PHYSICAL REVIEW A, VOLUME 61, 033401
Atomic motion in hollow submicron circular cylinders
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The motion of atoms inside a long hollow cylindrical waveguide with a circular cross section is investigated.
The guide is assumed to have subwavelength dimensions, in which case the spontaneous decay process is
effected only by emission of a few possible cavity modes. The characteristics of the atomic motion in the guide
are explored in the presence of an excited waveguide mode. We show that the atomic motion in this case is
determined by an axial channelling force and a trapping dipole force, plus a quantized light torque associated
with the orbital angular momentum property of excited waveguide modes of grdéx. It is predicted that in
addition to its axial motion, an atom subject to such a mode should be trapped radially in a vibrational state and
should exhibit interesting rotational features due to the light torque, including a rotational frequency shift.

PACS numbs(s): 42.50.Vk, 32.70.Jz, 32.80.Pj, 32.80.Lg

[. INTRODUCTION results by considering the case of sodium atoms in subwave-
| . &1 7] d with th length waveguides. In Sec. IV we consider the kinematics of
N Our previous papergl, ] we were concerned wi € such atoms within the guide and in Sec. V we discuss the

theory of atomic motion in spatially varying light fields in- 42 mica) effects on the motion when a cavity mode is ex-

side two types of waveguide: the parallel plate guide and thejieq. Section VI contains comments and conclusions.

cylindrical guide with rectangular cross section. This paper is

devoted to the case of cylindrical waveguides with a circular

cross section which are more common in praciife ex- Il. QED IN WAVEGUIDE

ample in fibre optic$3]). We are also interested in this type N . L

of cross section because, first, it is currently receiving atten.- The hoII_ow cy_l|ndr_|cal waveguide V\."th c_lrcglar Cross sec-

tion in the context of cavity QED, including recent work by t|odn_ 'S dﬁplcted N %g'.li Af‘.s _sh(_)wln n thhls tlngrl]ra,;s th_e di
I . ' radius, the wave e is infinite in length and the longitudi-

Rippin and Knight, Kakazu, and Kim and by Nha and [Me |u waveguice 1S infinie | g grudi

o - nal spatial variation is along theaxis, coincident with the
and secondly, the structure is important for guiding atomSStraight liner=0. The walls of the structure are perfectly
[5-11).

» . ) conducting excluding all electromagnetic fields from their
In addition to the new geometry which is known 10 jierior. The standard electromagnetic boundary conditions

modify spontaneous emissiof], we expect consequent anniy such that the tangential components of the electric field

mOdificationS Of atom dynamiCS relative to the cases in Revaector and the magnetic f|e|d vector must Vanish at every

[1,2]. The focus of the paper is thus on the atom dynamics ifoint on the cylinder surface.

the subwavelength regime. We show here that the circular The system consists of an atom of madscharacterized

could not have been realized in Reff$,2]. These are due to interacting with the electromagnetic field. The effective
the orbital angular momentum property associated with theyamiltonian can be written as

azimuthal dependence of the circular cylinder field structure.
The interaction of the atom with a waveguide mode of order
greater than the fundamental mode gives rise to a number of
rotational effects which make the atomic motion drastically
different from that associated with the fundamental mode of
the waveguide. The characteristics of the atomic motion in .
the guide are then explored for an electric dipole within theVhereP andR are the momentum and position vectors of the
guide subject to an excitegtpolarized mode. We also con- atomic center pf mass which is assumed to pe sgbject to a
sider the rotational features including a rotational shift due tg€neral potential(R). In the two-level approximation, the
the azimuthal dependence of the field structure which arisg®§ternal motion of the atom involves only two state, of
in the interaction of the atom with any waveguide mode ofNergy E., and |g), of energy Ey, such thatE.—E,
order/>0. =%wy. The operatorsrand=* are the lowering and raising
The paper is organized as follows. In Sec. Il we outline
the procedure leading to quantized electromagnetic modes
inside a circular waveguide. This readily facilitates the
evaluation of the spontaneous emission rate for an electric - o
dipole within the circular guide and the variation of this rate
with the radius of the cross section. The subwavelength re- FIG. 1. Schematic drawing of the hollow circular waveguide of
gime is emphasized where only a few modes are responsiblgfinite length. The cylinder wall is assumed to be perfectly con-
for the spontaneous emission. In Sec. lll we illustrate theducting.

2

P
H= o tUR) +hoom " m—d-E(R) +Hpeg (1)
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operators for the internal atomic states such tlht Where dqq is interpreted by inspection of the right-hand
=(d)eo(m+77"); E is the electric field operator ardeqis  Side of Eq.(4).

the electromagnetic field Hamiltonian. The mode functions for the transverse magnéfit/)
modes corresponding tg=p (p-polarized modesemerge
A. Quantized fields in the form[12]

The procedure for enumerating the electromagnetic o .

des inside the cylinder begins with the solution of th ik~ PRILENY A
modes inside the cylinder begins wi e solution of thef (Q,R, ,z,t)=C,(Q) hz—J/(h/mr)¢_ h_J/(h/mr)r
wave equation for the transverse electromagnetic fields. As is 7ml /m
well known, there are two types of normal modes:
s-polarized(TE) andp-polarized(TM), both of which satisfy +iJ/(h/mr)2) et/ dgi(w0p(Qt-ka) (7)
the electromagnetic boundary conditions at the guide walls. -
The total quantized electric and magnetic field operators are

written as follows: whereQ refers to the three mode variablds (’,m), h, ,a
=a,y, anda,, are the roots ofl /(« ) =0. Therefore the
E(R, ,z,t)= 2 2 dispersion relationo,(Q) of the TM mode frequency is
7=(p,s) /m
) 2 2 2 a’/m 2
xf di{a, (k,/,m)f,(k./,mR, zt) Q=K+ ) |- ®
+H.c}, (2 Finally in Eq.(7), C, is thep-polarized mode normaliza-

tion factor given by

a,(k,/,m)

B(R,,zt)= > >, fw dk

1
7=(p,s) /m J—oo ((m

Czh a’?/m 1/2
2N, eoALa’wd?, (@ )

Cp(Q)=( (€)

XV, (k,/,mR; ,z,t)+H.c.}, 3
HereAis the cross-sectional area of the guidés its (large

where H.c. stands for “Hermitean conjugate” and we havel€ngth,No=1 andN,=1/2 for /#0.

expressed the position vector in components form by writing The second set of electromagnetic modes in the circular
R=(R, ,z) with zan axial coordinate anl, = (r,¢) atwo-  Waveguide is the transverse electfi) set of modes cor-

dimensional (transversg position vector. The operator responding toy=s (s-polarized modes The mode functions
a,(k,”,m) is the boson operator for the field mode of po- for these ar¢12]
larization »(=p,s) characterized by integer quantum num-

bers/, mand a continuous axial wave vectorThe relevant o A
commuation relations are fs(Q.R.,Z,)=Cy(Q) 13 (hyr) ¢
[a,(k,/,m),al (K',/" \m')]=8, 8,/ Smmd(k—K"). / ) )
7 n nn (4) _ hr/_r"]/(h/mr)r e_|/¢e i(wg(Q)t kz),
/m
Finally, f,(k,”,m,R, ,z,t) are the mode functions for which (10

explicit forms are given below. These vector functions sat-
isfy the wave equation as well as the electromagnetic boundyneren’, a=g,,, and 8, are the roots of’(83, ) =0.

ary c_onditions at the ggide_ walls. ) ) ) Therefore the dispersion relatian(Q) of the TE mode fre-
It is convenient to simplify the notation by introducing a

uency is
compound mode variabl® which stands for the three mode . y
variables k,/,m). The quantized electric field in Ed?2) B,.\2
becomes w3(Q)=c? k?*+ —;m) ] (11)

E(R, ,zt)= >, . % {a,(Qf,(QR, ,zt)+H.c}

= (p In Eg. (100 C4(Q) is the s-polarized mode normalization

(5) factor, given by

with a similar equation corresponding to E®). The sum

over Q stands for one integration ovéy plus two integer C(Q)=
) . . S

sums over/ and m. The mode commutation relations are

now given by

% (Oﬁam 1/2
2N, e0AL(B2,,—/ 2)33(B/m)) 12

o The total Hamiltonian for the electromagnetic fields
[a,(Q),a,,(Q")]= 6,y doq (6)  within the circular waveguide is
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1 o0 a 2
Hfie|d:§J dZJ rdl’j dqﬁ{soEZ(Z,Rl ,t)
— 0 0

1

+ —B?%z,R, ,t)] : (13
Mo

The equationd ,(h,,a)=0 is the dispersion relation for the

p-polarized modes. The following identity involving a defi-
nite integral is needed in the analysis:

af 7320 h) a
JO{J}(h/mr)jL—r% rdr =232 5(hm).
Also J)(h).,a)=0

2

14

is the dispersion relation of the

s-polarized modes. The following identity also facilitates the

analysis:

a /J ml)
fo[ 2(hr )+—/({—} rdr

/ 2
1—(;) }J?(h;mm,

With the help of Eqs(14) and (15) the factorsC,(Q) and
C.(Q) defined in Eqs(9) and (12) emerge from the usual
guantization requirement that the total Hamiltonidn re-
duces to the canonical form

2
> (15

E Eﬁw (Q){a,(Qal(Q +al(Q)a,(Q)}.

Hfleld 2 .9
n(=
(16)

B. Spontaneous emission

The spontaneous decay rate for an electric dipbtu-
ated at an arbitrary poilR= (R, ,z) within the waveguide is

PHYSICAL REVIEW A61 033401
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FIG. 2. Dispersion curves showing the TM and TE branches of
the guided modes in a cylinder with circular cross section of radius
a=0.9\ wherex =589 nm.

the one-dimensional axial wave vecter The TE and TM
frequency branches for a typical circular waveguide are
shown in Fig. 2.

Depending on the value of the dipole frequengy, con-
tributions to the emission rate arise from all branches satis-
fying the condition

0 ,(Q)=w,(k,/,m)=w,. (18
Sincew,,(k,7,m) depends on the guide radiagntering via
h,morh’. , Eg.(18) conceals the dependence on the chosen
values ofa.

Assuming a value fom, the “zone center” k=0) fre-
quency separation between the lowest branch; Tderre-
sponding to/'=1, m=1 and the adjacent branch=0, m
=1, and between the branch fMcorresponding to”=0,
m=1 and the adjacent brancli=1, m=1 are approxi-
mately given by

evaluated using Fermi’'s golden rule. By symmetry, this rate

cannot depend on the axial coordinatend we may evaluate
it for a dipole situated at an arbitrary poirR(,0), i.e., at a

point R, within the normal cross section of the transverse

plane. We have

F(Rn— 2 2|<e{0}| d-E(R,,0)[g:{Q, 7})|?

7=(p.9)
X O[Ee—Eg—hw,(Q)]. (17

The transition from the excited internal sta@ to the

Awg(01-11)=w4(0,0,1) — ws(0,1,1)= g(ﬁm— B11),
(19

Awp(11-0D)=wp(0,1,1) — ,(0,0,1) = (all wo1)-
(20)

For a=1.0um we haveA wy(01—11)~5.97x 10"*s ! and
Awy(11-01)~4.28<10"'s™.. Frequency separations of
similar orders of magnitude are obtainable for higher adja-

ground statdg) is effected by the emission of all possible cent branches. These frequency separations are therefore

single quanta of waveguide modes with st&®,»}) of
frequencyw,(Q) and polarizations. The vacuum state is
represented by{0}).

quite large for waveguides with dimensions in the micron
range. From the special case illustrated in Figa2 0.9\,
N=589nm we see that if the dipole frequency is equal to

It should be emphasized that the waveguide frequencw¢(0,1,1), emission is possible only via the {FE(B14

spectrum, determined by E(B) for p-polarized modes and

=1.841) branch. Inspection of E(LO) further shows that a

Eq. (11) for s-polarized modes, comprises two sets of dis-dipole oscillating at such a frequency and which is oriented

crete branches, one for each type of polarizatipa(p,s).
A frequency branch is labeled by two fixed integgrandm

along the axis of the waveguide cannot couple to the electric
field of the TE; mode and will therefore not decay sponta-

and within any given branch, the frequency varies only withneously. But spontaneous decay is possible for a dipole ori-
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ented along the axis of the waveguide via the JNlag; D. Contribution of TE modes

=2.405) at a frequency less than(0,0,1) and will involve Similar evaluations leading to the contribution from the
the TE;; lowest branches as well as the fMranch. If, in  spolarized modes are based on EtQ). The result can be
addition, this dipole is oriented along the axis, only thegIM written in the form

branch provides a decay channel, since the axial dipole can-

not couple to the TE modes. On the other hand, since the d?0j | ((d)?
branch TM; (aq;=3.832) coincides with the T& (Bos (R)=2 whegcla :_dZ_S/m(RJ.)
=3.832) branch and the TE(B,,=3.054) branch is below

both, the spontaneous decay of a dipole of frequency greater ( d))z "

thanw,(0,1,1) will involve the Tk, TM;, TE,;, TEg;, and 92 g7 S/mRU [, (26)
TM 4 branches. These observations, which are significant for

submicron waveguides, are substantiated further with thWhereS/m andS/m are given by

calculation of the spontaneous rate, as we now show.

/m

The procedure for the calculation of the emission rate ) a2/?
based on Eq(17) can be outlined as follows. Contributions Sm(R)= WJ/(h/mr)/r (27)
from the p and s modes are carried out separately. After /mei/m
evaluating the squared matrix element, use of the dispersion B2
relations, Eq.(8) for p-polarized modes and Ed11) for S?m(RL):#J’/Z(h’/mr), (28)
s-polarized modes, facilitates the evaluation of the integral ’ RimH/m = 7

over k involving the é function. We are then left with two ) , ,
sums over integer§ andmand a cutoff condition, Eq1g), ~ and we have defineR,, andH ., by

to be satisfied for each evaluation. 12

, C()Oa
R/m: B/m
C. Contribution of TM modes
Consider first the evaluation of the contribution from theand
TM modes which involves use of the mode function defined ) 5 P
in Eq. (7). Following the above procedure for the emission H m=NABIm=7)IAB/m), (29
rate evaluation in this case culminates in an expression in-
volving sums over” andm. We have at poinR, =(r, ) E. Total spontaneous rate
d? (d,)? (d;)? For a given dipole orientation, the spontaneous emission
To(R)=2 | 3|1~ Gim(R)+—7-Gln(R))  rate is given by the sum of contributions from the TM and
7m \ mhega d d ) i
TE sets of modes. The results can be written in terms, of
<d¢,)2 the free space transition wavelength. For a dipole oriented
T GIm(R1, (21)  along the axis we have
[270]
whered is the magnitude of the dipole matrix element vector I',(R,)=T /Em (277—0)3G§m(RL). (30

(d1), with cylindrical components represented Kgl,),

(d,), and(d,). The G functions appearing in Eq21) are For a dipole oriented alongwe have

given by
2 3 [270]
I''R)=T'g=——= S (R
G2 n(R)= gy 3E(/m) (22 " °<2W>{ 7 SonlR)
[270] 1
+ 2 Glm(RL) (3D
R/ 3 < (2 )2 /m L]
Gm(R) =13 ), (23 ;
and for a dipole oriented alon@ we have
Gln(R,)= 2"/ Rm 32 (h )12 (24) 3 ([27]
— r)/r
el H I 4(R)=To5 { 2 Slu(Ry)
where we have define®,,, andH ,, by [270]
+ GY (R 32
3 ) 1 ~ (2 )2 /m( L) ( )
_|[ Lo o _N T2
Rem=|| ¢ &/m and H/m=N 7 1(a/m). whereg=a/\ andl, is the corresponding spontaneous rate

(25 in free space
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dzwg 6 (@)
FO_3177L80C3' (33 5 |

These results can now be explored for typical situations 4 -
involving sodium atoms in circular waveguides. Our main
concern here, however, is with the submicron regime ( ~ 3 -
<\). Before we consider this regime, it is instructive to =
check the results using a particularly simple asymptotic limit = 2
arising when the radiua increases to infinity. As we show
next, it is possible to verify by explicit calculations that in 1 4
this limit the results in Egs(30), (31), and (32) yield the
spontaneous rate in free space. 0 . . . .

0 1 2 3 4 5
Ill. SODIUM ATOMS IN SUBMICRON CIRCULAR al\
GUIDES
9.0

For orientation as to orders of magnitude, it is instructive (&)
to concentrate now on a typical physical situation. We con- 7.5 A
sider the case of a sodium atom and focus on its
325,/,>3%pg), transition (. =589nm). The magnitude of 6.0 -
the dipole matrix element associated with this transition is
d~2.6eag, which is consistent with the measured free space ~< 4.5 -
lifetime of 7~16.3ns(or I';=6.13x 10" s™1). —~

Figure 3 shows the variation of the spontaneous emission = 3.0 -
rate with the radius of the cylinder for a sodium atom at the
center of the cylinder, i.e., at the point 0, with the atomic 1.5
dipole oriented, in turn, along the three directiong (
=2,f,¢). The plots show the ratib’, /T’y againsta/N. For 0.0 ' ‘ ' '
the axial dipole orientation case shown in Figa)3here is a 0 1 2 3 4 &
“cutoff” value of a below which there is no spontaneous a/\
emission. By simple analysis, it is easy to show that the
results from Eqs(31) and(32) are the same at=0. In each FIG. 3. Total spontaneous emission rate agadat (where\

case the rate oscillates with increasiaglt is seen that at =589nm for a sodium atom at the center of the cylinder 0
small values ofa the rate is much higher relative to the free When the atomic dipole moment vector is orienteiialong thez
space value for the chosenand shows a clear tendency to axis, (b) along thef direction (or ¢ direction.

attaining a fixed valuéi.e., the free space valuat largea.

Figure 4 shows the distribution plots for the spontaneousitom in a circular guide depends on three factors: the radius
emission rate when the dipole matrix element has variousf the guide, the position of the atom, and the orientation of
orientations. The evaluations are carried out for points sparthe dipole.
ning the guide cross section and are based on the expressions
given in Eqgs.(30), (31), and(32). Contributions from indi-
vidual types of mode are not shown. In Figgaand 4c) IV. DYNAMICS

when the dipole is oriented alorigand ¢, respectively, we The motion of an atom inside the guide can be altered
find that the spontaneous emission rate is zero when the dignificantly when a guide mode is excited at frequency
pole is close to the surface, but when the dipole is orienteqU”(Q) [whereQ=(k,/,m) and 7 is the polarization type
alongf it is twice the free space value, as shown in Fi@4  which is closely tuned to the dipole transition frequengy.
These are exactly the values of the spontaneous dipole emighe total steady state force acting on the center of mass of an
sion rates at the surface of a single half-space cond{t8r  atom moving within the guide at velocity due to the ex-

Indeed, this acts as a useful test for the these results. cited mode of frequency, (Q) can be written a$l,2]
As a general rule, however, the spontaneous emission rate K

is maximum where field components parallel to the dipole
matrix element have maximum values. It is also important tdF#(Q:RV))
note that, because of the subwavelength dimensians (
=0.9\) chosen for illustration purposes in Fig. 4, the emis-

sion rate distributions arise from at most five branches of the I'(R)Q%R)VH(R)— 1A(R,V)VQz(R)

mode spectrum for a circular guide. This observation is sig- —oz 2

nificant for the atom guiding applications to be considered in A*(R,V)+20%(R)+T*R) .
the next section. Finally, we note that the decay rate of an (34
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7 .
v Gk/=r ¢+ kz. (37)

This immediately shows that the dissipative force has com-
ponents in both the axial and azimuthal directiahéR,V) is

a dynamic detuning which is a function of both the position
and the velocity vectors of the atom

A(QRV)=A0—V Vb, (38)

with A= w,(Q) — w, the static detuning of the guide mode
from the atomic resonance.

A. Doppler shift

The second term in E¢38) 6= —V -V 6, represents the
Doppler shift due to the excited mode. On making use of Eq.
(37), we have

/Ny
5(r,V) —kV - T (39)

whereV, andV , are the axial and azimuthal components of
the atomic velocity vector. The first term ihis the expected
Doppler shift that would arise for a plane wave traveling
along the axis of the cylinder. The second term can be writ-
ten as

where o, =V ,/r is the angular velocity of the atom. This
has the same form as the rotational shift discussed in a recent
article by Bialynicki-Birula and Bialynicka-Birul@14] who
predicted that a rotating quantum system undergoing sponta-
neous emission is subject to a frequency shift equdkdto
where w, is its angular frequency andis the angular mo-

FIG. 4. Distribution plots for the spontaneous emission ratementum of the emitted light. The rotational shift of Retf4]
when the dipole matrix element has different orientations for a sohad also been the subject of investigation by Silveririds
dium atom in a cylinder of circular cross section. The plots showand has been used in the discussion of the mechanical Fara-
the variation of thd'/T"y as a function of the position of the atom day effect[16]. The shift has the same form discussed more

within the guide:(a) dipole moment vector along thedirection, (b)
along thef direction, and(c) along thee direction.

where(} is the Rabi frequency for an electric dipalen the
guide mode whose electric field is defined in E@) for
p-polarized light, and Eq10) for s-polarized light. It is easy
to see that} is in fact only a function of the radial coordi-
nater

QR)=0Q(r)= |<d>eg El. (39

recently by Courtialet al. [17] who observed a frequency
shift Zw, for a free space Laguerre-Gaussian light beam of
orbital angular momentum quantum numbérwhen the
beam is rotated about its axis at an angular frequancy
The interesting feature here is that the frequency shift is
quantized in units of the quantum numbér but the first
effect concerns the orbital motion of the radiating system,
while the second the orbital angular momentum of the light.
Here we show that interesting rotational effects can also
be induced by light on quantum systems, not in free space,
but in the context of atom guides. As has been pointed out,
cylindrical structures with circular cross section can act as

6,.(R) is the mode phase which corresponds to the momerwaveguides to both atoms and light in mutual interaction

tum imparted by the light to the atom and, in view of EG®.
and (10), depends only on the axial coordinateand the
azimuthal coordinateb and is written as

Gk/=/¢+ kz (36)

Thus 6, has the gradient

[18]. The mechanical effects on material objects due to the
angular momentum of microwave photons confined in circu-
lar waveguides has been pointed out by Kristenseal.
[19]. In the context of atoms, it is the orbital angular momen-
tum property associated with the azimuthal dependence of
the field structure that is responsible for the new effects
emerging in the interaction of the atom with a waveguide
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mode of order greater than the fundamental mode. We show T”m/ﬁ[‘”(r)_ (46)
here that this gives rise to a number of rotational features
which make the atomic motion drastically different from that  this result has the simple interpretation that for an atom

associated with the fundamental mode of the waveguide. 4 the radial point the mode supplies angular momentum

The interpretation of the shift in E¢40) in this case can 2 jelivered at the rate df () quanta per second and thus

be easily made in terms of angular momentdfcarried by iy 05 rise to a rate of angular momentum per second equal to
a quanturrphoton of the waveguide mode. Note, however, the product/#I,, that is the torque acting on the atom

that the shift does not depend on the frequency of the modey,, ¢ the cylinder axis. IT were not position and mode
only on its order”, which coincides with the orbital angular yenendent, the result could have been interpreted as a torque
momentum quantum number Of_ the que. Equatii can guantized in unit ofiI". As we now show, the position and
be rewritten in Cartesian coordinates in the form mode dependence as well as the velocity dependence, which
—/y /x are manifest in th_e general _result _in _E(_45), mak_e the dy-
Sy(r,\Vy)=— (—2Vx+ —= V. (41  namics of atoms in waveguides significantly different from
r r other situations. The torque effects due to different kinds of
light on atoms has been discussed by van Enk and van Enk
and Nienhaus[20] and atom dynamics in free space
Laguerre-Gaussian beams have also been repfee?d.
On the other hand, the second term of the force fitid
dipole force given in Eq.(34), can be written as

Since the total Doppler shift is the dynamnfice., velocity-
dependentpart of the detuning\ ,(Q) which enters the total
force in Eq.(34), it clearly has an important role to play in
the dynamics of the atom within the cylindrical guide.

B. Radiation forces and torque

h here the ph d he (F,(Q.R,V)) _HARV)VEAD)

Another context where the phase gradient enters is the A QiRV))dipole™ | 72 2 2 .
first term of the force field given in Eq34). Substituting for ANRNV) +205r) +15(r) 7

V6 from Eq. (37), the first term of the force fiel¢the dissi- (47)

pative force can be written as ] ] )
This means that the atoms also become subject to a light-

F(r)Qz(r)[(//r)<}5+ kz] induced dipole force and this, too, depends on the dipole

(Fo(Q.R,V))giss= 2% 5= 2 3 : orientation as well as the type of cavity mode. The explicit
7 AZ(R,V)+2Q2(r)+T4(r) . . .

77(42) form of the dipole potential for a waveguide mode charac-

terized byQ and # is such thatF, ) gipole= —VU,,, with U ,
As Eq. (42) suggests, to influence the atom in the azi-In this case written as

muthal direction, the integer” must be greater than zero,

otherwise the atom will only be subject to a force in the axial hA(R,V) 202%(r)

direction. The axial component of the dissipative force canUn(Q'R’V):HT)I [1+ [AZ(R,V)+F2(r)]H :

be written as ( 4{’8)

T'(r)Q3(r) ]
7

(F2(Q,R,V))giss= Zﬁk[ It is clear that the potential will exhibit a minimurgmaxi-

2 2 2
A%RV)+20%r)+I™(r) mum) at the high intensity locations where, <0(A ,>0).

(43

and the azimuthal component of the dissipative force involv- C. Equation of motion

ing the orbital angular momentum is given by The dynamics of an atom of mad# immersed in the

2/h I'(HOr) waveguide mc_)de of frequgnwn(Q) _foIIows. straightfor-
X 5 5 ) wardly by solving the equation of motion subject to the force
(R,V)+2Q4(r)+I'(r) ,
(44)

(Fo()(Q.RV)) giss=
" e in Eq. (34), namely,

2
This force field component is thus responsible for a torque M (W) =(F,(Q,R\V)), (49
T, acting on the atom center of mass about the axis of the n
cylinder which is given by
We have not included the effects of the van der Waals po-
2/HT(r)Q(r) . tential, appropriate for the subwavelength dimensions, since
A2(R,V)+2Q%(r)+T%(r)| = its role for atoms in cavities has been clarified, both experi-
(45) mentally[24] and theoreticallj1]. In particular, the van der
Waals potential is expected to be effective only at a rela-
It is easy to check that this torque depends only on the radialvely short distance from the guide surfaces. In general, by
coordinate. In addition, it depends on the atom velocity vecusing Eqs(42) and(47), the equation of motio49) can be
tor V. In the saturation limit, corresponding to larfk one  rewritten as(dropping thenz and Q mode labels for conve-
obtains for the magnitude of this light torque nience

T,](Q,R,V)=2<rF¢,)n=[

033401-7



S. AL-AWFI AND M. BABIKER PHYSICAL REVIEW A 61 033401

d?R av V. ATOM MOTION
(W) - (E) A. Typical parameters
2% (k2)+(/1Ir) In order to exhibit the salient features of the dynamics, it
v ( ro? AT 2024172 is necessary to consider a specific physical situation in which
sodium atoms are guided along a circular waveguide in
Q) A A which the TM; mode has been excited by a laser of intensity
v v L (50 |~10"Wm 2 which is the laser intensity adopted by Renn

et al. in their experimen{9]. We focus again on the transi-

which can be expressed as two equations, describing longfion ath =589 nm and we define a free space Rabi frequency
tudinal and transverse components of the motion as follows 2o by

dv,| (d’z) 1
dt | \d?/ ™M
) We assume a waveguide of radias 0.9\ and a static de-
dv, ) [d°R; tuning Ag~—35.76 MHz, which is much smaller than a
dt || dt? typical zone-center frequency spacing. We also introduce
two scaling parameters: a scaling forEg and a scaling

Id?

QO: ZﬁZSOC

24K Q2 }

1/2
) ~8.56x10°s 1. (57)
A2+2Q0%+T7?

(51)

:ﬁ[FQZ (71r) p potential Uy. With integers/, m known, Ay as defined

M AZ+207%+T2 above and withwy corresponding ton=589nm, it is
straightforward to deduce the magnitude of the axial wave

) A f] (59  Vvectork (k depends on the kind of excited mode;or s

ar \A2+202%+T?) | polarized and on the order of the modém. Consequently,

_ o . Eq. (8) is used when the TM mode (x1;,=3.832) is excited.
Equation(52) can be split into two equations as follows:  The scaling parametdt, for this ky; is defined by

(dv¢ 2h [ X (/1r) ) 53 Fo=2ky [ g~1.16<10 1°N. (58)

at )~ w | P ez |

at M ATr2QTHT The scaling potential enerdy, for all modes is defined by
dve) _20| 90 A 54 Ug=(1/24Ty=3.13<10 2J~47MHz. (59
dt/ M ar \A%+20°+T12) |

In the figures below, force is measured in unitsFef and
Thus we now have three components of motion; the axiaPotential energy in units ofl,.
motion Eq.(51), the azimuthal motion E¢(53), and the ra- We focus now on the three possible cases of dipole ori-
dial motion Eq.(54). These are coupled motions sinde  entation separately by assuming that the electric dipole is
contains dependence on all three componentg.oh Eqs.  oriented in a fixed direction. First we assume that the electric
(53) and (54) we can alternatively express the motion in dipole is parallel to the cylinder axis(i.e., along the axial

terms of thex andy variables as follows: direction. Second, we consider the case when ipé&pen-
dicular to the cylinder axig(i.e., along the radial direction
d?x dv, 2%k 2/y and finally when it is oriented in thazimuthaldirection.
(W) N W):_ M(AZ+202+T7) {m Tz
B. Dipole along axis(2)
+Q @A X ’ (55) With the dipole oriented along the ax( direction and
a r with the TM,,, mode excited we have a position-dependent
Rabi frequency given by
(dzy) (dvy> 2h [mz/x
— = — = — r
az) =\ at ) "M@z 20z | o Jt( a/m_)
Q0 y [Qp(k, 7 sm,r)],= Qg . (60
—QWAF}, (56) P ’ awo VN[ 1( e )]

R Figure 5 displays the spatial distribution of this Rabi fre-
where we have usegh= (—sin @)X+ (cosg)y, f=(cos@)X quency over a diameter of the cross section of the guide
+(sing)y, sing=ylr, cosp=x/r, andr = x>+y?. when the TM; mode with a Rabi frequendy(,(k,1,1y)],

It is thus clear that Eq(49) constitutes a set of three is excited. The maximum intensity is located at points where
coupled ordinary differential equations. These, for a giverr =a/2. Therefore the potential will exhibit a minimum at
set of initial conditions, can be solved numerically usingthese points fol\;<<0. For A;>0 we have trapping at the
standard routines. low intensity (dark) regions of the field. With the dipole
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~_ 1.0 g
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G 2
9/ 0.5 4

0.0 T v ,

-1.0 -0.5 0.0 0.5 1.0 @

r/a

FIG. 5. Variation of the square of the Rabi frequency within a
central cross section of the guide for a sodium atom when thg, TM
mode is excited. Here the electric dipole moment vector is axial. <
g
oriented along the axis and in a situation corresponding e
the above choice of parameters, the axial component of th
dissipative force field given by E§43) is set up with spatial
distribution over a diameter of the cross section of the guide
as depicted in Fig. 6. It can be seen from this figure tha
atoms located at=a/2 experience the strongest force along
the axis. ®

The corresponding profile of the dipole potential
(Up(x,y)), is depicted in Fig. @). As expected, we see that
for Ay<O the dipole potential exhibits a minimum at points
where the intensity is maximum. A reversal of the sign of
detuning, obviously, leads to the dipole potential of the op
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FIG. 7. Spatial distribution of the potential of the sodium atom
in the circular waveguide under the conditions of Fig. 6 when the
dlpole moment vector is along the cylinder ax@); negative detun-

g, (b) positive detuning.

posite sign to that depicted in Fig(af and it is easy to see seen from Fig. @) that for the parameters assumed above,

that transverse trapping of atoms is also possible for thigshe

central well depth is approximately (118

case, as shown in Fig.(). It can be deduced from these ~0.557 GHz). This is sufficiently deep to exhibit many
figures that, from a quantum-mechanical point of view, so-quasiharmonic trappingvibrationa) states. The vibrational
lutions of the two-dimensional Schiimger equation with frequency can be estimated simply using the parabolic ap-
[Up(x y)], as potential must exist. In the ground state, theproximation[1,2].

atomic wave function peaks in the vicinity of the central

Figures 8 shows the projection of the trajectory onxie

minimum associated with the dipole potential. It can also bePlane based on the solution of Eg9) for an atom with its
electric dipole moment vector oriented parallel to the cylin-

der axis in the presence of the TMnode of the waveguide,

0.12 ; . . . oo L
assuming negative detuning with the initial conditions such
that the atom starts from rest at the paisty=0.5a. This
leads to the interpretation of the motion as the sum of radial

0.09 ~ and rotational motions superimposed on a translational mo-

(FZ/F())diss(z)

tion along the axignot shown. The rotational motion is an
expected signature of the light torque effects mentioned
0.06 - above, while the translational motion along the agi®t
shown is due to the pressure force acting along the direction
of propagation. The radial features of the trajectory immedi-

0.03 - ately suggest that the atom may be trapped in an annulus-

by

shaped quantum well due to the light and this is confirmed

inspecting the distribution of the dipole potential associ-

0.00 \ . , ated with Eq.(48) for the negative detuning situation, as
-1.0 -0.5 0.0 0.5 1.0 shown in Fig. Ta). The evolution of velocity components

r/a

z

can also be displayed and it is found that the axial velocity
V, grows in magnitude with time while the transverse veloci-

FIG. 6. Variation of the axial quasistatic dissipative force actingties (V, andV,) exhibit periodic oscillations.

on a sodium atom when the T¥mode is excited. Here the electric

On the other hand, the radial features of the corresponding

dipole moment vector is axial. trajectory shown in Fig. 9 for the positive detuning cas®
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FIG. 10. Variation of the axial quasistatic dissipative force act-
FIG. 8. Predicted trajectory of a sodium atom on a transversd"d on & sodium atom when the TiMmode is excited. Here the
(xy) plane of a subwavelength cylindrical guide. The atomic dipole®€ctric dipole moment vector is orientémiansverselyalong thef
is assumed to remain in the axial direction in the presence of afirection.
excited TM;; mode of the guide for the negative detuning case. See
text for values of parameters. The quasistatic axial component of the dissipative force field
_ ) _ given by Eq.(43), corresponding to the same choice of pa-
>0 immediately suggest that the atom must be trapped in gymeters as in the previous subsection, is shown in Fig. 10
bowl-shaped quantum well due to the light and this is con{s 5 dipole oriented along the direction. It can be seen
firmed_ by inspecting the distributiqn of the d.ipole.potgntial from this figure that atoms located at the center 0) of the
associated with E(48) for the positive detuning situation, 4ide experience the strongest force along the axis and at the
as in Fig. Tb). wall (r=a), while atoms located at=a/2 of the guide do
not experience any force. The corresponding profile of the
C. Dipole along () dipole potential[ U ,(x,y)]; is depicted in Fig. 1(). A re-
With the dipole oriented transversely along théirection

and with the TM,, mode excited, the corresponding Rabi < 2
frequency is obtained as ,;;,;;QZW"",','[Z’{Z@\\\Q\\
r 2t NN
kel 3| @ mis B IS
(Qy(k,/,m,r)), =0 2 6) S ap %”l”:’ﬂ'/"li’"i"ﬁ””b’w\“&\\&
P OWON|J/+1(a/m)|. 5w ""-"’",','f,f,_'!l:.f,"".‘”‘“\“‘:‘-‘?
100 i
0.3 - !
0.2 - !
0.1 - @ T
&
= 0.0 - 00 IR T 22
- SR
= \ W
° 2 L
-0.3 - ok e
T T T T T T T o ******
-0.3 -0.2 0.0 0.0 0.1 0.2 0.3 1

Y/ a 4

FIG. 9. (a) Predicted projection in they plane of the trajectory
of a sodium atom in a subwavelength cylindrical guide. The atomic’
dipole is assumed to remain in the axial direction in the presence of £| 11, Spatial distribution of the dipole potential on the so-
an excited TM; mode of the guide for the positive detuning case. giym atom in the circular waveguide under the conditions of Fig. 10

The initial conditions are such that the atom starts from rest at \yhen the dipole is along thdirection; () negative detuning(b)
=0=y. See text for values of parameters. positive detuning.
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0.3 | 1.0
0.2
0.5 -

0.1
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0.0 -
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0.3 -

T T T T T T T _1 .0 . : .
-0.3 0.2 0.0 0.0 0.1 0.2 03 -1.0 -0.5 0.0 0.5 1.0

y/a y/a

~ FIG. 12. Predicted trajectory in they plane for a sodium atom FIG. 13. Predicted trajectory of a sodium atom on the transverse
ina subyvavelt_ang_th cylindrical guide. The at_omlc dipole is assumequ) plane of a subwavelength cylindrical guide. The atomic dipole
to remain radial in the presence of an excited ;{vhode of the 5 355umed to remain radial in the presence of an exciteg; TM
guide for the negative detuning case. See the text for values gfyode of the guide for the positive detuning case. See the text for

parameters. values of parameters.

J,

versal of the sign of detuning, however, leads to the dipole D. Dipole along ¢

potential shown in Fig. 1(b) of the opposite sign and it is . . . A .

easy to see that transverse trapping of atoms is also possiQIr(]aeV\_ll_'m mrﬁocé'g()elicgggn:ﬁg c?clncr)rnegs thes (Ijlrecuon. and with .

for this case. The solutions of the two-dimensional Schro-_. im ' ponding Rabi frequency is

dinger equation withU ,(x,y) ], as potential must also exist given by

and the central well depth is approximately (8). This, r

too, is sufficiently deep to allow several quasiharmonic trap- k/ca a/mg) / r

ping (vibrationa) states. [Qp(k,1,m,r)],=Qq . (62
Figure 12 displays the projection of the trajectory when woct mIN|J/ s 1( e m)|

the electric dipole moment vector is oriented perpendicular

to the cylinder axis in the presence of the Tij\hode for the The maximum of the Rabi frequency is located at points

negative detuning situation. The initial conditions are suchvherer=0 and so the dipole potential will exhibit a mini-

that the atom starts from restaty~0. As in the previous Mum at this point forA,<0. The quasistatic axial compo-

section, Fig. 12 leads to the interpretation of the motion adent of the dissipative force, given by Eg3) (for the same

the sum of radial and rotational motions superimposed on §10ice of parameters as in the previous subsertoshown

translational motion along the axis. The rotational motion isn Fig- 14. The corresponding potentidl{(x,y)), is dis-

an expected signature of the light torque effects, while the

translational motion along the axis is due to the pressure 0.10
force acting along the axis. The radial features of the trajec-
tory immediately suggest that the atom must be trapped in a 0.08 -
bowl-shaped quantum well due to the light and this is con- -
firmed by inspecting the distribution of the dipole potential g 0.06 -
associated with Eq48) for the negative detuning situation, ;‘:
as shown in Fig. 1(). . 0.04 -
Figure 13 displays the trajectory projection onto thg =
plane when the electric dipole moment vector is oriented 0.02 -
perpendicular to the cylinder axis in the presence of the
TMy; mode, for the positive detuning situation. The initial 0.00 , . :
conditions are such that the atom starts from rest atxthe -1.0 -0.5 0.0 0.5 1.0

=y=0.5a. The radial features of the trajectory for the atom
in the positive detuning case immediately suggest that the
atom is trapped in an annulus-shaped quantum well due to FIG. 14. Variation of the axial quasistatic dissipative force act-
the light and this is confirmed by inspecting the distributioning on a sodium atom along a diameter when the;Tktode is

of the dipole potential associated with Ed8), as shown in  excited. Here the electric dipole moment vector is oriented along
Fig. 11(b). the ¢ direction.

r/a
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1 0.00 . . . ,
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1 1
FIG. 15. Spatial distribution of the potential of the sodium atom
in the circular waveguide under the conditions of Fig. 14 when the 0.10
dipole is along thefb direction and for negative detuning. 6.05
played in Fig. 15. Here the dipole potential for this compo- 5° 00
nent has a minimum at the center of the guide for negative S~
detuning. The solutions of the two-dimensional Scimger 7 0.0s
equation with U ,(x,y) ], as potential must exist too and the
central well depth is approximately 83, which is also suf- -0.10
ficiently deep to allow several quasiharmonic trapping states. " " T
In contrast to the case of negative detuning, the dipole po- 30 60 90 120
tential for the positive detuning case has no minimum at the (b) tr
center of the guide. In fact, in the positive detuning case the
atoms tend to be attracted towards the cylinder wall. In other
words, the solution of Schdinger equation with 0.10
[Uy(X,y)], as potential for positive detuning will always
have the atomic vibrational ground state distribution peaking 0.05
in the vicinity of the wall. From the point of view of atom
guiding, such a dipole orientation will not result in efficient go
atom guiding by the T\ mode with positive detuning. o 0.00
Figure 16 shows the trajectory for an atom with its elec- ~
tric dipole moment vector oriented along tigedirection in -0.05
the presence of the TM mode of the waveguide in the
-0.10 T T T v
1.0 30 60 90 120
' ©) tl,
0.5 - FIG. 17. Variations of the velocity components for the case in
Fig. 16:(a) evolution ofV,; (b) evolution ofV,; (c) evolution of
V, . Both(b) and(c) indicate the onset of oscillatory motions of the
< same time scale. All velocities are in unit ¥g=al’,.
= 0.0
negative detuning case, with the initial conditions such that
-0.5 - the atom starts from rest at=y~0. This figure leads to the
interpretation of the motion as the sum of radial and rota-
tional motions superimposed on a translational motion along
-1.0 . v . the axis. The radial features of the trajectory immediately
-1.0 -0.5 0.0 0.5 1.0 suggest that the atom is trapped in a bowl-shaped quantum
y/a well due to the light and this is confirmed by inspecting the

distribution of the dipole potential associated with E4§),

FIG. 16. Predicted trajectory of a sodium atom on a transvers@s shown in Fig. 15. The potential distribution, in fact,
(xy) plane of a subwavelength cylindrical guide. The atomic dipolechanges with the axial velocity in that the depth of the well
is assumed to remain in thé direction in the presence of an ex- decreases with increasing axial velocity. Figure 17 displays
cited TM;; mode in the guide for the negative detuning case. Sedhe evolution of the velocity components. The axial velocity
the text for values of parameters.

(V,) is seen to grow with time, as depicted in Fig.(d7
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while the transverse velocitig¥/, andV,) exhibit periodic  slow atoms; the quantum-mechanical nature of the vibra-
oscillations as can be seen in Figs(d7and 17c), respec- tional states which, we expect, should play a role in the dy-
tively. namics and the state of the dipole moment of a slow atom
within the guide could have sufficient time to adjust to the

VI. COMMENTS AND CONCLUSIONS mode polarization. These matters need to be discussed for
cylindrical guides with circular cross section and their con-

. o . . . sequences for the dynamics of atoms in the circular guides
of atoms in cylindrical waveguides with circular cross sec- q y 9

tions. The cavity modes are first quantized by following the?'® als_o nee_ded n order_to compare with the predictions
standard procedure, incorporating the boundary conditions &5SUmMing a fixed dipole orientation.
the guide walls. This allowed the position-dependent sponta- W€ envisage that the effect of the light torque due to a
neous emission rate to be evaluated for an electric dipolé/aveguide mode could be usefully exploited as, for example,
within the guide. In addition to its intrinsic value, the spon- N the focusing and stablization of the guided beam that is
taneous emission rate in these structures is important for th@multaneously cooled by a one-dimensional molasses con-
theory of atom guides. Useful limits of the spontaneousfiguration involving a pair of counterpropagating waveguide
emission rate have been derived. In particular, we have beghodes. This laterally diffusion-free one-dimensional optical
able to recover the results appropriate for the free space caseolasses configuration could make use of the light torque in
when the radius of the guide becomes large. conjunction with the axial friction force to generate samples
We have explored the details of atom dynamics insideof in situ cooled atoms and ions in the context of cylindrical
cylindrical perfect conductor atom guides with circular crossguides. A related problem that can also be addressed is that
sections and with subwavelength dimensions. The effects aif cylindrical atom guides with guide walls made of dielec-
the azimuthal components of the electromagnetic modes dfics characterized by dispersive dielectric functions which
such guides on the motion of atoms inside the guide wereould also exhibit loss. A theory focusing on such features
examined. The angular momentum features associated wittan, additionally, accommodate the first type of atom guide,
the mode phase should involve a light-induced torfele-  namely, the evanescent mode guides which can now have the
23] and the consequent motion of atoms trapped in potentiahew feature of submicron dimensions. Work along these
rings and guided through the structure was investigated. lines is now in progress and the results will be reported in
Atom guiding can involve new aspects associated withdue course.

In conclusion, we have examined in detail the cavity QED
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