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Riemann surface approach to bound and resonant states: Exotic resonant states
for a central rectangular potential

Cornelia Grama, N. Grama, and I. Zamfirescu
Institute of Atomic Physics, P.O.Box MG-6, Bucharest, Romania

~Received 8 March 1999; published 16 February 2000!

An approach to bound and resonant states in scattering by a central potentialgV(r ), gPC, based on a
global analysis ofS-matrix poles, is presented. The global method involves the construction of the Riemann
surfaceRg

( l ) over theg plane on which the pole functionk5k( l )(g) is single valued and analytic. This implies
the division of the Riemann surfaceRg

( l ) into sheets and the construction of the Riemann sheets images in the
k plane. By keeping the sheets of the Riemann surface apart, the single pole laying on each sheet image in the
k plane is identified. With each state (l ,n) of the quantum system one associates a sheetSn

( l ) of the Riemann
surfaceRg

( l ) . A new quantum numbern with a topological meaning is introduced in order to label a pole and
the corresponding state (l ,n). All S-matrix poles for a central rectangular potentialgV(r ), with l 50, 1, 2, 3,
and 4, are analyzed by using the global method. A new class of resonant state poles, having unusual properties,
is identified. The properties of these resonant state poles~exotic poles! and of the corresponding resonant states
are studied. A new type of resonance in the cross section, associated with the cooperative contribution from
three adjacent partial waves and due to the local degeneracy with respect tol, is discussed.

PACS number~s!: 03.65.Nk, 34.50.2s, 34.80.Bm
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I. INTRODUCTION

The resonant structures in the cross section of many
teresting phenomena, such as field ionization, photoion
tion, electron scattering on atoms and molecules, and nuc
scattering are, in most cases, ascribed to resonant stat
the quantum-system. An adequate quantum mechanica
scription of the resonant states is of importance in ma
branches of physics, because general laws of formation
decay of long-lived states in molecules, atoms, nuclei, c
densed matter, and hadronic collisions are necessary.
most fundamental approach to resonant scattering is thro
the analytic properties of theS matrix @1–3#.

We consider nonrelativistic scattering by a central pot
tial gV(r ), gPC. The poles of theSmatrix are the solutions
k5k( l )(g) of the equation

Fl 1~g,k!50, ~1.1!

provided thatFl 2(g,k)Þ0. Here Fl 1(g,k) and Fl 2(g,k)
are the denominator and numerator, respectively, of
S-matrix elementSl @1#. Fl 1(g,k) is the Jost function,g is
the potential strength,k is the wave number, andl is the
orbital angular momentum. The pole functionk5k( l )(g) is a
multiple-valued function defined on the complexg plane.

Due to their close connection to bound and reson
states, sometimes referred to as Gamow states or Sie
states, the poles of theS matrix have been extensively stud
ied @4–11#. S-matrix poles have been studied not only in t
usual scattering process, but also in scattering process i
external field@12,13#. The pole distribution in thek plane as
a function of the potential strengthg has been investigate
for various potentials by a combination of graphical, nume
cal, and asymptotic methods in many papers, for exam
Refs.@14–26#. In all the above-mentioned papers a particu
path in the complexg plane has been chosen, and cor
sponding trajectories of theS-matrix poles in thek plane
1050-2947/2000/61~3!/032716~21!/$15.00 61 0327
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have been determined. In the following this method will
called the ‘‘pole trajectory method.’’ Resonant state po
found by the pole trajectory method have familiar properti
~i! They become bound or virtual state poles when the de
of the potential well is increased, i.e.,uku→` for ugu→`. ~ii !
The corresponding resonant states have wave functions
fined to the well region. These poles will be called ‘‘old
class resonant state poles.’’ In the pole trajectory meth
only a poor description of the functionk5k( l )(g) is ob-
tained. One can never be sure that all the poles in thek plane
have been found because one makes a particular choic
the path in the complexg plane. Moreover, by using the pol
trajectory method one can never be sure that the same po
followed. For example, recently contradictory opinions ha
been raised relative to theS-matrix poles trajectories in the
complexk plane for a complex square potential. Da¸browski
@25# claimed that the statements of Galet al. @27#, Osetet al.
@28#, and Bonettiet al. @29#, concerning the dependence
the S-matrix poles location in thek plane on the strength o
the absorptive potential, were not correct, and propose
general rule for the movement of a pole with increasing Rg
and Img. In fact the pole trajectory method does not allow
definite answer to this question, as will be shown in t
present paper.

In order to have a complete description of theS-matrix
poles in thek plane, a global analysis of the functionk
5k( l )(g) is necessary. In the present paper a Riemann
face approach to bound and resonant states in the cas
scattering by a central potentialgV(r ), gPC, based on a
global analysis of the functionk5k( l )(g), is presented. The
construction of the Riemann surfaceRg

( l ) for a central rect-
angular potential withl 50, 1, 2, 3, and 4 is given in detail
A construction of the images of the Riemann sheets in thk
plane is also done.

The paper is organized as follows: In Sec. II a glob
method for analysis of allS-matrix poles for various classe
©2000 The American Physical Society16-1
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of potentialsgV(r ) is discussed. The Riemann surface of t
pole functionk5k( l )(g) for a central rectangular potentia
with l 50 –4 is constructed in Sec. III. In this case analy
expressions of the branch points and stable points are
tained in Secs. III A and III B, respectively. In Sec. III C th
sheetsSn

( l ) of the Riemann surfaceRg
( l ) and their images

Sn8
( l ) in thek plane are analyzed for eachl value in the range

l 50 –4. By using the global analysis of allS-matrix poles, a
new class of resonant state poles is identified on some
mann sheet images. Because of their unusual propertie
new-class resonant state poles are also called ‘‘exotic r
nant state poles,’’ and their corresponding resonant state
called ‘‘exotic resonant states.’’ The properties of the R
mann sheetsSn

( l ) and of theirk-plane imagesSn8
( l ) that fol-

low from this analysis are summarized in Sec. III D. In Se
III E the properties of the exotic resonant states are
cussed. In Sec. IV a summary of the results is given.

Although the distribution of theS-matrix poles for a cen-
tral rectangular potential was studied in several papers@18–
20# the new-class resonant state poles~exotic poles! have not
been identified because only a global method allows for
identification of allS-matrix poles. The shortcomings of th
previous analyses are stressed in more detail in Sec.
where the Riemann surface is constructed for each orb
angular momentum. The usual manner of studying reson
states prevented theoreticians from identifying the new c
of resonant states. For example, many authors determ
the energies and wave functions of the resonant state
solving the Schro¨dinger equation for real energies~see, e.g.,
Ref. @30#!. They defined the energy of the resonant state
the energy where the ratio of the maximum amplitude of
wave-function inside the potential well over the wave fun
tion amplitude at large distances is at a maximum. By us
this definition of the resonant states these authors restri
themselves from the very beginning to the old class of re
nant states. On the other hand, authors who studied
S-matrix pole trajectories in thek plane followed only par-
ticular paths in the complexg plane, and in this way they los
the new-class of resonant state poles~e.g., see Ref.@20#!.

The global analysis of allS-matrix poles for a centra
rectangular potential can be used as a guide for the gl
analysis of allS-matrix poles for other potential shapes.
Ref. @31# the Riemann surface for a potential made of
central rectangular or Woods-Saxon well plus Coulomb b
rier has been constructed. For this potential the descriptio
the Riemann surface and the arrangement of the proper
nections between sheets are complicated. It was not pos
to obtain analytic expressions for the branch points, but o
asymptotic approximations for the large Sommerfeld para
eter. For a central rectangular potential with a Coulomb b
rier there is a countable infinity of cuts in theg plane that
accumulate on the realg axis, which renders the separatio
of the Riemann sheets difficult. It was the investigation
the case of a central rectangular potential with large orb
angular momentum that allowed an understanding of
structure of the more complicated case of a central rectan
lar potential with a Coulomb barrier. This is why it is impo
tant to construct the Riemann surfaceRg

( l ) for a central rect-
03271
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angular potential not only for a low orbital angula
momentum, but also for large orbital angular momenta.

II. GLOBAL METHOD FOR ALL S-MATRIX POLES
ANALYSIS

The global method for allS-matrix poles analysis involves
the construction of the Riemann surfaceRg

( l ) over theg plane
on which the pole functionk5k( l )(g) is single valued and
analytic. This implies the division of the Riemann surfa
Rg

( l ) into sheets, and the construction of Riemann sheet
ages in thek plane. By keeping the sheets of the Riema
surface apart, the single pole laying on each sheet imag
the k plane is identified. In this way all the poles are iden
fied and no pole is lost. A schematic illustration of th
method is given in Fig. 1. In Fig. 1~a! the function k
5k(l)(g) defined on the complexg plane is multiple valued,
i.e., there are manyk values that correspond to a giveng
value. In Fig. 1~b! the functionk5k( l )(g) defined on the
Riemann surfaceRg

( l ) is single valued. Ifg takes a value on a
sheetSn

( l ) , then the functionk5k( l )(g) takes only one value
on the image of this sheetSn8

( l ) , or, in other words, there is
only a single pole on each sheet image. Moreover, ifg takes
values on a continuous path on a given Riemann sheetSn

( l ) ,
then its imagek5k( l )(g) takes values on a continuous pa
on the Riemann sheet imageSn8

( l ) .
The global method is a powerful tool inS-matrix pole

analysis because it reduces the analysis of an infinity of p
in the k plane to the analysis of a single pole on each R
mann sheet image in thek plane. In this way each pole i
separated and analyzed.

FIG. 1. ~a! The multiple-valued functionk5k( l )(g) defined on
the complexg plane.~b! The Riemann surfaceRg

( l ) over the com-

plex g plane of the functionk5k( l )(g). SheetsSn
( l ) of the Riemann

surfaceRg
( l ) and theirk-plane imagesSn8

( l ) are shown. The branch
points denoted by * and the branch lines that join the branch po
are indicated. One can see that ifg takes a value on a sheetSn

( l ) ,
then the functionk5k( l )(g) takes only one value on the image o
this sheet,Sn8

( l ) .
6-2
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The main step in the construction of the Riemann surf
Rg

( l ) is to find the branch points of the functionk5k( l )(g).
According to the implicit function theory@32,33#, the singu-
lar pointsgi of the functionk( l )(g) are the solutions of the
system

Fl 1~g,k!50, ~2.1a!

]Fl 1~g,k!

]k
50. ~2.1b!

From among these singular pointsgi , those that are branc
points may be found by permitting the variableg to describe
successive small circuits round each singular pointgi , and
by observing whether the functionk( l )(g) returns to its initial
value. Letm.1 be the smallest number of rotations aft
which one again obtains the initial value of the functi
k( l )(g). Then gi is a branch point of orderm21, and m
sheets of the Riemann surfaceRg

( l ) are joined at this point.
The border of any sheet image in thek plane Sn8

( l ) is
obtained by lettingg trace a path along the cuts on the co
responding Riemann sheetSn

( l ) , without crossing them, and
along a circle of large radius joining the cuts. On each sh
image there is only one pole. This pole and the correspo
ing resonant~bound! state are labeled by a pair of quantu
numbersl and n, where the numbern is the label of the
Riemann sheet imageSn8

( l ) on which the pole is situated. Th
sheets and their images are to be ordered in a convent
way.

Because it is impossible to obtain analytical expressi
of the branch points as a function of the potential parame
for a whole class of potentials, the construction of the R
mann surface has to be done for each case individually.
global method may also be used in the case of the multich
nel scattering. In this caseg is the potential strength in one o
the channels.

A. Finite range potential

The equationFl 1(g,k)50 defines the implicit function
k5k( l )(g). The Jost functionFl 1(g,k) is entire ing and k
for several classes of potentials. One of them is formed of
finite range potentialsgV(r ) which satisfy the following
properties@34#:

~1! *0
`r uV(r )udr,`.

~2! V(r )50 for r .R, whereR is a fixed positive radius
~3! V(r ) has an asymptotic expansion about the poinr

5R, whose first term isV(r )'C(12r /R)s with s>0.
~4! V(r ) is continuous and has continuous derivatives

to some order.s for all r in the range 0,r ,R.
A second class of potentials having the entire Jost fu

tion in g and k is made of potentials piecewise continuo
with piecewise continuous derivatives up to some order@35#.
A third class of potentials with the entire Jost function ing
and k consists of potentials which decrease faster than
exponentials@1#.

Julia @36# and Stoilow@37# studied the domain of exis
tence and the properties of an implicit functiony5y(x) de-
fined by an irreducible relationG(x,y)50, whereG(x,y) is
03271
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an entire function with respect tox and y. By using their
results the following properties ofk5k( l )(g) for the above-
mentioned classes of potentials are obtained.

~P1! There is a Riemann surfaceRg
( l ) over theg plane on

which k( l )(g) is a single-valued and analytic function. Th
boundary ofRg

( l ) is the setE @the pointsg for which the
equationFl 1(g,k)50 has no solution ink].

~P2! k( l )(g) has at most a countable infinity of branche
i.e., the Riemann surfaceRg

( l ) has at most a countable infinit
of sheets covering theg plane.

~P3! k( l )(g) and its inverse function have Iversen’s pro
erty, i.e., these functions can be continued analytically fr
an arbitrary point to another arbitrary point along a cur
which lies in a given neighborhood of a prescribed cur
joining these points. In this case the Riemann surfaceRg

( l ) is
of classI ~Iversen!.

~P4! If gPRg
( l ) andgiPE, and if g→gi thenk( l )(g)→`.

~P5! SetE is at most a countable infinite set having infi
ity as the unique limit point, i.e., it is discontinuous ever
where. This follows from the Iversen property.

For a fixedg (gÞ0), the Jost functionFl 1(g,k) of a
finite range potentialgV(r ) has a countable infinity of zero
of finite order @34#, and the Riemann surfaceRg

( l ) has a
countable infinity of sheets. The boundary set of the R
mann surface has a single elementE5$g50%, i.e., Eq.~1.1!
has no solution ink for g50. Wheng→0 theS-matrix poles
go to infinity ~i.e., k→`). These properties are particula
cases of the general properties P2, P5, and P4, respecti

Because the Jost functionFl 1(g,k) is entire ing andk, it
can be factorized in the form@38#

Fl 1~g,k!5eG(g,k) )
n51

`

@ f n~g,k!#aneQn(g,k), ~2.2!

whereG(g,k) and f n(g,k) are entire functions,an is a posi-
tive integer, andQn(g,k) is a polynomial. Moreover, the
roots of the system,

f n~g,k!50, ~2.3a!

] f n~g,k!

]k
50, ~2.3b!

are isolated inC3C @38#. According to Eqs.~2.2! and ~2.3!
the singular points and, therefore, the branch points of
Riemann surfaceRg

( l ) are discrete.

B. Other classes of potentials

The global method for allS-matrix poles analysis, base
on the construction of the Riemann surfaceRg

( l ) , can be used
not only for finite range potentials but also for other class
of potentials, for which the Jost function is analytic in
particular domain of thek plane. Construction of the Rie
mann surface follows the same procedure. For each par
lar case the domain of analyticity in thek plane must be
determined. In Ref.@31# the global method for allS-matrix
poles analysis has been used in the case of a Woods-S
potential with a Coulomb barrier. In this case the Jost fu
6-3
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CORNELIA GRAMA, N. GRAMA, AND I. ZAMFIRESCU PHYSICAL REVIEW A 61 032716
tion Fl 1(g,k) is analytic ink in the domainD(k)5Im k.
2a, except the origink50 and the negative imaginary axi
where it has a cut. Herea5(2d)21, whered is the diffuse-
ness of the Woods-Saxon potential. In this case the s
images ofRg

( l ) in thek plane have been studied, except fo
narrow strip containing the origink50 and the negative
imaginary axis. In Ref.@31# a new class of poles and res
nant states was found. It was shown that the quasimolec
states populated in the heavy-ion scattering are a partic
case of such exotic resonant states. The properties of
quasimolecular states@energy, width, deviation from the lin
ear dependence of the energy onl ( l 11), doorway character
and criteria for observability# result in a natural way from the
general properties of the exotic resonant states.

III. RIEMANN SURFACE Rg
„ l … OF THE FUNCTION

kÄk „ l …
„g… FOR A CENTRAL RECTANGULAR

POTENTIAL

The central rectangular potential

2mR2

\2
gV~r !5H 2g for r /R<1, gPC

0 for r /R.1
~3.1!

is a particular case of a finite range potential and, con
quently, its Jost functionFl 1(g,k) is entire ing andk. We
will use the dimensionless variabler /R rather than the vari-
able r. For the sake of simplicity, in the following the nota
tion k will be used for the dimensionless variablekR.

The Jost function of potential~3.1! is @18#

Fl 1~g,k!5S k

k0
D l

Wl~g,k!, ~3.2!

where

Wl~g,k!5wl~k,R!ul8~k0 ,R!2
k

k0
wl8~k,R!ul~k0 ,R!

~3.3!

is the Wronskian atr 5R of the reduced radial wave func
tions wl(k,r )5krhl

(1)(kr) and ul(k0 ,r )5k0r j l(k0r ), valid
for r>R andr ,R, respectively. Herehl

(1)(kr) is the spheri-
cal Hankel function of the first kind,j l(k0r ) is the spherical
Bessel function@39#, andk05(k21g)1/2. The prime in Eq.
~3.3! indicates the differentiation with respect to the arg
ment of the function. Becausek50 is an exceptional poin
~it is not a pole of theS matrix! @1#, we use the equation

Wl~g,k!50, ~3.4!

rather than Eq.~1.1! to define theS-matrix poles. In order to
find the branch points it is easier to use the system mad
Eq. ~3.4! and the equation

]Wl~g,k!

]k
50 ~3.5!

than the system of equations~2.1a! and ~2.1b!.
03271
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A. Branch points

The branch points have been found by solving the sys
of equations~3.4! and ~3.5!. By using the recurrence rela
tions @39#

l 11

z
f l~z!1

d

dz
f l~z!5 f l 21~z!, lÞ0, ~3.6a!

l

z
f l~z!2

d

dz
f l~z!5 f l 11~z!, ~3.6b!

wheref l(z) denotes the spherical Bessel functionj l(z) or the
spherical Hankel function of the first kindhl

(1)(z), the system
of equations~3.4! and ~3.5! becomes

hl 11
(1) ~k!50, ~3.7a!

j l 11~k0!50, ~3.7b!

or

hl 21
(1) ~k!50, lÞ0, ~3.8a!

j l 21~k0!50, lÞ0. ~3.8b!

According to Eqs.~3.7! and ~3.8! the branch points of the
function k5k( l )(g) are

gs,s8
1

5xl 11,s
2 2yl 11,s8

2 , ~3.9!

gs,s8
2

5xl 21,s
2 2yl 21,s8

2 , lÞ0, ~3.10!

where xm,s (s51,2, . . . ) are thezeros of the spherica
Bessel functionsj m(z), andym,s8 (s851,2, . . . ,m) are the
zeros of the spherical Hankel functions of the first ki
hm

(1)(z), respectively. According to Eqs.~3.9! and ~3.10!
there is a countable infinity of branch points for a giv
value of l, because the functionsj l 61(k0) have a countable
infinity of real simple zeros. These branch points have
finite number of images in thek plane due to the fact tha
hl 11

(1) andhl 21
(1) have a finite number of complex simple zero

The zeros of the Bessel and Hankel functions have b
extensively investigated. Asymptotic approximations
large zeros and of zeros for large orders are very well kno
@39#. Using the zeros ofj l 61 andhl 61

(1) tabulated in Refs.@39#
and @40#, respectively, the branch points have been cal
lated.

In order to show that the branch points~3.9! and ~3.10!
are of order 1, the derivatives]Wl(g,k)/]g and
]2Wl(g,k)/]k2 at the branch points are to be calculate
From Eqs.~3.3!, ~3.9!, and~3.10!, using the recurrence rela
tions ~3.6a! and ~3.6b!, it results that

]Wl~gs,s8
1 ,yl 11,s8!

]g
5

1

2
hl

(1)~yl 11,s8! j l 118 ~xl 11,s!Þ0,

~3.11!
6-4
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]Wl~gs,s8
2 ,yl 21,s8!

]g
5

1

2
hl

(1)~yl 21,s8! j l 218 ~xl 21,s!Þ0,

lÞ0, ~3.12!

]2Wl~gs,s8
1 ,yl 11,s8!

]k2
52

~2l 11!gs,s8
1

~xl 11,s!
2

3hl
(1)~yl 11,s8! j l~xl 11,s!Þ0,

~3.13!

]2Wl~gs,s8
2 ,yl 21,s8!

]k2
5

~2l 21!gs,s8
2

~xl 21,s!
2

3hl
(1)~yl 21,s8! j l~xl 21,s!Þ0, lÞ0.

~3.14!

Taking into account that the values]Wl(g,k)/]g and
]2Wl(g,k)/]k2 at the branch points are different from zer
it results thatd2k/dg2Þ0, i.e., the branch points~3.9! and
~3.10! are of order 1.

Besides the just mentioned algebraic branch points, th
is a transcendental branch point atg50. Indeed, let us de
termine the form of the functionk5k( l )(g) in the neighbor-
hood of g50. For g50, from Eq. ~3.3! one obtains
W(0,k)521/k2, which is different from zero for any finite
k, i.e., Eq.~3.4! has no solution ink for g50. Consequently
g50 is the only element of the boundary setE. According to
property P4,

lim
g→0

k( l )~g!5`, ~3.15!

so that there are only large roots of Eq.~3.4! for g→0. Using
the asymptotic expansions ofj l andhl

(1) for large arguments
@39#, it results that the large roots of Eq.~3.4! are solutions of
the equation

exp~2ik !52~21! l4k2/g. ~3.16!

The roots of Eq.~3.16! for any gPC were studied in detai
by Wright @41#. Based on the results of Ref.@41#, the roots of
Eq. ~3.4! for g→0 are obtained:

k;H pn2
1

2
~argg2 i lnugu! for even l

p~n11/2!2
1

2
~argg2 i lnugu! for odd l ,

~3.17!

wheren50,61,62, . . . and 0<argg,2p. Therefore, the
transcendental branch pointg50 is a logarithmic branch
point whose order is infinite, and consequently all the she
of the Riemann surfaceRg

( l ) are joined together atg50. The
numbern from Eq. ~3.17! will be used in order to label the
Riemann sheetsSn

( l ) and theirk-plane imagesSn8
( l ) . More-

over, n will be used as a new quantum number to label
03271
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pole belonging to sheet imageSn8
( l ) and the corresponding

quantum state (l ,n). This quantum number is completel
different in kind froml, which is connected to the rotationa
invariance, whilen has a topological meaning.

B. Stable points

The asymptotic approximation of the solutionsk
5k( l )(g) of Eq. ~3.4! for largeg will be investigated in order
to show that some poles remain at a finite distance ag
→`. In other words, there are some poles that remain
bound regions of thek plane forugu→`. Taking into account
the asymptotic expansion of the spherical Bessel func
j l(k0) for large g @39#, and using the recurrence relatio
~3.6b!, from Eq. ~3.4! we obtain

hl
(1)~k!1ekhl 11

(1) ~k!50, ~3.18!

where e52@Agcot(Ag2 lp/2)#21 is a small quantity (e
→0) if g is complex andugu→`. By using the relation
hl

(1)(k)52 i (eik/kl 11)u l(2 ik) @42#, whereu l is the Bessel
polynomial defined by the relation

u l~z!5 (
m50

l
~ l 1m!!

~ l 2m!!m!

1

2m
zl 2m, ~3.19!

Eq. ~3.18! becomes

u l~2 ik !2eu l 11~2 ik !50. ~3.20!

This is a polynomial equation which hasl 11 roots for e
Þ0 andl roots fore50. The roots of Bessel polynomials ar
simple roots@42#. We determine the asymptotic expansion
the l 11 roots of Eq.~3.20! ase→0, i.e., ugu→`, by using
the method presented in Ref.@43#. One obtains

k( l ,n)5kn
( l )~11e!, n51,2, . . . ,l ~3.21!

and

k( l ,l 11)52 i /e, ~3.22!

where 2 ikn
( l ) (n51,2, . . . ,l ) are the roots of the Besse

polynomialsu l(z), i.e., u l(2 ikn
( l ))50. In other words, for a

given complex g, ugu→`, there are l poles, namely,
k( l ,n) (n51,2, . . . ,l ), that remain at finite distance accord
ing to Eq.~3.21!. Indeed, we have

lim
g→`

k( l ,n)5kn
( l ) , n51,2, . . . ,l , ~3.23!

provided g is complex. Taking this into account we ca
kn

( l ) (n51,2, . . . ,l ) ‘‘stable points.’’ From Eq.~3.23! it re-
sults that the stable points act as attractors for thesel poles.

According to the behavior forugu→`, two classes of
poles can be distinguished. Some poles behave in the fa
iar way, i.e., uku→` for ugu→`, @see Eq.~3.22!#. These
poles belong to the old class of resonant state poles.
shown by Eq.~3.23!, for eachl there arel poles that remain
6-5
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at finite distance, in the neighborhood of the stable poi
when ugu→`. These poles belong to the new class of po
~exotic resonant state poles!.

Due to the above-mentioned connection between
Bessel polynomialsu l(2 ik) and the spherical Hankel func
tion of the first kindhl

(1)(k), it results that the stable poin
kn

( l ) is a zero of the spherical Hankel function of the fir
kind, i.e., hl

(1)(kn
( l ))50 for n51,2, . . . ,l . The zeros of the

spherical Hankel functions of the first kind are symmetrica
distributed with respect to the imaginaryk axis, along a half-
eye-shaped curve in the lowerk half-plane@44#. This means
that for oddl there is a zero ofhl

(1)(k) on the imaginaryk
axis, and (l 21)/2 zeros in the fourth quadrant of thek plane.
For evenl there arel /2 zeros ofhl

(1) in the fourth quadrant of
thek plane. By convention, in the following the stable poin
in the fourth quadrant will be ordered according to increas
Rek.

C. Analysis of the Riemann surfaceRg
(l)

for lÄ0–4

According to Eqs.~3.9! and ~3.10! there is a countable
infinity of algebraic branch pointsgs,s8

6 for a givenl because
the spherical Bessel functionsj l 61(k0) have a countable in
finity of real simple zeros. These branch pointsgs,s8

6 have a
finite number of imagesk(gs,s8

6 ) in thek plane due to the fac
that hl 11

(1) (k) and hl 21
(1) (k) have a finite number of simple

complex zeros. The zerosxl 61,s , (s51,2, . . . ) of the
spherical Bessel functions are real, and the ze
yl 61,s8 (s851,2, . . . ,l 61) of the spherical Hankel function
of the first kind are complex, so that the algebraic bran
points for a givenl can be grouped into sets characterized
the same Img. Consequently the cuts that allow a separat
of the Riemann sheets have been taken by joining the bra
points with the same Img by rectilinear segments going t
Reg→`. Besides these cuts there is a cut along the posi
real g axis starting at the transcendental branch pointg50.
To summarize, there are 2l 11 cuts for oddl , 2l 21 cuts
for evenl ( lÞ0), and one cut on the positive realg axis for
l 50. All the algebraic branch points are of order 1, so tha
a given algebraic branch point only two sheets are join
together. One determines the sheets that are joined at a g
algebraic branch pointgs,s8

6 by taking successive small cir
cuits ug2gs,s8

6 u5r round the given branch pointgs,s8
6 . Let us

start withg5giPSn
( l ) andki5k( l )(gi)PSn8

( l ) . After a com-
plete rotation ofg round the branch pointgs,s8

6 the pole
reaches another valuek5kfPSm8

( l ) . After a second complete
rotation of g, the pole reaches again its initial valueki

PSn8
( l ) . It results thatgs,s8

6 is a branch point where shee
Sn

( l ) andSm
( l ) are joined together. A more detailed discussi

will be done for each value of the orbital momentuml in the
corresponding subsections. The order of the transcende
branch pointg50 is infinite, so that all the sheets are joine
at g50. The numbern from Eq.~3.17! will be used in order
to label the Riemann sheetsSn

( l ) and theirk-plane images
Sn8

( l ) . Moreover,n will be used as a new quantum number
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label the pole belonging to sheet imageSn8
( l ) and the corre-

sponding quantum state (l ,n). In the analysis of the Rieman
surfaceRg

( l ) the property@1#

Fl~g,k!5Fl* ~g* ,2k* ! ~3.24!

of the Jost function will be used.

1. Case lÄ0

The S-matrix poles are solutionsk5k(0)(g) of Eq. ~3.4!
which can be written as

ik5k0 cotk0 , ~3.25!

wherek05(g1k2)1/2. Let us construct the Riemann surfac
Rg

(0) over theg plane, on which the functionk5k(0)(g) is
single valued and analytic. Forl 50 system~3.7! becomes

h1
(1)~k!52

i 1k

k2
eik50, ~3.26!

j 1~k0!5
sink02k0 cosk0

k0
2

50. ~3.27!

The branch points of the Riemann surfaceRg
(0) are given by

Eq. ~3.9! for l 50 wherey1,s8 andx1,s are the solutions of the
Eqs.~3.26! and ~3.27!, respectively.

Let ks8 (s851) be the zero ofh1
(1)(z) and k0,s

1 (s
51,2, . . . ) be thezeros of j 1(z). With the valuesk152 i
given by Eq.~3.26! andk0,s

1 given by Eq.~3.27!, the branch
pointsgs,s8

1 are obtained from Eq.~3.9!:

gs,1
1 5~k0,s

1 !22k1
2 , s51,2, . . . . ~3.28!

It results that, in addition to the logarithmic branch pointg
50, there is a countable infinity of branch points on the r
axis, given by Eq.~3.28! and presented in Table I.

The Riemann surfaceRg
(0) will be constructed according

to the usual procedure: a cut is taken in theg plane, joining
all branch points by a simple line. The rest of the domain
simple conex. In the present case there is only one
namely, the cut along the half-axis@0,1`). To each branch
of the multivalued functionk(0)(g) a sheet of the Riemann
surfaceRg

(0) is associated. We label the sheets and th
k-plane images by the integern50,61,62, . . . which oc-

TABLE I. The branch pointsgs,s8
1 in the casel 50. The zeros of

the spherical Bessel functionj 1(k0) are denoted byk0,s
1 . ks8 (s8

51) stands for the zero of the spherical Hankel function of the fi
kind h1

(1)(k).

s8 s k0,s
1 ks8 gs,1

1

1 1 4.493 2 i 21.191
1 2 7.725 2 i 60.679
1 3 10.904 2 i 119.900
A A A A A
1 n ;(n11/2)p 2 i ;11(n11/2)2p2
6-6
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curs in Eq.~3.17!, that defines the pole forg→0. SetE of
boundary points has only one point, namely,g50. For g
PSn

(0) the corresponding pole is situated onS8n
(0) . The bor-

der of each sheetSn
(0) is obtained by varyingg along the two

edges of the cut@0,̀ ) and on a circle of a large radiu
joining them. The border of thek-plane sheet imageSn8

(0) is
obtained by following the pole defined by Eq.~3.25!, wheng
describes the border ofSn

(0) .
The sheetsS0

(0) , S1
(0) , S2

(0) , andS3
(0) , as well as their

k-plane imagesS08
(0) , S18

(0) , S28
(0) , andS38

(0) , respectively,
are represented in Fig. 2. In order to describe these sh
and theirk-plane images, a detailed construction of their b
ders will be given in the following.

We start the construction of each sheet border at the p
g50. For g→0, gPS0

(0) , the pole onS08
(0) is situated at

k;2 1
2 (argg2 i lnugu) @see Eq.~3.17!#. Point A in Fig. 2~b!

indicates the position of the pole forg51 i«, where «
.0 (« small!, i.e., for argg5p/2. When the potentia
strengthg increases along the upper edge of the cut@0,̀ ) on
the sheetS0

(0) ~a more and more attractive potential!, this
pole moves upwards along the negative imaginaryk axis,
and passes throughk52 i at g51, crossing the origin for
g5(p/2)2. For g.(p/2)2 it becomes a bound state pol
giving rise to the first bound state~ground state!. For g
PS0

(0) , g52 i«, i.e., for argg53p/2, the pole is situated
in the point denoted byG in Fig. 2~b!. When Reg increases
so thatg moves on the sheetS0

(0) along the lower edge of the
cut @0,̀ ), the pole approaches the straight line Rek52p;
then it moves upwards until it approaches the straight
Im k521. When Reg increases further, the pole approach
the imaginaryk axis. The pole passes throughk52 i at g
521.191; then it becomes a virtual pole, moving towardk
52 i` asg→`.

Similarly, for g→0, gPS1
(0) , the pole onS18

(0) is situ-
ated atk;p2 1

2 (argg2 i lnugu). PointsA andG in Fig. 2~d!
indicate the position of this pole forg51 i« and g52 i«,
respectively. When the potential strengthg increases on
sheetS1

(0) along the upper edge of the cut@0,̀ ) the pole
approaches the straight line Rek5p; then it moves upwards
until it approaches the straight line Imk521. The pole then
moves toward the imaginaryk axis, passes throughk52 i at
g521.191, and then becomes a virtual pole, moving tow
k52 i` as g→`. When the potential strengthg increases
on sheetS1

(0) along the lower edge of the cut@0,̀ ) the pole
starting from pointG in Fig. 2~d! moves upwards along th
negative imaginaryk axis, and passes throughk52 i at g
51, crossing the origin forg5(p/2)2. For g.(p/2)2 it be-
comes a bound state pole.

For g→0, gPS2
(0) , the pole onS28

(0) is situated atk
;2p2 1

2 (argg2 i lnugu). For g→0, gPS3
(0) the pole on

S38
(0) is situated atk;3p2 1

2 (argg2 i lnugu). In Figs. 2~f!
and 2~h! point A denotes the position of the pole on the sh
imagesS28

(0) and S38
(0) for g taking the valueg51 i« on

sheetsS2
(0) and S3

(0) , respectively. Similarly, pointG de-
notes the position of the pole on sheet imagesS28

(0) and
S38

(0) for g taking the valueg52 i« on sheetsS2
(0) and
03271
ets
-

nt

e
s

d

t

S3
(0) , respectively. When the potential strengthg is increased

on S2
(0) along the upper edge of the cut@0,̀ ), the pole

starting from point A on S28
(0) reaches k52 i for g

560.679, and then becomes a virtual state pole. When
potential strength is increased on the sheetS2

(0) from g50 to
g→` along the lower edge of the cut@0,̀ ), the pole starting
from point G on S28

(0) reachesk52 i for g521.191, then

FIG. 2. SheetsSn
(0) (n50,1,2,3) of the Riemann surfaceRg

(0)

and theirk-plane imagesSn8
(0) for a central rectangular potentia

with l 50. The borders of the sheets, made of the edges of the
@0,̀ ) and a circle of a large radius, are shown in~a!, ~c!, ~e!, and
~g!. Thek-plane images of the Riemann sheet borders are show
~b!, ~d!, ~f!, and ~h!, respectively. Different symbols are used
order to indicate the two edges of the cut and the large radius c
in theg plane. Thek-plane image of the corresponding sheet bord
segment is marked by the same symbol. We denoteA, B, C, . . .
thek-plane images of the pointsa, b, c, . . . from theg plane. By
dashed, dotted, and dash-dotted lines a pure real barrier, a
absorptive potential, and a pure emissive potential, respectively
indicated.
6-7
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moves upwards along the imaginaryk axis and becomes
bound state pole. Similarly, on sheet imageS38

(0) the pole
starting from pointA reachesk52 i for g5119.900, while
the pole starting from pointG reachesk52 i at g560.679.

Wheng→` on sheetSs
(0) (s51,2,3, . . . ), thepole goes

to k→2 i` on Ss8
(0) if g follows the upper edge of the cu

@0,̀ ), and tok→ i` if g follows the lower edge of the cu
@0,̀ ). Wheng→` on sheetS2s

(0) (s51,2,3, . . . ) thepole
goes tok→ i` on S2s8(0) if g follows the upper edge of the cu
@0,̀ ), and tok→2 i` if g follows the lower edge of the cu
@0,̀ ). For s51,2, . . . , sheet imageS2s8(0) is symmetric to
sheet imageSs118(0) with respect to the imaginaryk axis.

The analysis of the sheets shows that at each branch p
gs,1

1 sheetsS2s
(0) andSs

(0) , s51,2, . . . , arejoined. In Fig. 3
the way the sheets are joined at the branch points is s
matically shown. We remark that sheetS0

(0) ~the ground-
state sheet! has no junction with any other sheet if the p
tential is present (gÞ0). We remind the reader that atg
50 all the sheets are joined together.

A comparison of the present results in the casel 50 with
the results obtained in the previous analyses stresses th
vantage of the global method. Indeed, Nussenzveig@18#
studied the case of a real potential. He showed that com
poles approach from opposite sides the imaginaryk axis at
k52 i , where theSmatrix has a double pole, obtained for
potential strengthg5gs,1

1 in our notation~see Fig. 1 of Ref.
@18#!. For g.gs,1

1 the double pole splits into a pair of pole
which move in opposite directions along the imaginaryk
axis. However, due to the fact that Ref.@18# did not use a
global analysis, one cannot specify which of the initial po
becomes a bound state pole (Imk.0) and which one be-
comes a virtual state pole (Imk,0). On the contrary, when
using the global method for pole analysis, once a Riem
sheet is chosen there is one and only one pole on the c
spondingk-plane image of the sheet, and this pole can
followed when the potential strength changes. This can
clearly seen from Fig. 2. The trajectories of theS-matrix
poles for a central complex rectangular potential well w
calculated by Joffily@19# by choosing given paths in th

FIG. 3. The junctions of sheetsSn
(0) and Sm

(0) (n,m50,61,
62,63) for a central rectangular potential withl 50 at the branch
pointsgs,1

1 , (s51,2,3). The labeln or m of each sheet is indicate
by the numbers given at the left and right ends of the picture. O
can see, for example, that forg5g1,1

1 sheetS21
(0) is joined to sheet

S1
(0) .
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complexg plane. In Ref.@19# pole trajectories for a purely
absorptive imaginary well and for a complex absorptive w
with a given ratio between real and imaginary parts of
potential strength have been calculated. However, as the
equation has infinitely many roots for an arbitraryg, one
cannot specify which pole has been found by graphical me
ods and iterative processes. On thek plane it is possible to
jump involuntarily from one pole to the other. Converse
the global method allows the identification of each pole.
other words, if we have two points on a given sheet ima
we can pass from one to another, being sure that we fol
the same pole. Recently contradictory opinions have b
given relative to the effect of the absorptive part of the p
tential strength on the pole location. Does the virtual st
pole move clockwise into the third quadrant of thek plane,
or counterclockwise into the fourth quadrant? This quest
was differently answered in Refs.@27–29# and@25#. In fact it
is not possible to give a definite answer by using the p
trajectory method. From Fig. 2 one can see that the ans
depends on the sheet image on which the pole is situated
sheet imagesS08

(0) , S218(0) , S228(0) , . . . the pole moves into
the third quadrant, while on sheet imagesS18

(0) , S28
(0) , . . .

it moves into the fourth quadrant when the absorption
switched on. In connection with the analysis given in R
@25#, we should also note that two poles are associated w
the same state~2s!, for the same potential strength. This is a
erroneous result, because one should associate a single
with each state. In our analysis the 2s state is associated
the pole (0,1), situated on the sheet imageS18

(0) .

2. Case lÄ1

For l 51 the pole equation~3.4! can be written

ik22k2 i

k1 i
5

~k0
221!sink01k0 cosk0

sink02k0 cosk0
. ~3.29!

The branch points of the Riemann surface are given by
system of equations~3.9! and~3.10!, wherexl 61,s andyl 61,s8
are the solutions of Eqs.~3.7! and ~3.8! taken for l 51. As
h0

(1)(z)5eiz/z has no zero, it results that the branch poin
are determined only by Eq.~3.9!. For l 51 the system of
equation~3.7! can be written

h2
(1)~k!5

ieik

k F11
3i

k
2

3

k2G50, ~3.30!

j 2~k0!52
3 cosk0

k0
2

1
~32k0

2!sink0

k0
3

50. ~3.31!

From these equations thek-plane images of the branch poin
ks8 (s851,2),

k1,25
1

2
~6A323i !, ~3.32!

and the zerosk0,s
1 (s51,2,3, . . . ) of the spherical Besse

function j 2(k0) are obtained. From Eq.~3.9! the following
branch points result:

e

6-8
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gs,1
1 5~k0,s

1 !22k1
25~k0,s

1 !21
3

2
~11 iA3! ~3.33!

and

gs,2
1 5~k0,s

1 !22k2
25~k0,s

1 !21
3

2
~12 iA3!, ~3.34!

where s51,2, . . . . In Table II the values of these branc
points and of theirk-plane images are given. One can see t
besides the logarithmic branch pointg50 there are two in-
finite sets of branch pointsgs,s8

1 , (s851 and 2 ands

51,2,3, . . . ).Each set is characterized by the same Imgs,s8
1 .

The Riemann surface will be constructed by taking t
cuts in theg plane, parallel to the real axis. These cuts jo
all the complex branch points of the functionk5k(1)(g). A
cut along the positive realg axis will also be taken. The res
of the domain is simple conex. Proceeding in the same m
ner as in the casel 50, sheets of the Riemann surfaceRg

(1)

are constructed. SheetS0
(1) is joined with sheetSs

(1) at the
branch pointgs,1

1 , and sheetS0
(1) is joined with sheetS2s

(1) at
the branch pointgs,2

1 , wheres51,2,3, . . . . Thesituation is
illustrated in Fig. 4, where the way the sheets are joined
to another is shown for the branch pointsgs,1

1 , with s51, 2,
and 3.

In Fig. 5 sheetsS0
(1) , S1

(1) , and S2
(1) and theirk-plane

images are represented. One observes that a large pa
sheetS0

(1) , namely, the region with Reg.Reg1,1
1 and Img

.Im gs,1
1 , is mapped by the functionk5k(1)(g) onto a

bound region of thek-plane sheet imageS08
(1) . This region,

indicated by hatching in Fig. 5~b!, lies on the branch poin
imagek15A3/223i /2 and on the stable pointk1

(1)52 i , de-
fined as the solution of equationh1

(1)(k)50. Another large
part of the sheetS0

(1) , namely, the region with Reg
.Reg1,2

1 and Img,Im gs,2
1 , is mapped by the functionk

5k(1)(g) onto another bound region ofS08
(1) that lies on the

branch point imagek252A3/223i /2 and on the same
stable point. Details on the bound regions of the sheet im

TABLE II. The branch pointsgs,s8
1 in the casel 51. The zeros

of the spherical Bessel functionsj 2(k0) are denoted byk0,s
1 .

ks8 (s851,2) stand for the zeros of the spherical Hankel funct
of the first kindh2

(1)(k).

s8 s k0,s
1 ks8 gs,s8

1

1 1 5.763 0.86621.500i 34.71712.598i
1 2 9.909 0.86621.500i 84.21912.598i
1 3 12.322 0.86621.500i 153.35512.598i
A A A A A
1 n ;(n11)p A3/223i /2 ;(n11)2p22k1

2

2 1 5.763 20.86621.500i 34.71722.598i
2 2 9.909 20.86621.500i 84.21922.598i
2 3 12.322 20.86621.500i 153.35522.598i
A A A A A
2 n ;(n11)p 2A3/223i /2 ;(n11)2p22k2

2
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S08
(1) are shown in Fig. 5~c!. If the potential strengthg on

S0
(1) is situated in the windows of the potential streng

Im g.Im gs,1
1 53A3/2 or Img,Im gs,2

1 523A3/2, the cor-
responding pole belongs to the new class of poles, i.e
remains in a bound region of thek plane and does not be
come a bound or virtual state pole when the depth of
potential well increases indefinitely (Reg→`). This is an
exotic resonant state pole. From Fig. 5 one can see tha
Riemann sheet imageS08

(1) does not include the positive
imaginaryk axis, or, in other words, the pole onS08

(1) cannot
become a bound state pole. Moreover, ifuIm gu.uIm gs,s8

1 u
53A3/2, the regions where the exotic poles are loca
shrink to the stable point for a sufficiently deep potent
well, according to Eq.~3.23!. In other words the stable poin
is an attractor for the exotic resonant state pole, which
insensitive to the behavior of the potential in the intern
region ~well region!. In Fig. 6 the trajectory of the pole on
S08

(1) is shown forg varying asg5l(101 i ), wherel takes
values between 3.5 and 500. One can see the s
asymptotic trajectory of the exotic resonant state pole
proaching the stable pointk1

(1)52 i . If uIm gu,uIm gs,s8
1 u

53A3/2 onS0
(1) , then the corresponding pole onS08

(1) be-
longs to the old class of poles, i.e., the pole behaves i
familiar way when the potential strength increases. Inde
when Reg increases, the pole moves toward the imaginark
axis and becomes a virtual state pole for a sufficiently d
potential well.

SheetS1
(1) and itsk-plane image are represented in Fig

5~d! and 5~e!, respectively. One can see that on sheet im
S18

(1) there is only an old-class resonant state pole. T
bound region of thek plane where the exotic resonant sta
pole was located onS08

(1) is empty onS18
(1) . This means

that the pole trajectories onS18
(1) , corresponding to any path

of g on S1
(1) that does not cross the cuts, avoid the region

the k plane where the exotic resonant state pole was loca
on sheet imageS08

(1) .
On the next Riemann sheet imagesSs8

(1) , (s52,3, . . . )
there are only old-class poles. The boundaries of these s
images can be constructed starting from the position of

FIG. 4. The junctions of sheetsSn
(1) and Sm

(1) (n,m50,1,2,3)
for a central rectangular potential withl 51 at the branch points
gs,1

1 (s51,2,3). The labeln or m of each sheet is indicated by th
number given at the left and right ends of the picture.
6-9
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FIG. 5. SheetsSn
(1) (n50,1,2) of the Riemann surfaceRg

(1) and theirk-plane imagesSn8
(1) for a central rectangular potential withl

51. The borders of the sheets, made of the edges of the cut@0,̀ ), the edges of the cuts that join the complex branch points, and a c
of a large radius are shown in~a!, ~d!, and~g!. Thek-plane images of the sheet borders are given in~b!, ~e!, and~h!. Details of the Riemann
sheet imagesSn8

(1) (n50,1,2) are shown in~c!, ~f!, and~i!. Different symbols are used in order to indicate the two edges of each cu
the large radius circle in theg plane. Thek-plane image of the corresponding sheet border segment is marked by the same sym
A, B, C, . . . , wedenote thek-plane images of the pointsa, b, c, . . . from theg plane. The hatched regions of sheetS0

(1) are mapped
by the functionk5k(1)(g) onto the bound regions ofS08

(1) indicated by the same hatching. In each of these bound regions ofS08
(1) the exotic

resonant state pole is situated. One can see that the region occupied by the exotic resonant state pole onS08
(1) is empty on sheet imagesS18

(1)

andS28
(1) ; i.e., the poles onS18

(1) andS28
(1) cannot be situated in this region.
o
at

d
.,
b

bal

lo-
ex-
the
ig.

he
n
pole
pole forg50. On all these sheet images the bound region
the k plane where the exotic resonant state pole was loc
on S08

(1) is empty.
SheetsS2s

(1) and Ss
(1) (s51,2, . . . ) aresymmetric with

respect to the realg axis. According to the property~3.24! of
the Jost function, thek-plane imagesS2s8(1) and Ss8

(1) (s
51,2, . . . ) aresymmetric with respect to the imaginaryk
axis.

In Ref. @20# the pole distribution for a real square well an
l 51 has been studied. The exotic resonant state pole, i.e
pole that is located in the bound region between the sta
03271
f
ed

the
le

point k52 i and the branch point imagek5A3/223i /2, has
not been found in the quoted paper, due to the nonglo
treatment of the pole function. Similarly, in Ref.@25# the
effect of the absorptive part of the potential on the pole
cation was analyzed by the pole trajectory method. The
otic pole was not found, because the path chosen for
potential strength did not enter the hatched region in F
2~a!. In Ref. @25# there are two poles associated with t
same state (1p) for the same potential strength. This is a
erroneous result, because one should associate a single
with each state. In our analysis the 1p state is associated
6-10
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with pole (1,0), situated on sheet imageS08
(1) .

3. Case lÄ2

For l 52 the pole equation~3.4! becomes

k313ik226k26i

ik223k23i
5

~3k0
226!sink02~k0

326k0!cosk0

~k0
223!sink013k0 cosk0

.

~3.35!

The branch points of the Riemann surface are given by
system of equations~3.9! and~3.10!, wherexl 61,s andyl 61,s8
are the solutions of the system of equations~3.7! and ~3.8!,
which in the casel 52 can be written as

h3
(1)~k!52

ieik

k4
@15215ik26k21 ik3#50, ~3.36a!

j 3~k0!5
1

k0
4 @~1526k0

2!sink01k0~k0
2215!cosk0#50

~3.36b!

and

h1
(1)~k!52

i 1k

k2
eik50, ~3.36c!

j 1~k0!5
sink02k0 cosk0

k0
2

50, ~3.36d!

respectively. In other words thek-plane images of the branc
points are given by the zero ofh1

(1)(k) and the zeros of
h3

(1)(k). Using Eqs.~3.9! and ~3.10!, four sets of branch
points have been obtained, corresponding tok0,s

6 , (s
51,2,3, . . . ) taking values from the infinite set of zeros

FIG. 6. The trajectory of the exotic resonant state pole on sh
imageS08

(1) for g varying asg5l(101 i ), wherel takes values in
the range 3.5–500. The numbers beside the spiral curve give tl
values.
03271
e

the spherical Bessel functionsj 1(k0) and j 3(k0) and to
ks8 (s851,2,3,4) taking values from the finite set of zeros
the spherical Hankel functions of the first kindh1

(1)(k) and
h3

(1)(k). In Table III the algebraic branch pointsgs,s8
6 and

their images in thek plane are presented.
Two of the four infinite sets of branch points are real, a

the other two are characterized by Imgs,s8
1

566.452. By us-
ing the procedure described in the preamble of Sec. III C
Riemann surfaceRg

(2) was constructed. Lets51,2,3, . . . .
SheetS0

(2) is joined to sheetSs
(2) at the branch pointsgs,1

2

andgs,2
1 . SheetS2s11

(2) is joined to sheetS2s
(2) at the branch

point gs,3
1 . SheetSs

(2) is joined to sheetSs11
(2) at the branch

point gs,4
1 . The way the sheets are joined is shown schem

cally in Fig. 7. For simplicity, only the junctions of shee
Sn

(2) andSm
(2) with n,m>0 are shown.

In Fig. 8 the Riemann sheetsS1
(2) and S2

(2) , as well as
their k-plane imagesS18

(2) and S28
(2) , are shown. One ob

serves that a large part of sheetS1
(2) , namely, the region with

Reg.Regs,4
1 and Img.Im gs,4

1 , is mapped by the function
k5k(2)(g) onto a bound region of thek-plane sheet image
S18

(2) that lies on the branch point imagek451.754–1.839i
and on the stable pointk1

(2)5A3/223i /2 @the solution of the
equationh2

(1)(k)50]. Another large part

et

TABLE III. The branch points in the casel 52. The zeros of the
spherical Bessel functionsj 1(k0) and j 3(k0), respectively, are de-
noted byk0,s

2 andk0,s
1 . ks8 (s851) stands for the zero of the spher

cal Hankel function of the first kindh1
(1)(k), andks8 (s852,3,4)

stand for the zeros of the spherical Hankel function of the first k
h3

(1)(k).

s8 s k0,s
2 ks8 gs,s8

2

1 1 4.493 21.000i 21.191
1 2 7.725 21.000i 60.680
1 3 10.904 21.000i 119.900
A A A A A
1 n ;(n11/2)p 21.000i ;(n11/2)2p22k1

2

s8 s k0,s
1 ks8 gs,s8

1

2 1 6.988 22.322i 54.224
2 2 10.417 22.322i 113.909
2 3 13.698 22.322i 193.028
A A A A A
2 n ;(n13/2)p 22.322i ;(n13/2)2p22k2

2

3 1 6.988 21.75421.839i 49.13526.452i
3 2 10.417 21.75421.839i 108.82026.452i
3 3 13.698 21.75421.839i 187.94026.452i
A A A A A
3 n ;(n13/2)p 21.75421.839i ;(n13/2)2p22k3

2

4 1 6.988 1.75421.839i 49.13516.452i
4 2 10.417 1.75421.839i 108.82016.452i
4 3 13.698 1.75421.839i 187.94016.452i
A A A A A
4 n ;(n13/2)p 1.75421.839i ;(n13/2)2p22k4

2
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of the sheetS1
(2) , namely, the region with Reg.0 and

Im g,0, is mapped by the functionk5k(2)(g) onto another
bound region of thek plane that lies on the branch poin
imagesk152 i and k2522.322i and on the same stabl
point k1

(2)5A3/223i /2. Details of Fig. 8~b! are given in Fig.
8~c!, where the bound regions of the sheet imageS18

(2) are
shown at an enlarged scale. The pole situated on sheet im
S18

(2) that corresponds to a potential well of strengthg with
0,Im g,Im gs,4

1 56.452 behaves in a familiar way when th
potential strength increases: it moves toward the imaginak
axis and for a sufficiently deep well becomes a virtual po
The pole situated on sheet imageS18

(2) , that corresponds to

FIG. 7. The junctions of sheetsSn
(2) and Sm

(2) (n,m
50,1,2,3,4) for a central rectangular potential withl 52 at the
branch pointsgs,1

2 , gs,2
1 , gs,3

1 , andgs,4
1 (s51,2,3). The labeln or m

of each sheet is indicated by the numbers given at the left and
ends of the picture.
03271
ge

.

a potential strengthg with Im g.Im gs,4
1 56.452 or Img

,0, is an exotic resonant state pole. It behaves in an unu
way: the pole does not become a bound or virtual state p
as the potential strengthg increases, but remains in a boun
region of thek plane. The border of the bound region of th
k plane, where the exotic resonant state pole is situated,
on a pair of points: a stable point and thek-plane image of a
branch point. When the potential strength increases to in
ity the exotic resonant state pole approaches the stable p
@see Eq.~3.23!#.

SheetS2
(2) and itsk-plane image are represented in Fig

8~d! and 8~e!, respectively. One can see that there is only
old-class pole on this sheet image. The region of thek plane
where the exotic resonant state pole was located onS18

(2) is
empty onS28

(2) .
SheetS0

(2) is symmetric to sheetS1
(2) with respect to the

real g axis and itsk-plane imageS08
(2) is, according to the

Jost function property, symmetric with respect to the ima
nary k axis to imageS18

(2) . Consequently sheetS0
(2) and its

imageS08
(2) are not shown in Fig. 8, although on sheet ima

S08
(2) there are two bound regions in the third quadrant of

k plane where the exotic resonant state pole that corresp
to a strongly emissive potential (Img,2Im gs,4

1 ) or to an
absorptive potential (Img.0), is located. Generally, shee
S2n

(2) with (n>0) is symmetric to sheetSn11
(2) with respect to

the realg axis, and its image is symmetric with respect to t
imaginary k axis to sheet imageSn118(2) @see Eq.~3.24!#. In
Fig. 9 one can see the spiral asymptotic trajectory of

ht
shown

e

FIG. 8. SheetsSn
(2)(n51,2) of the Riemann surfaceRg

(2) and their imagesSn8
(2) for a central rectangular potential withl 52. The sheet

borders made of the edges of the cut@0,̀ ), the edges of the cuts that join the complex branch points, and a circle of a large radius are
in ~a! and ~d!. Thek-plane imagesS18

(2) andS28
(2) are shown in~b! and ~e!. Details of thesek-plane images are shown in~c! and ~f!. The

hatched regions of sheetS1
(2) are mapped by the functionk5k(2)(g) onto bound regions of sheet imageS18

(2) that are indicated by the sam
hatching. In each of these bound regions ofS18

(2) the exotic resonant state pole is situated. One can see that the region of thek-plane
occupied by the exotic resonant state pole on sheet imageS18

(2) is empty on sheet imageS28
(2) .
6-12
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exotic pole on S18
(2) approaching the stable pointk1

(2)

50.86621.5i for ugu→`.

4. Case lÄ3

The pole equation in the casel 53 is

ik426k3221ik2145k145i

k316ik2215k215i

5
~k0

4221k0
2145!sink01~6k0

3245k0!cosk0

~6k0
2215!sink02~k0

3215k0!cosk0

.

~3.37!

For l 53, systems~3.7! and ~3.8! become

h4
(1)~k!5

2 ieik

k F11
10i

k
2

45

k2
2

105i

k3
1

105

k4 G50,

~3.38a!

j 4~k0!52
1

k0
5 @~k0

4245k0
21105!sink0

1k0~10k0
22105!cosk0#

50 ~3.38b!

and

h2
(1)~k!5

ieik

k F11
3i

k
2

3

k2G50, ~3.38c!

j 2~k0!52
3 cosk0

k0
2

1
~32k0

2!sink0

k0
3

50, ~3.38d!

FIG. 9. The trajectories of the exotic resonant state pole on s
imageS18

(2) for g varying asg5l(81 i ) and asg5l(82 i ), re-
spectively, withl taking values up to 200. The numbers beside
spiral curves give thel values. We indicate the stable point byd

and the images of the branch points by!.
03271
respectively. In Table IV the values of the branch points a
of their images in thek plane are presented.

The Riemann surfaceRg
(3) is constructed in the same man

ner as in the previous cases. Lets51,2,3, . . . . SheetSs
(3) is

joined with sheetSs21
(3) at gs,1

2 . SheetS2s
(3) is joined with

sheetS2s11
(3) at the branch pointgs,2

1 . SheetS0
(3) is joined

with sheetSs
(3) at the branch pointgs,3

1 . SheetS0
(3) is joined

with sheetS2s
(3) at the branch pointgs,4

1 . SheetS1
(3) is joined

with sheetSs11
(3) at gs,5

1 . SheetS21
(3) is joined with sheet

S2s21
(3) at gs,6

1 . The way the sheets are joined is shown sc
matically in Fig. 10. For simplicity, only the junctions o
sheetsSn

(3) andSm
(3) with n,m>0 are shown.

In Fig. 11 sheetsS0
(3) , S1

(3) , andS2
(2) and theirk-plane

et

e

TABLE IV. The branch points in the casel 53. The zeros of the
spherical Bessel functionsj 2(k0) and j 4(k0), respectively, are de-
noted byk0,s

2 and k0,s
1 . ks8 (s851,2) stand for the zeros of the

spherical Hankel function of the first kindh2
(1)(k), and ks8 (s8

53,4,5,6) stand for the zeros of the spherical Hankel function
the first kindh4

(1)(k).

s8 s k0,s
2 ks8 gs,s8

2

1 1 5.763 0.86621.500i 34.71712.598i
1 2 9.095 0.86621.500i 84.21912.598i
1 3 12.323 0.86621.500i 153.35512.598i
A A A A A
1 n ;(n11)p A3/223i /2 ;(n11)2p22k1

2

2 1 5.763 20.86621.500i 34.71722.598i
2 2 9.095 20.86621.500i 84.21922.598i
2 3 12.323 20.86621.500i 153.35522.598i
A A A A A
2 n ;(n11)p 2A3/223i /2 ;(n11)2p22k2

2

s8 s k0,s
1 ks8 gs,s8

1

3 1 8.183 0.86722.896i 74.59015.023i
3 2 11.705 0.86722.896i 144.64115.023i
3 3 15.040 0.86722.896i 233.82715.023i
A A A A A
3 n ;(n12)p 0.86722.896i ;(n12)2p22k3

2

4 1 8.183 20.86722.896i 74.59025.023i
4 2 11.705 20.86722.896i 144.64125.023i
4 3 15.040 20.86722.896i 233.82725.023i
A A A A A
4 n ;(n12)p 20.86722.896i ;(n12)2p22k4

2

5 1 8.183 2.65722.104i 64.319111.181i
5 2 11.705 2.65722.104i 134.368111.181i
5 3 15.040 2.65722.104i 223.556111.181i
A A A A A
5 n ;(n12)p 2.65722.104i ;(n12)2p22k5

2

6 1 8.183 22.65722.104i 64.318211.181i
6 2 11.705 22.65722.104i 134.369211.181i
6 3 15.040 22.65722.104i 223.556211.181i
A A A A A
6 n ;(n12)p 22.65722.104i ;(n12)2p22k6

2
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images are represented. One can see that on sheetS0
(3) there

are four regions, indicated by hatching, corresponding
strong absorption (Img.Im gs,3

1 ), strong emission (Img
,Im gs,4

1 ), weak absorption (0,Im g,Im gs,1
2 ) and weak

emission (Imgs,2
2 ,Im g,0), respectively, that are mappe

by the functionk5k(3)(g) on some bound regions of th
k-plane sheet imageS08

(3) . As the cuts on sheetS0
(3) are

symmetric with respect to the realg axis, the bound regions
on the correspondingk-plane imageS08

(3) are symmetric
with respect to the imaginaryk axis. Each of these boun
regions where the exotic resonant state pole is located lie

FIG. 10. The junctions of the sheetsSn
(3) and Sm

(3) (n,m
50,1,2,3,4) for a central rectangular potential withl 53 at the
branch pointsgs,1

2 , gs,2
2 , gs,3

1 , gs,4
1 , gs,5

1 , andgs,6
1 (s51,2,3). The

label n or m of each sheet is indicated by the numbers given at
left and right ends of the picture.
03271
o

on

a pair of points in thek plane: the image of a branch poin
and a stable point. For example, the bound region wh
occurs for strong absorption lies on thek-plane image of the
branch pointgs,3

1 and on the stable pointk1
(3)522.322i . The

bound region which occurs for weak absorption lies on
image of the branch pointgs,1

2 and on the stable pointk2
(3)

51.75421.839i .
On sheetS1

(3) there are also two regions that correspo
to strong absorption (Img.Im gs,5

1 ) and to emission (Img
,0), that are mapped by the functionk5k(3)(g) on some
bound regions on thek-plane sheet imageS18

(3) . The bound
region where the exotic resonant state pole is located
strongly absorptive potential lies on thek-plane image of the
branch point gs,5

1 and on the stable pointk2
(3)

51.754–1.839i . For any absorptive potential the bound r
gions of thek plane, where the exotic resonant state pole w
located on the sheet imageS08

(3) , is empty on sheet image
S18

(3) . Riemann sheet imagesS08
(3) andS18

(3) do not include
the positive imaginaryk axis, i.e., the poles on these she
images cannot become bound state poles when the dep
the potential well is increased.

On Sn8
(3) (n>2) there are only old-class resonant sta

poles. The bound regions where the exotic resonant s
poles were located onS08

(3) and S18
(3) are empty on the

sheetsSn8
(3) (n>2). SheetsSn

(3) and S2n
(3) are symmetric

e

e

s
t
t
,
e

,

s

et
FIG. 11. Sheets Sn
(3) (n

50,1,2) of the Riemann surfac
Rg

(3) and their imagesSn8
(3) for a

central rectangular potential with
l 53. The borders of the sheet
made of the edges of the cu
@0,̀ ), the edges of the cuts tha
join the complex branch points
and a circle of a large radius ar
shown in ~a!, ~d!, and ~g!. The
correspondingk-plane images of
the sheet borders are shown in~b!,
~e!, and ~h!. Details of sheet im-
agesS08

(3) , S18
(3) , and S28

(3) are
shown in ~c!, ~f!, and ~i!. The
hatched regions of sheetS0

(3) are
mapped by the function k
5k(3)(g) onto bound regions of
the sheet imageS08

(3) , indicated
by the same hatching. Similarly
the hatched regions of sheetS1

(3)

are mapped by the functionk
5k(3)(g) onto bound regions of
sheet imageS18

(3) , indicated by
the same hatching. Thek-plane re-
gion occupied on sheet image
S08

(3) andS18
(3) by the exotic reso-

nant state pole are empty on she
imageS28

(3) .
6-14
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with respect to the realg axis, so that theirk-plane images are symmetric with respect to the imaginaryk axis.

5. Case lÄ4

The pole equation forl 54 is

k5110ik4255k32195ik21420k1420i

ik4210k3245ik21105k1105i
5

~10k0
42195k0

21420!sink02~k0
5255k0

31420k0!cosk0

~10k0
32105k0!cosk01~k0

4245k0
21105!sink0

. ~3.39!
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The branch points and theirk-plane images are obtained b
solving the system of equations~3.7! and~3.8!, according to
the procedure described for the casesl 50, 1, 2, and 3. In
Table V the branch points and theirk-plane images are
given.

Let s51,2,3, . . . . SheetSs
(4) is joined to sheetSs11

(4) at
the branch pointgs,1

2 . SheetS2s
(4) is joined to sheetS2s11

(4) at
the branch pointgs,2

2 . SheetS0
(4) is joined to sheetSs11

(4) , and
sheetS0

(4) is joined to sheetS2s21
(4) at the branch pointsgs,3

2

and gs,4
1 . SheetS1

(4) is joined to sheetSs11
(4) at the branch

point gs,5
1 . SheetS0

(4) is joined to sheetS2s
(4) at the branch

point gs,6
1 . SheetS2

(4) is joined to sheetSs12
(4) at the branch

point gs,7
1 . SheetS21

(4) is joined to sheetS2s21
(4) at the branch

point gs,8
1 . In Fig. 12 the way the various sheets are joined

the branch points is shown. For simplicity, only the junctio
of sheetsSn

(4) andSm
(4) with n,m>0 are shown.

In Fig. 13 sheetsS1
(4) , S2

(4) , andS3
(4) and theirk-plane

images are shown. SheetsS2n11
(4) and Sn

(4) are symmetric
with respect to the realg axis, so that theirk-plane images
are symmetric with respect the imaginaryk axis, according
to Eq. ~3.24!. One can see that there are four sheet imag
namely,S218(4) , S08

(4) , S18
(4) , andS28

(4) , on which there are
bound regions of thek plane where the exotic resonant sta
poles are located. OnS18

(4) there are three such bound r
gions: the first one corresponds to a strong absorption, i.e
Im g.Im gs,5

1 ; the second one corresponds to weak abso
tion, i.e., 0,Im g,Im gs,1

2 ; and the third one corresponds
an emissive potential Img,0. Each of these bound region
lies on one of thek-plane images of the branch points and
one of the stable pointsk2

(4)52.657–2.104i and k1
(4)

50.867–2.896i , which are zeros ofh4
(1)(k) in the fourth

quadrant of thek plane. In Figs. 13~b! and 13~c! the position
in thek plane of the images of the branch pointsgs,1

2 andgs,5
1

are denoted byD and G, respectively. The positions of th
images of the branch pointsgs,3

2 and gs,4
1 , i.e., k522.322i

andk523.647i are indicated.
On S28

(4) there are also two bound regions where the p
is confined. One of these regions corresponds to Ig
.Im gs,7

1 ~strong absorption!, and the other to Img,0
~emission!. The bound regions of thek plane where the ex
otic resonant state pole is confined on the sheet imageS18

(4)

cannot be reached by the pole on the sheet imageS28
(4) if the

potential is absorptive. The bound region where the ex
resonant state pole for absorptive potential is situated lie
the k-plane image of the branch pointgs,7

1 , denoted byJ in
Figs. 13~e! and 13~f!, and on the stable pointk2

(4)

52.657–2.104i .
03271
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On sheet imagesSn8
(4) and S2n118(4) , n>3, there are no

exotic poles. Indeed, when the depth of the potential w
increases the pole becomes a bound or virtual state p
depending on the edge of the cut along the real axis on wh
the potential depth increases, as one can see from Fig. 1~h!.

D. Properties of Riemann sheetsSn
„ l … and of their imagesSn8

„ l …

in the k plane

The global method used above leads to a unified appro
to bound, virtual, and resonant states of a particle scatte
by a central potentialgV(r ), gPC, followed by a
g-independent real barrier. Ifg takes values on a given Rie
mann sheetSn

( l ) , the corresponding pole belongs to the R
mann sheet imageSn8

( l ) . The quantum numbers of the co
responding bound, virtual, or resonant state are (l ,n). In this
way, with a given state (l ,n) we associate a Riemann she
Sn

( l ) . This association of a Riemann sheet to a state is
interesting insight into the intrinsic nature of the quantu
state. This approach allows one to study not only each s
( l ,n), but also to understand the transition from state (l ,n) to
state (l ,m) as a result of potential strength variation. Indee
let us suppose thatg describes a closed contour which sta
from a point on sheetSn

( l ) and encloses the branch poi
joining sheetsSn

( l ) andSm
( l ) . Then the pole passes from she

imageSn8
( l ) to sheet imageSm8

( l ) , i.e., the system makes
transition from state (l ,n) to state (l ,m), as a result of the
potential strength variation. Here states (l ,n) and (l ,m) can
be either bound or resonant states.

The new quantum numbern is completely different in
kind from l. While the orbital angular momentuml is related
to the rotational invariance, the quantum numbern has a
topological meaning. It was for a long time thought th
since a pole in the lower half-plane will lead to a bound st
if the potential well strengthg is sufficiently increased, it
could be labeled by the radial quantum number of the bo
state. The labeling of resonant states by the radial quan
number of the bound states is not legitimate for the followi
reasons:~i! There are resonant state poles~exotic poles! that
do not become bound state poles as the depth of the pote
well increases; these poles could not be labeled by a ra
quantum number of the bound states.~ii ! The radial quantum
number would change as the potential strength is var
while we need a label which is independent on the poten
strength. By introducing the new quantum number the
shortcomings are removed. In the following the conclusio
that can be drawn from the construction and analysis of R
6-15



otic
ll is
no
the

so-
t be-
th

on a

s to
able

n

ant
the

ld
eet

nt

the
re

e

l

n

nd

rs

CORNELIA GRAMA, N. GRAMA, AND I. ZAMFIRESCU PHYSICAL REVIEW A 61 032716
TABLE V. Branch points forl 54. The zeros of the spherica
Bessel functionsj 3(k0) and j 5(k0), respectively, are denoted byk0,s

2

andk0,s
1 . ks8 (s851,2,3) stand for the zeros of the spherical Ha

kel function of the first kindh3
(1)(k) andks8 (s854,5,6,7,8) stand

for the zeros of the spherical Hankel function of the first ki
h5

(1)(k).

s8 s k0,s
2 ks8 gs,s8

2

1 1 6.988 1.75421.839i 49.13516.452i

1 2 10.417 1.75421.839i 108.82016.452i

1 3 13.698 1.75421.839i 187.94016.452i

A A A A A
1 n ;(n13/2)p 1.75421.839i ;(n13/2)2p22k1

2

2 1 6.988 21.75421.839i 49.13526.452i

2 2 10.417 21.75421.839i 108.82026.452i

2 3 13.698 21.75421.839i 187.94026.452i

A A A A A
2 n ;(n13/2)p 21.75421.839i ;(n13/2)2p22k2

2

3 1 6.988 22.322i 54.224

3 2 10.417 22.322i 113.909

3 3 13.698 22.322i 193.028

A A A A A
3 n ;(n13/2)p 22.322i ;(n13/2)2p22k3

2

s8 s k0,s
1 ks8 gs,s8

1

4 1 9.356 23.647i 100.830

4 2 12.967 23.647i 181.430

4 3 16.355 23.647i 280.775

A A A A A
4 n ;(n15/2)p 23.647i ;(n15/2)2p22k4

2

5 1 9.356 1.74323.352i 95.730111.683i

5 2 12.967 1.74323.352i 176.330111.683i

5 3 16.355 1.74323.352i 275.675111.683i

A A A A A
5 n ;(n15/2)p 1.74323.352i ;(n15/2)2p22k5

2

6 1 9.356 21.74323.352i 95.730211.683i

6 2 12.967 21.74323.352i 176.330211.683i

6 3 16.355 21.74323.352i 275.675211.683i

A A A A A
6 n ;(n15/2)p 21.74323.352i ;(n15/2)2p22k6

2

7 1 9.356 3.57122.325i 80.183116.603i

7 2 12.967 3.57122.325i 160.783116.603i

7 3 16.355 3.57122.325i 260.128116.603i

A A A A A
7 n ;(n15/2)p 3.57122.325i ;(n15/2)2p22k7

2

8 1 9.356 23.57122.325i 80.183216.603i

8 2 12.967 23.57122.325i 160.783216.603i

8 3 16.355 23.57122.325i 260.128216.603i

A A A A A
8 n ;(n15/2)p 23.57122.325i ;(n15/2)2p22k8

2

03271
mann sheetsSn
( l ) and their imagesSn8

( l ) will be summarized.

1. Existence of the exotic resonant state poles

The new-class resonant state poles, also called ex
resonant state poles, exists provided that the potential we
followed by a barrier. In the absence of the barrier there is
exotic resonant state pole, as for example in the case of
central rectangular potential withl 50.

On sheet imagesSn8
( l ) , where n50,61,62, . . . ,6( l

21)/2 for odd l and n50,61,62, . . . ,6( l 22)/2,l /2 for
evenl ( lÞ0), there are bound regions where the exotic re
nant state poles are located. The new-class poles do no
come bound or virtual state poles as the potential strengg
increases. The border of each bound region of thek plane
where the exotic resonant state poles are situated lies
pair of points: a stable point, and thek-plane image of a
branch point. When the strength of the potential increase
infinity the exotic resonant state pole approaches the st
point @see Eq.~3.23!#. For a givenl there are onlyl sheet
imagesSn8

( l ) that contain exotic resonant state poles. O
these Riemann sheet imagesSn8

( l ) ( lÞ0) there are no bound
state poles. This is due to the fact that the exotic reson
state pole does not become a bound state pole when
depth of the potential well increases to infinity.

On each sheet imageSn8
( l ) , with n50,61,62, . . . ,6( l

21)/2 for odd l and n50,61,62, . . . ,6( l 22)/2,l /2 for
even l ( lÞ0), the pole can belong either to the new or o
class of resonant state poles. There is an infinity of sh
images@ unu.( l 21)/2 for odd l andn. l /2, n,2( l 22)/2
for even lÞ0] on which there are only old-class resona
state poles.

2. Absorption windows for the exotic resonant state poles

The cuts that are boundaries of a given sheetSn
( l ) deter-

mine some threshold values for the imaginary part of
complex potentialg. As we have already shown, there a
(2l 11) cuts for oddl and (2l 21) cuts for evenlÞ0, sym-
metrically distributed with respect to the realg axis. This
means that there arel threshold values for the absorptiv
potential (Img.0) whenl is odd, andl 21 threshold values

-

FIG. 12. The junctions of sheetsSn
(4) and Sm

(4) (n,m
50,1,2,3,4,5) for a central rectangular potential withl 54 at the
branch pointsgs,1

2 , gs,2
2 , gs,3

2 , gs,4
1 , gs,5

1 , gs,6
1 , gs,7

1 , and gs,8
1 , (s

51,2,3). The labeln or m of each sheet is indicated by the numbe
given at the left and right ends of the picture.
6-16



e

-

of

h
-

in

y
-

e
-

e
e

RIEMANN SURFACE APPROACH TO BOUND AND . . . PHYSICAL REVIEW A61 032716
FIG. 13. Sheets Sn
(4) , (n

51,2,3) of the Riemann surfac
Rg

(4) and their k-plane images
Sn8

(4) for a central rectangular po
tential with l 54. The borders of
the sheets made of the edges
the cut @0,̀ ), the edges of the
cuts that join the complex branc
points, and a circle of a large ra
dius are shown in~a!, ~d!, and~g!.
The correspondingk-plane images
of the sheet borders are shown
~b!, ~e!, and ~f!. Details of the
k-plane images are shown in~c!,
~f!, and ~i!. The regions of the
Riemann sheets indicated b
hatching are mapped by the func
tion k5k(4)(g) onto bound re-
gions in the correspondingk-plane
sheet images, indicated by th
same hatching. Each region occu
pied on sheet imagesS18

(4) and
S28

(4) by the exotic resonant stat
pole are empty on sheet imag
S38

(4) .
e

r
u

w

t

ss

for

of
or
tate
l

nant

t

ad-
for
for the absorptive potential whenl is even andlÞ0. For a
given potential strengthgPSn

( l ) the corresponding polek
5k( l )(g) on sheet imageSn8

( l ) belongs to the old or new
class of resonant state poles. This depends on the she
which the giveng belongs and on the value of Img with
respect to the thresholds on that sheet.

For the sake of simplicity, in the following we restrict ou
discussion to the absorptive thresholds. Taking into acco
the Jost function property~3.24!, it is a simple matter to
extend the results to the emissive potential as well.

For example, letl be odd. We denote by (t1,t2,•••

,t l) the absorptive thresholds (tk5Im gs,s8
6

.0). As shown,
Im gs,s8

6 is constant for a givens8 and arbitrarys. On sheet
imageSn8

( l ) with n5( l 21)/2 the pole belongs to the ne
class of resonant state poles if Img.t l ~strong absorption!,
and to the old class of resonant state poles if 0,Im g,t l

~weak absorption!. On each sheet imageSn8
( l ) with n5( i

21)/2>0, (i 51,3,5, . . . ,l 22) there are exotic resonan
state poles for weak absorption 0,Im g,t i or for strong
absorption Img.t i 11. In the regiont i,Im g,t i 11 there are
only old-class poles. On the sheet imageSn8

( l ) with n.( l
21)/2 there are only old-class poles for 0,Im g,`.

There is a similar situation for evenl ( lÞ0). On sheet
imageSn8

( l ) , with n5 l /2, the pole belongs to the new cla
03271
t to

nt

of resonant state poles if Img.t l 21 ~strong absorption! or to
the old class of resonant state poles if 0,Im g,t l 21 ~weak
absorption!. On each sheetSn8

( l ) , with n5 i /2>0 (i
52,4, . . . ,l 22), there are exotic resonant state poles
weak absorption (0,Im g,t i 21) or for strong absorption
(Im g.t i). In the regiont i 21,Im g,t i there is an old-class
pole. On sheet imagesSn8

( l ) , with n. l /2, there are only
old-class poles.

The analysis of the Riemann sheets and of theirk-plane
images shows that the exotic resonant state poles~states!
occur for a strong or weak absorption. While in the case
strong absorption the exotic resonant state poles occur fl
>1, in the case of weak absorption the exotic resonant s
poles occur only forl>3. This means that a higher rea
barrier is necessary for the occurrence of an exotic reso
state pole for a weak absorption. For example, forl 52 the
exotic resonant state pole exists onS18

(2) for strong absorp-
tion (Img.Im gs,4

1 ). For l 53 on S08
(3) the exotic resonan

state pole occurs for strong absorption (Img.Im gs,3
1 ) or for

weak absorption (0,Im g,Im gs,1
2 ). On S18

(3) the exotic
resonant state pole occurs for strong absorption (Img
.Im gs,5

1 ).
In Fig. 14 we represent bound regions of the fourth qu

rant of thek plane, where the exotic resonant state poles
6-17
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an absorptive potential well withl 51 –6 are located. The
labeln of the sheet image is indicated. The boundary of e
region is given by the pole trajectory corresponding tog
going along the cut with Img5Im gs,s8

6
5t i . In other words,

t i denotes the threshold that defines the absorption win
of the potential strength for the occurrence of the exotic re
nant state pole. Heret i can be either a strong absorptio
threshold or a week absorption threshold, according to
rules given above. The branch point image in thek plane is a
transition point of the quantum system from the old-cla
resonant state to the new-class resonant state~exotic resonant
state!.

E. Properties of the exotic resonant states

1. Localization of the wave function of an exotic resonant stat

The wave functions of the exotic resonant states co
sponding to the exotic resonant state poles are mostly
fined to the region outside the potential well. In order
characterize the localization of the wave functions in the c
of potential~3.1!, the contraction factordk2/d(2g) defined
by Lane@45# will be used.

Equation~3.4! can be written in the form

Ml~g,k!5L l
u2L l

w50, ~3.40!

where the logarithmic derivativesL l
u andL l

w are defined by

FIG. 14. The bound regions in the fourth quadrant of thek plane
where the exotic resonant state poles for absorptive potential
are located forl 51 –6. The regions of sheet imagesSn8

( l ) on which
the exotic resonant state pole occur are labeled byn, l, andt i . By t i

the thresholds that define the absorption windows for the oc
rence of the exotic resonant state poles are denoted. For a gil
the thresholds are ordered according to the increasing imagi
part of the corresponding branch point. The boundary of each
gion is given by the pole trajectory corresponding tog going along
the cut with Img5Im gs,s8

6
5t i . The positions of the stable point

are indicated.
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L l
u5

dul~k0 ,r !/dr

ul~k0 ,r !
ur 5R51 , ~3.41a!

L l
w5

dwl~k,r !/dr

wl~k,r !
ur 5R51 , ~3.41b!

and ul(k0 ,r ) and wl(k,r ) are the wave functions used i
definition ~3.3! of the WronskianWl(g,k). Taking into ac-
count that the implicit functionk5k( l )(g) is defined by Eq.
~3.40!, we calculate the derivativedk2/d(2g)52kdk/
d(2g):

dk2

d~2g!
5

]Ml /]g

]Ml /]k2
5

]L l
u/]g

]L l
u/]k22]L l

w/]k2
. ~3.42!

The derivatives]L l
u/]k2 and ]L l

u/]g can be calculated by
applying the method given in Ref.@46#. This gives

dk2

d~2g!
5

E
0

1

ul
2dr

E
0

1

ul
2dr1ul

2~r 51!]L l
w/]k2

. ~3.43!

The denominator of Eq.~3.43! is the square norm introduce
by Schnol@47# for resonant states. This norm was first su
gested by Zel’dovich@48# for l 50. According to Lane@45#,
we takedk2/d(2g) as an estimate of the wave-function lo
calization. For bound states the second term in the deno
nator of Eq. ~3.43! is negligible, so that we have
dk2/d(2g);1, which shows that the wave function is a
most completely localized inside the potential well. Based
the recurrence relations~3.6a! and~3.6b!, the numerator and
denominator of Eq.~3.43! can be calculated. This gives

dk2

d~2g!
5

k0
2

g

hl
(1)~k!

hl 21
(1) ~k!hl 11

(1) ~k!
2

k2

g
. ~3.44!

Let kn
( l ) be a stable point, defined as a zero ofhl

(1)(k). Ac-
cording to Eq.~3.23! the stable point acts as an attractor f
the exotic resonant state pole, i.e., we havek→kn

( l ) for g
→`. Consequently forg→` it results from Eq.~3.44! that
dk2/d(2g)→0 for the exotic resonant states. This mea
that for a sufficiently deep potential well the exotic resona
state pole is located in the neighborhood of the stable p
k5kn

( l ) and, consequently, the corresponding exotic reson
state has a wave function almost completely confined to
region outside the potential well. As a consequence, the
otic resonant state is insensitive to the behavior of the po
tial in the region of the well, and is almost entirely dete
mined by the geometric shape of the potential barrier.

2. Local degeneracy of the resonant levels corresponding
to poles situated at the stable points

The resonant levels for the potential~3.1! exhibit a local
degeneracy with respect to the orbital angular momentuml.
We demonstrate that a resonant level (l ,n) with orbital an-
gular momentuml, defined by a pole situated at a stab

ell

r-
n
ry
e-
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point k i
( l ) , is degenerate with other resonant levels with

bital angular momental 21 andl 11. The stable pointk i
( l ) is

defined as the solutionk5k i
( l ) of the equationwl(k,R)50,

wherewl(k,r )5krhl
(1)(kr), andR is the radius of the centra

rectangular well. The distribution of the stable points in thk
plane was discussed in Sec. III B. We recall that in the fou
quadrant of thek plane, including the negative imaginar
axis, there arei 5( l 11)/2 stable points for oddl and i
5 l /2 stable points for evenl.

Let g5gi ,p
( l ) , (p51,2, . . . ) be the set ofpotential well

strengths for which there is a resonant state of angular
mentuml corresponding to a polek situated at a stable poin
k i

( l ) , i.e., for whichwl(k i
( l ) ,R)50. The values of gi ,p

( l ) result
from the condition of continuity of the wave function at th
potential well radius:

ul~k i
( l ) ,R!5wl~k i

( l ) ,R!50. ~3.45!

We will show that forg5gi ,p
( l ) the S-matrix elementsSl 21 ,

Sl , andSl 11 have a pole at the same position in thek plane,
namely, at the stable pointk5k i

( l ) . In other words we will
show that there is a local degeneracy with respect tol of the
resonant levels with orbital angular momental 21, l, and l
11, provided that the potential well strength has a value t
belongs to the discrete set gi ,p

( l ) , (p51,2, . . . ). Letk be a
pole of theSl-matrix element. This means thatk satisfies Eq.
~3.4!, or equivalently, taking into account Eqs.~3.40! and
~3.41!,

L l
(u)~k,R!5L l

(w)~k,R!. ~3.46!

By using the recurrence relations~3.6a! and ~3.6b!, satisfied
by the solutionsul(k0 ,r ) at the stable pointk i

( l ) , and taking
into account Eq.~3.45!, it results that

L l 21
(u) ~k i

( l ) ,R!5bl , ~3.47!

L l 11
(u) ~k i

( l ) ,R!52bl 11 , ~3.48!

wherebl5 l /R. Similarly, for wl(k,r ),

L l 21
(w) ~k i

( l ) ,R!5bl , ~3.49!

L l 11
(w) ~k i

( l ) ,R!52bl 11 . ~3.50!

From Eqs.~3.47!–~3.50!, we have

L l 21
(u) ~k i

( l ) ,R!5L l 21
(w) ~k i

( l ) ,R!, ~3.51!

L l 11
(u) ~k i

( l ) ,R!5L l 11
(w) ~k i

( l ) ,R!. ~3.52!

If k5k i
( l ) is a pole of theS-matrix elementSl for the strength

of the potential well taking a value in the set gi ,p
( l ) (p

51,2, . . . ) defined by the equationul(k i
( l ) ,R)50, then, ac-

cording to Eqs.~3.46!, ~3.51!, and ~3.52!, it results thatk
5k i

( l ) is also a pole of theS-matrix elementsSl 11 andSl 21

for the same value of the potential well strength. In fack
5k i

( l ) is the stable point of the functionk5k( l )(g), a double
pole of Sl 11, and a double pole ofSl 21 @see Eqs.~3.7! and
03271
-

h

o-

at

~3.8!#. It results that the above-mentioned system exhibit
local degeneracy with respect to the orbital angular mom
tum. More precisely, the resonant level with orbital angu
momentuml defined by the pole atk i

( l ) is partly degenerate
in l with the resonant levels withl 21 and l 11. Instead of
the usual (2l 11) degeneracy due to the spherical symme
of the potential, the system has a 3(2l 11) degeneracy.

Let us consider the set of the Riemann surfacesA
5$Rg

( l )% ( l 50,1,2,. . . ), the set ofsheetsB 5 $Sn
( l )% ( l

50,1,2,. . . ), and the set ofsheet imagesC5$Sn8
( l )% ( l

50,1,2,. . . ). According to the degeneracy demonstrat
above, sheetsSn

( l ) , Sn
( l 21) , andSn

( l 11) ( l .1), belonging to
three distinct Riemann surfacesRg

( l ) , Rg
( l 21) , and Rg

( l 11)

from the setA, are joined atg5gi ,p
( l ) . Their imagesSn8

( l ) ,
Sn8

( l 21) , andSn8
( l 11) are joined atk5k i

( l ) . We remark that
these sheets, as well as their images, are distinct membe
sets B and C, respectively. Taking this into account, tw
types of junctions are possible. The first one is the junction
the branch pointsg5gs,s8

6 of the two sheets of the Rieman
surfaceRg

( l ) . The second one is the junction atg5gi ,p
( l ) of the

sheets belonging to three distinct Riemann surfacesRg
( l ) ,

Rg
( l 21) , andRg

( l 11) , respectively.
Due to this exact partial degeneracy there are three a

cent angular momenta that contribute to the resonant c
section. This result could seem surprising, because usua
resonance, i.e., a sharp change in the energy dependen
the cross section, occurs in a givenl-wave partial cross sec
tion. Indeed the resonant-type structure disappears if the
tector is placed at an angle equal to a zero of the corresp
ing Legendre polynomialPl(u). The increase of the cros
section due to nonresonant phenomena can be distingui
from resonant phenomena by the fact that the former ten
result from the cooperative contribution from many part
waves@49#. In our case, due to the above-mentioned deg
eracy, three partial cross sectionsl 21, l, and l 11 have
resonant structures at the same energy, corresponding to
of the resonant state associated to the poles situated a
stable pointk i

( l ) . This is a new type of the resonance in th
cross section which is associated with the contribution of
three partial waves. In Ref.@50# it was shown that the loca
degeneracy remains valid for exotic resonant levels in
case of a square well with a Coulomb barrier.

IV. CONCLUSIONS

An approach to bound and resonant states, based
global analysis ofS-matrix poles in the case of the scatterin
by a central potential gV(r ), gPC, followed by a
g-independent real barrier, is presented. The Riemann
face Rg

( l ) over the g plane, on which the pole functionk
5k( l )(g) is single valued and analytic, is constructed. T
Riemann surfaceRg

( l ) is divided into sheetsSn
( l ) , and the

imagesSn8
( l ) of these sheets in thek plane are constructed. I

g takes values on a given Riemann sheetSn
( l ) , the pole

k( l )(g) belongs to the Riemann sheet imageSn8
( l ) in the k

plane. In this way the sheetSn
( l ) of the Riemann surfaceRg

( l )

is associated with a given state with quantum numbers (l ,n).
6-19
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From this we gain insight into the intrinsic nature of th
quantum states. The Riemann surface approach to bound
resonant states, based on the global method for allS-matrix
poles analysis, has several merits:

~1! Instead of analyzing an infinity of poles in thek plane,
the global method allows one to analyze the single pole
each Riemann sheet imageSn8

( l ) in thek plane. Indeed, if the
potential strengthg takes a value on a given sheetSn

( l ) , then
the functionk5k( l )(g) takes only one value on thek-plane
imageSn8

( l ) of the sheet; i.e., there is only a single pole
each sheet image. By analyzing each Riemann sheet im
Sn8

( l ) , no pole is lost.
~2! By the Riemann surface approach, to a given st

( l ,n) of the quantum system one associates a sheetSn
( l ) of

the Riemann surfaceRg
( l ) . This approach allows one not onl

to study each state (l ,n), but also to understand the transitio
from state (l ,n) to state (l ,m) as a result of the potentia
strength variation. Indeed, let us suppose thatg describes a
closed contour which starts from a point on sheetSn

( l ) and
encloses the branch point joining sheetsSn

( l ) andSm
( l ) . Then

the pole passes from sheet imageSn8
( l ) to sheet imageSm8

( l ) ,
i.e., the system makes a transition from state (l ,n) to state
( l ,m), as a result of potential strength variation. Here
states (l ,n) and (l ,m) can be either bound or resonant stat
As a result a unified treatment of bound and resonant stat
obtained.

~3! For a given potential form factorV(r ) the well and
barrier with absorption or emission are treated simu
neously, which allows a smooth transition from one case
the other. Indeed, asg covers all the complex plane, eac
Riemann sheetSn

( l ) for the potentialgV(r ) contains a well
and a barrier with absorption or emission. Ifg follows a
continuous path on a given sheetSn

( l ) , then the correspond
ing pole follows a continuous path in thek-plane sheet image
Sn8

( l ) .
~4! A new quantum numbern with topological meaning is

introduced in order to label a pole and the correspond
state (l ,n). Taking into account that on a Riemann she
imageSn8

( l ) there is only one pole, the numbern that labels
the Riemann sheetSn

( l ) and the Riemann sheet imageSn8
( l ) is

used as a new quantum number for this pole and for
corresponding state (l ,n).

~5! The global method for allS-matrix poles analysis is
stable under the potential strength variation. Indeed, one
not create or destroyS-matrix poles by varying the strengt
of the potential in the analyticity domain of the pole functio
k5k( l )(g). The poles can be created or destroyed only at
branch pointg50. If g follows a path on a sheetSn

( l ) , the
corresponding pole describes a trajectory remaining on s
image Sn8

( l ) , provided that the path does not encircle
branch point and does not cross a small region containing
point g50.

~6! The global method allows the identification of a ne
class ofS-matrix poles~exotic poles! for the central rectan-
gular potential withlÞ0. The exotic resonant state poles a
states have the following main properties.

~a! The exotic resonant state poles remain in the nei
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borhood of some special points called ‘‘stable points’’ wh
the strength of the potential well increases indefinitelyk
→kn

( l ) for g→`). These exotic resonant state poles are
sensitive to the behavior of the potential in the region of
well, and are almost entirely determined by the geome
shape of the potential barrier;

~b! The wave functions of the exotic resonant states
localized in the region of the barrier, rather than in the reg
of the well; the wave functions of the exotic resonant sta
that correspond to poles situated in the neighborhood of
stable points are almost completely confined to the region
the barrier;

~c! A resonant level (l ,n) with orbital angular momentum
l defined by a pole situated at the stable pointk i

( l ) is degen-
erate with the resonant levels (l 21,n) and (l 11,n), wheren
is the new quantum number. Here each of theS-matrix poles
( l 21,n) and (l 11,n) is a double pole. This degeneracy su
ports a new type of resonance in the cross section, assoc
with a cooperative contribution from three adjacent par
wavesl 21, l, and l 11.

The global method is used in order to analyze allS-matrix
poles for a central rectangular potential withl 50, 1, 2, 3,
and 4. The construction of the Riemann surfaceRg

( l ) is given
in detail. Thek-plane images of the sheets of the Riema
surfaceRg

( l ) are analyzed.
It is expected that exotic resonant state poles to be pre

for any other potential shape consisting of a well followed
a barrier. For example, in Ref.@31# exotic resonant state
poles were identified for a central rectangular or Woo
Saxon well with Coulomb and centrifugal barrier. A goo
candidate for the resonant states that correspond to such
otic poles are the quasimolecular states, evidenced in
study of nuclear heavy-ion reactions. These are reson
states with very special properties:~i! they are highly excited
resonant states in nuclei, having energy in the neighborh
of the total~Coulomb plus centrifugal! barrier;~ii ! they have
good spins and parities (Jp); ~iii ! the widthsG of these states
are typically of the order of a few hundred keV;~iv! there are
several quasimolecular states at each valueJp; and ~v! the
centroid of each group with the sameJp forms a straight line
in the planeEexc vs J(J11), appropriate to a rotationa
band. Feshbach@51# suggested that these quasimolecu
states are fragments of a shape resonant state~parent quasi-
molecular state! with spin and parityJp, having a width of
the order of a few MeV. The fact that quasimolecular sta
have been observed in a region of high level density sugg
that they belong to a new class of states of the nuclear sys
that fulfills extraordinary conditions to prevent them fro
spreading out. In Ref.@31# we showed that the parent quas
molecular states are exotic resonant states correspondin
the first stable pointk1

( l ) for a central rectangular or Woods
Saxon well with a Coulomb and centrifugal barrier, that d
scribes the scattering of two ions. The properties of the p
ent quasimolecular states@energies, widths, rotationa
character, deviation from the linear dependence of the ene
on J(J11), doorway character, and criteria for observab
ity# result natually from general properties of the exotic re
6-20
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nant states. For example, the stability of the quasimolec
states against dissolution into the neighboring compo
nuclear states is due to the localization of the exotic reson
state wave functions. Indeed, a parent quasimolecular s
being an exotic resonant state corresponding to a pole
ated in the neighborhood of the stable point, has a w
function localized almost completely outside the poten
well. This leads to a small overlap with adjacent compou
nuclear states which are localized in a region having a ra
smaller than the radius of the potential which describes
.

s.

hy

uc

n,
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interaction of the two ions. Closed-form expressions for
energies and the widths of the parent quasimolecular st
were given in Ref.@31#. A good agreement of the experimen
tal and theoretical energies and widths was obtained with
using any adjustable parameter.
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