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Genericity property of comoving potentials
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Comoving potentials or refractive indices acting on the propagation of waves of various nature are shown to
exhibit a resonant effect giving rise to a general property we call genericity in the sense that they provide a
phase shift with any desired dependence on the mome#pptication in atom optics to balance the natural
spreading of matter waves in a vacuum is given. Optical analogies are also examined in view of applications
in coherent control of short pulses.

PACS numbgs): 03.75.Dg, 32.60ki, 42.60.Fc, 42.65.Re

I. INTRODUCTION For instance, in light optics, the refractive indexan be
properly perturbed by acoustic or electromagnetic waves,

Evolution of wave packets in real space and time is "Wlike in traveling-wave electro-optic modulators, according to

volved in many different domains, with applications ranging
from acoustics to light or matter-wave optics. This evo-
lution is basically determined by the nature of the wave and n—nge= 7l (X,Xx—ut), 2
is governed by the dispersion properties of the propagation

medium. The coherent control of such an evolution naturall)(,\,r1ere 7 is characteristic of the mediufi6]. Similarly, in
arises both from a fundamental and a practical point of View, 5ter wave optics, potentials play the role of the refraction

In particular, controlled one- or two-color sho_rt I_ight pulses;,qex and one might use a comoving potential
have been recently used to drive the dynamicsipatoms

and molecule$2], (i) wave packets in quantum well struc-
tures and excitons in solids]. V=4dl(x,x—ut), (©)
Coherent control means the ability to shift by a proper
amount the individual phase of each spectral component of
given wave packet, that is to create media with customize
dependence of the phase on the wave number or momentu
In light optics, this has been already realized, more or les
approximately, by use of special media and optical device
such as prisms and gratinf| but up to now the complete
control and characterization of the phase in the pulse remai
a difficult problem.
In this article we propose a new and, in principle, univer-

here ¥ characterizes the particle-field coupling strength.
or example, we constructed a comoving magnetic field for
Which 9 involves the particle magnetic moment. This field,
%roduced by a set of helicoidal wires supplied with alternat-
g currents of frequency, has been used in a Stern-Gerlach
atom interferometef5,7,8]. Minor changes in the experi-
"ental arrangement would produce an electric instead of a
magnetic comoving field antt would then involve either the
induced electric dipole moment of the particle, just like in
t§okolov’s experimenf9], or the permanent dipole moment
of a molecule. Comoving potentials would also appear in
moving optical lattices provided that one uses a configura-
tion combining those already used[itO] and[11], to make
it simultaneously comoving and off-resonant. In such a case
¥ would be the magnitude of the optical potential. Many
other configurations that fit the comoving scheme presented
above can be imagined.
The organization of the paper will be as follows. In Sec.
' (1) Il, a general semiclassical expression of the phase shift pro-
duced by a single-frequency comoving potential is given. As
a function of the velocity this phase shift exhibits a resonant
behavior, upon which the so-called genericity property is
whereu=u(»)=A(v)v andi(x) is a normalized envelope based. In Sec. lll the specific case of a matter-wave packet
modelizing the finite extension of the device. Note that onemoving in a frequency-distributed comoving potential is ex-
could choose as well a temporal, e.g., a rectangular, profilamined. Section IV is devoted to an example of application
i(t) limiting the interaction to a given finite time interval.  of the genericity property, namely the possibility to balance
the vacuum dispersion and to periodically recover the origi-
nal matter-wave packet. Conclusions and possible applica-
*Electronic address: robert@Ipl.univ-paris13.fr tions in the field of light optics are given in Sec. V.

based on the use of “comoving” perturbation fields. By
“comoving” we mean that(i) the perturbation field moves
in the same directiorix) as the incoming wave andi) its
velocity u is close to the relevant wave velocifthis point
will be explained beloyw The perturbation is thus propor-
tional to a dimensionless generic field

2
1(x,t)=I (x,x—ut)=Ivi(x)co{T(x—ut)
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Il. THE SEMICLASSICAL PHASE SHIFT Ill. EVOLUTION OF A MATTER-WAVE PACKET

For a light wave the phase shift is readily calculated in the Let us examine in some detail the behavior of a matter
semiclassical limit by use of the Fermat theorem. In the casaave ¢(x,t) subjected to a frequencyer velocity) distrib-

of a one-dimensional configuration, one gets uted comoving potential
X
5<p:k0f dx[ n(x,t(x))—ng], (4) V(X,t)=f dv H(V)CO{ZW( v(t—tgp)— X) . (79
where From now on, the spatial extensionéfis assumed to be

infinite [i(x)=1]. A limited extension would lead to unes-
sential complications and a less strict univocal correspon-
dence between the phase sldift and the spectruril. In the
general case the velocity is=\(v)v. For the sake of sim-
plicity we shall assume here thatis independent o#, as it

is in Refs.[5] and[7], where\ is a fixed geometrical param-
eter, namely, the period of the helices that produce the mag-
netic field;ty is a shift in time between the perturbation and

t(x)=tg+x/v,

is the parametrization of the ray,, being thephasevelocity

of the light. Similarly for a matter wave submitted to a per-
turbationV (depending on a single spatial coordinatine
magnitude of which is small compared to the initial kinetic
energyEg, the phase shift is given Hy12,13

—V(X,t(X)) the incident wave, this latter one being taken as the time
Sp= kof de, (5) reference.H(v) is the cosineFourier transform[ v« (t
0 —ty)] of the real potentiaM(0t). As a consequence only
where positive values ofv have to be considered amt(v) is real.
It is worth noting thatv does not propagate as a whole. For
t(x)=to+x/vg instance, ifH(v) has a finite range and is symmetric around

v=1vg, thenV takes the form of a nonpropagating envelope
is the parametrization of the classical unperturbed path anghodulating a propagating carrier wave
vg="1iko/m is thegroup velocity of the matter-wave packet.
The replacement of , by v, is a manifestation of the fact
that matter waves do not obey the same propagation equation
as light waves, which gives rise to fundamental differences
as soon as nonmonochromatic waves are considered. Nevavhereh(t) =f°f,,0dy H(vo+y)cos(2myt).
theless there remains a formal analogy between the two situ- Taking the Fourier transform x¢-k) of the time-
ations if one changes the parametginto 4, n—ng into  dependent Schdinger equation
—VI/2E,, and the phase velocity into the group velocity. We

V(X,t):h(t_to)CO{Z’Tf Vo(t_to)_§)} (7b)

will then write p for the relevant parametér; or ) anduv . B h? 2

for the relevant velocitfv , or vg). We assume for the mo- oW =— ﬁ‘gx@ﬂvw’ ®
ment that(i) the incoming wave and the perturbation are

synchronized andii) the magnitude of the perturbation is a one obtains

constant for—L=x=<+L and zero elsewhere. Under such 242

conditions the phase shift is ihd,C(k,t)= >m C(k,t)+W(k,t)® C(k,t), 9

] 2 X )
5<P=J dxpi(x)1, CO{T(X—U(V) ;”“UL sindK_L),  whereC(k,t) andW(k,t) are the Fourier transforms af
(6) andV, and ® is the convolution product. Because of the
special form ofV(x,t) [Eq. (78] this convolution product is

where sinck) denotes the function sik(x and K_ easily calculated,

=(2@/\){1—u(v)/v} is the Doppler-shifted wave number

of the perturbation. Fdc>\, the extra phase is proportional WeC= f dv H(v){exd 2 v(t—t) IC(K+ ,t)
to I, times a very narrow function centered at u(v).

Moreover it is clear from Eqs4) and (5) that d¢ depends .
linearly on the potential. Therefore, by adding perturbations exp = 2miv(t=1o) JC(k=x, D)}, (10

of different frequencies with appropriate intensities andyhere x=2m/\.

phases, one is able to construct any desired dependence of| gt ys set

Sp on v, i.e., on the momenturk. This ability constitutes

what we call thegenericity property of comoving potentials Ak

Let us just mention that comoving potentials offer other in- C(k,t)=l“(k,t)exr{ —l mt> 11
teresting possibilities, especially those dealing with fre-

guency modulation. For example, at a fixed value of[so that for a free wav€ (k,t) remains identical t&€(k,0)].

N\, u(v)=\v, and a linear variation of in time (chirping For atoms at thermal velocity the de Broglie wavelength is
generates an accelerated moving figld], etc. extremely short1 A or les$ and even for very slow atoms it
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is smaller than lum. On the other hand, is a parameter of
macroscopic size. Therefore in most casess extremely
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of k within the momentum spectrum @f(x,t) whereas Eq.
(6) only involves the central group velocity of the wave

small compared to ank value in the momentum spectrum, packetv (ko) =%ko/m.

which suggests the use of an expansionGgk=* «,t) in

Let us now return to the case of a continuous frequency

powers of k. However because the relevant variable isspectrum(Egs.(133 and(13b)) [15], which implies that the
[i(Ak/m)«t], the infinite sum must be evaluated. A simpli- potential is pulsed in timécf. Eq. (7b)]. For sufficiently

fication arises because thalerivatives ofC(k,t) are largely
dominated by those of the exponential fadtgg. (11)]. In-

deed one has
_hk hk?
AL +i—tI'|exp —i5=t].
m m

An order of magnitude of the first term E|/Ak, where

akC:

Ak is the width ofC(k,0), whereas that of the second term is
|F|vgt; therefore, the second term dominates as soon as the

large values of the sinc in Eq(13h) becomes a very narrow
function of v of width sv(t)=1/(2t), centered at the value
fik/m, of which the integral on over the real axis is 1/{2.

At the same time the integral of the odd term in (1
—cosx)/x vanishes. ConsequentBp(k,t) has a limit at in-
finite t, which is

So” (k)= :LHﬁk Zﬁk 15
(P()__E /€08 273y to ] (15

wave packet has moved over a distance that is large com-

pared to its initial spatial widticf. the Rayleigh zone in
light optics.

Under such conditions, neglecting the derivativgs,
one finally gets

12

izo,(K,t)=

rk
j dv H(U)COE{ZW(U— m)t—Zﬂ'vto
xT'(k,t),
which readily gives

T'(k,t)=T(k,0)exi so(k,t)]=C(k,0)exdi so(k,1)],
(133

where

1 [t
5(p(k,t)=—%f0dt'f dvH(v)cog 2m(v*t' —vip)]

= — %f dv H(v)t{cos(27wt0)sin((27w*t)

+sin(2mvutg)

1—005(2171/*'[)] (13b)

(2mv*t)

andv* =v—Ak/Am.
In the special case of a monochromatic potengx,t)

=V, cog 2m(vt—Xx/\)] synchronized with the matter wave

(to=0), Eq.(13b gives

1 ) hk
5(,0(k,t)=—%V0t SInC{Zﬂ'( vo— m)t} (14

Therefore, with an appropriate choice of the spectrum
H(v) andty, any dependence of the phase shiftlois in
principle realizable. The criteria to get this limiting value is
thatt is large compared tfy and large enough to malé&(t)
much smaller than the widthh v of the spectrunH(v); in
other wordst must be large compared to the duration of the
envelopeh(t). Notice that ifty is very large then Eq15) is
no longer valid and, from Eq$133 and(13b), ¢~ tends to
zero: the perturbation has missed the particle. More gener-
ally a total control of the phase shift induced on the matter-
wave packet by the pulsed external potential implies the con-
trol of ty, i.e., a synchronization, e.g., by means of a
controlled emission of the wave packéilsed source To
get some idea about the accuracy needed in the definition of
to (aroundty=0), one has to examine the stationarity of the
cosine term in Eq(15), which implies ¢k/m)|to| <\, for
any k value in the wave-packet spectrdim particularo 4t,
<\). From this view point the present control of the phase
by an external field is different from that based upon a non-
linear process that implies an internal and automatic syn-
chronization driven by the wave packet itself.

IV. BALANCING THE VACUUM DISPERSION

We shall consider now a remarkable application of this
genericity property in atom optics: balancing the vacuum
dispersion of matter-wave packets. The natural spreading of
a wave packet/(x,t) in vacuocomes from the fact that the
kinetic energyE =7 w is quadratic in the momenturik. As
a consequence, thespectrumc(k) is identical toC(k,0),
the Fourier transform of(x,0), not that of(x,t), which is
ratherC(k,t) [see Eq(11)] [16]. If one compensates for the
(constank concavity ofw(k) by adding an appropriate phase
shift, then one is able to balance the vacuum dispersion, at

Insofar as the sinc function takes a negligible value for arleast at specific timegor positions of the wave-packet cen-
argument large compared 1 this expression clearly shows ter). This can be achieved by using a frequency spectrum of
that at sufficiently large times the phase shift induced by the parabolic form(see Fig. 1, such as
perturbation only concerns the ‘“resonant” wave number

such as the velocityik/m=2\ v, is equal to the velocity of
the comoving potential. In spite of a great similarity with the

result already obtained in a much simpler wa&g. (6)], the

expression(14) is more general since it is valid for any value

A 2 Av
——(v— — V| —
H(w)= 2(V vg) or |v—vy 5

0 elsewhere,

(16)
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FIG. 1. Upper solid line: dispersion curve of matter waves.
Lower solid line: extra phase needed to balance the vacuum disper-
sion. Dotted line: total phase accumulated at titpe(see text
showing curvature’s compensation.

whereAv is such thamA v/ is large compared to the width
of the k spectrum ofy(x,t); A is a positive constant and
vo=nhko/(Am). Assuming that,=0, which is a perfect syn-
chronization of the potential and the wave packet, one ob-
tains

. hA )
0¢" = oz (k=ko)™. 17
It is then readily verified that at time,=A/2\?m, and FIG. 2. Behavior in a reduced-coordinate diagrao(t/T) of
provided that this time is sufficiently large compared to thea comoving potential of spatial periodcreated by a pair of pulses
pulse duration, one has separated by a time interval The broken line is a resonant atomic
trajectory synchronized with the first pulse ajaginot synchronized
C(k,ta)=C(k,0)exdi %(ko_ K)X(ta)], (18) with the second pulsé) synchronized with the second pulse.

whereX(ta) = (fiko/m)t, is the position of the center of the the center of the wave packet, thatTiss A\m/#ik, (see Fig.
wave packet at timé, . As a consequence 2). Then at a time such that—NT is large compared to the
2 duration ofh, the accumulated phase shift[if. Eq. (15)]

.hko
(X, ty)=exg —i 2—tA

| P-X(t),0. (19

k
Therefore, apart from a phase factor, the wave function at Son(k)=— EH()\_m) ; COS( 2mn k_o) - @)
time t, is identical to the initial one translated bB¥(t,).
This result holds for any initial shape, which means that any
wave packet can be shifted as a whole by an arbitrary The sum is similar to the diffraction amplitude ofNaslit
amount. Afterwards thefree) wave packet recovers its grating. In so far ablAk/ky<1, it is close taN. For largerN
natural evolution, i.e., it spreads again. Here the need ofalues and/or a wider spectral range the synchronization be-
synchronization appears from the fact that whg# 0,6¢” comes less and less efficient on the borders okthgectrum
is multiplied by coB2n(fikixm)ty] and has no longer a para- C(k,NT). An exceptional situation is encountered whEn
bolic dependence ok =t,, since in that case one obtains, up to a phase factor and
Obviously the process can be repeated. Having this i translation byNX(t,) alongX, a periodical recovering of
view let us first consider a potential consisting of a traifNof  ¢(x,0). It might be expected that this phenomenon gives rise
pulses of periodr: to an observable effect in an atom interferometer, e.g., in a
N_1 device similar to that used in Ref&] and[7], which could
X provide a new experimental approach to problems already
V(X’t):zo fd”H(”)COS{ZW( ”(t_nT)_X”' discussed at lengtfil7,18 but rarely investigated experi-
(200  Mmentally [19]. While physically different, this periodic re-
vival of the wave packet reminds us of solitons in optical
The expression obtained for the phase shift is similar to thafibers: in this latter case, due to the Kerr effect, a light pulse
given by Eq. (13b, cos(2mty) being replaced by generates alocal index perturbation that moves together with
>, cos(2mvnT), and a similar sum for the sine term. Let us it and, for very special shapes, compensates for the disper-
assume that the potential sgnchronizedvith the motion of  sion. Here the perturbation is imposed from outside, with the
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advantage that the dispersion is balanced whatever the shagmple, in the case of an electro-optic modulator this simply
of the pulse and the disadvantage that a synchronization imeans that the crystal is inserted in a dispersive waveguide
necessary. (e.g., operating in the cutoff regipnThe phase velocity of
each monochromatic component of light in the crystal de-
V. CONCLUSION pends on its wavelengtk through the refractive inder: v

=c/n(\). Therefore the resonance conditiorv imposes

We have shown the common encounter of the comoving, relation between g and the resonant wavelendt0]
configuration in which a wave is submitted to an external

perturbation that moves in the same direction, with about the .
same velocity(the relevant velocity depending on the nature Ares=N (
of the wave under consideratipri'We then demonstrated the
genericity property of such a configuration: the resonantwhere n™! means the inverse function @f(\). Such an
character of the interaction between wave perturbation enapparatus provides a tunable dispersive optical medium. As
ables a detailed control of the phase since the phase shiftentioned before, such a device could find applications, for
accumulated within the medium essentially reproduces thinstance, in ultrafast pulse reshaping as it enables us to indi-
frequency spectrum of the perturbation. It is then easily advidually rephase each spectral component, providing an op-
justable to any purpose dealing not solely with matter wavestimized compression of the pulse. It is interesting to note that
as it has been shown, but also with light waves. In lightsuch a “programmable” dispersive filter has been indepen-
optics comoving configurations correspond to traveling-wavelently proposed in Ref21] in a slightly different context. It
electro-optic modulators. uses an acousto-optic modulator driven by a properly de-
In order to use the general scheme presented béfee signed excitation spectrum. In this case, however, the per-
Eg. (2)], one has to maka dependent on the frequeney:  turbing acoustic wave is not comoving with the light wave
of an exciting radio-frequency field:u=u(vgg). For ex-  since their velocities are orders of magnitude apart.

c
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