scattered out of the Fermi sea, ifuDku.2kF .
Moreover, for small scattering angles,

sin~u/2!,
kF

uDku
5S 6p2r

uDku3
D 1/3

, ~52!
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the incoherent atomic recoil events are forbidden. When
density is increased, atkF>uDku the scattering is at leas
partially suppressed to all nonforward directions.

We consider a situation where the densities of the inter
sublevels are equalr[r↑5r↓[N/V. Here N denotes the
number of atoms. The dynamical structure function for
ideal FD gas was displayed in Ref.@6#. At T50, and in the
degenerate regime withuDku,2kF , the result exhibits a
characteristic shape of a wedge consisting of a linear an
quadratic part. The static structure function per total num
of atoms may be evaluated from Eq.~50!. For uDku.2kF we

FIG. 3. The static structure function per the total number

atomsS̄(Dk)/(2N) as a function of the atom densityr in units of
cm23 . The change of the atomic recoil wave number upon scat
ing is ~a! 103 cm21, ~b! 104 cm21, and~c! 33104 cm21 . The solid
line represents the diffraction in the absence of a superfluid s
~D50!. The BCS pairing dramatically increases the incoher
nearforward scattering already at low atom densities.
5-10
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obtain S̄(Dk)/(2N)51 and for 0,uDku,2kF

S̄~Dk!

2N
5

1

16kFuDku S 12uDku22
uDku4

kF
2 D . ~53!

For free atomsS̄(Dk)/(2N)51 and Eq.~53! describes the
inhibited scattering.

In the previous discussion we ignored the Rabi oscillat
dynamics and considered only the transition rates. This
good approximation when only a small fraction of atoms
scattered, i.e., when the coupling timet0 is much shorter than
the oscillation periodt0!1/V @28#. HereV denotes the two-
photon Rabi frequency. To observe the qualitative feature
the spectrum the coupling time should be at least of the o
of the characteristic time scale in the spectrum, which
cording to Ref.@6# is (vReF /\)21/2.

2. BCS pairing

In the presence of a superfluid state the correlation fu
tion in Eq. ~47! at T50 reads~for nÞh!:

^cgn
† ~00!cgn~00!cgh

† ~r t !cgh~r t !&

5r21u^cgn~00!cgh~r t !&u2. ~54!

For the casen5h we obtain Eq.~49!. Analogously to Eqs.
~8! we need to evaluate Eqs.~49! and ~54! by means of the
Bogoliubov quasiparticles@Eq. ~3!#. The dynamical structure
function for incoherent scattering~DkÞ0! in the quasiparti-
cle vacuum is

S~Dk,v!5
1

4 (
k

d~\v1Ek1Ek2Dk!F D2

EkEk2Dk

1S 12
jk

Ek
D S 11

jk2Dk

Ek2Dk
D G , ~55!

where the quasiparticle energiesEk are defined in Sec. II B
Expression~55! describes creations of pairs of quasipartic
separated by the wave vectorDk. We note that for a super
fluid state in the homogeneous space there exists a fi
energy gap in the excitation spectrum2\v5Ek1Ek2Dk

>2uDu. The corresponding expression for the static struct
function S̄(Dk) may be obtained from Eqs.~55! and ~48!.

In Fig. 3 we show the static structure functio
S̄(Dk)/(2N) for a FD gas as a function of the densityr for
three characteristic values ofuDku. The s-wave scattering
lengthag522160a0 . The solid line represents an ideal F
gas in the absence of a superfluid state. The superfluid
dramatically increases the structure function~the dashed
line! for nearforward scattering. The BCS pairing mixes p
an

ys

n,

03360
n
a

in
er
-

c-

s

ite

e

ate

-

ticles and holes near the Fermi surface increasing the num
of available scattering channels. This effect is particula
striking for the case of small recoil momentum correspon
ing to nearforward scattering.

We may also consider situations where the internal s
of atoms is changed in the scattering process. In this case
two ground statesug,↑& and ug,↓& are coupled through a
common excited state by the intersecting laser beams.
instance, the scattering rate for the transitionug,↓&→ug,↑& is
proportional to ^cg↓

† (00)cg↑(00)cg↑
† (r t)cg↓(r t)& and de-

pends on the quasiparticle pairing.

V. CONCLUSIONS

We studied the interaction of light with a two-speci
atomic superfluid gas. First, we considered the propaga
of light and evaluated the quantum-statistical corrections
the standard column density result for the electric susce
bility. Secondly, we analyzed the Bragg diffraction of atom
by means of light-stimulated transitions of photons betwe
two laser beams. The effects of BCS pairing may be und
stood in terms of enhanced incoherent scattering proce
resulting in the increased optical linewidth, line shift, a
static structure function. These optical properties could p
sibly signal the presence of the superfluid state and de
mine the value of the BCS order parameter in dilute atom
FD gases.

One particularly promising candidate to undergo the B
transition and to become a superfluid is spin-polariz
atomic 6Li. Atoms in two different internal levels can inter
act via s-wave scattering and the6Li atom has an anoma
lously large and negatives-wave scattering lengtha.
22160a0 . The hyperfine statesums51/2,mi51& and ums
51/2,mi50& of 6Li have been predicted to undergo a sup
fluid transition at 1028 K with a density of 1012 cm23 @8,9#.
Here ms and mi denote the electron and the nuclear sp
components.

We assumed a translationally invariant system. A FD g
in a harmonic trap may be considered locally homogene
@9#, provided that the trap length scalel 5(\/mv)1/2 is much
larger than the correlation lengths,j↑↑ andj↑↓ . The spatial
confinement introduces an uncertainty in the recoil mom
tum. In the case of Bragg spectroscopy, the coherent sca
ing is negligible, if the change of the wave number of t
atoms upon scattering is larger than the inverse size sca
the atomic sample 1/l &uDku.
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