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Direct differential-cross-section calculations for ion-atom and atom-atom collisions
in the keV range
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The direct differential cross section and the total cross section for scattering of 0.5-, 1.5-, and 5.0-keV H
H, and He projectiles by He and Ne targets over the laboratory scattering angle range 1000 are studied
using the electron nuclear dynamics theory, which treats the simultaneous dynamics of all electrons and nuclei.
Emphasis is put on the quantum effects of the forward peak scattering. Comparison of the present results with
available experimental data shows very good agreement.

PACS numbds): 34.50—s

[. INTRODUCTION which is a time-dependent treatment of all electrons and nu-
clei. The current implementation of the END theory de-
The detailed understanding of basic atomic and moleculagcribes the electrons with a family of complex, spin unre-
collision processes is of fundamental physical interest angtricted, single determinantal wave functions and the nuclei
plays an important role in a wide range of research areas ag$ classical particles, but no restrictions are placed on the
for examp|e, p|asma physics1 Stopping power, and radio'og?lectron nuclear Coupling, which means that the description
to mention but a few. Over the years many theoretical ap®f the dynamics is fully nonadiabatic. Previous applications
proaches have been formulated and implemented in detail & the END theory to protons colliding with hydrogen atoms
study ion-atom collisions. Some of the theoretical method$29): hydrogen moleculef32], helium atomg33], methane
for studying dynamics in a collision ar@) T-matrix calcu- molecules[34], oxygen atoms(35], and water molecules
lation for a particular channdll], (b) the unified atomic [36] show good agreement with experimental data. Most of

orbital-molecular orbita{AO-MO) matching methodi2], (c) this wqu has been done for collision energies ranging from

. . . . ; a fraction of an eV to several tens of eV with some semi-
the multiple scattering method with a continuum d'Storted'classical corrections, e.g., the Airy approximat|aa]. Here
wave approximatiof3], (d) the MO expansion method with €9 y app ’

: : ) . we are interested in the keV range of projectile energies,
electron translation factorETF's) [4], (e) differential and where many interesting processes take place.

integrated density matrix calculation for a particular channel |, 5 ¢jassical treatment. the differential cross section is

[5], (f) the AO close-coupling methd@—10), (g) the eikonal  given in terms of the impact parameterand the scattering
approximation[11], (h) single-channel potential scattering angled as

[12], (i) the direct solution of the time-dependent Sehro
dinger equation using atomjd 3] and molecular basis func- do b |db
tion[14], (j) the lattice methodl15,16 which is based on the a0 = m%’
discretization of the operators and wave function on a spatial
Cartesian grid,(k) the time-dependent fluid density func- Attention to the precise meaning of Ed) leads to questions
tional method[17,18, () the Car-Parrinello methofl19—  of whether quantum effec{87,3§ in the differential cross
21], (m) the time-dependent density functional mett@d],  section, such as rainbow angles and forward peak scattering,
(n) the direct solution of the time-dependent Hartree-Fockare important. The rainbow angle appears when the scatter-
equations[23-25, and (0) the time-dependent variational ing angle is not uniquely related to the impact parameter as is
method[26]. For a more detailed description of all the mod- assumed in the construction of E4), thus leading to inter-
els for time-dependent dynamics, we refer the reader to thierence in the differential cross section due to the contribu-
work of Deumenset. al [26]. Most of all the above studies tion of two or more distinct trajectories to scattering into the
adopt an impulse approximation, i.e., a straight-line trajecsame anglé38]; something not possible to describe classi-
tory for the projectile. These kind of methods are not suiteccally. The consequences of such interference for the differ-
to study angular processes, and up to now, they have beamtial cross section has been analyzed previously in the lit-
only applied to small system such as proton on atomic hyerature[38,39. The semiclassical treatment using the Airy
drogenic systems. With respect to the time-dependerapproximation40] cures the divergent behavior at the rain-
Hartree-Fock theory there has been some implementatiopow angle, when it is not too close to zero scattering angle.
which consider the rearrangement of the constituents basedhother problem needing attention is that the classical treat-
on expansions in molecular or atomic state bf2®, how- ment of scattering always fails at small scattering angles
ever, they assumed a rotating frame in cylindrical coordi{37], and a proper description of the cross section in this
nates which introduces a Coriolis term which couples statesegime therefore requires a semiclassical or complete quan-
havingm values which differ by one unit. tum treatment. This problem is better treated by the Schiff
To avoid the above mentioned problem, we use theapproximation[41], which takes into account the interfer-
electron-nuclear dynamic$END) formalism [26,28-3], ence effect.

()
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In Sec. Il we give an overview of the theoretical imple-

.- -
mentation of the END theory used here. In Sec. Ill we dis- 0 —icr —iCk 0 Z eIz

cuss the semiclassical corrections necessary to treat small | iC 0 iCr 0 z* JEl9z*
anglg scattering in thg keV regi'me. Section IV contains the iCJ,; —iCE Crr  —| R | JE/oR
details of the calculations. Section V present the results for

the direct differential cross sections and their comparison 0 0 | 0 p JEIoP

with the available experimental data, and Sec. VI contains (6)

the conclusions. )
Herez=dz/dt andE=3,P?/2M,+(z,R|H.|z,R) is the to-
tal energy of the system withl, a nuclear mass, and,, the
Il. ELECTRON-NUCLEAR DYNAMICS THEORY electronic Hamiltonian including the nuclear-nuclear repul-
Since the full details of the method, including the detailedSion- The nonadiabatic coupling terms between electrons and
derivation and interpretation of the END equations, have'UClei are expressed in terms of the elements of the dynami-
been reported elsewhefsee Refs[26,31)), we give here Cal metric on the left of Eq(6). In particular
only a brief account of the most important features of the 2 N ,
theory. The simplest level of the END theory employs a 9 InS(z*,R,z,R’)

Cohao= =R 7
wave function phiag T2 07 lrr =R (7)
2 * 2
ly)y=12,R)|R,P)=|2)| #), 2) _#InS(z*,R,z,R")
Cx; - '=R> (8)
( Xlk)ph 3Z;haxik |R R

where )
0°InS(z* \R,z,R’)

(Cxy)ij=—21m X Vg

lr' =R 9

1 2

|R,P>=1_k[ exp{—z(

Xi— Ry

k

P Rk)} @ are defined in terms of the overl&®=(z,R’|z,R) of the

determinantal states of two different nuclear configurations.

: . _ . In somewhat more detail, from E) one can write
is the nuclear wave function witR, and P, denoting the ®

components of the average position and momentum of a

. . J
nucleus, respectively, and where iCz+ >, CrRi=—i— (10)
I 0z

|z,R)=|2)=det xi(x))}- (4) _ . .
—P,—21m TrCsz+2 CrrRI=VRE (1D

is a complex, spin unrestricted, electronic determinantal
wave function, which is built from dynamical spin orbitals and

. P
K R|:V,
Xi=¢i+'*%+1 bz, i=1,2,...N. (5) !
: where the last equation is purely classical, and where the
detailed coupling of the electronic and nuclear degrees of
These spin orbitals are expressed in terms of a basis @feedom is clearly discernible. This, the simplest of END
atomic spin orbitalg ¢;} of rankK, formed from Gaussians approximation, can be labeled time-dependent Hartree-Fock
centered on the average nuclear position of the dynamicallyrDHF) for electrons and narrow wave packet nuclei. This
moving nuclei. Forming the quantum mechanical Lagrangiampproximation is implemented in the ENDyne cddé].
in the limit of zero width parameter§a,} and using the
principle of least action produces a set of dynamical equa- |, pIEEERENTIAL CROSS SECTION: THEORY
tions that govern the time evolution of the dynamical vari-
ables{z,R,P}. This means that the nuclei are treated as clas- The overall features of the differential cross section may
sical particles. It is important to note that the dynamics inbe determined by considering the deflection function, whose
this form is treated in a laboratory Cartesian system of coorgeneral shape can be understood from the nature of the
dinates and thus circumvents the problem of choosing interprojectile-target interaction. However, it is well known that
nal coordinates. The fact that the overall translation and rothe classical treatment of heavy-particle scattering always
tational degrees of freedom are included causes no problefails at sufficiently small anglef37], so analysis of small
since the dynamical equations satisfy general total linear andngle contributions cannot be done purely classically. This is

(12

angular momentum invariance properties. in part because, in a classical collision, the differential cross
The END dynamical equations can be expressed in matrigection, as given by Ed1), has two contributionsd6/db
form as and sind in the denominator, that both go to zero ésloes
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such that the expression diverges. This problem involves thgf observation, and wheri(kg,k,) is the scattering ampli-
so called forward-peaked character of the differential crossude. As is well known, applying Eq17) recursively one

section. obtains the infinite Born series
Thus, for small angles quantum corrections to the differ-

ential cross section are needed. In particular, those effects 1 = _
come from the quantum behavior of the nuclear dynamics. In  f(kg,kg)=— yp 2 f . f e ksRaU(R,)
order to account for them in the END theory, we proceed to n=1

make a semiclassical approximation. XG(R,—R,_1)U«(Ry_1)
Let us consider a process in which an atomic projectile
with initial velocity v, massM,, N; bound electrons, and XG(Rp-1=Rp-2) - -Ug(Ryp)

nuclear charg&, e collides with a stationary target. The pro-

jectile is deflected into the solid angle elemeif? along a XG(Rp=RyUs(Ry)e™™dR, - ARy,

direction with polar angled and azimuthal angle, mea- (18
sured in the laboratory frame. The Schirger equation for
the system is given by whereG is the outgoing wave Green's function for the op-
erator (V2+k?2)

_ 2

=——V24+H+H,+ Vi) =E| ), (13

2V Glp)=— ———elw (19

P A7p ‘

whereH; is the Hamiltonian for the electronic structure of
the projectile,H, is the Hamiltonian for the electrons plus
nuclei of the targetV is the interaction potential for the
projectile-target system, and the total energy. The wave
function| ) is given by Eq.(2) but in this case, we separate
explicitly the functional form for the nuclear motion of the
projectile, i.e.[see Eqs(2) and (3)],

The first term of the series yield the usual first Born approxi-
mation; higher terms are very laborious to calculate, unless
approximations are made.

In order to take in account all the Born terms, we will
apply the Schiff approximatiofd1] which consist in sum-
ming Eq.(18) after approximating each term by the method
of stationary phase. This method is valid for laigé-ollow-

[9)=12)|6)|b1) ing a procedure similar to that of Schiff for small scattering
= angles,d, where the only difference in the analysis is the
=) ba). (149 interaction potentia[Eq. (16)], the following result is ob-

tained:

The only difference with Eq(3) is that now, the projectile is
described by a quantum wave function. Substituting (E4) .
in Eg. (13), rearranging, and projecting over a specific state f(g):ikf {1—exfd —2iZ(b)]}Jo(qb)bdb,  (20)
s, we obtain the Schidinger wave equation for the scattered 0
projectile as
for the scattering amplitude, wherg=|ks—Kk| is the mo-
{(V2+Kk2 1) =Ud d1), (15  mentum transfered during the collisios, is the angle be-

tweenk, andk, (scattering angle and
where

oo

1
2M; — {(b)=— U(b,x)dx, (21
Us="3 (Gl VID) (ol ) (16) al

. . i i ) with Jo(x) the Bessel function of order zero. When only
is the screened interaction potential, afd=(2M1/%%)(E  glastic processes are considergé, 2k sin(6/2) with k being
—E1—Ey), the momentum of the projectile during the col- the injtial wave vector of the projectile. According to Mason
lision with Ev={|H1| )| ) and E, etal [37], {(b) is just the negative of the semiclassical
=(hg|H1|)/{1fg ). The solution to the inhomogeneous phase shifis(b). In addition, the semiclassical phase shift is
Eq. (15) corresponding to outgoing spherical waves is givenrelated to the deflection function throug#3,3g
b

Y 2 dé(b)

®(b)=RW (22)

) iksRq . ,
|#0) e Mo [ e mugRyIgaR;

Therefore, Eq.(20) is the semiclassical expression for the
scattering amplitude.

From Eq.(17) we obtain the probability for the particle
being scattered in a directidk,, when divided by the in-
Here, kq is a vector of magnitud&, along the direction of coming flux, it determines the differential cross section as
incidencek, is a vector of magnitudk along the direction [43]

_ iksR;
€0 1ot —=—f(ks ko). (17)
1
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97 _ K\t 23
qa- k_0| (0] (23

08
From this expression one sees that once the deflection func-
tion is determined and the probability for the exit channel is 06 F

known, the differential cross section is established. For the
case of direct scattering, we have thak)=|y), i.e. we

S 04} .
consider all the exit channels. In the next section we describe  §
the procedure for determining the deflection function and the &
differential cross section, in the END formalism. 2 02r Glory angle |
IV. DETAILS OF THE CALCULATIONS 0

We consider swift protons, hydrogen atoms, and helium 02| " ]
atoms, at energies of 0.5, 1.5, and 5.0 keV as projectiles ' Rainb |
impinging on helium or neon atom gas targets. The target anbow ang’e
atom is placed at the origin in a Cartesian laboratory system 04 5 . p 5 10
and the projectile is traveling towards the target with an ini- b (a. u.)

tial velocity along thex axis and with an impact parameter

along they axis. We set initially the projectile at 30 a.u. FIG. 1. Deflection functior® (b) for protons and hydrogen pro-

away from the target and make it collide, stopping the dy-Jectiles at 0.5 keV incident on atomic He.

tn;rr;éis after the projectile is again at 30 a.u. away from th(?”ninimum _in the defleqtion function defines the rainbovx_/
For helium, we use a VDZvalence double zetd4s1p] angle, while the crossing from one br'anch to.another is

uncontracted basis sgt4]. For protons and hydrogen atoms called the glory angle. While the deflection function for hy-

: drogen atom projectiles is monotonically decreasing for in-
we employ a pVDZ(polarized VDZ [4slp/2slp] [45], L L
while for neon we use a S¥single valence[ 10s5p/3s2p] creasing impact parameters, proton projectiles on the same

basis sef46] which also are uncontracted. target produce a deflection function that goes through a mini-

mum. For small impact parameteb<1.0) the proton-

To accurately represent the continuum a large basis is . = . N ) . o
required. The details of the transition are not as critical forﬁe“um interaction is repulsive, while fér>1.0 the collision

the differential cross section as they are for energy los& atttracuvg.tg' his |s|d.ue tct> the felect;ﬁmc stlructure |0f the
(AE), stopping power £ dE/dx), and state to state total tsys etm an h N ;ﬁpu S'Op Stems IOT (tehnu;:]elgr-nucleatr In-
cross section calculations, as long as the overall transitiory aoton When the proton penetrates the helium electron
_ L cloud.
space is well represent¢d7]. A method to describe ioniza- The results from the theoretical determination of the rain-
tion processes explicitly by using basis functions that mov . - .
freely in space as determined by electronic dynamics ha??ow a}ngletas glve”r_1dby thgtrr]mnlmurg Otf Ehehd?flecu?n funct-
been developed and cod@di8]. This method has not been cﬁ? 0 pt)ro ons cofll 'ngl.V\;' d grom_Jrn bIS?eThe |uErr|1\|Soms I"f[‘
used in this work(see Sect. V B belowand its results will imerent energies are listed in fabe 1. The _resutts
be reported in a future publication. agree well with the experimental values determined by
P P .. Johnsoret al.[49].
The END approach uses a “supermolecule” description
of the system, i.e., a single spin unrestricted determinantal
wave function is used to describe the system electrons as a
whole expressed in a basis of Gaussian orbitals centered on Once the deflection function is determined, the differen-
the dynamically changing nuclear positions. For each impacdtial cross section is obtained from the application of Egs.
parameter value fromb=0.0 (head-on collisioh to b (23) and (20). In the following we show the direct cross
=10.0 a.u. in steps of 0.01 a.u., we calculate the angle o$ections for a number of different collisional systems at 0.5,
deflection of the projectileP (b) (the deflection function 1.5, and 5.0 keV. The theoretical cross sections determined
the final projectile charge, and the final enefgyclear ki- from END are given in a solid line and in the same graph the
netic energy, and internal eneddpr the projectile. Once we experimental results are displayed with open circles or error
have the deflection function, the absolute differential crosdbars if they are available.
section is obtained by means of E83) where the scattering
amplitudef () is derived via a semiclassical approximation
and whereiky andfikg are the initial and final momenta of

A. Differential cross section

TABLE I. Rainbow angle(deg for H* on He.

the projectile, respectively. Energy (keV) END Experimerft
0.5 0.296 0.32
V. RESULTS 1.5 0.101 0.11
5.0 0.031 0.03

In Fig. 1, we show the deflection function for 0.5 keV
protons and hydrogen colliding with neutral helium. The2Johnsoret al.[49].
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108 T 10° .
7
10 108
108
= 107
& %
‘Z':,._;/ 10 %
s s 10°
g 1ot g
3 L
10°
10°8
a). 0.5 keV (x100)
a). 0.5 keV (x100)
4
102 F b). 1.5 keV (x10) 10* [ b). 1.5 keV (x10)
c). 5.0 keV c). 5.0 keV
10 . 10° .
0.01 0.1 1 0.01 0.1 1
Lab angle 6 (deg) Lab angle 6 (deg)

. . . . . FIG. 4. Direct differential cross section for helium projectiles at

FIG. 2. Comparison of direct differential cross section for &t 0.5, 1.5, and 5.0 keV incident on atomic helium targets. The experi-
0.5, 1.5, and 5.0 keV incident on atomic He. The experimental dat"flnental data are from Nitet al. [12]
are from Johnsoet al. [49]. ' '

In Fig. 2 we show the differential cross sections for pro_citations is appreciable at these angles, si(eme Fig. 1 .
tons colliding with neutral helium at 0.5, 1.5, and 5.0 keV large angles correspond to small impact parameters. In this
for small scattering angles and comparé ,the. c,alculate;d result§s® the deflection function carries information concerning
with the experimental data of Johnsenal. [49] Inelastic properties of the collision, such as electron transfer

For neutral hydrogen colliding with h.eliurﬁ, there is no and eleqtronic excitat?ons. In the. same figur.e we .show the
rainbow angle, as the deflection function is repulsive for alld'He;etnr:'al (;rqsstifecl:tloyasif:]eshIlnberforn((ajlasttlct: cczll_lrl]silo?s b
impact parameters, and thus the differential cross section i ainee d bS [?r(gjeecctinte_:l tﬁz f?nsal stat(:z \?vz(i)vue fur?catligh of tf\esp?o—-
Fig. 3 shows no structure in contrast to the case of protor” .-~ . . '
prgjectiles. The experimental data of Getoal.[50] are uszd jectile |n_to the ground state expressed in the same basis set.
for comparison. Note that for large scattering angles the Col'_l'he.tptr.OJr?c%terdl rresultsn cllearlﬁjhho.whs trrllercpntrlbutlons of the
lision is no longer elastic as the probability for electron ex-eX(I:;]aF'ig 4owssgheo€v t%lgsdia:ect dligffereen?ieﬂlifc.)ss section for

helium projectiles colliding with neutral helium. The results

108 - -
107 107 .
108
10°
% 10°
= =
s 10 R
g <
g 10 %3
» s 10*
10 ©
a). 0.5 keV (x100)
10" [ b). 1.5 keV (x10) .
c). 5.0 keV 10
10° '
0.01 0.1 1 10
Lab angle 6 (deg) 102 .
FIG. 3. Comparison of direct differential cross section for H 0.01 0.1 1
Lab angle 6 (deg)

projectiles at 0.5, 1.5, and 5.0 keV incident on atomic He. The
experimental data are from Gaat al. [50]. Also, we show the

differential cross section for elastic scatteriigished lingfor pro-
jectiles at 5.0 keV leaving in the ground state. See text. are from Johnsoet al. [51]

FIG. 5. Direct differential cross section for protons projectiles at
1.5 keV incident on atomic neon targets. The experimental results
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TABLE Il. Absolute integral cross section in?A

108 T
Process END Experiment Angular range

107 H*—He(0.5 keV) 6.31 7.9 0.08°-1.2°
H*—He(1.5 keV) 2.99 4.6 0.04°—-0.882°

. H*—He(5.0 keV) 1.51 2.3 0.02°-1.0°
B g8 H—He(0.5 keV) 12.17 11080.6° 0.018°—4.5°
= H—He(1.5 keV) 7.25 4.40.2° 0.05°—4.5°
g H—He(5.0 keV) 2.75 1.50.8° 0.05°—4.5°
'% 108 He—He(0.5 keV) 10.12 0.018°0.5°
o o o
2). 0.5 keV (x100) He—He(1.5 keV) 8.98 0.01820.5
He—He(5.0 keV) 6.57 0.01820.5°

b (<} o

10* | b). 1.5keV (x10) H—Ne(0.5 keV) 9.87 10.80.5 0.05°-0.5
H—Ne(1.5 keV) 8.39 7.80.4° 0.05°-0.5°

¢). 5.0 keV H—Ne(5.0 keV) 4.44 3.£0.2° 0.05°—0.5°

103 . He—Ne(0.5 keV) 8.23 0.05%0.5°

0.01 0.1 1 He—Ne(1.5 keV) 5.41 0.05%0.5°

Lab angle 6 (deg) He—Ne(5.0 keV) 458 0.05%0.5°

FIG. 6. Direct differential cross section for hydrogen projectilesa
at 0.5, 1.5, and 5.0 keV incident on atomic neon targets. The exl;JOh”SorEI al. [49].
perimental results were taken from Gebpal. [50] Gaoet al.[50].

for small angles are compared with the experimental data dfles colliding with neon atoms at 0.5, 1.5, and 5.0 keV are
Nitz et al.[12]. displayed, and compared with the experimental data of Gao
Up to this point we have shown results for simple systemt al. [52].
with no more than two to four electrons. The END approach Once we have obtained the differential cross section, the
is general and we should be able to use more complex targelgtal cross section is obtained through an angular integration.
and project”es_ In F|g 5, we d|sp|ay the direct differential In Table Il we give the calculated total cross section inte-
cross section for proton projectiles at 1.5 keV incidents orgrated over all the experimental angular region and compare
neutral neon and compare them with the experimental data d¥ith the experimental data availaljk9,50. Again we see a
Johnsonet al. [51], and in Fig. 6 we show the differential 9ood agreement with the experimental data.
cross section for hydrogen atom projectiles colliding on the
same target at 0.5, 1.5, and 5.0 keV, and compared with the
experimental data of Gaet al. [50]. In Fig. 8 we show the final Mulliken populatidi3] as a
In Fig. 7, the differential cross sections for helium projec- measure of the electronic charge distribution for protons, hy-

B. Projectile charge state

109 T 2-5 T T T T T T T
0.5 keV ——
1.5 keV -
. L, BOkeV
— e
10 e
c
S
107 X
— o
& g 15} i
5 5
g 10° =
g 2 H
_E o 1r P
10° 3 S
a). 0.5 keV (x100) 3
05 i
10% |'b). 1.5 keV (x10)
c). 5.0 keV
H+
103 1 0 -------- L PR Lhhhhhiid 1--e--. 1 1 1 1
0.01 0.1 1 0 05 1 15 2 25 3 35 4
Lab angle 6 (deg) b(a. u.)

FIG. 7. Direct differential cross section for helium projectiles at ~ FIG. 8. Final electron chargéulliken population for protons,
0.5, 1.5, and 5.0 keV incident on atomic neon. The experimentaH and He projectiles at 0.5, 1.5, and 5.0 incident on helium targets
results are from Gaet al. [52]. as a function of the impact parameter.
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drogen, and helium projectiles as a function of the impactegion (large scattering anglewhere the experimental cross
parameterb, after the interaction with helium targets. The sections are purportedly elastic, since the s¢&f) ensures
electron transfer is the difference of the Mulliken populationthat only elastic processes are counted.

and the initial number of electrons on the projectile. From

this figure one notes that the probability for electron transfer VI. CONCLUSIONS

for protons and helium is very low, and increases for higher ]
projectile energies. In view of the high ionization potential ~We have shown that the electron nuclear dynamics theory

for helium (~24 eV), ionization processes are negligible atin its simplest implementation with suitable semiclassical

these collision energies. For example, protons at 5.0 ke\gorrections is capable of yielding differential and integral
colliding with He, the ionization cross section is 0.012 A Cross sections in excellent agreement with the experiments.

[54], which is 0.5% of the value reported in this work. How- Ir_1 addition this supermolecular theoretical approach can also

ever, electron transfer is more likely for small impact param-Yi€ld dynamical charge exchange. _ _

eters where the interaction is stronger. This makes the colli- !N this work we have concentrated on direct scattering

sion mostly elastic fob>1.0 a.u. On the other hand, for Processes, but the END method allows one to study state to

hydrogen projectiles we see from Fig. 8 that for low impactState process as for example, excitations, ionizations and en-

parameters the electron transfer is higher than for proton§rdy l0ss. Since these processes are strongly dependent on

The reason is that the ionization potential of hydrogen idh® completeness of the basis set, they require somewhat

lower than that for helium, making it share electronic chargeore extensive analysis. This work is in progress.

with the target. Also, the hydrogen projectile is more easily

excit_ed eIgc'FronicaIIy, making the coIIisiqn effectively in- ACKNOWLEDGMENTS

elastic. This is more pronounced for small impact parameters

(greater scattering angbeand higher energies, as expected.  One of us(R.C.T) thanks CONACyT-Mexico for its sup-
This behavior has implications for the structure of theport, which made his stay at the University of Florida pos-

differential cross section, since these processes are no longgble. This work is supported partially by NSErant No.
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