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Direct differential-cross-section calculations for ion-atom and atom-atom collisions
in the keV range

R. Cabrera-Trujillo, J. R. Sabin, Y. O¨ hrn, and E. Deumens
Quantum Theory Project, Department of Chemistry and Department of Physics, University of Florida, Gainesville, Florida 32611

~Received 11 August 1999; published 16 February 2000!

The direct differential cross section and the total cross section for scattering of 0.5-, 1.5-, and 5.0-keV H1,
H, and He projectiles by He and Ne targets over the laboratory scattering angle range 0.01°210.0° are studied
using the electron nuclear dynamics theory, which treats the simultaneous dynamics of all electrons and nuclei.
Emphasis is put on the quantum effects of the forward peak scattering. Comparison of the present results with
available experimental data shows very good agreement.

PACS number~s!: 34.50.2s
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I. INTRODUCTION

The detailed understanding of basic atomic and molec
collision processes is of fundamental physical interest
plays an important role in a wide range of research areas
for example, plasma physics, stopping power, and radiol
to mention but a few. Over the years many theoretical
proaches have been formulated and implemented in deta
study ion-atom collisions. Some of the theoretical metho
for studying dynamics in a collision are~a! T-matrix calcu-
lation for a particular channel@1#, ~b! the unified atomic
orbital-molecular orbital~AO-MO! matching method@2#, ~c!
the multiple scattering method with a continuum distorte
wave approximation@3#, ~d! the MO expansion method with
electron translation factors~ETF’s! @4#, ~e! differential and
integrated density matrix calculation for a particular chan
@5#, ~f! the AO close-coupling method@6–10#, ~g! the eikonal
approximation@11#, ~h! single-channel potential scatterin
@12#, ~i! the direct solution of the time-dependent Sch¨-
dinger equation using atomic@13# and molecular basis func
tion @14#, ~j! the lattice method@15,16# which is based on the
discretization of the operators and wave function on a spa
Cartesian grid,~k! the time-dependent fluid density func
tional method@17,18#, ~l! the Car-Parrinello method@19–
21#, ~m! the time-dependent density functional method@22#,
~n! the direct solution of the time-dependent Hartree-Fo
equations@23–25#, and ~o! the time-dependent variationa
method@26#. For a more detailed description of all the mo
els for time-dependent dynamics, we refer the reader to
work of Deumenset. al @26#. Most of all the above studie
adopt an impulse approximation, i.e., a straight-line traj
tory for the projectile. These kind of methods are not sui
to study angular processes, and up to now, they have b
only applied to small system such as proton on atomic
drogenic systems. With respect to the time-depend
Hartree-Fock theory there has been some implementa
which consider the rearrangement of the constituents ba
on expansions in molecular or atomic state basis@27#, how-
ever, they assumed a rotating frame in cylindrical coor
nates which introduces a Coriolis term which couples sta
havingm values which differ by one unit.

To avoid the above mentioned problem, we use
electron-nuclear dynamics~END! formalism @26,28–31#,
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which is a time-dependent treatment of all electrons and
clei. The current implementation of the END theory d
scribes the electrons with a family of complex, spin un
stricted, single determinantal wave functions and the nu
as classical particles, but no restrictions are placed on
electron nuclear coupling, which means that the descrip
of the dynamics is fully nonadiabatic. Previous applicatio
of the END theory to protons colliding with hydrogen atom
@29#, hydrogen molecules@32#, helium atoms@33#, methane
molecules@34#, oxygen atoms@35#, and water molecules
@36# show good agreement with experimental data. Most
this work has been done for collision energies ranging fr
a fraction of an eV to several tens of eV with some sem
classical corrections, e.g., the Airy approximation@32#. Here
we are interested in the keV range of projectile energ
where many interesting processes take place.

In a classical treatment, the differential cross section
given in terms of the impact parameterb and the scattering
angleu as

ds

dV
5

b

sinu Udb

duU. ~1!

Attention to the precise meaning of Eq.~1! leads to questions
of whether quantum effects@37,38# in the differential cross
section, such as rainbow angles and forward peak scatte
are important. The rainbow angle appears when the sca
ing angle is not uniquely related to the impact parameter a
assumed in the construction of Eq.~1!, thus leading to inter-
ference in the differential cross section due to the contri
tion of two or more distinct trajectories to scattering into t
same angle@38#; something not possible to describe clas
cally. The consequences of such interference for the dif
ential cross section has been analyzed previously in the
erature@38,39#. The semiclassical treatment using the Ai
approximation@40# cures the divergent behavior at the rai
bow angle, when it is not too close to zero scattering an
Another problem needing attention is that the classical tre
ment of scattering always fails at small scattering ang
@37#, and a proper description of the cross section in t
regime therefore requires a semiclassical or complete qu
tum treatment. This problem is better treated by the Sc
approximation@41#, which takes into account the interfe
ence effect.
©2000 The American Physical Society19-1
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In Sec. II we give an overview of the theoretical impl
mentation of the END theory used here. In Sec. III we d
cuss the semiclassical corrections necessary to treat s
angle scattering in the keV regime. Section IV contains
details of the calculations. Section V present the results
the direct differential cross sections and their compari
with the available experimental data, and Sec. VI conta
the conclusions.

II. ELECTRON-NUCLEAR DYNAMICS THEORY

Since the full details of the method, including the detail
derivation and interpretation of the END equations, ha
been reported elsewhere~see Refs.@26,31#!, we give here
only a brief account of the most important features of
theory. The simplest level of the END theory employs
wave function

uc&5uz,R&uR,P&5uz&uf&, ~2!

where

uR,P&5)
k

expF2
1

2 S Xk2Rk

ak
D 2

1 iPk~Xk2Rk!G ~3!

is the nuclear wave function withRk and Pk denoting the
components of the average position and momentum o
nucleus, respectively, and where

uz,R&5uz&5det$x i~xj !%. ~4!

is a complex, spin unrestricted, electronic determinan
wave function, which is built from dynamical spin orbitals

x i5f i1 (
j 5N11

K

f j zj i , i 51,2, . . . ,N. ~5!

These spin orbitals are expressed in terms of a basi
atomic spin orbitals$f i% of rank K, formed from Gaussians
centered on the average nuclear position of the dynamic
moving nuclei. Forming the quantum mechanical Lagrang
in the limit of zero width parameters$ak% and using the
principle of least action produces a set of dynamical eq
tions that govern the time evolution of the dynamical va
ables$z,R,P%. This means that the nuclei are treated as c
sical particles. It is important to note that the dynamics
this form is treated in a laboratory Cartesian system of co
dinates and thus circumvents the problem of choosing in
nal coordinates. The fact that the overall translation and
tational degrees of freedom are included causes no prob
since the dynamical equations satisfy general total linear
angular momentum invariance properties.

The END dynamical equations can be expressed in ma
form as
03271
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S 0 2 iC* 2 iCR* 0

iC 0 iCR 0

iCR
† 2 iCR

T CRR 2I

0 0 I 0

D S ż

ż*

Ṙ

Ṗ

D 5S ]E/]z

]E/]z*

]E/]R

]E/]P
D .

~6!

Here ż5dz/dt andE5( l Pl
2/2Ml1^z,RuHeluz,R& is the to-

tal energy of the system withMl a nuclear mass, andHel the
electronic Hamiltonian including the nuclear-nuclear rep
sion. The nonadiabatic coupling terms between electrons
nuclei are expressed in terms of the elements of the dyna
cal metric on the left of Eq.~6!. In particular

Cph;qg5
]2ln S~z* ,R,z,R8!

]zph* ]zqg

uR85R , ~7!

~CXik
!ph5

]2ln S~z* ,R,z,R8!

]zph* ]Xik

uR85R , ~8!

~CXY! i j ;kl522 Im
]2 lnS~z* ,R,z,R8!

]Xi j ]Ykl
uR85R ~9!

are defined in terms of the overlapS5^z,R8uz,R& of the
determinantal states of two different nuclear configuratio
In somewhat more detail, from Eq.~6! one can write

iCż1(
l

CRl
Ṙl52 i

]E

]z*
~10!

2Ṗk22 Im TrCRk

† ż1(
l

CRkRl
Ṙl5¹Rk

E ~11!

and

Ṙl5
Pl

M l
, ~12!

where the last equation is purely classical, and where
detailed coupling of the electronic and nuclear degrees
freedom is clearly discernible. This, the simplest of EN
approximation, can be labeled time-dependent Hartree-F
~TDHF! for electrons and narrow wave packet nuclei. Th
approximation is implemented in the ENDyne code@42#.

III. DIFFERENTIAL CROSS SECTION: THEORY

The overall features of the differential cross section m
be determined by considering the deflection function, wh
general shape can be understood from the nature of
projectile-target interaction. However, it is well known th
the classical treatment of heavy-particle scattering alw
fails at sufficiently small angles@37#, so analysis of small
angle contributions cannot be done purely classically. Thi
in part because, in a classical collision, the differential cr
section, as given by Eq.~1!, has two contributions,du/db
and sinu in the denominator, that both go to zero asu does
9-2
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DIRECT DIFFERENTIAL-CROSS-SECTION . . . PHYSICAL REVIEW A61 032719
such that the expression diverges. This problem involves
so called forward-peaked character of the differential cr
section.

Thus, for small angles quantum corrections to the diff
ential cross section are needed. In particular, those eff
come from the quantum behavior of the nuclear dynamics
order to account for them in the END theory, we proceed
make a semiclassical approximation.

Let us consider a process in which an atomic projec
with initial velocity v0, massM1 , N1 bound electrons, and
nuclear chargeZ1e collides with a stationary target. The pro
jectile is deflected into the solid angle elementdV along a
direction with polar angleu and azimuthal anglew, mea-
sured in the laboratory frame. The Schro¨dinger equation for
the system is given by

H 2\2

2M1
¹21H11H21VJ uc&5Euc&, ~13!

whereH1 is the Hamiltonian for the electronic structure
the projectile,H2 is the Hamiltonian for the electrons plu
nuclei of the target,V is the interaction potential for the
projectile-target system, andE the total energy. The wave
function uc& is given by Eq.~2! but in this case, we separa
explicitly the functional form for the nuclear motion of th
projectile, i.e.@see Eqs.~2! and ~3!#,

uc&5uz&uf̄&uf1&

5uc̄&uf1&. ~14!

The only difference with Eq.~3! is that now, the projectile is
described by a quantum wave function. Substituting Eq.~14!
in Eq. ~13!, rearranging, and projecting over a specific st
s, we obtain the Schro¨dinger wave equation for the scattere
projectile as

$¹21ks
2%uf1&5Usuf1&, ~15!

where

Us5
2M1

\2
^c̄suVuc̄&/^c̄suc̄& ~16!

is the screened interaction potential, andks
25(2M1 /\2)(E

2E12E2), the momentum of the projectile during the co
lision with E15^c̄suH1uc̄&/^c̄suc̄& and E2

5^c̄suH1uc̄&/^c̄suc̄&. The solution to the inhomogeneou
Eq. ~15! corresponding to outgoing spherical waves is giv
by

uf1&→eik0•R1d0s2
eiksR1

4pR1
E e2 iks•R18Us~R18!uf1&dR18

→eik0•R1d0s1
eiksR1

R1
f ~ks ,k0!. ~17!

Here,k0 is a vector of magnitudek0 along the direction of
incidence,ks is a vector of magnitudeks along the direction
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of observation, and wheref (ks ,k0) is the scattering ampli-
tude. As is well known, applying Eq.~17! recursively one
obtains the infinite Born series

f ~ks ,k0!52
1

4p (
n51

` E •••E e2 iks•RnUs~Rn!

3G~Rn2Rn21!Us~Rn21!

3G~Rn212Rn22!•••Us~R2!

3G~R22R1!Us~R1!eik0•R1dR1•••dRn ,

~18!

whereG is the outgoing wave Green’s function for the o
erator (¹21ks

2)

G~r!52
1

4pr
eiksr. ~19!

The first term of the series yield the usual first Born appro
mation; higher terms are very laborious to calculate, unl
approximations are made.

In order to take in account all the Born terms, we w
apply the Schiff approximation@41# which consist in sum-
ming Eq.~18! after approximating each term by the meth
of stationary phase. This method is valid for largek. Follow-
ing a procedure similar to that of Schiff for small scatteri
angles,u, where the only difference in the analysis is th
interaction potential@Eq. ~16!#, the following result is ob-
tained:

f ~u!5 ikE
0

`

$12exp@22i z~b!#%J0~qb!bdb, ~20!

for the scattering amplitude, whereq5uks2k0u is the mo-
mentum transfered during the collision,u is the angle be-
tweenks andk0 ~scattering angle!, and

z~b!5
1

4kE2`

`

Us~b,x!dx, ~21!

with J0(x) the Bessel function of order zero. When on
elastic processes are considered,q52k sin(u/2) with k being
the initial wave vector of the projectile. According to Maso
et al. @37#, z(b) is just the negative of the semiclassic
phase shiftd(b). In addition, the semiclassical phase shift
related to the deflection function through@43,38#

Q~b!5
2

k

dd~b!

db
. ~22!

Therefore, Eq.~20! is the semiclassical expression for th
scattering amplitude.

From Eq.~17! we obtain the probability for the particle
being scattered in a directionks , when divided by the in-
coming flux, it determines the differential cross section
@43#
9-3
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CABRERA-TRUJILLO, SABIN, ÖHRN, AND DEUMENS PHYSICAL REVIEW A61 032719
ds

dV
5

ks

k0
u f ~u!u2. ~23!

From this expression one sees that once the deflection f
tion is determined and the probability for the exit channe
known, the differential cross section is established. For
case of direct scattering, we have thatuc̄s&5uc̄&, i.e. we
consider all the exit channels. In the next section we desc
the procedure for determining the deflection function and
differential cross section, in the END formalism.

IV. DETAILS OF THE CALCULATIONS

We consider swift protons, hydrogen atoms, and heli
atoms, at energies of 0.5, 1.5, and 5.0 keV as projec
impinging on helium or neon atom gas targets. The tar
atom is placed at the origin in a Cartesian laboratory sys
and the projectile is traveling towards the target with an i
tial velocity along thex axis and with an impact parameterb
along they axis. We set initially the projectile at 30 a.u
away from the target and make it collide, stopping the d
namics after the projectile is again at 30 a.u. away from
target.

For helium, we use a VDZ~valence double zeta! @4s1p#
uncontracted basis set@44#. For protons and hydrogen atom
we employ a pVDZ~polarized VDZ! @4s1p/2s1p# @45#,
while for neon we use a SV~single valence! @10s5p/3s2p#
basis set@46# which also are uncontracted.

To accurately represent the continuum a large basi
required. The details of the transition are not as critical
the differential cross section as they are for energy l
(DE), stopping power (2dE/dx), and state to state tota
cross section calculations, as long as the overall transi
space is well represented@47#. A method to describe ioniza
tion processes explicitly by using basis functions that mo
freely in space as determined by electronic dynamics
been developed and coded@48#. This method has not bee
used in this work~see Sect. V B below! and its results will
be reported in a future publication.

The END approach uses a ‘‘supermolecule’’ descript
of the system, i.e., a single spin unrestricted determina
wave function is used to describe the system electrons
whole expressed in a basis of Gaussian orbitals centere
the dynamically changing nuclear positions. For each imp
parameter value fromb50.0 ~head-on collision! to b
510.0 a.u. in steps of 0.01 a.u., we calculate the angle
deflection of the projectile,Q(b) ~the deflection function!,
the final projectile charge, and the final energy~nuclear ki-
netic energy, and internal energy! for the projectile. Once we
have the deflection function, the absolute differential cr
section is obtained by means of Eq.~23! where the scattering
amplitudef (u) is derived via a semiclassical approximatio
and where\k0 and\ks are the initial and final momenta o
the projectile, respectively.

V. RESULTS

In Fig. 1, we show the deflection function for 0.5 ke
protons and hydrogen colliding with neutral helium. T
03271
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minimum in the deflection function defines the rainbo
angle, while the crossing from one branch to another
called the glory angle. While the deflection function for h
drogen atom projectiles is monotonically decreasing for
creasing impact parameters, proton projectiles on the s
target produce a deflection function that goes through a m
mum. For small impact parameter (b,1.0) the proton-
helium interaction is repulsive, while forb.1.0 the collision
is attractive. This is due to the electronic structure of t
system and the repulsion stems from the nuclear-nuclea
teraction when the proton penetrates the helium elec
cloud.

The results from the theoretical determination of the ra
bow angle as given by the minimum of the deflection fun
tion of protons colliding with ground state helium atoms
different energies are listed in Table I. The END resu
agree well with the experimental values determined
Johnsonet al. @49#.

A. Differential cross section

Once the deflection function is determined, the differe
tial cross section is obtained from the application of E
~23! and ~20!. In the following we show the direct cros
sections for a number of different collisional systems at 0
1.5, and 5.0 keV. The theoretical cross sections determ
from END are given in a solid line and in the same graph
experimental results are displayed with open circles or e
bars if they are available.

FIG. 1. Deflection functionQ(b) for protons and hydrogen pro
jectiles at 0.5 keV incident on atomic He.

TABLE I. Rainbow angle~deg! for H1 on He.

Energy~keV! END Experimenta

0.5 0.296 0.32
1.5 0.101 0.11
5.0 0.031 0.03

aJohnsonet al. @49#.
9-4
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In Fig. 2 we show the differential cross sections for pr
tons colliding with neutral helium at 0.5, 1.5, and 5.0 ke
for small scattering angles and compare the calculated re
with the experimental data of Johnsonet al. @49#.

For neutral hydrogen colliding with helium, there is n
rainbow angle, as the deflection function is repulsive for
impact parameters, and thus the differential cross sectio
Fig. 3 shows no structure in contrast to the case of pro
projectiles. The experimental data of Gaoet al. @50# are used
for comparison. Note that for large scattering angles the
lision is no longer elastic as the probability for electron e

FIG. 3. Comparison of direct differential cross section for
projectiles at 0.5, 1.5, and 5.0 keV incident on atomic He. T
experimental data are from Gaoet al. @50#. Also, we show the
differential cross section for elastic scattering~dashed line! for pro-
jectiles at 5.0 keV leaving in the ground state. See text.

FIG. 2. Comparison of direct differential cross section for H1 at
0.5, 1.5, and 5.0 keV incident on atomic He. The experimental d
are from Johnsonet al. @49#.
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citations is appreciable at these angles, since~see Fig. 1!
large angles correspond to small impact parameters. In
case the deflection function carries information concern
inelastic properties of the collision, such as electron trans
and electronic excitations. In the same figure we show
differential cross section~dashed line! for elastic collisions
when the projectile leaves in the ground state. This is
tained by projecting the final state wave function of the p
jectile into the ground state expressed in the same basis
The projected results clearly shows the contributions of
excitation for large angles and high energies.

In Fig. 4, we show the direct differential cross section f
helium projectiles colliding with neutral helium. The resul

e
FIG. 5. Direct differential cross section for protons projectiles

1.5 keV incident on atomic neon targets. The experimental res
are from Johnsonet al. @51#

ta

FIG. 4. Direct differential cross section for helium projectiles
0.5, 1.5, and 5.0 keV incident on atomic helium targets. The exp
mental data are from Nitzet al. @12#.
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CABRERA-TRUJILLO, SABIN, ÖHRN, AND DEUMENS PHYSICAL REVIEW A61 032719
for small angles are compared with the experimental dat
Nitz et al. @12#.

Up to this point we have shown results for simple syste
with no more than two to four electrons. The END approa
is general and we should be able to use more complex tar
and projectiles. In Fig. 5, we display the direct different
cross section for proton projectiles at 1.5 keV incidents
neutral neon and compare them with the experimental dat
Johnsonet al. @51#, and in Fig. 6 we show the differentia
cross section for hydrogen atom projectiles colliding on
same target at 0.5, 1.5, and 5.0 keV, and compared with
experimental data of Gaoet al. @50#.

In Fig. 7, the differential cross sections for helium proje

FIG. 7. Direct differential cross section for helium projectiles
0.5, 1.5, and 5.0 keV incident on atomic neon. The experime
results are from Gaoet al. @52#.

FIG. 6. Direct differential cross section for hydrogen projecti
at 0.5, 1.5, and 5.0 keV incident on atomic neon targets. The
perimental results were taken from Gaoet al. @50#
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tiles colliding with neon atoms at 0.5, 1.5, and 5.0 keV a
displayed, and compared with the experimental data of G
et al. @52#.

Once we have obtained the differential cross section,
total cross section is obtained through an angular integrat
In Table II we give the calculated total cross section in
grated over all the experimental angular region and comp
with the experimental data available@49,50#. Again we see a
good agreement with the experimental data.

B. Projectile charge state

In Fig. 8 we show the final Mulliken population@53# as a
measure of the electronic charge distribution for protons,

t
al

FIG. 8. Final electron charge~Mulliken population! for protons,
H and He projectiles at 0.5, 1.5, and 5.0 incident on helium targ
as a function of the impact parameter.

TABLE II. Absolute integral cross section in Å2.

Process END Experiment Angular rang

H1→He(0.5 keV) 6.31 7.2a 0.08°21.2°
H1→He(1.5 keV) 2.99 4.0a 0.04°20.882°
H1→He(5.0 keV) 1.51 2.3a 0.02°21.0°
H→He(0.5 keV) 12.17 11.060.6b 0.018°24.5°
H→He(1.5 keV) 7.25 4.460.2b 0.05°24.5°
H→He(5.0 keV) 2.75 1.560.8b 0.05°24.5°
He→He(0.5 keV) 10.12 0.018°20.5°
He→He(1.5 keV) 8.98 0.018°20.5°
He→He(5.0 keV) 6.57 0.018°20.5°
H→Ne(0.5 keV) 9.87 10.060.5b 0.05°20.5°
H→Ne(1.5 keV) 8.39 7.060.4b 0.05°20.5°
H→Ne(5.0 keV) 4.44 3.160.2b 0.05°20.5°
He→Ne(0.5 keV) 8.23 0.05°20.5°
He→Ne(1.5 keV) 5.41 0.05°20.5°
He→Ne(5.0 keV) 4.58 0.05°20.5°

aJohnsonet al. @49#.
bGaoet al. @50#.

x-
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drogen, and helium projectiles as a function of the imp
parameterb, after the interaction with helium targets. Th
electron transfer is the difference of the Mulliken populati
and the initial number of electrons on the projectile. Fro
this figure one notes that the probability for electron trans
for protons and helium is very low, and increases for hig
projectile energies. In view of the high ionization potent
for helium (;24 eV), ionization processes are negligible
these collision energies. For example, protons at 5.0 k
colliding with He, the ionization cross section is 0.01 Å2

@54#, which is 0.5% of the value reported in this work. How
ever, electron transfer is more likely for small impact para
eters where the interaction is stronger. This makes the c
sion mostly elastic forb.1.0 a.u. On the other hand, fo
hydrogen projectiles we see from Fig. 8 that for low impa
parameters the electron transfer is higher than for proto
The reason is that the ionization potential of hydrogen
lower than that for helium, making it share electronic cha
with the target. Also, the hydrogen projectile is more eas
excited electronically, making the collision effectively in
elastic. This is more pronounced for small impact parame
~greater scattering angles! and higher energies, as expecte

This behavior has implications for the structure of t
differential cross section, since these processes are no lo
elastic in the region of larger scattering angles. This eff
can be noted in Figs. 3 and 6 in the low impact parame
y
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region~large scattering angle!, where the experimental cros
sections are purportedly elastic, since the setup@50# ensures
that only elastic processes are counted.

VI. CONCLUSIONS

We have shown that the electron nuclear dynamics the
in its simplest implementation with suitable semiclassi
corrections is capable of yielding differential and integ
cross sections in excellent agreement with the experime
In addition this supermolecular theoretical approach can a
yield dynamical charge exchange.

In this work we have concentrated on direct scatter
processes, but the END method allows one to study stat
state process as for example, excitations, ionizations and
ergy loss. Since these processes are strongly depende
the completeness of the basis set, they require somew
more extensive analysis. This work is in progress.
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