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Atomic motion in hollow submicron circular cylinders

S. Al-Awfi and M. Babiker
Department of Physics, University of Essex, Colchester, Essex CO4 3SQ, England

~Received 24 August 1999; published 10 February 2000!

The motion of atoms inside a long hollow cylindrical waveguide with a circular cross section is investigated.
The guide is assumed to have subwavelength dimensions, in which case the spontaneous decay process is
effected only by emission of a few possible cavity modes. The characteristics of the atomic motion in the guide
are explored in the presence of an excited waveguide mode. We show that the atomic motion in this case is
determined by an axial channelling force and a trapping dipole force, plus a quantized light torque associated
with the orbital angular momentum property of excited waveguide modes of orderl .0. It is predicted that in
addition to its axial motion, an atom subject to such a mode should be trapped radially in a vibrational state and
should exhibit interesting rotational features due to the light torque, including a rotational frequency shift.

PACS number~s!: 42.50.Vk, 32.70.Jz, 32.80.Pj, 32.80.Lg
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I. INTRODUCTION

In our previous papers@1,2# we were concerned with th
theory of atomic motion in spatially varying light fields in
side two types of waveguide: the parallel plate guide and
cylindrical guide with rectangular cross section. This pape
devoted to the case of cylindrical waveguides with a circu
cross section which are more common in practice~for ex-
ample in fibre optics@3#!. We are also interested in this typ
of cross section because, first, it is currently receiving att
tion in the context of cavity QED, including recent work b
Rippin and Knight, Kakazu, and Kim and by Nha and Jhe@4#
and secondly, the structure is important for guiding ato
@5–11#.

In addition to the new geometry which is known
modify spontaneous emission@4#, we expect consequen
modifications of atom dynamics relative to the cases in R
@1,2#. The focus of the paper is thus on the atom dynamic
the subwavelength regime. We show here that the circ
guide gives rise to additional effects in atom dynamics wh
could not have been realized in Refs.@1,2#. These are due to
the orbital angular momentum property associated with
azimuthal dependence of the circular cylinder field structu
The interaction of the atom with a waveguide mode of or
greater than the fundamental mode gives rise to a numbe
rotational effects which make the atomic motion drastica
different from that associated with the fundamental mode
the waveguide. The characteristics of the atomic motion
the guide are then explored for an electric dipole within
guide subject to an excitedp-polarized mode. We also con
sider the rotational features including a rotational shift due
the azimuthal dependence of the field structure which ar
in the interaction of the atom with any waveguide mode
order l .0.

The paper is organized as follows. In Sec. II we outli
the procedure leading to quantized electromagnetic mo
inside a circular waveguide. This readily facilitates t
evaluation of the spontaneous emission rate for an ele
dipole within the circular guide and the variation of this ra
with the radius of the cross section. The subwavelength
gime is emphasized where only a few modes are respon
for the spontaneous emission. In Sec. III we illustrate
1050-2947/2000/61~3!/033401~13!/$15.00 61 0334
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results by considering the case of sodium atoms in subwa
length waveguides. In Sec. IV we consider the kinematics
such atoms within the guide and in Sec. V we discuss
dynamical effects on the motion when a cavity mode is
cited. Section VI contains comments and conclusions.

II. QED IN WAVEGUIDE

The hollow cylindrical waveguide with circular cross se
tion is depicted in Fig. 1. As shown in this figure,a is the
radius, the waveguide is infinite in length and the longitu
nal spatial variation is along thez axis, coincident with the
straight line r 50. The walls of the structure are perfect
conducting excluding all electromagnetic fields from th
interior. The standard electromagnetic boundary conditi
apply such that the tangential components of the electric fi
vector and the magnetic field vector must vanish at ev
point on the cylinder surface.

The system consists of an atom of massM, characterized
by its electric dipole momentd, of oscillation frequencyv0 ,
interacting with the electromagnetic field. The effecti
Hamiltonian can be written as

H5
P2

2M
1U~R!1\v0p1p2d•E~R!1Hfield ~1!

whereP andR are the momentum and position vectors of t
atomic center of mass which is assumed to be subject
general potentialU(R). In the two-level approximation, the
internal motion of the atom involves only two statesue&, of
energy Ee , and ug&, of energy Eg , such that Ee2Eg
5\v0 . The operatorsp andp1 are the lowering and raising

FIG. 1. Schematic drawing of the hollow circular waveguide
infinite length. The cylinder wall is assumed to be perfectly co
ducting.
©2000 The American Physical Society01-1
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S. AL-AWFI AND M. BABIKER PHYSICAL REVIEW A 61 033401
operators for the internal atomic states such thatd
5^d&eg(p1p1); E is the electric field operator andHfield is
the electromagnetic field Hamiltonian.

A. Quantized fields

The procedure for enumerating the electromagn
modes inside the cylinder begins with the solution of t
wave equation for the transverse electromagnetic fields. A
well known, there are two types of normal mode
s-polarized~TE! andp-polarized~TM!, both of which satisfy
the electromagnetic boundary conditions at the guide wa
The total quantized electric and magnetic field operators
written as follows:

E~R' ,z,t !5 (
h5~p,s!

(
l m

3E
2`

`

dk$ah~k,l ,m!fh~k,l ,m,R' ,z,t !

1H.c.%, ~2!

B~R' ,z,t !5 (
h5~p,s!

(
l m

E
2`

`

dkH S 1

iv~k,l ,m! Dah~k,l ,m!

3“fh~k,l ,m,R' ,z,t !1H.c.J , ~3!

where H.c. stands for ‘‘Hermitean conjugate’’ and we ha
expressed the position vector in components form by writ
R5(R' ,z) with z an axial coordinate andR'5(r ,f) a two-
dimensional ~transverse! position vector. The operato
ah(k,l ,m) is the boson operator for the field mode of p
larization h(5p,s) characterized by integer quantum num
bersl , m and a continuous axial wave vectork. The relevant
commuation relations are

@ah~k,l ,m!,ah8
†

~k8,l 8,m8!#5dhh8d l l 8dmm8d~k2k8!.
~4!

Finally, fh(k,l ,m,R' ,z,t) are the mode functions for whic
explicit forms are given below. These vector functions s
isfy the wave equation as well as the electromagnetic bou
ary conditions at the guide walls.

It is convenient to simplify the notation by introducing
compound mode variableQ which stands for the three mod
variables (k,l ,m). The quantized electric field in Eq.~2!
becomes

E~R' ,z,t !5 (
h5~p,s!

(
Q

$ah~Q!fh~Q,R' ,z,t !1H.c.%

~5!

with a similar equation corresponding to Eq.~3!. The sum
over Q stands for one integration overk, plus two integer
sums overl and m. The mode commutation relations a
now given by

@ah~Q!,ah8
1

~Q8!#5dhh8dQQ8 , ~6!
03340
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where dQQ8 is interpreted by inspection of the right-han
side of Eq.~4!.

The mode functions for the transverse magnetic~TM!
modes corresponding toh5p ~p-polarized modes! emerge
in the form @12#

fp~Q,R' ,z,t !5Cp~Q!S ikl

hl m
2 r

Jl ~hl mr !f̂2
ik

hl m
Jl8 ~hl mr ! r̂

1 iJ l ~hl mr !ẑDe6 i l fe2 i ~vp~Q!t2kz!, ~7!

whereQ refers to the three mode variables (k,l ,m), hl ma
5a l m anda l m are the roots ofJl (a l m)50. Therefore the
dispersion relationvp(Q) of the TM mode frequency is

vp
2~Q!5c2H k21S a l m

a D 2J . ~8!

Finally in Eq. ~7!, Cp is thep-polarized mode normaliza
tion factor given by

Cp~Q!5S c2\a l m
2

2Nl «0ALa2vJl 11
2 ~a l m!

D 1/2

. ~9!

HereA is the cross-sectional area of the guide,L is its ~large!
length,N051 andNl 51/2 for l Þ0.

The second set of electromagnetic modes in the circ
waveguide is the transverse electric~TE! set of modes cor-
responding toh5s ~s-polarized modes!. The mode functions
for these are@12#

fs~Q,R' ,z,t !5Cs~Q!F iJ l8 ~hl m8 r !f̂

2
l

hl m8 r
Jl ~hl m8 r ! r̂ Ge6 i l fe2 i ~vs~Q!t2kz!,

~10!

where hl m8 a5b l m and b l m are the roots ofJl8 (b l m)50.
Therefore the dispersion relationvs(Q) of the TE mode fre-
quency is

vs
2~Q!5c2H k21S b l m

a D 2J . ~11!

In Eq. ~10! Cs(Q) is the s-polarized mode normalization
factor, given by

Cs~Q!5S \vb l m
2

2Nl «0AL~b l m
2 2l 2!Jl

2 ~b l m!
D 1/2

. ~12!

The total Hamiltonian for the electromagnetic field
within the circular waveguide is
1-2
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ATOMIC MOTION IN HOLLOW SUBMICRON CIRCULAR . . . PHYSICAL REVIEW A61 033401
Hfield5
1

2 E2`

`

dzE
0

a

rdr E
0

2p

dfH «0E2~z,R' ,t !

1
1

m0
B2~z,R' ,t !J . ~13!

The equationJl (hl ma)50 is the dispersion relation for th
p-polarized modes. The following identity involving a defi
nite integral is needed in the analysis:

E
0

aH Jl8
2~hl mr !1

l Jl
2 ~hl mr !

r 2 J rdr 5
a2

2
Jl 11

2 ~hl mr !.

~14!

Also Jl8 (hl m8 a)50 is the dispersion relation of th
s-polarized modes. The following identity also facilitates t
analysis:

E
0

aH Jl8
2~hl m8 r !1

l Jl
2 ~hl m8 r !

r 2 J rdr

5
a2

2 F12S l

a D 2GJl
2 ~hl m8 r !, ~15!

With the help of Eqs.~14! and ~15! the factorsCp(Q) and
Cs(Q) defined in Eqs.~9! and ~12! emerge from the usua
quantization requirement that the total HamiltonianH f re-
duces to the canonical form

Hfield5
1

2 (
h~5p,s!

(
Q

\v~Q!$ah~Q!ah
†~Q!1ah

†~Q!ah~Q!%.

~16!

B. Spontaneous emission

The spontaneous decay rate for an electric dipoled situ-
ated at an arbitrary pointR5(R' ,z) within the waveguide is
evaluated using Fermi’s golden rule. By symmetry, this r
cannot depend on the axial coordinatez and we may evaluate
it for a dipole situated at an arbitrary point (R',0), i.e., at a
point R' within the normal cross section of the transver
plane. We have

G~R'!5
2p

\ (
h5~p,s!

(
Q

u^e;$0%u2d•E~R',0!ug;$Q,h%&u2

3d@Ee2Eg2\vh~Q!#. ~17!

The transition from the excited internal stateue& to the
ground stateug& is effected by the emission of all possib
single quanta of waveguide modes with stateu$Q,h%& of
frequencyvh(Q) and polarizationh. The vacuum state is
represented byu$0%&.

It should be emphasized that the waveguide freque
spectrum, determined by Eq.~8! for p-polarized modes and
Eq. ~11! for s-polarized modes, comprises two sets of d
crete branches, one for each type of polarizationh5(p,s).
A frequency branch is labeled by two fixed integersl andm
and within any given branch, the frequency varies only w
03340
e
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the one-dimensional axial wave vectork. The TE and TM
frequency branches for a typical circular waveguide
shown in Fig. 2.

Depending on the value of the dipole frequencyv0 , con-
tributions to the emission rate arise from all branches sa
fying the condition

vh~Q!5vh~k,l ,m!5v0 . ~18!

Sincevh(k,l ,m) depends on the guide radiusa entering via
hl m or hl m8 , Eq.~18! conceals the dependence on the cho
values ofa.

Assuming a value fora, the ‘‘zone center’’ (k50) fre-
quency separation between the lowest branch TE11 corre-
sponding tol 51, m51 and the adjacent branchl 50, m
51, and between the branch TM01 corresponding tol 50,
m51 and the adjacent branchl 51, m51 are approxi-
mately given by

Dvs~01211!5vs~0,0,1!2vs~0,1,1!5
c

a
~b012b11!,

~19!

Dvp~11201!5vp~0,1,1!2vp~0,0,1!5
c

a
~a112v01!.

~20!

For a51.0mm we haveDvs(01211)'5.9731014s21 and
Dvp(11201)'4.2831014s21. Frequency separations o
similar orders of magnitude are obtainable for higher ad
cent branches. These frequency separations are ther
quite large for waveguides with dimensions in the micr
range. From the special case illustrated in Fig. 2~a50.9l,
l5589 nm! we see that if the dipole frequency is equal
vs(0,1,1), emission is possible only via the TE11 (b11
51.841) branch. Inspection of Eq.~10! further shows that a
dipole oscillating at such a frequency and which is orien
along the axis of the waveguide cannot couple to the elec
field of the TE11 mode and will therefore not decay spont
neously. But spontaneous decay is possible for a dipole

FIG. 2. Dispersion curves showing the TM and TE branches
the guided modes in a cylinder with circular cross section of rad
a50.9l wherel5589 nm.
1-3
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S. AL-AWFI AND M. BABIKER PHYSICAL REVIEW A 61 033401
ented along the axis of the waveguide via the TM01 (a01
52.405) at a frequency less thanvs(0,0,1) and will involve
the TE11 lowest branches as well as the TM01 branch. If, in
addition, this dipole is oriented along the axis, only the TM01
branch provides a decay channel, since the axial dipole
not couple to the TE modes. On the other hand, since
branch TM11 (a1153.832) coincides with the TE01 (b01
53.832) branch and the TE21 (b2153.054) branch is below
both, the spontaneous decay of a dipole of frequency gre
thanvp(0,1,1) will involve the TE11, TM01, TE21, TE01, and
TM11 branches. These observations, which are significan
submicron waveguides, are substantiated further with
calculation of the spontaneous rate, as we now show.

The procedure for the calculation of the emission r
based on Eq.~17! can be outlined as follows. Contribution
from the p and s modes are carried out separately. Aft
evaluating the squared matrix element, use of the disper
relations, Eq.~8! for p-polarized modes and Eq.~11! for
s-polarized modes, facilitates the evaluation of the integ
over k involving the d function. We are then left with two
sums over integersl andm and a cutoff condition, Eq.~18!,
to be satisfied for each evaluation.

C. Contribution of TM modes

Consider first the evaluation of the contribution from t
TM modes which involves use of the mode function defin
in Eq. ~7!. Following the above procedure for the emissi
rate evaluation in this case culminates in an expression
volving sums overl andm. We have at pointR'5(r ,f)

Gp~R'!5(
l m

S d2

p\«0a3D H ^dz&
2

d2 Gl m
z ~R'!1

^dr&
2

d2 Gl m
r ~R'!

1
^df&2

d2 Gl m
f ~R'!J , ~21!

whered is the magnitude of the dipole matrix element vec
^d12&, with cylindrical components represented by^dz&,
^dr&, and ^df&. The G functions appearing in Eq.~21! are
given by

Gl m
z ~R'!5

a l m
2

Rl mH l m
Jl

2 ~hl mr !, ~22!

Gl m
r ~R'!5

Rl m

H l m
Jl8

2~hl mr !, ~23!

Gl m
f ~R'!5

a2l 2Rl m

a l m
2 H l m

Jl
2 ~hl mr !/r 2, ~24!

where we have definedRl m andH l m by

Rl m5F S v0a

c D 2

2a l m
2 G1/2

and H l m5Nl Jl 11
2 ~a l m!.

~25!
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D. Contribution of TE modes

Similar evaluations leading to the contribution from th
s-polarized modes are based on Eq.~10!. The result can be
written in the form

Gs~R'!5(
l m

S d2v0
2

p\«0c2aD H ^dr&
2

d2 Sl m
r ~R'!

1
^df&2

d2 Sl m
f ~R'!J , ~26!

whereSl m
r andSl m

f are given by

Sl m
r ~R'!5

a2l 2

Rl m8 H l m8
Jl

2 ~hl m8 r !/r 2, ~27!

Sl m
f ~R'!5

b l m
2

Rl m8 H l m
Jl8

2~hl m8 r !, ~28!

and we have definedRl m8 andH l m8 by

Rl m8 5F S v0a

c D 2

2b l m
2 G1/2

and

H l m8 5Nl ~b l m
2 2l 2!Jl

2 ~b l m!, ~29!

E. Total spontaneous rate

For a given dipole orientation, the spontaneous emiss
rate is given by the sum of contributions from the TM a
TE sets of modes. The results can be written in terms ol,
the free space transition wavelength. For a dipole orien
along the axis we have

Gz~R'!5G0 (
l m

@2ps#
3

~2ps!3 Gl m
z ~R'!. ~30!

For a dipole oriented alongr̂ we have

G r~R'!5G0

3

~2ps! H (
l m

@2ps#

Sl m
r ~R'!

1 (
l m

@2ps#
1

~2ps!2 Gl m
r ~R'!J ~31!

and for a dipole oriented alongf̂ we have

Gf~R'!5G0

3

2ps H (
l m

@2ps#

Sl m
f ~R'!

1 (
l m

@2ps#
1

~2ps!2 Gl m
f ~R'!J , ~32!

wheres5a/l andG0 is the corresponding spontaneous ra
in free space
1-4
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G05
d2v0

3

3p\«0c3 . ~33!

These results can now be explored for typical situatio
involving sodium atoms in circular waveguides. Our ma
concern here, however, is with the submicron regimea
,l). Before we consider this regime, it is instructive
check the results using a particularly simple asymptotic li
arising when the radiusa increases to infinity. As we show
next, it is possible to verify by explicit calculations that
this limit the results in Eqs.~30!, ~31!, and ~32! yield the
spontaneous rate in free space.

III. SODIUM ATOMS IN SUBMICRON CIRCULAR
GUIDES

For orientation as to orders of magnitude, it is instruct
to concentrate now on a typical physical situation. We c
sider the case of a sodium atom and focus on
32s1/2↔32p3/2 transition (l5589 nm). The magnitude o
the dipole matrix element associated with this transition
d'2.6eaB , which is consistent with the measured free spa
lifetime of t'16.3 ns~or G056.133107 s21!.

Figure 3 shows the variation of the spontaneous emis
rate with the radius of the cylinder for a sodium atom at
center of the cylinder, i.e., at the pointr 50, with the atomic
dipole oriented, in turn, along the three directionsz
5 ẑ, r̂ ,f̂). The plots show the ratioGz /G0 againsta/l. For
the axial dipole orientation case shown in Fig. 3~a! there is a
‘‘cutoff’’ value of a below which there is no spontaneou
emission. By simple analysis, it is easy to show that
results from Eqs.~31! and~32! are the same atr 50. In each
case the rate oscillates with increasinga. It is seen that at
small values ofa the rate is much higher relative to the fre
space value for the chosena and shows a clear tendency
attaining a fixed value~i.e., the free space value! at largea.

Figure 4 shows the distribution plots for the spontane
emission rate when the dipole matrix element has vari
orientations. The evaluations are carried out for points sp
ning the guide cross section and are based on the expres
given in Eqs.~30!, ~31!, and ~32!. Contributions from indi-
vidual types of mode are not shown. In Figs. 4~a! and 4~c!

when the dipole is oriented alongẑ and f̂, respectively, we
find that the spontaneous emission rate is zero when the
pole is close to the surface, but when the dipole is orien
alongr̂ it is twice the free space value, as shown in Fig. 4~b!.
These are exactly the values of the spontaneous dipole e
sion rates at the surface of a single half-space conductor@13#.
Indeed, this acts as a useful test for the these results.

As a general rule, however, the spontaneous emission
is maximum where field components parallel to the dip
matrix element have maximum values. It is also importan
note that, because of the subwavelength dimensionsa
50.9l) chosen for illustration purposes in Fig. 4, the em
sion rate distributions arise from at most five branches of
mode spectrum for a circular guide. This observation is s
nificant for the atom guiding applications to be considered
the next section. Finally, we note that the decay rate of
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atom in a circular guide depends on three factors: the ra
of the guide, the position of the atom, and the orientation
the dipole.

IV. DYNAMICS

The motion of an atom inside the guide can be alte
significantly when a guide mode is excited at frequen
vh(Q) @whereQ[(k,l ,m) and h is the polarization type#
which is closely tuned to the dipole transition frequencyv0 .
The total steady state force acting on the center of mass o
atom moving within the guide at velocityV due to the ex-
cited mode of frequencyvh(Q) can be written as@1,2#

^Fh~Q,R,V!&

52\H G~R!V2~R!“u~R!2
1

2
D~R,V!“V2~R!

D2~R,V!12V2~R!1G2~R!
J

h

,

~34!

FIG. 3. Total spontaneous emission rate againsta/l ~wherel
5589 nm! for a sodium atom at the center of the cylinderr 50
when the atomic dipole moment vector is oriented~a! along thez

axis, ~b! along ther̂ direction ~or f̂ direction!.
1-5
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S. AL-AWFI AND M. BABIKER PHYSICAL REVIEW A 61 033401
whereV is the Rabi frequency for an electric dipoled in the
guide mode whose electric field is defined in Eq.~7! for
p-polarized light, and Eq.~10! for s-polarized light. It is easy
to see thatV is in fact only a function of the radial coordi
nater

V~R!5V~r !5
1

\
u^d&eg•Eu. ~35!

ukl (R) is the mode phase which corresponds to the mom
tum imparted by the light to the atom and, in view of Eqs.~7!
and ~10!, depends only on the axial coordinatez and the
azimuthal coordinatef and is written as

ukl 5l f1kz. ~36!

Thusukl has the gradient

FIG. 4. Distribution plots for the spontaneous emission r
when the dipole matrix element has different orientations for a
dium atom in a cylinder of circular cross section. The plots sh
the variation of theG/G0 as a function of the position of the atom
within the guide:~a! dipole moment vector along thez direction,~b!

along ther̂ direction, and~c! along thef̂ direction.
03340
n-

“ukl 5
l

r
f̂1kẑ. ~37!

This immediately shows that the dissipative force has co
ponents in both the axial and azimuthal directions.D(R,V) is
a dynamic detuning which is a function of both the positi
and the velocity vectors of the atom

Dh~Q,R,V!5D02V•“ukl ~38!

with D05vh(Q)2v0 the static detuning of the guide mod
from the atomic resonance.

A. Doppler shift

The second term in Eq.~38! d52V•“ukl represents the
Doppler shift due to the excited mode. On making use of
~37!, we have

d~r ,V!52kVz2
l Vf

r
, ~39!

whereVz andVf are the axial and azimuthal components
the atomic velocity vector. The first term ind is the expected
Doppler shift that would arise for a plane wave traveli
along the axis of the cylinder. The second term can be w
ten as

df~r ,Vf!52l v r , ~40!

where v r5Vf /r is the angular velocity of the atom. Thi
has the same form as the rotational shift discussed in a re
article by Bialynicki-Birula and Bialynicka-Birula@14# who
predicted that a rotating quantum system undergoing spo
neous emission is subject to a frequency shift equal tolv r
wherev r is its angular frequency andl is the angular mo-
mentum of the emitted light. The rotational shift of Ref.@14#
had also been the subject of investigation by Silverman@15#
and has been used in the discussion of the mechanical F
day effect@16#. The shift has the same form discussed mo
recently by Courtialet al. @17# who observed a frequenc
shift l v r for a free space Laguerre-Gaussian light beam
orbital angular momentum quantum numberl when the
beam is rotated about its axis at an angular frequencyv r .
The interesting feature here is that the frequency shif
quantized in units of the quantum numberl , but the first
effect concerns the orbital motion of the radiating syste
while the second the orbital angular momentum of the lig

Here we show that interesting rotational effects can a
be induced by light on quantum systems, not in free spa
but in the context of atom guides. As has been pointed
cylindrical structures with circular cross section can act
waveguides to both atoms and light in mutual interact
@18#. The mechanical effects on material objects due to
angular momentum of microwave photons confined in cir
lar waveguides has been pointed out by Kristensenet al.
@19#. In the context of atoms, it is the orbital angular mome
tum property associated with the azimuthal dependence
the field structure that is responsible for the new effe
emerging in the interaction of the atom with a wavegui

e
-
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mode of order greater than the fundamental mode. We s
here that this gives rise to a number of rotational featu
which make the atomic motion drastically different from th
associated with the fundamental mode of the waveguide

The interpretation of the shift in Eq.~40! in this case can
be easily made in terms of angular momentuml \ carried by
a quantum~photon! of the waveguide mode. Note, howeve
that the shift does not depend on the frequency of the mo
only on its orderl , which coincides with the orbital angula
momentum quantum number of the mode. Equation~40! can
be rewritten in Cartesian coordinates in the form

df~r ,Vf!52S 2l y

r 2 Vx1
l x

r 2 VyD . ~41!

Since the total Doppler shift is the dynamic~i.e., velocity-
dependent! part of the detuningDh(Q) which enters the tota
force in Eq.~34!, it clearly has an important role to play i
the dynamics of the atom within the cylindrical guide.

B. Radiation forces and torque

Another context where the phase gradient enters is
first term of the force field given in Eq.~34!. Substituting for
“u from Eq. ~37!, the first term of the force field~the dissi-
pative force! can be written as

^Fh~Q,R,V!&diss52\H G~r !V2~r !@~ l /r !f̂1kẑ#

D2~R,V!12V2~r !1G2~r !
J

h

.

~42!

As Eq. ~42! suggests, to influence the atom in the a
muthal direction, the integerl must be greater than zero
otherwise the atom will only be subject to a force in the ax
direction. The axial component of the dissipative force c
be written as

^Fh~z!~Q,R,V!&diss52\kH G~r !V2~r !

D2~R,V!12V2~r !1G2~r !J
h

~43!

and the azimuthal component of the dissipative force invo
ing the orbital angular momentum is given by

^Fh~f!~Q,R,V!&diss5
2l \

r H G~r !V2~r !

D2~R,V!12V2~r !1G2~r !J
h

.

~44!

This force field component is thus responsible for a torq
Th acting on the atom center of mass about the axis of
cylinder which is given by

Th~Q,R,V!5 ẑ^rF f&h5H 2l \G~r !V2~r !

D2~R,V!12V2~r !1G2~r !J
h

ẑ.

~45!

It is easy to check that this torque depends only on the ra
coordinate. In addition, it depends on the atom velocity v
tor V. In the saturation limit, corresponding to largeV, one
obtains for the magnitude of this light torque
03340
w
s

t

e,

e

-

l
n

-

e
e

al
-

Th'l \Gh~r !. ~46!

This result has the simple interpretation that for an at
at the radial pointr the mode supplies angular momentu
l \ delivered at the rate ofGh(r ) quanta per second and thu
gives rise to a rate of angular momentum per second equ
the productl \Gh , that is the torque acting on the ato
about the cylinder axis. IfG were not position and mode
dependent, the result could have been interpreted as a to
quantized in unit of\G. As we now show, the position an
mode dependence as well as the velocity dependence, w
are manifest in the general result in Eq.~45!, make the dy-
namics of atoms in waveguides significantly different fro
other situations. The torque effects due to different kinds
light on atoms has been discussed by van Enk and van
and Nienhaus@20# and atom dynamics in free spac
Laguerre-Gaussian beams have also been reported@21–23#.

On the other hand, the second term of the force field~the
dipole force! given in Eq.~34!, can be written as

^Fh~Q,R,V!&dipole5H 2\D~R,V!¹V2~r !

D2~R,V!12V2~r !1G2~r !J
h

.

~47!

This means that the atoms also become subject to a li
induced dipole force and this, too, depends on the dip
orientation as well as the type of cavity mode. The expli
form of the dipole potential for a waveguide mode chara
terized byQ andh is such that̂ Fh&dipole52“Uh , with Uh
in this case written as

Uh~Q,R,V!5H S \D~R,V!

2 D lnF11
2V2~r !

@D2~R,V!1G2~r !#G J
h

.

~48!

It is clear that the potential will exhibit a minimum~maxi-
mum! at the high intensity locations whereDh,0(Dh.0).

C. Equation of motion

The dynamics of an atom of massM immersed in the
waveguide mode of frequencyvh(Q) follows straightfor-
wardly by solving the equation of motion subject to the for
in Eq. ~34!, namely,

M S d2R

dt2 D
h

5^Fh~Q,R,V!&, ~49!

We have not included the effects of the van der Waals
tential, appropriate for the subwavelength dimensions, si
its role for atoms in cavities has been clarified, both expe
mentally@24# and theoretically@1#. In particular, the van der
Waals potential is expected to be effective only at a re
tively short distance from the guide surfaces. In general,
using Eqs.~42! and~47!, the equation of motion~49! can be
rewritten as~dropping theh and Q mode labels for conve-
nience!
1-7
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S d2R

dt2 D5S dV

dt D
5

2\

M H GV2S ~kẑ!1~ l /r !

D212V21G2D
2V

]V

]r S D

D212V21G2D r̂ J ~50!

which can be expressed as two equations, describing lo
tudinal and transverse components of the motion as follo

S dVz

dt D5S d2z

dt2 D5
1

M H 2\kGV2

D212V21G2J , ~51!

S dV'

dt D5S d2R'

dt2 D
5

2\

M H GV2S ~ l /r !

D212V21G2D f̂

2V
]V

]r S D

D212V21G2D r̂ J . ~52!

Equation~52! can be split into two equations as follows:

S dVf

dt D5
2\

M H GV2S ~ l /r !

D212V21G2D J , ~53!

S dVr

dt D5
2\

M H 2V
]V

]r S D

D212V21G2D J . ~54!

Thus we now have three components of motion; the a
motion Eq.~51!, the azimuthal motion Eq.~53!, and the ra-
dial motion Eq. ~54!. These are coupled motions sinceD
contains dependence on all three components ofV. In Eqs.
~53! and ~54! we can alternatively express the motion
terms of thex andy variables as follows:

S d2x

dt2 D5S dVx

dt D52
2\

M ~D212V21G2! FGV2
l y

r 2

1V
]V

]r
D

x

r G , ~55!

S d2y

dt2 D5S dVy

dt D5
2\

M ~D212V21G2! FGV2
l x

r 2

2V
]V

]r
D

y

r G , ~56!

where we have usedf̂5(2sinf)x̂1(cosf)ŷ, r̂5(cosf)x̂
1(sinf)ŷ, sinf5y/r, cosf5x/r, andr 5Ax21y2.

It is thus clear that Eq.~49! constitutes a set of thre
coupled ordinary differential equations. These, for a giv
set of initial conditions, can be solved numerically usi
standard routines.
03340
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V. ATOM MOTION

A. Typical parameters

In order to exhibit the salient features of the dynamics
is necessary to consider a specific physical situation in wh
sodium atoms are guided along a circular waveguide
which the TM11 mode has been excited by a laser of intens
I'107 W m22 which is the laser intensity adopted by Ren
et al. in their experiment@9#. We focus again on the trans
tion atl5589 nm and we define a free space Rabi freque
V0 by

V05S Id2

2\2«0cD 1/2

'8.563109 s21. ~57!

We assume a waveguide of radiusa50.9l and a static de-
tuning D0'235.76 MHz, which is much smaller than
typical zone-center frequency spacing. We also introd
two scaling parameters: a scaling forceF0 and a scaling
potential U0 . With integers l , m known, D0 as defined
above and withv0 corresponding tol5589 nm, it is
straightforward to deduce the magnitude of the axial wa
vector k ~k depends on the kind of excited mode;p or s
polarized! and on the order of the model m. Consequently,
Eq. ~8! is used when the TM11 mode (a1153.832) is excited.
The scaling parameterF0 for this k11 is defined by

F052\k11G0'1.16310219N. ~58!

The scaling potential energyU0 for all modes is defined by

U05~1/2!\G053.13310227J'4.7 MHz. ~59!

In the figures below, force is measured in units ofF0 and
potential energy in units ofU0 .

We focus now on the three possible cases of dipole
entation separately by assuming that the electric dipole
oriented in a fixed direction. First we assume that the elec
dipole is parallel to the cylinder axis~i.e., along the axial
direction!. Second, we consider the case when it isperpen-
dicular to the cylinder axis~i.e., along the radial direction!
and finally when it is oriented in theazimuthaldirection.

B. Dipole along axis„ ẑ…

With the dipole oriented along the axis~ẑ direction! and
with the TMl m mode excited we have a position-depende
Rabi frequency given by

@Vp~k,l ,m,r !#z5V0

a l mcUJtS a l m

r

a D U
av0ANl uJl 11~a l m!u

. ~60!

Figure 5 displays the spatial distribution of this Rabi fr
quency over a diameter of the cross section of the gu
when the TM11 mode with a Rabi frequency@Vp(k,1,1,r )#z
is excited. The maximum intensity is located at points wh
r 5a/2. Therefore the potential will exhibit a minimum a
these points forD0,0. For D0.0 we have trapping at the
low intensity ~dark! regions of the field. With the dipole
1-8
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ATOMIC MOTION IN HOLLOW SUBMICRON CIRCULAR . . . PHYSICAL REVIEW A61 033401
oriented along the axis and in a situation corresponding
the above choice of parameters, the axial component of
dissipative force field given by Eq.~43! is set up with spatial
distribution over a diameter of the cross section of the gu
as depicted in Fig. 6. It can be seen from this figure t
atoms located atr 5a/2 experience the strongest force alo
the axis.

The corresponding profile of the dipole potent
(Up(x,y))z is depicted in Fig. 7~a!. As expected, we see tha
for D0,0 the dipole potential exhibits a minimum at poin
where the intensity is maximum. A reversal of the sign
detuning, obviously, leads to the dipole potential of the o
posite sign to that depicted in Fig. 7~a! and it is easy to see
that transverse trapping of atoms is also possible for
case, as shown in Fig. 7~b!. It can be deduced from thes
figures that, from a quantum-mechanical point of view,
lutions of the two-dimensional Schro¨dinger equation with
@Up(x,y)#z as potential must exist. In the ground state,
atomic wave function peaks in the vicinity of the centr
minimum associated with the dipole potential. It can also

FIG. 5. Variation of the square of the Rabi frequency within
central cross section of the guide for a sodium atom when the T11

mode is excited. Here the electric dipole moment vector is axia

FIG. 6. Variation of the axial quasistatic dissipative force act
on a sodium atom when the TM11 mode is excited. Here the electri
dipole moment vector is axial.
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seen from Fig. 7~a! that for the parameters assumed abov
the central well depth is approximately (118U0
'0.557 GHz). This is sufficiently deep to exhibit man
quasiharmonic trapping~vibrational! states. The vibrational
frequency can be estimated simply using the parabolic
proximation@1,2#.

Figures 8 shows the projection of the trajectory on thexy
plane based on the solution of Eq.~49! for an atom with its
electric dipole moment vector oriented parallel to the cyli
der axis in the presence of the TM11 mode of the waveguide,
assuming negative detuning with the initial conditions su
that the atom starts from rest at the pointx5y50.5a. This
leads to the interpretation of the motion as the sum of rad
and rotational motions superimposed on a translational m
tion along the axis~not shown!. The rotational motion is an
expected signature of the light torque effects mention
above, while the translational motion along the axis~not
shown! is due to the pressure force acting along the directi
of propagation. The radial features of the trajectory imme
ately suggest that the atom may be trapped in an annu
shaped quantum well due to the light and this is confirm
by inspecting the distribution of the dipole potential asso
ated with Eq.~48! for the negative detuning situation, a
shown in Fig. 7~a!. The evolution of velocity components
can also be displayed and it is found that the axial veloc
Vz grows in magnitude with time while the transverse veloc
ties ~Vx andVy! exhibit periodic oscillations.

On the other hand, the radial features of the correspond
trajectory shown in Fig. 9 for the positive detuning caseD0

FIG. 7. Spatial distribution of the potential of the sodium ato
in the circular waveguide under the conditions of Fig. 6 when t
dipole moment vector is along the cylinder axis;~a! negative detun-
ing, ~b! positive detuning.
1-9
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S. AL-AWFI AND M. BABIKER PHYSICAL REVIEW A 61 033401
.0 immediately suggest that the atom must be trapped
bowl-shaped quantum well due to the light and this is c
firmed by inspecting the distribution of the dipole potent
associated with Eq.~48! for the positive detuning situation
as in Fig. 7~b!.

C. Dipole along „ r̂ …

With the dipole oriented transversely along ther̂ direction
and with the TMlm mode excited, the corresponding Ra
frequency is obtained as

~Vp~k,l ,m,r !!r5V0

kcUJl8 S a l m

r

a D U
v0ANl uJl 11~a l m!u

. ~61!

FIG. 8. Predicted trajectory of a sodium atom on a transve
~xy! plane of a subwavelength cylindrical guide. The atomic dip
is assumed to remain in the axial direction in the presence o
excited TM11 mode of the guide for the negative detuning case. S
text for values of parameters.

FIG. 9. ~a! Predicted projection in thexy plane of the trajectory
of a sodium atom in a subwavelength cylindrical guide. The ato
dipole is assumed to remain in the axial direction in the presenc
an excited TM11 mode of the guide for the positive detuning cas
The initial conditions are such that the atom starts from rest ax
505y. See text for values of parameters.
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The quasistatic axial component of the dissipative force fi
given by Eq.~43!, corresponding to the same choice of p
rameters as in the previous subsection, is shown in Fig
for a dipole oriented along ther̂ direction. It can be seen
from this figure that atoms located at the center (r 50) of the
guide experience the strongest force along the axis and a
wall (r 5a), while atoms located atr 5a/2 of the guide do
not experience any force. The corresponding profile of
dipole potential@Up(x,y)# r is depicted in Fig. 11~a!. A re-

e

n
e

c
of
.

FIG. 10. Variation of the axial quasistatic dissipative force a
ing on a sodium atom when the TM11 mode is excited. Here the
electric dipole moment vector is oriented~transversely! along ther̂
direction.

FIG. 11. Spatial distribution of the dipole potential on the s
dium atom in the circular waveguide under the conditions of Fig.
when the dipole is along ther̂ direction; ~a! negative detuning,~b!
positive detuning.
1-10
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ATOMIC MOTION IN HOLLOW SUBMICRON CIRCULAR . . . PHYSICAL REVIEW A61 033401
versal of the sign of detuning, however, leads to the dip
potential shown in Fig. 11~b! of the opposite sign and it is
easy to see that transverse trapping of atoms is also pos
for this case. The solutions of the two-dimensional Sch
dinger equation with@Up(x,y)# r as potential must also exis
and the central well depth is approximately (90U0). This,
too, is sufficiently deep to allow several quasiharmonic tr
ping ~vibrational! states.

Figure 12 displays the projection of the trajectory wh
the electric dipole moment vector is oriented perpendicu
to the cylinder axis in the presence of the TM11 mode for the
negative detuning situation. The initial conditions are su
that the atom starts from rest atx5y'0. As in the previous
section, Fig. 12 leads to the interpretation of the motion
the sum of radial and rotational motions superimposed o
translational motion along the axis. The rotational motion
an expected signature of the light torque effects, while
translational motion along the axis is due to the press
force acting along the axis. The radial features of the tra
tory immediately suggest that the atom must be trapped
bowl-shaped quantum well due to the light and this is c
firmed by inspecting the distribution of the dipole potent
associated with Eq.~48! for the negative detuning situation
as shown in Fig. 11~a!.

Figure 13 displays the trajectory projection onto thex-y
plane when the electric dipole moment vector is orien
perpendicular to the cylinder axis in the presence of
TM11 mode, for the positive detuning situation. The initi
conditions are such that the atom starts from rest at thx
5y50.5a. The radial features of the trajectory for the ato
in the positive detuning case immediately suggest that
atom is trapped in an annulus-shaped quantum well du
the light and this is confirmed by inspecting the distributi
of the dipole potential associated with Eq.~48!, as shown in
Fig. 11~b!.

FIG. 12. Predicted trajectory in thexy plane for a sodium atom
in a subwavelength cylindrical guide. The atomic dipole is assum
to remain radial in the presence of an excited TM11 mode of the
guide for the negative detuning case. See the text for value
parameters.
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D. Dipole along f̂

With the dipole oriented along thef̂ direction and with
the TMlm mode excited, the corresponding Rabi frequency
given by

@Vp~k,l ,m,r !#f5V0

kl caUJl S a l m

r

a D Y rU
v0a l mANl uJl 11~a l m!u

. ~62!

The maximum of the Rabi frequency is located at poi
wherer 50 and so the dipole potential will exhibit a min
mum at this point forD0,0. The quasistatic axial compo
nent of the dissipative force, given by Eq.~43! ~for the same
choice of parameters as in the previous subsection! is shown
in Fig. 14. The corresponding potential (Up(x,y))f is dis-

d

of

FIG. 13. Predicted trajectory of a sodium atom on the transve
~xy! plane of a subwavelength cylindrical guide. The atomic dip
is assumed to remain radial in the presence of an excited T11

mode of the guide for the positive detuning case. See the tex
values of parameters.

FIG. 14. Variation of the axial quasistatic dissipative force a
ing on a sodium atom along a diameter when the TM11 mode is
excited. Here the electric dipole moment vector is oriented alo

the f̂ direction.
1-11
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S. AL-AWFI AND M. BABIKER PHYSICAL REVIEW A 61 033401
played in Fig. 15. Here the dipole potential for this comp
nent has a minimum at the center of the guide for nega
detuning. The solutions of the two-dimensional Schro¨dinger
equation with@Up(x,y)#f as potential must exist too and th
central well depth is approximately 85U0 , which is also suf-
ficiently deep to allow several quasiharmonic trapping sta
In contrast to the case of negative detuning, the dipole
tential for the positive detuning case has no minimum at
center of the guide. In fact, in the positive detuning case
atoms tend to be attracted towards the cylinder wall. In ot
words, the solution of Schro¨dinger equation with
@Up(x,y)#f as potential for positive detuning will alway
have the atomic vibrational ground state distribution peak
in the vicinity of the wall. From the point of view of atom
guiding, such a dipole orientation will not result in efficie
atom guiding by the TM11 mode with positive detuning.

Figure 16 shows the trajectory for an atom with its ele
tric dipole moment vector oriented along thef̂ direction in
the presence of the TM11 mode of the waveguide in th

FIG. 15. Spatial distribution of the potential of the sodium ato
in the circular waveguide under the conditions of Fig. 14 when t

dipole is along thef̂ direction and for negative detuning.

FIG. 16. Predicted trajectory of a sodium atom on a transve
~xy! plane of a subwavelength cylindrical guide. The atomic dip

is assumed to remain in thef̂ direction in the presence of an ex
cited TM11 mode in the guide for the negative detuning case. S
the text for values of parameters.
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negative detuning case, with the initial conditions such t
the atom starts from rest atx5y'0. This figure leads to the
interpretation of the motion as the sum of radial and ro
tional motions superimposed on a translational motion alo
the axis. The radial features of the trajectory immediat
suggest that the atom is trapped in a bowl-shaped quan
well due to the light and this is confirmed by inspecting t
distribution of the dipole potential associated with Eq.~48!,
as shown in Fig. 15. The potential distribution, in fac
changes with the axial velocity in that the depth of the w
decreases with increasing axial velocity. Figure 17 displ
the evolution of the velocity components. The axial veloc
(Vz) is seen to grow with time, as depicted in Fig. 17~a!,

e

e

FIG. 17. Variations of the velocity components for the case
Fig. 16: ~a! evolution ofVz ; ~b! evolution ofVx ; ~c! evolution of
Vy . Both ~b! and~c! indicate the onset of oscillatory motions of th
same time scale. All velocities are in unit ofV05aG0 .
1-12
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ATOMIC MOTION IN HOLLOW SUBMICRON CIRCULAR . . . PHYSICAL REVIEW A61 033401
while the transverse velocities~Vx and Vy! exhibit periodic
oscillations as can be seen in Figs. 17~b! and 17~c!, respec-
tively.

VI. COMMENTS AND CONCLUSIONS

In conclusion, we have examined in detail the cavity QE
of atoms in cylindrical waveguides with circular cross se
tions. The cavity modes are first quantized by following t
standard procedure, incorporating the boundary condition
the guide walls. This allowed the position-dependent spo
neous emission rate to be evaluated for an electric dip
within the guide. In addition to its intrinsic value, the spo
taneous emission rate in these structures is important for
theory of atom guides. Useful limits of the spontaneo
emission rate have been derived. In particular, we have b
able to recover the results appropriate for the free space
when the radiusa of the guide becomes large.

We have explored the details of atom dynamics ins
cylindrical perfect conductor atom guides with circular cro
sections and with subwavelength dimensions. The effect
the azimuthal components of the electromagnetic mode
such guides on the motion of atoms inside the guide w
examined. The angular momentum features associated
the mode phase should involve a light-induced torque@21–
23# and the consequent motion of atoms trapped in poten
rings and guided through the structure was investigated.

Atom guiding can involve new aspects associated w
-
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slow atoms; the quantum-mechanical nature of the vib
tional states which, we expect, should play a role in the
namics and the state of the dipole moment of a slow at
within the guide could have sufficient time to adjust to t
mode polarization. These matters need to be discussed
cylindrical guides with circular cross section and their co
sequences for the dynamics of atoms in the circular gui
are also needed in order to compare with the predicti
assuming a fixed dipole orientation.

We envisage that the effect of the light torque due to
waveguide mode could be usefully exploited as, for exam
in the focusing and stablization of the guided beam tha
simultaneously cooled by a one-dimensional molasses c
figuration involving a pair of counterpropagating wavegui
modes. This laterally diffusion-free one-dimensional optic
molasses configuration could make use of the light torque
conjunction with the axial friction force to generate samp
of in situ cooled atoms and ions in the context of cylindric
guides. A related problem that can also be addressed is
of cylindrical atom guides with guide walls made of diele
trics characterized by dispersive dielectric functions wh
could also exhibit loss. A theory focusing on such featu
can, additionally, accommodate the first type of atom gui
namely, the evanescent mode guides which can now have
new feature of submicron dimensions. Work along the
lines is now in progress and the results will be reported
due course.
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