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Genericity property of comoving potentials
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Comoving potentials or refractive indices acting on the propagation of waves of various nature are shown to
exhibit a resonant effect giving rise to a general property we call genericity in the sense that they provide a
phase shift with any desired dependence on the momentum. Application in atom optics to balance the natural
spreading of matter waves in a vacuum is given. Optical analogies are also examined in view of applications
in coherent control of short pulses.

PACS number~s!: 03.75.Dg, 32.60.1i, 42.60.Fc, 42.65.Re
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I. INTRODUCTION

Evolution of wave packets in real space and time is
volved in many different domains, with applications rangi
from acoustics to light or matter-wave optics@1#. This evo-
lution is basically determined by the nature of the wave a
is governed by the dispersion properties of the propaga
medium. The coherent control of such an evolution natura
arises both from a fundamental and a practical point of vie
In particular, controlled one- or two-color short light puls
have been recently used to drive the dynamics of~i! atoms
and molecules@2#, ~ii ! wave packets in quantum well struc
tures and excitons in solids@3#.

Coherent control means the ability to shift by a prop
amount the individual phase of each spectral component
given wave packet, that is to create media with customi
dependence of the phase on the wave number or momen
In light optics, this has been already realized, more or l
approximately, by use of special media and optical devi
such as prisms and gratings@4# but up to now the complete
control and characterization of the phase in the pulse rem
a difficult problem.

In this article we propose a new and, in principle, univ
sal method to achieve any coherent control of wave pac
based on the use of ‘‘comoving’’ perturbation fields@5#. By
‘‘comoving’’ we mean that~i! the perturbation field move
in the same direction~x! as the incoming wave and~ii ! its
velocity u is close to the relevant wave velocity~this point
will be explained below!. The perturbation is thus propor
tional to a dimensionless generic field

I ~x,t !5I ~x,x2ut!5I vi ~x!cosF2p

l
~x2ut!G , ~1!

whereu5u(n)5l(n)n and i (x) is a normalized envelope
modelizing the finite extension of the device. Note that o
could choose as well a temporal, e.g., a rectangular, pro
i (t) limiting the interaction to a given finite time interval.
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For instance, in light optics, the refractive indexn can be
properly perturbed by acoustic or electromagnetic wav
like in traveling-wave electro-optic modulators, according

n2n05hI ~x,x2ut!, ~2!

where h is characteristic of the medium@6#. Similarly, in
matter-wave optics, potentials play the role of the refract
index and one might use a comoving potential

V5qI ~x,x2ut!, ~3!

where q characterizes the particle-field coupling streng
For example, we constructed a comoving magnetic field
which q involves the particle magnetic moment. This fiel
produced by a set of helicoidal wires supplied with altern
ing currents of frequencyn, has been used in a Stern-Gerla
atom interferometer@5,7,8#. Minor changes in the experi
mental arrangement would produce an electric instead
magnetic comoving field andq would then involve either the
induced electric dipole moment of the particle, just like
Sokolov’s experiment@9#, or the permanent dipole momen
of a molecule. Comoving potentials would also appear
moving optical lattices provided that one uses a configu
tion combining those already used in@10# and@11#, to make
it simultaneously comoving and off-resonant. In such a c
q would be the magnitude of the optical potential. Ma
other configurations that fit the comoving scheme presen
above can be imagined.

The organization of the paper will be as follows. In Se
II, a general semiclassical expression of the phase shift
duced by a single-frequency comoving potential is given.
a function of the velocity this phase shift exhibits a reson
behavior, upon which the so-called genericity property
based. In Sec. III the specific case of a matter-wave pa
moving in a frequency-distributed comoving potential is e
amined. Section IV is devoted to an example of applicat
of the genericity property, namely the possibility to balan
the vacuum dispersion and to periodically recover the or
nal matter-wave packet. Conclusions and possible appl
tions in the field of light optics are given in Sec. V.
©2000 The American Physical Society04-1
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II. THE SEMICLASSICAL PHASE SHIFT

For a light wave the phase shift is readily calculated in
semiclassical limit by use of the Fermat theorem. In the c
of a one-dimensional configuration, one gets

dw5k0E dx@n„x,t~x!…2n0#, ~4!

where

t~x!5t01x/vw

is the parametrization of the ray,vw being thephasevelocity
of the light. Similarly for a matter wave submitted to a pe
turbationV ~depending on a single spatial coordinate!, the
magnitude of which is small compared to the initial kine
energyE0 , the phase shift is given by@12,13#

dw5k0E dx
2V„x,t~x!…

2E0
, ~5!

where

t~x!5t01x/vg

is the parametrization of the classical unperturbed path
vg5\k0 /m is thegroupvelocity of the matter-wave packe
The replacement ofvw by vg is a manifestation of the fac
that matter waves do not obey the same propagation equ
as light waves, which gives rise to fundamental differen
as soon as nonmonochromatic waves are considered. N
theless there remains a formal analogy between the two
ations if one changes the parameterh into q, n2n0 into
2V/2E0, and the phase velocity into the group velocity. W
will then write r for the relevant parameter~h or q! and v
for the relevant velocity~vw or vg!. We assume for the mo
ment that~i! the incoming wave and the perturbation a
synchronized and~ii ! the magnitude of the perturbation is
constant for2L<x<1L and zero elsewhere. Under suc
conditions the phase shift is

dw5E dx r i ~x!I n cosF2p

l S x2u~n!
x

v D G}I nL sinc~K2L !,

~6!

where sinc(x) denotes the function sin(x)/x and K2

5(2p/l)$12u(n)/v% is the Doppler-shifted wave numbe
of the perturbation. ForL@l, the extra phase is proportiona
to I v times a very narrow function centered atv5u(n).
Moreover it is clear from Eqs.~4! and ~5! that dw depends
linearly on the potential. Therefore, by adding perturbatio
of different frequencies with appropriate intensities a
phases, one is able to construct any desired dependen
dw on v, i.e., on the momentumk. This ability constitutes
what we call thegenericity property of comoving potential.
Let us just mention that comoving potentials offer other
teresting possibilities, especially those dealing with f
quency modulation. For example, at a fixed value
l, u(n)5ln, and a linear variation ofn in time ~chirping!
generates an accelerated moving field@14#, etc.
03360
e
e

d

ion
s
er-
u-

s

of

-
-
f

III. EVOLUTION OF A MATTER-WAVE PACKET

Let us examine in some detail the behavior of a ma
wavec(x,t) subjected to a frequency-~or velocity-! distrib-
uted comoving potential

V~x,t !5E dn H~n!cosF2pS n~ t2t0!2
x

l D G . ~7a!

From now on, the spatial extension ofV is assumed to be
infinite @ i (x)[1#. A limited extension would lead to unes
sential complications and a less strict univocal corresp
dence between the phase shiftdw and the spectrumH. In the
general case the velocity isu5l(n)n. For the sake of sim-
plicity we shall assume here thatl is independent ofn, as it
is in Refs.@5# and@7#, wherel is a fixed geometrical param
eter, namely, the period of the helices that produce the m
netic field; t0 is a shift in time between the perturbation an
the incident wave, this latter one being taken as the ti
reference.H(n) is the cosine-Fourier transform@n↔(t
2t0)# of the real potentialV(0,t). As a consequence onl
positive values ofn have to be considered andH(n) is real.
It is worth noting thatV does not propagate as a whole. F
instance, ifH(n) has a finite range and is symmetric arou
n5n0 , thenV takes the form of a nonpropagating envelo
modulating a propagating carrier wave

V~x,t !5h~ t2t0!cosF2pS n0~ t2t0!2
x

l D G , ~7b!

whereh(t)5*2n0

` dy H(n01y)cos(2pyt).

Taking the Fourier transform (x↔k) of the time-
dependent Schro¨dinger equation

i\] tC52
\2

2m
]x

2c1Vc , ~8!

one obtains

i\] tC~k,t !5
\2k2

2m
C~k,t !1W~k,t ! ^ C~k,t !, ~9!

where C(k,t) and W(k,t) are the Fourier transforms ofc
and V, and ^ is the convolution product. Because of th
special form ofV(x,t) @Eq. ~7a!# this convolution product is
easily calculated,

W^ C5E dn H~n!$exp@2p in~ t2t0!#C~k1k,t !

1exp@22p in~ t2t0!#C~k2k,t !%, ~10!

wherek52p/l.
Let us set

C~k,t !5G~k,t !expS 2 i
\k2

2m
t D ~11!

@so that for a free waveG(k,t) remains identical toC(k,0)#.
For atoms at thermal velocity the de Broglie wavelength
extremely short~1 Å or less! and even for very slow atoms i
4-2
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GENERICITY PROPERTY OF COMOVING POTENTIALS PHYSICAL REVIEW A61 033604
is smaller than 1mm. On the other hand,l is a parameter of
macroscopic size. Therefore in most casesk is extremely
small compared to anyk value in the momentum spectrum
which suggests the use of an expansion ofC(k6k,t) in
powers of k. However because the relevant variable
@ i (\k/m)kt#, the infinite sum must be evaluated. A simp
fication arises because thek derivatives ofC(k,t) are largely
dominated by those of the exponential factor@Eq. ~11!#. In-
deed one has

]kC5S ]kG1 i
\k

m
tG DexpS 2 i

\k2

2m
t D .

An order of magnitude of the first term isuGu/Dk, where
Dk is the width ofC(k,0), whereas that of the second term
uGuvgt; therefore, the second term dominates as soon as
wave packet has moved over a distance that is large c
pared to its initial spatial width~cf. the Rayleigh zone in
light optics!.

Under such conditions, neglecting the derivatives]k
nG,

one finally gets

i\] tG~k,t !5H E dv H~v !cosF2pS v2
\k

lmD t22pvt0G J
3G~k,t !, ~12!

which readily gives

G~k,t !5G~k,0!exp@ idw~k,t !#5C~k,0!exp@ idw~k,t !#,
~13a!

where

dw~k,t !52
1

\ E
0

t

dt8E dn H~n!cos@2p~n* t82nt0!#

52
1

\ E dn H~n!tH cos~2pnt0!sinc~2pn* t !

1sin~2pnvt0!
12cos~2pn* t !

~2pn* t ! J ~13b!

andn* 5n2\k/lm.
In the special case of a monochromatic potentialV(x,t)

5V0 cos@2p(n0t2x/l)# synchronized with the matter wav
(t050), Eq. ~13b! gives

dw~k,t !52
1

\
V0t sincF2pS n02

\k

lmD t G . ~14!

Insofar as the sinc function takes a negligible value for
argument large compared top, this expression clearly show
that at sufficiently large times the phase shift induced by
perturbation only concerns the ‘‘resonant’’ wave numb
such as the velocity\k/m5ln0 is equal to the velocity of
the comoving potential. In spite of a great similarity with th
result already obtained in a much simpler way@Eq. ~6!#, the
expression~14! is more general since it is valid for any valu
03360
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of k within the momentum spectrum ofc(x,t) whereas Eq.
~6! only involves the central group velocity of the wav
packetvg(k0)5\k0 /m.

Let us now return to the case of a continuous freque
spectrum~Eqs.~13a! and~13b!! @15#, which implies that the
potential is pulsed in time@cf. Eq. ~7b!#. For sufficiently
large values oft the sinc in Eq.~13b! becomes a very narrow
function of n of width dn(t)51/(2t), centered at the value
\k/m, of which the integral onn over the real axis is 1/(2t).
At the same time the integral of the odd term in (
2cosx)/x vanishes. Consequentlydw(k,t) has a limit at in-
finite t, which is

dw`~k!52
1

2\
HS \k

lmD cosS 2p
\k

lm
t0D . ~15!

Therefore, with an appropriate choice of the spectr
H(n) and t0 , any dependence of the phase shift onk is in
principle realizable. The criteria to get this limiting value
thatt is large compared tot0 and large enough to makedn(t)
much smaller than the widthDn of the spectrumH(n); in
other wordst must be large compared to the duration of t
envelopeh(t). Notice that ift0 is very large then Eq.~15! is
no longer valid and, from Eqs.~13a! and~13b!, dw` tends to
zero: the perturbation has missed the particle. More ge
ally a total control of the phase shift induced on the matt
wave packet by the pulsed external potential implies the c
trol of t0 , i.e., a synchronization, e.g., by means of
controlled emission of the wave packets~pulsed source!. To
get some idea about the accuracy needed in the definitio
t0 ~aroundt050!, one has to examine the stationarity of th
cosine term in Eq.~15!, which implies (\k/m)ut0u!l, for
any k value in the wave-packet spectrum~in particularvgt0
!l!. From this view point the present control of the pha
by an external field is different from that based upon a n
linear process that implies an internal and automatic s
chronization driven by the wave packet itself.

IV. BALANCING THE VACUUM DISPERSION

We shall consider now a remarkable application of t
genericity property in atom optics: balancing the vacuu
dispersion of matter-wave packets. The natural spreadin
a wave packetc(x,t) in vacuocomes from the fact that the
kinetic energyE5\v is quadratic in the momentum\k. As
a consequence, thek spectrumc(k) is identical toC(k,0),
the Fourier transform ofc(x,0), not that ofc(x,t), which is
ratherC(k,t) @see Eq.~11!# @16#. If one compensates for th
~constant! concavity ofv(k) by adding an appropriate phas
shift, then one is able to balance the vacuum dispersion
least at specific times~or positions of the wave-packet cen
ter!. This can be achieved by using a frequency spectrum
a parabolic form~see Fig. 1!, such as

H~n!5H 2
A

2
~n2n0!2 for un2n0u<

Dn

2
,

0 elsewhere,

~16!
4-3
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whereDn is such thatmDn/\ is large compared to the widt
of the k spectrum ofc(x,t); A is a positive constant an
n05\k0 /(lm). Assuming thatt050, which is a perfect syn-
chronization of the potential and the wave packet, one
tains

dw`5
\A

4l2m2 ~k2k0!2. ~17!

It is then readily verified that at timetA5A/2l2m, and
provided that this time is sufficiently large compared to t
pulse duration, one has

C~k,tA!5C~k,0!exp@ i 1
2 ~k02k!X~ tA!#, ~18!

whereX(tA)5(\k0 /m)tA is the position of the center of th
wave packet at timetA . As a consequence

c~x,tA!5expF2 i
\k0

2

2m
tAGC„x2X~ tA!,0…. ~19!

Therefore, apart from a phase factor, the wave functio
time tA is identical to the initial one translated byX(tA).
This result holds for any initial shape, which means that a
wave packet can be shifted as a whole by an arbitr
amount. Afterwards the~free-! wave packet recovers it
natural evolution, i.e., it spreads again. Here the need
synchronization appears from the fact that whent0Þ0,dw`

is multiplied by cos@2p(\k/lm)t0# and has no longer a para
bolic dependence onk.

Obviously the process can be repeated. Having this
view let us first consider a potential consisting of a train oN
pulses of periodT:

V~x,t !5 (
n50

N21 E dn H~n!cosF2pS n~ t2nT!2
x

l D G .
~20!

The expression obtained for the phase shift is similar to
given by Eq. ~13b!, cos(2pnt0) being replaced by
(n cos(2pnnT), and a similar sum for the sine term. Let u
assume that the potential issynchronizedwith the motion of

FIG. 1. Upper solid line: dispersion curve of matter wave
Lower solid line: extra phase needed to balance the vacuum dis
sion. Dotted line: total phase accumulated at timetA ~see text!
showing curvature’s compensation.
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the center of the wave packet, that isT5lm/\k0 ~see Fig.
2!. Then at a timet such thatt2NT is large compared to the
duration ofh, the accumulated phase shift is@cf. Eq. ~15!#

dwN
`~k!52

1

2\
HS \k

lmD(
n

cosS 2pn
k

k0
D . ~21!

The sum is similar to the diffraction amplitude of aN-slit
grating. In so far asNDk/k0!1, it is close toN. For larger-N
values and/or a wider spectral range the synchronization
comes less and less efficient on the borders of thek spectrum
C(k,NT). An exceptional situation is encountered whenT
5tA , since in that case one obtains, up to a phase factor
a translation byNX(tA) along x̂, a periodical recovering of
c(x,0). It might be expected that this phenomenon gives
to an observable effect in an atom interferometer, e.g., i
device similar to that used in Refs.@5# and@7#, which could
provide a new experimental approach to problems alre
discussed at length@17,18# but rarely investigated experi
mentally @19#. While physically different, this periodic re
vival of the wave packet reminds us of solitons in optic
fibers: in this latter case, due to the Kerr effect, a light pu
generates a local index perturbation that moves together
it and, for very special shapes, compensates for the dis
sion. Here the perturbation is imposed from outside, with

.
er-

FIG. 2. Behavior in a reduced-coordinate diagram (x/l,t/T) of
a comoving potential of spatial periodl created by a pair of pulse
separated by a time intervalT. The broken line is a resonant atom
trajectory synchronized with the first pulse and~a! not synchronized
with the second pulse~b! synchronized with the second pulse.
4-4
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advantage that the dispersion is balanced whatever the s
of the pulse and the disadvantage that a synchronizatio
necessary.

V. CONCLUSION

We have shown the common encounter of the comov
configuration in which a wave is submitted to an exter
perturbation that moves in the same direction, with about
same velocity~the relevant velocity depending on the natu
of the wave under consideration!. We then demonstrated th
genericity property of such a configuration: the reson
character of the interaction between wave perturbation
ables a detailed control of the phase since the phase
accumulated within the medium essentially reproduces
frequency spectrum of the perturbation. It is then easily
justable to any purpose dealing not solely with matter wav
as it has been shown, but also with light waves. In lig
optics comoving configurations correspond to traveling-wa
electro-optic modulators.

In order to use the general scheme presented before@see
Eq. ~2!#, one has to makeu dependent on the frequencynRF
of an exciting radio-frequency field:u5u(nRF). For ex-
e
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ample, in the case of an electro-optic modulator this sim
means that the crystal is inserted in a dispersive waveg
~e.g., operating in the cutoff region!. The phase velocity of
each monochromatic component of light in the crystal d
pends on its wavelengthl through the refractive indexn: v
5c/n(l). Therefore the resonance conditionu5v imposes
a relation betweenvRF and the resonant wavelength@20#

l res5n21S c

u~nRF!
D , ~22!

where n21 means the inverse function ofn(l). Such an
apparatus provides a tunable dispersive optical medium
mentioned before, such a device could find applications,
instance, in ultrafast pulse reshaping as it enables us to i
vidually rephase each spectral component, providing an
timized compression of the pulse. It is interesting to note t
such a ‘‘programmable’’ dispersive filter has been indep
dently proposed in Ref.@21# in a slightly different context. It
uses an acousto-optic modulator driven by a properly
signed excitation spectrum. In this case, however, the p
turbing acoustic wave is not comoving with the light wa
since their velocities are orders of magnitude apart.
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