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Scattering of light and atoms in a Fermi-Dirac gas with Bardeen-Cooper-Schrieffer pairing
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We theoretically study the optical properties of a Fermi-Dirac gas in the presence of a superfluid state. We
calculate the leading quantum-statistical corrections to the standard column density result of the electric
susceptibility. We also consider the Bragg diffraction of atoms by means of light-stimulated transitions of
photons between two intersecting laser beams. Bardeen-Cooper-Schrieffer pairing between atoms in different
internal levels magnifies incoherent scattering processes. The absorption linewidth of a Fermi-Dirac gas is
broadened and shifted. Bardeen-Cooper-Schrieffer pairing introduces a collisional local-field shift that may
dramatically dominate the Lorentz-Lorenz shift. For the case of the Bragg spectroscopy the static structure
function may be significantly increased due to superfluidity in the near-forward scattering.

PACS numbgs): 03.75.Fi, 42.50.Vk, 05.30.Fk

[. INTRODUCTION force a regular spacing between the atoms in the same inter-
nal state within the characteristic correlation length,

As a result of dramatic progress in cooling and trapping of~ 1/kg . Herekg denotes the Fermi wave number. Fermionic
alkali-metal atomic gases the quantum statistics of atoms hagoms repel each other and short interatomic separations are
observable consequences. Perhaps, the most striking effectsgppressed by the Pauli exclusion principle. The pair corre-
the Bose-Einstein(BE) condensation of bosonic atoms lation function between two atoms displays antibunching.
[1-3]. Nevertheless, Fermi-Dira@=D) gases are also ex- The resonant dipole-dipole interactions between different
pected to exhibit a rich and complex behavior. One espeatoms, which behave asr?/ are dominant at small inter-
cially fascinating property of FD gases is that with effec- atomic separations. The Fermi repulsion suppresses these op-
tively attractive interaction between different particles thetical interactions and therefore the incoherent scattering of
ground state of the system may become unstable with respelight in the atomic sample is reduced. As a result a FD gas
to the formation of bound pairs of quasiparticles or Cooperexhibits a dramatic narrowing of the absorption line for the
pairs[4,5]. This effect is analogous to the Bardeen-Cooper<coherently scattered light.5,16.

Schrieffer (BCS) transition in superconductors. FD gases In thes-wave BCS transition the particles near the Fermi
have been an active subject of research already quite sonseirface having opposite momenta and different internal
time [6-22. quantum numbers tend to appear in pairs. This leads, e.g., to

We recently showedl17] that the coherent quasiparticle a finite energy gag in the excitation spectrum of the system
pairing between atoms in different internal levels may en-and to a nonvanishing expectation value of the anomalous
hance the optical interactions. In particular, the resonanceorrelation function for the matter-field annihilation opera-
line of a FD gadthe extinction of light from coherent laser tors(;(r) (r)). Here the two internal states are referred
bean) is broadened and shifted as a result of the BCS pairto as and |.
ing. In this paper we present a more detailed study of the The BCSs-wave pairing also introduces short-range or-
propagation of light in a dilute FD gas in the presence of adering of atoms within the characteristic correlation length
superfluid state. We also investigate the signatures of thé,; ~egr/(Akg) between atoms in different internal states
BCS pairing in light-stimulated transitions of photons be-[4]. Here e denotes the Fermi energy. Due to the macro-
tween two intersecting nonparallel laser beams. We demorscopic two-particle coherence the atoms in different internal
strate the dramatic dependence of the Bragg diffraction ratkevels attract each other and the BCS pairing enhances small
on the BCS order parameter. The Bragg diffraction of atomsnteratomic separations. The pair correlation function be-
has already been experimentally used as a method to splittaveen two atoms with different quantum numbers displays
BE condensat§23] and to perform spectroscopic measure-bunching. As a result the optical interactions and the inco-
ments on the condensatg®t,25. herent scattering of light in the atomic gas amehanced

In this paper we theoretically study the optical response ofrhis broadens the absorption line for the coherently scattered
a superfluid state in a zero-temperature FD gas. First, wkght.
consider the propagation of low-intensity light and calculate As a second topic we study the Bragg spectroscopy of a
the leading low-density correction to the standard centuryFD gas with BCS pairing. In the Bragg spectroscopy an op-
old column density result of the electric susceptibility, alsotical potential couples to the local number density of atoms
known as the Clausius-Mossotti relatipp6]. This correc- and connects two external atomic states of different mo-
tion is a direct consequence of the quantum-statistical posimenta. The scattering rate of atoms is proportional to the
tion correlations between different atoms that modify the op-dynamical structure function of the atomic §&<24,25. The
tical interactions at small interatomic separations. structure function has been extensively studied for the case

FD statistics exhibit a short-range ordering of atoms in theof incoherently scattered light in optically thin BB,27-29
gas. In the absence of a superfluid state the FD statistiand FD[6,10,14 atomic gases.
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The structure function contains distinct quantum-principle there only is a very weag-wave scattering be-
statistical features in the case of fermionic and bosonid¢ween two atoms in the same level, which is ignored in Eq.
atomic gase$6]. For a FD gas it demonstrates the Fermi(1).
inhibition of the spontaneous scattering of phot6®40,14.

The structure function may also be used as a method of de- B. BCS pairing
Eg;m?iamg the relative phase between two BE condensates Before the light is switched on, the system is described by

the Hamiltonian density{=", [Eq. (1)]. The assumption
cantly increase the value of the static structure function. Thiéhat the driving light only weakly d!SFleI’bS the _system allows
is because due to the BCS pairing atoms and holes near thig to evaluate the glectnc suscgpt|blllty by using the ground-
Fermi surface are mixed; with a given recoil momentumState atom correlations determinedhy, even in the pres-

there exist more unoccupied states to which atoms can scat'c® IOf th%qutvln(? light. Vl\le assumeba h_or?ogttre]ne? uﬁ atomic
ter. The effect of superfluidity is stronger for nearforward sam_pe and introduce a plane-wave basis for the field opera-

In this paper we show that a superfluid state may signifi

scattering. tors

In Sec. Il we introduce the Hamiltonian density for 1
ground-state atoms in the absence of the driving light field. Yo (N =—= 2 bk’ )
The analysis of the quasiparticles follows the standard BCS ¢ WK

theory[4]. We emphasize the effect of the quantum statistics o ) .
on the pair correlation function. In Sec. Il we Study the In the Ham|lt0n|an(l) we introduce the standard canonical

propagation of light in a FD atomic gas. The interaction be-transformation to the Bogoliubov quasipartic(es5]
tween light and matter is discussed in general terms in Sec.

_ _ ot
[l A. The atomic polarization is solved for the low-density o= Ukb —ob oy (33
atomic gas, complete with the dependence on the atomic Wb v +oib! (3b)
level scheme and on various light polarizations in Sec. Il B. B—i=Uib i Foidby

The electric susceptibility representing the damping and the , .o\ andw. are real. de
; . : ) . , depend only only gk|, and sat-
phase velocity of the light beam is obtained in Sec. Ill .o uﬁfv%l.k The requirement that Iinear(ijze|d ean field

'I_'he effeCt.S of the quantum statistics _and_ﬁwave Interac fluctuations ofHy in Eq. (1) be diagonal in the quasiparticle
tions manifest themselves in two distinguishable parameters, . o . )

. 4 . representation sets an additional constraint and we obtain
A few remarks about the light propagation are made in Sec.

11 D. In Sec. IV we consider the possibilities to observe the 1 & , 1 &
(10 &), vp=g(a- &, @

BCS pairing via Bragg spectroscopy. The Bragg diffraction uﬁ=§ + E 5
of atoms in the laser field probes the structure function of the K

gas. In Sec. IV B we calculate the structure function for a

— /A2 2 _ _
superfluid state. A few concluding remarks are made inVhere By = VAT &, &= ek uthug(pytp))/2, and the

Sec. V. energy gap
hu -
A== 2 uwk(1-n—ngo. ®
Il. GROUND-STATE ATOMS K
A. Hamiltonian In equilibrium, the quasiparticle occupation numbers,
We assume a FD gas occupying two different internal={aka) and n},=(BLB,) satisfy FD statistics witmg,
sublevels|g, T) and|g,|) of the same atom with electroni- =nf, = (e®/kT+1)"*. The dispersion relation for free

cally excited levelge, v). In the absence of the driving light particles is given by, =#%2k?/(2m) and the average of the
field, atoms in the electronic ground state are desc.ribed iBhemical potentials iw=(p;+,)/2. For simplicity, we
second quantization by the Hamiltonian density [4,5]: assumeu, =, . For the gap parameter @t=0 we use the
weak-coupling approximatiod =1.7&gT, [4,9], where
Hy= 2 g, (&= tgu) Yigu t hligiy g Yigy g (1)

T
2ke|ay|

. (6)

8e
KpTc= ?FeV*Z ex;{ -

where i,,(rt) denotes the atom-field annihilation operator Here the Fermi wave numbes-=(672p)*? is defined in

for level |g,v) in the Heisenberg picturgyy, is the corre-  terms of the atom density, T denotes the critical tempera-
sponding chemical potential, ahtf’, stands for the center- ture of the BCS phase transition, ane0.5772.

of-mass (c.m) Hamiltonian. We have approximated the In the superfluid phase transition the atoms in the differ-
finite-range interparticle potential by a contact interactionent internal state$ and | form quasiparticle pairs resulting
with the strength given byiy=4magh/m. Herea; andm  in a nonvanishing anomalous correlatig(rq) ¢ (r2)).
denote thes-wave scattering length and the mass of the atomThe effect of this macroscopic two-particle coherence on the
The atoms in different internal states can interactswigave  atomic position correlations is particularly transparent in the
scattering. On the other hand, due to the Pauli exclusiogase of the pair correlation function:
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1 1. Electromagnetic field
We consider the nonrelativistic Hamiltonian formalism of
02(1,0)/p 0.6 electrodynamics. It is advantageous to study the propagation
0.3 of light by introducing the dipole approximation for atoms
and the corresponding Hamiltonian in thength gauge ob-
05 ) 4 6 tained in the Power-Zienau-Woolley transformatj@3—35.
t/kp The electromagnetic field introduces additional terms in

the system Hamiltonian. The Hamiltonian for the free elec-

FIG. 1. The pair correlation function for an ideal homogeneou%reomagnetic field-energy is

Fermi-Dirac gas at zero temperature. The two atoms have the sal
internal quantum numbers. The pair correlation function represents

the joint probability distribution for the position of the second atom He= J d3r He= 2 ﬁwqagaq . (10
given that the first atom sits at the origin. Two fermionic atoms q

repel each other and small interatomic separations are suppressed.
Here wq anda, denote the mode frequency and the photon

annihilation operator. The mode indexincorporates both
the wave vector and the transverse polarizatiégl. In the
length gauge the basic dynamical degree of freedom for the
light field is the electric displacemeim(r) which interacts
with the atomic polarizatiof(r),

p2(r 1w, 120 T) =Yg (1 ) Ug, (12) g1 2) gy (T1)). (D)
In the ground state of{y, [Eq. (1)], determined by the

vacuum of the Bogoliubov quasiparticl€&qg. (3)], the pair
correlation function readdor v+ o)

1
2, (8a HD=—E—OP(r)-D<r>. (12)

P21 1vY,1200)=p,p ot [(Yg, (1) hge(r2))

pa(r 1w, ovw)=p2— (¢l (r1) g, (r2))% (8p)  Inthe dipole approximation the polarization is given in terms
2 2 € gt LT ar2 ) of the density of atomic dipoleB(r)=2=,;d;5(r;—r). Hered,

The pair correlation function represents the joint probabilityandri denote_ the dipole operator and the c.m. posmor_\_op-
erator for theith atom. In second quantization the positive

distribution for the positions of two atoms. We note from Eq. e

(8b) that the fermionic atoms in the same internal state repeflrequency component of the polarization is given by
each other analogously to antibunching of photons and short

interatomic separations are inhibited. For an ideal homoge- P (=2 dgvey,kbgy(f)lﬂen(f)EE Pj,l(r), (12
neous FD gas, in the absence of a superfluid state, we can v v

analytically evaluate Eq8b). We obtain[16]

P, (1) =dgyen (1) (1), (13
5 9 [sinkgr 2 . .
po(r; v, vv)=p2 1— —— k——COSka () where dg,, stands for the dipole matrix element for the
Ker™ | Ker transition|e, 7)—|g, v)
wherer=|r,—r,|. In Fig. 1 we have shown the pair corre- _ - _ _
lation function(9). The FD repulsion between different at- dgVe”_D; e.(e7;1g|1oigv). (14)
oms results in suppressed dipole-dipole interactions and in
the Fermiinhibition of incoherently scattered lighit5,16.  HereD denotes the reduced dipole matrix element, which is
As a result of the BCS pairing atoms in different internal chosen to be real, amngvzd;ven' The summation in Eq.

states attract each other analogously to bunching of photong4) runs over the unit circular polarization vectars- +1,0
according to Eq.(8a). Therefore short interatomic separa- weighted by the Clebsch-Gordan coefficients of the corre-

tions are enhanced. In the next section we find that this mayponding optical transitions. Here light fields with the polar-
lead toenhancedptical interactions and incoherent Scatter'izationséi ande, drive the transitionsg, »)—|e, v+ 1) and

ing of light. lg,v)—|e,v), respectively.
For a weak external magnetic field the nuclear dpithe
ll. LIGHT PROPAGATION electron spirSS, and the orbital angular momentummay be
coupled. In that case andmg, defined byF=1+S+L, are
good quantum numbers. With stronger magnetic fields the
In this section we introduce terms in the Hamiltonian thatnuclear spin decouples and the optical transitions are be-
result from the electromagnetic fields. We briefly recapitu-tween different sublevels af, whereJ=S+L. In the latter
late and generalize our previous quantum field-theoreticatase we may assume that the atoms occupy a single manifold
analysis of the light-matter interactioh31,32,15-17. As a  of m,. In the following calculation we consider atomic sub-
basic assumption, atoms are represented as point dipoles aledels determined byng .
the radiated field in a medium has the familiar expression of The positive frequency component of the electric figld
the dipolar field Eq. (15b)]. may be expressed in terms of the positive frequency compo-

A. Basic relations
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nent of the driving electric displacemedf , with the wave
numberk, and the dipole radiation fielB1]:

PHYSICAL REVIEW A 61 033605

action terms between ground-state atoms in @g. In the
presence of driving light we also hagevave scattering be-

tween different electronically excited levels and between
electronically excited and ground-state atoms.

We write the contribution to the Hamiltonian density that
consists of the excited-level operators as

eoE+(r)=D;(r)+Jd3r’G(r—r')P+(r'), (158

9 ikr
Gi(r)=|———=8:V2|———5.8(r). 15b
Il( ) ar; o'?l’]- Y Arr N ( ) ( ) Hezz ‘plv(Hg.]}m.+ﬁw0_MeV)¢9V
We also have the familiar relation "
tot
D(r)=€oE(r)+P(r). (16) 3 > Uevn,eorferVeq Ve er- 19

vnoT

Equation(15) is the integral representation for the Max- jare —Anha /m describes the two-body
evn,eoT evn,eoT

\év-e”? wave equgtur)]n of the (:]Iectnc.ﬂeal_d |r|| the dpre_senkce ofs wave scattering between the atoms. For simplicity, the fre-
Ipole atoms and the monochromatic dipole radiation kKerney ency of the optical transition, is assumed to be indepen-

G(r) coincides with the corresponding classical expressionjens of the atomic sublevel. For typical values of the optical
[26]. The explicit form of the radiated field from a dipole |inewigith the c.m. motion for the excited atoms may be omit-
with the amplitudep reads ted [6]. In this paper we consider a situation where the in-
ik tensity of the driving light field is low and therefore the

~ K. . L€ A : : - :
_ - _ density of the excited atoms is low. Hence, to leading order
G(r)p= nXxXp)Xn——+[3n(n-
(NP 4 (nxp) kr [3n(n-p)=p] in the limit of low light-intensity the second term in E(.9)
) . makes no contribution to the optical response, and we do not
o 1 oikr | _ pa(r) (17  @address its explicit form in more detail
(kr)®  (kr)? 3’ We assume that to leading order all remaining interactions

between the ground-state and excited-state atoms, which
wheren=r/r. The volume integral over a3 in Eq. (17) is  cannot be accounted for when the atoms are modeled as
not absolutely convergent in the neighborhood of the originpoint dipoles, are governed by the following interactions
The expressiolil7) should be understood in such a way that[35]:
the integral of the term inside the curly brackets over an
infinitesimal volume enclosing the origin vanisH&d]. We
note that Eq(15a), with the correct delta function contribu-
tion from Eq.(17), yieldsV-D(r)=0 for neutral atoms jus-
tifying the use of the electric displacement, instead of thdf we assume the conservation of the angular momentum of
electric field, in Eq.(11). the colliding particles, the two-body interaction can be writ-

The nonrelativistic propagatdil7) involves an explicit ten in the following form[36]:

high-frequency cutoff31]. In situations where integral ex-
pressions containing the propaga€fr) are not absolutely

ng:ﬁ 2 ugvneor¢;u¢gn¢eo¢gr- (20)
vyoT

fatfy F

- T
convergent the integrals are defined in such a way that the ng_hF: ot sz,F Ur, me Ome OFme, (2D
integration over spherical angles should be performed first
[31]. whereug y_=4mhag ,m /m and
In the length gauge the Hamiltonian also contains the po-
larization self-energy term:
OFmFEmEm <FmF ;fafb|fa 1ma;fb .mb> ‘ﬂfama‘ﬂfbmb-
a'''b
szi P(r)-P(r). (18 (22
260

Here (Fmg ;f.fy|fa,m,;fp,my) is the Clebsch-Gordan co-
However, this is proportional to the overlap of the atomicefficient for forming the statf-mg) from two colliding par-
dipOleS and, in the limit of low Iight'intenSity, all contact ticles in the angu|ar momentum Staﬂé§ma> and|fbmb>_
interaction terms between different dipole atoms were shown aAs an example we consider tHe= 1/2—3/2 transition.
in Ref.[32] to be inconsequential for light-matter dynamics. gy expanding Eq(21) we obtainHye=H Ao+ HE,, where
Although the result is valid for an arbitrary number of atoms,,,A

h lati fth ; ) . all H 4e does not mix the population between the different sub-
the cancelation of the contact interactions is especially trangg, a5 The explicit form reads
parent in the case of a superradiant decay of only two point
dipoles[32].

Hge=1 2 Ugy,eotherVuVgutbes (23)

2. S-wave interactions

Two cold fermionic atoms in different internal states in- For the f=1/2—3/2 transition the summation runs over
teract by means of-wave scattering. This introduces inter- v=+1/2 ando=+1/2,+3/2. The interaction strengthg, ¢,
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are determined in terms of the interaction strengthg,_ for In the limit of low light-intensity we derived from the
the scattering channel§ mg): Heisenberg equations of motion a hierarchy of equations for
correlation functions involving atomic polarization and atom
density[31,32. In the case of the present system we may
proceed similarly. As far as the optical response is concerned
1 it is again assumed that we can concentrate on the dynamics
Ugi%,e:§=§(ul,o+ Uz0), of internal degrees of freedom for the atoms and the light.
Hence, in the equation of motion for the atomic polarization
the kinetic energy of the atoms is neglected. Nevertheless,
the quantum statistics of the different c.m. motional states is
still fully included.
The vacuum electromagnetic fields are eliminated by per-
. 1_l § forming the field-theory version of the Born and Markov
Ugsgrex3 = zUr=1T 7 Uzx1. approximationg31]. We then obtain the equation of motion
for the polarization operator compond?n:tn(r),
On the other handH Se consists of spin-exhange collision

terms d _ . )
GiPon= (18— )Py ik, g, P17 DE
HE b= = (Uyom Uy ) 0 1 et
-5 2,00 Y10 = = 5 -5 .
9 2 e3 'g-3 927672 +|Kf d3r’P;Z~G’(r—r’)l/fgyp+(r’)lﬂga
+\F<U U Wls U] Libgtiiel
- - 3 1 = =
4721 FLUVer Vg5 70277 —in d3r PYP.G (r—r") L PT(r") e,
3 T T s T v + _ t o1
+ \/;(UZ,l_ul,l)ll/e_glr//g%‘//g%lzbe%—i_H-C- IKlpe(r'r//eVPo-z' DF +|Ug(1 5v,u)‘/jgv'r//g(rl7[lgtf(//en
(24) FiUgy eothgu¥erentier™ IUga.erVg o iaate,

- Tt
. . . . . +1(u —u . 2
Similar nonlinear wave-mixing terms can have interesting (Uegn,eor™ Uent.cor) Vguesester 29

eﬁﬁcttﬁ on the dynatrtmc_s of splptor BE cqnqlegs@ﬂé% t of Here we use the notational convention that the repeated in-
€ Swave scatlering ampli Udﬂ:vmp IS iIndependent ot yiceg o, 7, and ¢ indicate the summation over the corre-

Fwe obtainH §o=0. Furthermore, if the scattering is also sponding sublevels. In E¢25) we have shown explicitly
independent ofmg, Ug, ¢, in Eq. (23) does not depend on only the nonlocal position dependence. The atom-light de-
sublevelsy and o. For simplicity, in the following we as- tuning is denoted by and the Kronecker delta function by

sume thatH ge=0. 0, The spontaneous linewidthis given by
B. Atomic polarization D2k

The dipole radiationEq. (15)] describes the scattered
light in a medium. In this section we study the optical re- i ) .
sponse of an atomic gas by solving nonperturbatively thé/Ve have also defined=D*/(% o) in terms of the reduced
polarization of the matter-field for a low-density atomic gasdiPole matrix elemenD. In Eq. (25 we introduced the fol-
in the limit of low light-intensity. The main items are the OWing projection operator:
steady-state equation of the atomic polarizati&ul. (29)]
and its solution by means of the low-density decorrelationp dgverdesgr

v —

approximation Eq. (32)]. ér D2

1. Equation of motion

_ - . . . .
We consider the optical response of the atomic polariza- Ugfz €, (em19|La1igv)(esilglosigr),  (27)

tion in the limit of low light-intensity. We derive the corre-

sponding Heisenberg equations of motion for the matter-fieldo include the dependence of the scattered light on the polar-
operators. Alternative approaches have used, e.g., thgations and on the atomic level structure.
Schwinger-Keldysh techniquei38]. We assume that the  |n the present formalism the atoms are represented by
spin-exchanging collisions between the ground-state and thgeal point dipoles which may overlap. Obviously, real at-
excited-state atoms vanish indicatifttye="4,. Then the oms with a hard-core interatomic potential cannot overlap.
Heisenberg equations of motion for atomic field operatorsi¥e remove the contact dipole-dipole interactions between
are obtained from the Hamiltonian densitig§ [Eq. (1)],  different atoms. This is done by introducing in Eg5) the

Hp [Eq. (11)], He [Eq. (19)], annge [Eq. (23)]. propagator
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' (e — 9i;0(r) o= 1 1-6 31
Glj(r)=GIj(r)+ 3 (28) }-rv=m[ugae7]_( - TV)ug]' ( )

that explicitly cancels the contact interaction &{r) dis-
played in Eq.(17). The purpose of this definition is to yield
a vanishing integral foGG’(r) over an infinitesimal volume
enclosing the origin. As shown for the case of low-intensity
light in_ Ref.[32], we can make the_ substitutig@8) WithOU_t z%nd excites a ground-state ator at The tensotF?” gen-
changing the outcome of the optical response, and withou 2. . . v
° . . : erates the collisionally induced level shifts.

any additional assumption of the hard-core interatomic po-
tentials, even for ideal point dipoles. This is because due to
the divergent dipole-dipole interactions all correlation func-
tions for atomic dipoles vanish whenever two position argu- So far, we have obtained a steady-state solution for the
ments are the same. As a result the contact interaction ternagomic polarizatior(29) that acts as a source for the second-
between different dipole atoms do not have any effect on thary radiation in Eq(159. Equation(29) involves unknown
light-matter dynamics. The independence of the optical reeorrelation functionP,. Basically, we could continue the
sponse of the collection of dipole atoms on the substitutiorderivation and obtain the equations of motion Ryrand for
(28) is the underlying explanation for the Lorentz-Lorenz the higher-order correlation functions. This would eventually
local-field correction to the electric susceptibility. result in an infinite hierarchy of equations analogous to the

We consider the limit of low intensity of the driving light. equations in Ref.31]. However, even in the case of a simple
Obviously, light has to be present in order to produce poputevel structure and in the absence of theave interactions
lation in the electronically excited levels and an excited-statehe solution for the whole system by stochastic simulations is
field amplitude is proportional to the light field amplitude. demanding on computer tinfd5]. In the studies of the re-
Therefore, we take the low-intensity limit by retaining only fractive index of a quantum degenerate BE gas Moeical.
those products of operators in E@5) that involve at most [39,40 considered a density expansion in terms of the num-
one excited state field operator or the electric displacemertier of atoms repeatedly exchanging a photon by introducing
amplitude[31]. Then, e.g., the third line and the last line in certain approximations to the ground-state atom correlations.
Eqg. (25 make no contribution to the equation of motion for Although the lowest-order density correction to the suscep-
P*(r) for low light-intensity. tibility of a zero-temperature FD gas may be obtained ana-

We also note that in the low-intensity limit the pair cor- Iytically [16], in the presence of highly nontrivial quantum
relation function(7) is determined by the Hamiltonian den- statistical position correlations a rigorous density expansion
sity in the absence of the driving lighty [Eq. (1)]. Thisis  is in most cases a very challenging task. In this paper we
because the effect of the light on the ground-state field ameonsider low atom densitigén terms ofp/k®) and approxi-
plitudes involves terms that contain at least one excited-statmate Eq.(29) by the decoupling that is analogous to the

The normally ordered expectation valBg(r,vn;r,or) de-
scribes correlations between an atomic dipoleratnd a
ground-state atom at, . In the integral of Eq(29) it repre-
sents a process in which an excited atom,agmits a photon

2. Low-density approximation

field operatorand one light-field amplitude: lowest-order correction in Ref39],
‘// (I")Md e’ Di(l’)l/fe(l’).
C ot ymityon) =PI o ) @)
Thus, to leading order in the low-intensity limit the effect of Po
the driving light on the ground-state atom correlation func-
tions vanishes. where the ground-state pair correlation functigns defined
For the expectation value of the polarization we use théy Eq. (7).
notationPy,,=(P, ), with v and  denoting the atomic sub- ~ The decorrelation approximatiort32) introduces the
level. The steady-state solution Bf,,, in the limit of low lowest-order correction to the optical response in terms of
light-intensity is given by the number of microscopic optical interaction processes be-

tween the atoms by ignoring the repeated scattering of a
S " photon between the same atopd§]. As shown in Ref[16]
P1,,(r)=ap,Py7-DE(r)+ 2 FIIPy(1100:1v7) in the absence of a superfluid state it also correctly generates
7 the leading low-density correction. The predictions of the
3 o , expansion by Moriceet al. [39] were tested for a zero-
taX, | drpPr7.G (11— r)Py(ryvosr,7é). temperature FD gas in one dimensid®]. The agreement
ore with the exact solution obtained by the numerical simula-
(29 tions was found to be semiquantitative and in the low-density

) ) ) S ] limit excellent.
Here a=—D</[fieo(o+i7)] is the polarizability of an iso- The dependence of the light propagation on the density
lated atom angh,= (41}, ¥4, denotes the ground-state atom fiyctuations may now be observed by inserting E9) into
density in levelv. We have also defined Eq.(29). If the emitting atom at, and the absorbing atom at

. N r, have the same internal state, the pair correlation function
Po(r1vm;r20m)=(g,(r1)P,(r2) ¢hg,(r1)), (30 displays repulsion and is determined by E&p). In the case
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of different internal states the atoms attract each other anHere we have used the obvious relatign(r,o,r,v)

the pair correlation function is obtained from Ega). =p,(rioo,rovv)=ps(rvv,ryoo). The parameteiC de-
It is crucial for the low-density limit that the atom opera- notes the value of the Clebsch-Gordan -coefficight

tors in Eq.(25) were arranged to normal order. Otherwise,:|<e%;1g|1o;g%>|2:2/3 in the case of thd=1/2—73/2

commutators are generated for higher-order correlation func- - e — .
tionsP,, ..., that could be of the same order in atom den_transnmn. By writingr=kr the propagator in Eq.36) has

sity as the terms in the equation fB,, . the following expression in the spherical coordinates:

C. Electric susceptibility - — . k3e”—
e .G’(r).ex: yp

(1—sir? 6 cog d))i
;

In the previous section we obtained the steady-state solu-
tion for the atomic polarizatiori29) by means of the low-
density approximatior{32). The optical response may now
be evaluated by eliminatin®; and P, from Egs. (153,

(29), and(32). As an example we calculate the vector com-
ponents ofP; for the f = 1/2— 3/2 transition having the elec- (39
tronically excited sublevels;= + 1/2,+3/2. The pair corre-
lation function in Eq.(32) is nonvanishing only withv=17.
Because we are dealing with a linear theory, the electric ﬁel%t
and the polarization are related by the susceptibilityPas
=eoxE". We consider a situation where FD gas fills the
half-infinite space>0. For simplicity, we assume equal and

cpns;cgntf at?]m densities for tEe spin ste.apqyl p1=p- TO  fieg po(rv,r'a)=p,p, resulting in%,=0. For the case of
simp ify further, we assume that scattering enaifle, IS ncorrelated atoms, and in the absence ofsthave scatter-
independent ofv and o corresponding to the case that the ing, we would obtain Eq(35) with S,=3,=0. This is the
swave interactions in Eq23) are independent of the scat- giangarg  column density result stating that susceptibility

tering channe|Fmg). We write the incoming free field as a equals polarizability of an atom times atom density. Equation
plane wave (35) also involves the Lorentz-Lorenz local-field correction
in the denominator.

The quantum-statistical corrections to the column density
o ] - result are introduced by, . It describes the modifications of
We assume that it is linearly polarized withparallel o the optical interactions between neighboring atoms due to
dg%e%. By choosinge=g, we have the following represen- the position correlations. The second term in EB2f) repre-
tation for the circular polarization vectors in terms of the unitsents the quantum-statistical contribution to the scattering
Cartesian coordinate vectors: process in which a photon emitted by an atom in internal

statew at positionr is reabsorbed by another atom in internal
. 1 . . L statev and located at the origin. According to FD statistics
eizlﬁ(eyilez)r €= 6. (34  two fermions with the same quantum numbers repel each
other and FD statistics forces a regular spacing between the
) . atoms. The optical interactions are dominantly generated at
With the ansatz’,,,(r)=Peexp(k'2), for Im(k’)>0, we  gmall interatomic distances and the corrections to the suscep-
then immediately see th&,,=0 for v# 7. Finally, by us- tibility due to the second term in Eq36) correspond to
ing Eq. (8), and by ignoring the effects of the surface of the jnnipitited multiple scattering of light resulting in suppressed
atomic gaq15], we obtain a spatially constant susceptibility giffusive radiation. In the absence of a superfluid state FD

+ (3 sirf 000§¢—1)<_£3—_|—2”.
r3or

In Eq. (35 X, is solely generated by the quantum-
atistical position correlations between different atoms. The
effect of swave interactions is encapsulated3n . In an
uncorrelated atomic sample the atomic positions are statisti-
cally independent and the pair correlation functi@ satis-

De(r)=Dgee (33

for the sample as gas exhibits a dramatic narrowing of the absorption line-
width for coherently scattered light5,16].
k'2 2Cap The first term in Eq.(36) represents the quantum-
X2 1=71= 2Capl3+3,+3,’ (39 statistical corrections to the reabsorption process between at-

oms in different internal states due to the two-particle coher-
ence. This term is nonvanishing only in the presence of a

ith . ; . X
wit superfluid state. Because the total spin of an interacting atom
Ca pair in Eqg.(1) is an integer, the pairs behave as bosats
Si=—— | dire ke 'G’(r)'é[|(¢m(r)¢gi(0)>|2 According to the Bose-Einstein statistics two bosons attract
each other and the BCS pairing favors small interatomic
ing. Thi Its ienh doptical int ti d
_|<¢;1(r)¢g¢(0)>|2]v (3¢) ~ Spacing is results irnhancedoptical interactions an

incoherent scattering of light.
1 The electric susceptibility exhibits a Lorentzian line
So—_ = Flop(r1.ro). 3 shape. The optical line shi and linewidthl" for the atomic
2 P ; 1op2(IT.ro) S sample are obtained from E5)
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S/’)’ZT‘FSCN/’)/—F R pk (39
Fy=1- 27 im| 22 40
y=1=1z Im/—/|. (40)

The collisional line shiftS.y, which results from>, [Eq.
(37)], is generated by thewave interactions. It depends on
the BCS order parametér:

p2rt,rl)
SCOIE(ug_uge)zT
2
= p(Ug—Uge) 1+(ﬁugp) } (41)

The first term in the optical lineshif39) corresponds to
the Lorentz-Lorenz local-field correction. As far as the

s-wave interactions can be considered local on the scale of

the optical wavelength in Eqsl) and(20) also the line shift

PHYSICAL REVIEW A 61 033605

Ty

0.01
(@)

0.1
Sty

0.01

(b) o/k?

S0l May be considered as a local-field shift. In that case the FIG. 2. The opticala) linewidth and(b) the line shift for the

local-field shift due to thesswave scattering in Eq39) is
larger than the Lorentz-Lorenz shift fLi if

A 2

fiugp

(ag_ age)

. mes
aph

7521<{1+

Here\ denotes the wavelength of the incoming light and
is the Bohr radius. BecauseA(hugp)2 is expected to be of
the order of ondg9], the local-field shift could strikingly
depend on the BCS order parameferThe collisional line

electric susceptibility, in the absence of the collisional line shift, as

a function of the atom density per cubic optical wave number of the
driving light. The scaling of all the variables is linear. The solid line
represents the optical response in the absence of a superfluid state
(A=0). The BCS pairing broadens the resonance line and increases
the line shift already at low atom densities.

pole radiation already involves a high-frequency cuf6ft]
that regularizes smalt behavior. The contribution to the
optical line shiff Eq. (39)] from the integral36) is not finite.
The lower limit of the integral diverges logarithmically. Al-

shift was recently observed for a hydrogen BE condensate bbhough the radiation kernélL5b) involves a cutoff31], the

using a two-photon $— 2S spectroscopy41].

If the effective range, of the triplets-wave potential in
Egs.(1) and(20) is very shortr,<1/k, the resonant dipole-
dipole interactions may suppress the effect of theave

Lamb shift is not treated rigorously. The small-distance sin-
gularities of the dipole radiation kernel may be regularized
by introducing explicit regularization factofd¢2]. However,

for the present purposes we may at least obtain an estimate

scattering on the line shift just as they cancel the effect of thgo, the shift by using the cutofk.= 1/, in the anomalous

polarization self-energy{32]. However, for a metastable

state, y~! may be large on the time scale of the atomic

interactions. In that case the collisional shift could be observ-

able even for very smat,, .
To calculate the linewidtli40) and line shift(39) from

'~ correlation function(42) with the realistic value ,= 1008,

of the triplets-wave potentia[9].

In Fig. 2 we have showfa) the absorption linewidth and
(b) the line shift for coherently scattered light from E§9)
without the collisional shift, i.e., by assuming=ugye in Eq.

integral (36) we need to evaluate the spatial correlation func-(39), for A=900 nm and for the value of thewave scatter-

tions by using Eqs(3) and(4). For instance, the expectation
value for the anomalous correlation function reads

1 ) A —
<wl(r)¢/T(0)>:v; e'k'rz—Ek(l—n‘jlk—n%k). (42

The chemical potential is solved fromv=pv(;). Here
(¢,(0)y,(0))=—Al(huy) is ultraviolet divergent, resulting

ing length of ®Li, az=—2160a, [9]. In (a) the solid line
represents the linewidth in the absence of the superfluid state
(A=0). The line narrows as a function of the density already
at very low densitie§16]. The presence of the superfluid
state broadens the optical linewidthe dashed line For the
BCS state, even without the collisional shift, ald® the
optical line shift is increased.

It is interesting to emphasize that the optical linewidth is

from the assumption of the contact two-body interaction inalmost independent of the high-momentum behavior of the
Eqg. (1). This interaction is momentum independent and it isanomalous correlation functio®?2). This can be seen by
not valid at high energies. To estimate the pairing a standarthtroducing a cutoffk; in Eq. (42). We found[17] that the
procedure is to remove the high-energy divergence by introeptical linewidth is almost independent of the cutoff from

ducing a high-momentum cutoi,. Nevertheless, we find
that the optical linewidth of a FD gd&q. (40)] is finite even

k.= to k.= 1/(50(,) indicating that the exact short-range
behavior of the two-bodg-wave potential is not very crucial

without any high-momentum cutoff. This is because the di-for the value of the linewidth. Furthermore, the contribution
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of integral(36) in the close neighborhood of the origin to the B. Dynamical structure function

linewidth is vanishingly small, and therefore the effects of |, Bragg spectroscopy, the two intersecting laser beams
the BCS pair correlations do not result from short-range corgreate a moving standing wave with a periodic intensity
relations. modulation I(rt)=1cos@Ax-r—wt) [25]. The intensity
modulation creates an optical potentiflrt)=V,cos@«:-r
— wt) which couples to the local number density of ground-
D. Summary remarks state atoms. The dependence \&f on the atomic level
We calculated the leading quantum-statistical and colli-scheme and on light polarizations is analyzed in R&ff. We

sional corrections to the standard century-old column densitgonsider a situation where the internal sublevel of the
result for the electric susceptibility. In E¢35) the correc-  ground-state atom does not change in the scattering process.
tions to the susceptibility are encapsulated in the two paramlN€ corresponding Hamiltonian density reads
etersX, andX,. HereX, represents the collisional line shift _ B T
due to thes-wave interactions an@; position correlations He=Vo ot AT = w) g, () Yo (1) “4
between different atoms. The susceptibility was obtained by\ccording to Fermi’s golden rule the excitation rate is then
means of the decorrelation approximatitd2) which ne-  27/7(Vo/2)2S(Ak,w) [25], whereS(A k, ) is the dynami-
glects all the repeated photon exchange between the sargel structure function43]
atoms. These are the microscopic mechanism for the collec-
tive optical linewidths and line shiff81]. Therefore3, is a _* CE IkgT| /i [ 2 e
direct consequence of the quantum-statistical correlations;S(AK’w)_z .2’ e 5eN(i|p(An)|f)|*6(ho+E—E)).
for an uncorrelated atomic sample, witp,(rv,r’o) (45)
=p,p,, 21 vVanishes. In the case of uncorrelated atoms the . i
lowest-order correction to the optical linewidth results from HereZ denotes the grgnd partlthn function and the expecta-
the collective light scatterin§16,39,4Q. This correction is tion value of the density fluctuation operator
proportional to atom density. The quantum statistics is dif- R _
ferent because the correlation length itself depends on the p(q)=2 f dr e*'q'rz/zgy(r)wgv(r) (46)
density. For instance, in the low-density limit for an ideal FD Y

H 3 2/131,2
gas we obtain16] X, (p/k")(&;k)*p™7k". Hence, at g symmed over all possible final staié$, with the energy
least in the absence of a superfluid state, 8§ notonly g and thermally averaged over initial stafes, with the

represents the lowest-order correction to the susceptibility i%nergyE By using the completeness 6f) and p(—q)
terms of microscopic optical interaction processes between -, (@ vlve may write Eq/(45) as P

the atoms, but it also correctly generates the leading low-
density correction.

=Y

1 o
S(AK,w)=——+ E dt dSrldSrzelwtemK-(rl—rz)

2mh v
IV. BRAGG SPECTROSCOPY '
T T
A. Diffraction of atoms X (g (110) g, (r10) g (1 2t) g (T 21)).
In this section we consider diffraction of atoms by means (47)

of light-stimulated transitions of photons between two non-,,

. ) ) e define the static structure function by
parallel laser beams. When an atomic beam interacts with a

periodic potential formed by a standing light wave, it can _ o

Bragg diffract, analogous to the Bragg diffraction of x rays S(AK)Eﬁf do S(Ak,w). (48
from a crystal[23]. The Bragg diffraction has been experi- -

mentally used as a technique to split a BE condenisz8 The dynamical structure function mirrors the velocity dis-
and as a spectroscopic method to probe the density fluctugibution of atoms and contains qualitative signatures of BE
tions of a BE condensa{@4,25. and FD statistic§6]. It displays the modifications of the

In annth order Bragg scattering process photons are abvelocity distribution due to the quantum statistics including
sorbed from one beam and stimulated to emit into the ather the Fermiinhibition and the Boseenhancemendf the scat-
times[23,24]. Two different momentum states are connectedtering process. For the case of two BE condensates it can
by a 2n-photon process. The change of the energy of a phoalso exhibit a dramatic dependence of the spectrum on the
ton upon the scattering satisfiEs= n% w, wherew stands for ~ relative phase between the two condensg28s3Q, and the
the frequency difference of the two lasers with wave numbePBragg diffraction could possibly be used as a technique of
k. The fractional change of frequency upon scattering is asieasuring the relative condensate phase. This is because,
sumed to be negligibldw|<kc, so that one finds the famil- due to the macroscopic quantum coherence of the BE con-
iar relation between the change of the wave vedtarand ~ densates, the uncertainty in the initial state of the Bragg dif-

the scattering angle, fraction may result in a destructive or constructive interfer-
ence of the transition amplitudes. The structure function may
|A k| =2nksin(6/2). (43 also provide information about the high-energy quasiparticle
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excitationg 29]. Here we study the qualitative signatures of a ~
superfluid state in the structure function of a FD gas. -
0.2 -

1. Ideal Fermi-Dirac gas <

First, we consider an ideal FD gas studied in R&f. We S -
assume a translationally invariant space. In that case the coi2N 01 -
relation function in Eq(47) depends only on=r,—r,. We ’ d
are interested in the incoherent scattering processes corre s
sponding to nonforward directions withx#0. In the ab- \\g
sence of a superfluid state the correlation function in(Ed).
with v#7 rep_resents only coherent scattering events. With 0 #1012 451012
v=n we obtain (a) P

(,(00) g, (00) 4} (1) g (T 1))

= p%+(Y§,(00) g, (1)) g (00 g, (T1)).  (49) 04
For Ak#0 we obtain the dynamical structure function from g
Eq. (47) I
a.( IN 0.2
1 Ak-Ar\ — _
Szg < 5 (1)+(1)R_ nky,,(l—nk,AKYV).
(50)
0 2102 4%10"
Here n, ,=[exp(e /ksT)/z+1]~* denotes the FD occupa- p
tion numbers and fugacity. We have also defined the effec- 1
tive recoil frequencywg by
7| AK|? 5
WR=
2m s
—0.5
2N

Expression(50) describes a scattering process in which an
atom in the ground statewith the c.m. stat& scatters to the
c.m. statek—Ax still remaining in the stater. The delta
function dictates the energy conservation, which coincides
with the theory for Doppler velocimetry of atomi4]

: ; ; 0 2%1012 4+10"?
shifted by the effective recoil frequeneyg [6]. © 0

Classical atoms obey Maxwell-Boltzmann statistics and
their velocities are normally distributed resulting in a FiG. 3. The static structure function per the total number of
Gaussian-shaped dynamical structure funcliéi First, FD  atomsS(A k)/(2N) as a function of the atom densigyin units of
statistics modifies the velocity distribution; even an ideal FD¢y=3 | The change of the atomic recoil wave number upon scatter-
gas atT=0 exhibits a finite width in Eq(50). Secondly, the  ing is(a) 10* cm™2, (b) 10* cm %, and(c) 3% 10* cm™ . The solid
quantum degeneracy affects the scattering processes. Tlge represents the diffraction in the absence of a superfluid state
product of the occupation numbers in E§O) indicates the (A=0). The BCS pairing dramatically increases the incoherent
Fermi inhibition: The scattering events in which an atom nearforward scattering already at low atom densities.
recoils to an already occupied state are forbidden by the
Pauli exclusion principle. the incoherent atomic recoil events are forbidden. When the

It is illustrative to describe the Fermi inhibition in mo- density is increased, &-=|A«] the scattering is at least
mentum spac¢l16]. At T=0 the fermionic atoms fill the partially suppressed to all nonforward directions.

Fermi sphere Witth’V: 0 (ke—|k|). The scattering satisfies We consider a situation where the densities of the internal

Eq. (43). For the first-order Bragg diffraction, with=1, all ~ sublevels are equal=p;=p =N/V. Here N denotes the

atoms are scattered out of the Fermi sea|Aii|>2ke. number of atoms. The dynamical structure function for an
Moreover, for small scattering angles, ideal FD gas was displayed in R¢6]. At T=0, and in the
degenerate regime withA x| <2kg, the result exhibits a
o \ 13 characteristic shape of a wedge consisting of a linear and a
. ke 6p . . )
SiN(0/2)<i— = ( _> , (52)  quadratic part. The static structure function per total number
A | |Ak3 of atoms may be evaluated from E§0). For|A x> 2ke we
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obtaing(AK)/(ZN) —1 and for 0<|Ar]<2kg ticles a_nd holes near the Fermi surfac_e increas.ing thg number
of available scattering channels. This effect is particularly
S(Ax) 1 IV striking for the case of small recoil momentum correspond-
N - 16k AA 12| A K|?— > (53  ing to nearforward scattering.
F F We may also consider situations where the internal state

_ ] of atoms is changed in the scattering process. In this case the
For f_ree atom§(A:c)/(2N):1 and Eq.(53) describes the o ground statesg, 1) and|g,|) are coupled through a
inhibited scattering. _ _ ~ common excited state by the intersecting laser beams. For
In the previous discussion we ignored the Rabi oscillationnstance, the scattering rate for the transifion )—|g, 1) is
dynamics and considered only the transition rates. This is Broportional tO(lﬂSl(OO)ngT(OO)w;T(”) g (rt)) and de-

good approximation when only a small fraction of atoms ISpends on the quasiparticle pairing.

scattered, i.e., when the coupling timgds much shorter than
the oscillation periody<1/Q) [28]. Here() denotes the two-
photon Rabi frequency. To observe the qualitative features in
the spectrum the coupling time should be at least of the order we studied the interaction of light with a two-species
of the characteristic time scale in the spectrum, which acatomic superfluid gas. First, we considered the propagation

V. CONCLUSIONS

cording to Ref[6] is (wgeg /A1) 2. of light and evaluated the quantum-statistical corrections to
N the standard column density result for the electric suscepti-
2. BCS pairing bility. Secondly, we analyzed the Bragg diffraction of atoms
In the presence of a superfluid state the correlation funcby means of light-stimulated transitions of photons between
tion in Eq. (47) at T=0 reads(for v# 7): two laser beams. The effects of BCS pairing may be under-
stood in terms of enhanced incoherent scattering processes
(ngv(OO)ngV(OO) zp;n(rt)ngn(rt» resulting in the increased optical linewidth, line shift, and
static structure function. These optical properties could pos-
= p?+ [{14,(00) g, (r1))|%. (54)  sibly signal the presence of the superfluid state and deter-

) mine the value of the BCS order parameter in dilute atomic
For the caser=7 we obtain Eq.(49). Analogously to Egs. fgp gases.

(8) we need to evaluate Eq@l9) and(54) by means of the One particularly promising candidate to undergo the BCS
Bogoliubov quasiparticlefEg. (3)]. The dynamical structure ansition and to become a superfluid is spin-polarized
function for incoherent scattering\x+0) in the quasiparti-  atomic 6Li. Atoms in two different internal levels can inter-
cle vacuum is act vias-wave scattering and théLi atom has an anoma-
A2 lously large and negativeswave scattering lengtha=
—216Q,. The hyperfine statefms=1/2m;=1) and |m;
=1/2m;=0) of ®Li have been predicted to undergo a super-
fluid transition at 108 K with a density of 18 cm™3[8,9].

, (55) Here mg and m; denote the electron and the nuclear spin
components.

We assumed a translationally invariant system. A FD gas
in a harmonic trap may be considered locally homogeneous
[9], provided that the trap length scdke (#/mw)*?is much
H@rger than the correlation lengths,, and&, | . The spatial
confinement introduces an uncertainty in the recoil momen-
éum. In the case of Bragg spectroscopy, the coherent scatter-
ing is negligible, if the change of the wave number of the
atoms upon scattering is larger than the inverse size scale of
the atomic sample L& |Ax|.

1
S(Arw)=7 > S(hw+E+Er_4,)
k

&k Ek-Ax
1= E_k) ( o EkAK)

EvExk—ax

+

where the quasiparticle energiEg are defined in Sec. Il B.
Expression55) describes creations of pairs of quasiparticles
separated by the wave vectak. We note that for a super-
fluid state in the homogeneous space there exists a fini
energy gap in the excitation spectrumiw=E;+E;_ A,
=2|A|. The corresponding expression for the static structur

functiong(AK) may be obtained from Eq$55) and (48).
In Fig. 3 we show the static structure function

§(AK)/(2N) for a FD gas as a function of the densiiyor
three characteristic values ¢A«{. The s-wave scattering
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