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An approach to bound and resonant states in scattering by a central pogpr(tidl ge C, based on a
global analysis ofS'matrix poles, is presented. The global method involves the construction of the Riemann
surfaceR{) over theg plane on which the pole functidk=k")(g) is single valued and analytic. This implies
the division of the Riemann surfacFég') into sheets and the construction of the Riemann sheets images in the
k plane. By keeping the sheets of the Riemann surface apart, the single pole laying on each sheet image in the
k plane is identified. With each statkif) of the quantum system one associates a shfeof the Riemann
surfaceRg) . A new quantum numban with a topological meaning is introduced in order to label a pole and
the corresponding staté, (). All S'matrix poles for a central rectangular potengd(r), with =0, 1, 2, 3,
and 4, are analyzed by using the global method. A new class of resonant state poles, having unusual properties,
is identified. The properties of these resonant state gelestic pole$ and of the corresponding resonant states
are studied. A new type of resonance in the cross section, associated with the cooperative contribution from
three adjacent partial waves and due to the local degeneracy with respeist tiiscussed.

PACS numbd(s): 03.65.Nk, 34.50-s, 34.80.Bm

I. INTRODUCTION have been determined. In the following this method will be
called the “pole trajectory method.” Resonant state poles
The resonant structures in the cross section of many infound by the pole trajectory method have familiar properties:
teresting phenomena, such as field ionization, photoionizad) They become bound or virtual state poles when the depth
tion, electron scattering on atoms and molecules, and nuclegf the potential well is increased, i.¢k| — o for |g|— . (ii)
scattering are, in most cases, ascribed to resonant states e corresponding resonant states have wave functions con-
the quantum-system. An adequate quantum mechanical dined to the well region. These poles will be called “old-
scription of the resonant states is of importance in many|ass resonant state poles.” In the pole trajectory method
branches of physics, because general laws of formation arl%y a poor description of the functiok=k(")(g) is ob-

decay of long-lived states in molecules, atoms, nuclei, CoNgaineq. One can never be sure that all the poles irk ilane
densed matter, and hadronic collisions are necessary. TI?.lea

most fundamental approach to resonant scattering is througtﬁ ve been found because one makes a particular choice of
the analytic properties of the matrix [1—3]. e path in the compleg plane. Moreover, by using the pole

We consider nonrelativistic scattering by a central poten:[raJ(aCtory method one can never be sure that the same pole is

tial gV(r), ge C. The poles of th&matrix are the solutions followed. For example, recently contradictory opinions have
k:k(l)(g)’of the equation been raised relative to t®@matrix poles trajectories in the

complexk plane for a complex square potential, idawski
Fi+(9,k) =0, (1.1  [25] claimed that the statements of Galal.[27], Osetet al.

[28], and Bonettiet al. [29], concerning the dependence of
provided thatF _(g,k) #0. Here 7 (g,k) and F _(g,k) the S'matrix poles location in th& plane on the strength of
are the denominator and numerator, respectively, of thée absorptive potential, were not correct, and proposed a
Smatrix elementS, [1]. 7. (g,k) is the Jost functiong is  general rule for the movement of a pole with increasingRe
the potential strengthk is the wave number, andis the and Img. In fact the pole trajectory method does not allow a
orbital angu'ar momentum. The pole functibe: k(l)(g) isa definite answer to this question, as will be shown in the
multiple-valued function defined on the complgyplane. present paper.

Due to their close connection to bound and resonant In order to have a complete description of tBenatrix
states, sometimes referred to as Gamow states or Siegé@les in thek plane, a global analysis of the functidn
states, the poles of t®matrix have been extensively stud- =k()(g) is necessary. In the present paper a Riemann sur-
ied [4—11]. Smatrix poles have been studied not only in theface approach to bound and resonant states in the case of
usual scattering process, but also in scattering process in &eattering by a central potentigV(r), geC, based on a
external field12,13. The pole distribution in thé& plane as  global analysis of the functiok=k((g), is presented. The
a function of the potential strengti has been investigated construction of the Riemann surfaéig') for a central rect-
for various potentials by a combination of graphical, numeri-angular potential with=0, 1, 2, 3, and 4 is given in detail.
cal, and asymptotic methods in many papers, for examplé construction of the images of the Riemann sheets irkthe
Refs.[14—28. In all the above-mentioned papers a particularplane is also done.
path in the complexg plane has been chosen, and corre- The paper is organized as follows: In Sec. Il a global
sponding trajectories of th&matrix poles in thek plane  method for analysis of als-matrix poles for various classes
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of potentialsgV(r) is discussed. The Riemann surface of the

pole functionk=k()(g) for a central rectangular potential (o)
with | =0-4 is constructed in Sec. lll. In this case analytic g plane k plane
expressions of the branch points and stable points are ob-

tained in Secs. Il A and 11l B, respectively. In Sec. Il C the %mé\
sheets> () of the Riemann surfacRg) and their images 7 AN

2{1(') in thek plane are analyzed for eatlalue in the range
| =0-4. By using the global analysis of &matrix poles, a
new class of resonant state poles is identified on some Rie-
mann sheet images. Because of their unusual properties the

new-class resonant state poles are also called “exotic reso- /ﬁ" = /94':(0 >
+1 +1

nant state poles,” and their corresponding resonant states are

I
called “exotic resonant states.” The properties of the Rie- /ﬁ) L 70 ~
mann sheet& () and of theirk-plane image& /(" that fol- — -
low from this analysis are summarized in Sec. Il D. In Sec. v, 70,

IllE the properties of the exotic resonant states are dis-

cussed. In Sec. IV a summary of the results is given.
Although the distribution of th&matrix poles for a cen- FIG. 1. (8) The multiple-valued functiolk=k{")(g) defined on

tral rectangular potential was studied in several paff#8ss  the complexg plane.(b) The Riemann surfacEg) over the com-

20] the new-class resonant state pdlkesotic poleg have not  plex g plane of the functiokk=k((g). Sheets () of the Riemann

been identified because only a global method allows for theurfaceR{’ and theirk-plane images ;" are shown. The branch

identification of allSmatrix poles. The shortcomings of the points denoted by * and the branch lines that join the branch points

previous analyses are stressed in more detail in Sec. IIgre indicated. One can see thagitakes a value on a shekf

where the Riemann surface is constructed for each orbitdhen the functiork=k(")(g) takes only one value on the image of

angular momentum. The usual manner of studying resonarfis sheetS;®.

states prevented theoreticians from identifying the new class

of resonant states. For example, many authors determineé&ghgular potential not only for a low orbital angular

the energies and wave functions of the resonant states Bjpomentum, but also for large orbital angular momenta.

solving the Schrdinger equation for real energiésee, e.g.,

Ref.[30]). They defined the energy of the resonant state as || GLOBAL METHOD FOR ALL SMATRIX POLES

the energy where the ratio of the maximum amplitude of the ANALYSIS

wave-function inside the potential well over the wave func-

tion amplitude at large distances is at a maximum. By using tne global method for ats-matrix poles analysis involves

this definition of the resonant states these authors restricte[ﬂe construction of the Riemann surfaég over theg plane
themselves from the very beginning to the old class of reso

. on which the pole functiorkk=k()(g) is single valued and
hant states. On_ the pther hand, authors who studied tha?nalytic. This implies the division of the Riemann surface
Smatrix pole trajectories in th& plane followed only par-

ticular paths in the compleg plane, and in this way they lost Ry |n_to sheets, and the construct|on of Riemann sheet Im
the new-class of resonant state pales., see Ref.20]). ages in thex plane. .By keeping the sheets of the R[emann_
The global analysis of alS-matrix poles for a central surface apart, the single pole laying on each sheet image in

rectangular potential can be used as a guide for the glob I|'1e k plane is identi_fied. In this way all .thef poles are identi-
analysis of allSmatrix poles for other potential shapes. In led and_ no _pole S IQSt' A sche_mat|c |Ilustrat|or_1 of the
Ref. [31] the Riemann surface for a potential made of amE(t,)hOd IS given in Fig. 1. In Fig. (ai) the .funct|on K
central rectangular or Woods-Saxon well plus Coulomb bar:_ () defined on the compleg plane is multiple val_ued,
rier has been constructed. For this potential the description dre: there are mank values_ that co(lr)respond_ to a given

the Riemann surface and the arrangement of the proper coM‘-’?"“e- In Fig. Ib)(l)the f_uncUonkzk (9) defined on the
nections between sheets are complicated. It was not possi emar(llr; surfac&y’ is single vallued. Ify takes a value on a

to obtain analytic expressions for the branch points, but onlgheey’ , then the functiork=k()(g) takes only one value
asymptotic approximations for the large Sommerfeld paramon the image of this she&t; !, or, in other words, there is
eter. For a central rectangular potential with a Coulomb baronly a single pole on each sheet image. Moreoveg,tikes

rier there is a countable infinity of cuts in theplane that ~ values on a continuous path on a given Riemann shfét
accumulate on the reg axis, which renders the separation then its imagek=k()(g) takes values on a continuous path
of the Riemann sheets difficult. It was the investigation ofon the Riemann sheet imagg,").

the case of a central rectangular potential with large orbital The global method is a powerful tool i&matrix pole
angular momentum that allowed an understanding of thanalysis because it reduces the analysis of an infinity of poles
structure of the more complicated case of a central rectangiin the k plane to the analysis of a single pole on each Rie-
lar potential with a Coulomb barrier. This is why it is impor- mann sheet image in the plane. In this way each pole is
tant to construct the Riemann surfdeg) for a central rect- separated and analyzed.
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The main step in the construction of the Riemann surfac&n entire function with respect to andy. By using their

R{) is to find the branch points of the functidn=k("(g).
According to the implicit function theor{32,33, the singu-
lar pointsg; of the functionk((g) are the solutions of the
system

Fir(@k)=0, 213
9F1+(9,k)
Tk (2.1

From among these singular poirgs, those that are branch
points may be found by permitting the varialg¢o describe
successive small circuits round each singular pgintand
by observing whether the functidd)(g) returns to its initial
value. Letm>1 be the smallest number of rotations after
which one again obtains the initial value of the function
k®(g). Theng; is a branch point of ordem—1, andm
sheets of the Riemann surfaﬂé) are joined at this point.
The border of any sheet image in tIkepIaneE,’](') is
obtained by lettingy trace a path along the cuts on the cor-
responding Riemann sheBf , without crossing them, and

results the following properties ¢f=k()(g) for the above-
mentioned classes of potentials are obtained.

(P1) There is a Riemann surfa¢¥)’ over theg plane on
which k()(g) is a single-valued and analytic function. The
boundary ofR{) is the setE [the pointsg for which the
equationf; ., (g,k)=0 has no solution irk].

(P2 k"(g) has at most a countable infinity of branches,
i.e., the Riemann surfac@g) has at most a countable infinity
of sheets covering thg plane.

(P3 k((g) and its inverse function have Iversen’s prop-
erty, i.e., these functions can be continued analytically from
an arbitrary point to another arbitrary point along a curve
which lies in a given neighborhood of a prescribed curve
joining these points. In this case the Riemann surﬁgﬁ)eis
of classZ (Iversen.

(P4 If ge R’ andg; € E, and ifg—g; thenk()(g)— .

(PH SetE is at most a countable infinite set having infin-
ity as the unique limit point, i.e., it is discontinuous every-
where. This follows from the Iversen property.

For a fixedg (g#0), the Jost functionF ,(g,k) of a
finite range potentiagV(r) has a countable infinity of zeros

along a circle of large radius joining the cuts. On each sheegs finite order [34], and the Riemann surfadag) has a
image there is only one pole. This pole and the correspondsoyntaple infinity of sheets. The boundary set of the Rie-

ing resonantbound state are labeled by a pair of quantum
numbersl and n, where the numben is the label of the
Riemann sheet imagiarq(') on which the pole is situated. The

mann surface has a single elemént{g=0}, i.e., Eq.(1.1
has no solution ik for g=0. Wheng— 0 the Smatrix poles
go to infinity (i.e., k—=). These properties are particular

sheets and their images are to be ordered in a conventionghses of the general properties P2, P5, and P4, respectively.

way.

Because the Jost functigf . (g,k) is entire ing andk, it

Because it is impossible to obtain analytical expressiongan pe factorized in the fori88]

of the branch points as a function of the potential parameters
for a whole class of potentials, the construction of the Rie-
mann surface has to be done for each case individually. The

Fio(g, k) =R ] [fo(g,k)]nen®H, (2.2
global method may also be used in the case of the multichan- n=1

nel scattering. In this cageis the potential strength in one of
the channels.

A. Finite range potential

The equationF, . (g,k)=0 defines the implicit function
k=k"(g). The Jost functionF;, (g,k) is entire ing andk

for several classes of potentials. One of them is formed of the

finite range potentialgyV(r) which satisfy the following
propertieq 34

@) for|V(r)|dr<ee,

(2) V(r)=0 for r>R, whereR is a fixed positive radius.

(3) V(r) has an asymptotic expansion about the point
=R, whose first term i8/(r)~C(1—r/R)? with 0=0.

(4) V(r) is continuous and has continuous derivatives up

to some order>¢ for all r in the range &<r<R.

A second class of potentials having the entire Jost funcen the construction of the Riemann surfR&’

whereG(g,k) andf,(g,k) are entire functionsg,, is a posi-
tive integer, andQ,(g,k) is a polynomial. Moreover, the
roots of the system,

fn(g.k)=0, (2.39
9fn(g.k)
TZO, (23b)

are isolated inCx C [38]. According to Egs(2.2) and (2.3
the singular points and, therefore, the branch points of the
Riemann surfacR(g') are discrete.

B. Other classes of potentials

The global method for al&-matrix poles analysis, based
, can be used

tion in g andk is made of potentials piecewise continuousnot only for finite range potentials but also for other classes

with piecewise continuous derivatives up to some of86t.
A third class of potentials with the entire Jost functiongin

of potentials, for which the Jost function is analytic in a
particular domain of theék plane. Construction of the Rie-

and k consists of potentials which decrease faster than alinann surface follows the same procedure. For each particu-

exponentialg1].

Julia [36] and Stoilow[37] studied the domain of exis-
tence and the properties of an implicit functiger y(x) de-
fined by an irreducible relatio®(x,y) =0, whereG(x,y) is

lar case the domain of analyticity in tHe plane must be
determined. In Ref{31] the global method for al§&-matrix
poles analysis has been used in the case of a Woods-Saxon
potential with a Coulomb barrier. In this case the Jost func-
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tion F . (g,k) is analytic ink in the domainD (k) =Im k> A. Branch points

—a, except the origirk=0 and the negative imaginary axis,  The branch points have been found by solving the system

where it has a cut. Hera=(2d) ', whered is the diffuse-  of equations(3.4) and (3.5. By using the recurrence rela-
ness of the Woods-Saxon potential. In this case the she@bns[39]

images oﬂ?g) in thek plane have been studied, except for a
narrow strip containing the origik=0 and the negative
imaginary axis. In Ref[31] a new class of poles and reso-
nant states was found. It was shown that the quasimolecular
states populated in the heavy-ion scattering are a particular | d
case of such exotic resonant states. The properties of the =-f(2)— = (2)="1,,1(2), (3.6b
quasimolecular statdgnergy, width, deviation from the lin- z dz
ear dependence of the energyl¢h+ 1), doorway character,
and criteria for observabilifyresult in a natural way from the
general properties of the exotic resonant states.

I+1 d
—h@+ l@=f12, 1#0, (363

wheref,(z) denotes the spherical Bessel functjgfz) or the
spherical Hankel function of the first kiri*)(z), the system
of equationg3.4) and (3.5 becomes

Ill. RIEMANN SURFACE Rg) OF THE FUNCTION

() (1) —

k=k("(g) FOR A CENTRAL RECTANGULAR hi1(k)=0, (3.78
POTENTIAL _
. j1+1(kg)=0, (3.7b
The central rectangular potential
or
2mR? v —g for r/IR<1, geC .

w2 VO=10 for R>1 @D h(Y,(k)=0, 1+0, (3.89
is a particular case of a finite range potential and, conse- j1_1(kg)=0, 1#0. (3.8

quently, its Jost functiotf, . (g,K) is entire ing andk. We

will use the dimensionless variabtéR rather than the vari- According to Egs(3.7) and (3.8 the branch points of the
abler. For the sake of simplicity, in the following the nota- f,nction k=k()(g) are

tion k will be used for the dimensionless variatd&.

The Jost function of potentidB.1) is [18
uncti P i4B.1) is [18] g;Sf:XIZJrl,s_ y|2+1,s’ ' (3.9
k |
f|+(g,k)=(k—0) Wi(g,k), (3.2 g;S,:Xil’S_yI{LS” | 0, (3.10
where where x5 (s=1,2,...) are thezeros of the spherical
" Bessel functiong (z), andyy, ¢ (s'=1,2,...m) are the
_ / R zeros of the spherical Hankel functions of the first kind
Wi(g,k)=wi(k,R)uj (ko,R) kOW'(k’R)u'(kO’R) h{Y(z), respectively. According to Eqg3.9 and (3.10

(3.3 there is a countable infinity of branch points for a given
. . ) value ofl, because the functions. (ko) have a countable
is the Wronskian alt=R of the reduced radial wave func- xfinity of real simple zeros. These branch points have a
tions w(k,r)=krh{P(kr) and uj(ko,r)=korj (kor), valid  finite number of images in the plane due to the fact that
for r=R andr <R, respectively. Her&(")(kr) is the spheri- 11 andh(Y), have a finite number of complex simple zeros.
cal Hankel function of the first kind, (kor) is the spherical = The zeros of the Bessel and Hankel functions have been
Bessel functior{39], andko=(k’+g)"% The prime in Eq. extensively investigated. Asymptotic approximations of
(3.9 indicates the differentiation with respect to the argu-|arge zeros and of zeros for large orders are very well known
ment of the function. Becagéezo is an exceptional 'point [39]. Using the zeros of; ; andh(¥; tabulated in Refg39]
(it is not a pole of theS matrix) [1], we use the equation  anq[40], respectively, the branch points have been calcu-
lated.
Wi(g,k)=0, (3.4 In order to show that the branch poin3.9) and (3.10
are of order 1, the derivativesdW,(g,k)/dg and
%2W|(g,k)/ak2 at the branch points are to be calculated.
rom Egs.(3.3), (3.9), and(3.10), using the recurrence rela-
tions (3.6a and(3.6b), it results that

rather than Eq(1.1) to define theS'matrix poles. In order to
find the branch points it is easier to use the system made
Eq. (3.4 and the equation

dW(9,k) N
TZO (35) ﬁW|(gS‘S’ ’y|+1,S’) 1 (l) .
99 = Ehl (Yi+18)ii+1(X1+15) #0,
than the system of equatioi®.13 and (2.1h). (3.11)
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IWI(Gg g +Yi-15")

1 (1) s
:§h| (Yi-15)]1-1(X 1) 7O,

ag
| #0, (3.12
PWi(Gge Yisrs)  (21+1)gg
Ik? (X|+1,s)2
X hl(l)(y|+1,s’)j 1(X1+15) 70,
(3.13
PWi(9gg Yi-1s)  (21—1)gg
&kz (Xl—l,s)2
XhM(y—16)i1(X-19)#0, 1#0.
(3.19

Taking into account that the valuedW,(g,k)/dg and
9?W,(g,k)/9k? at the branch points are different from zero,
it results thatd?k/dg?+0, i.e., the branch point€3.9) and
(3.10 are of order 1.

Besides the just mentioned algebraic branch points, there

is a transcendental branch pointgat 0. Indeed, let us de-
termine the form of the functiok=k{")(g) in the neighbor-
hood of g=0. For g=0, from Eq. (3.3 one obtains
W(0k)=—1/k2, which is different from zero for any finite
k, i.e., Eq.(3.4) has no solution irk for g=0. Consequently
g=0 is the only element of the boundary &tAccording to

property P4,

lim k®O(g) =,
gﬁO

(3.19

so that there are only large roots of E§.4) for g— 0. Using
the asymptotic expansions pfandh(® for large arguments
[39], it results that the large roots of E@.4) are solutions of
the equation

exp(2ik)=—(—1)'4k?g. (3.16

The roots of Eq(3.16 for any g e C were studied in detail
by Wright[41]. Based on the results of R¢#1], the roots of
Eq. (3.4) for g—0 are obtained:

mn— %(argg—i In|g|) forevenl
k= 1
m(n+ 1/2)—§(argg—i In|g|) forodd I,
(3.17

wheren=0,+1,£2,... and G<argg<2mw. Therefore, the

PHYSICAL REVIEW /1 032716

pole belonging to sheet image,"’ and the corresponding
quantum state [(n). This quantum number is completely
different in kind froml, which is connected to the rotational
invariance, whilen has a topological meaning.

B. Stable points

The asymptotic approximation of the solutionk

=k((g) of Eq.(3.4) for largeg will be investigated in order
to show that some poles remain at a finite distancegas
—o. In other words, there are some poles that remain in
bound regions of thk plane for|g|— . Taking into account
the asymptotic expansion of the spherical Bessel function
i1(ko) for large g [39], and using the recurrence relation
(3.6b), from Eq. (3.4 we obtain

h(Y (k) + ekh{,; (k) =0, (3.18
where e= —[\/gcot(\Jg—17/2)]"* is a small quantity ¢
—0) if g is complex and|g|—c. By using the relation
hiD(k)=—i(e*/K' ") 6,(—ik) [42], where¥, is the Bessel
polynomial defined by the relation

0(2)= 2,

m=0

(I+m)! 1 m
mﬁz , (319)

Eq. (3.18 becomes

0,(—ik)— €6, 1(—ik)=0. (3.20
This is a polynomial equation which has-1 roots fore

# 0 andl roots fore=0. The roots of Bessel polynomials are
simple rootd42]. We determine the asymptotic expansion of
thel+1 roots of Eq.(3.20 ase—0, i.e.,|g|—=, by using
the method presented in R¢#13]. One obtains

kOW=xkO(1+e), n=1.2,...] (3.21)
and
kD= —j/e, (3.22
where —iKﬂ) (n=1,2,...]) are the roots of the Bessel

polynomialsé,(2), i.e., 6,(—i«{")=0. In other words, for a
given complex g, |g|—c, there arel poles, namely,
k"W (n=1,2,...)), that remain at finite distance accord-
ing to Eq.(3.21). Indeed, we have
n=12,...J, (3.23

lim kO =)

g~>oc

provided g is complex. Taking this into account we call
«!) (n=1,2,...)) “stable points.” From Eq.3.23 it re-

transcendental branch poigt=0 is a logarithmic branch sults that the stable points act as attractors for thesses.
point whose order is infinite, and consequently all the sheets According to the behavior fotg|—o, two classes of

of the Riemann surfacB()’ are joined together @=0. The  poles can be distinguished. Some poles behave in the famil-
numbern from Eg. (3.17) will be used in order to label the jar way, i.e.,|k| - for |g|—=, [see EQ.(3.22]. These

Riemann sheet& () and theirk-plane images. /(. More-  poles belong to the old class of resonant state poles. As
over, n will be used as a new quantum number to label theshown by Eq(3.23, for eachl there ard poles that remain
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at finite distance, in the neighborhood of the stable points, TABLE I. The branch pointggs, in the casd =0. The zeros of

when|g|—o. These poles belong to the new class of poleghe spherical Bessel function(ko) are denoted bg. ks (s’

(exotic resonant state poles =1) stands for the zero of the spherical Hankel function of the first
Due to the above-mentioned connection between th&ind hi’(k).

Bessel polynomial®,(—ik) and the spherical Hankel func-

’ + +
tion of the first kindh(*)(k), it results that the stable point S Kos ks st
«!) is a zero of the spherical Hankel function of the first 1 1 4.493 —i 21.191
kind, i.e.,h(M(«x’))=0 for n=1,2,...]. The zeros of the 1 2 7.725 —i 60.679
spherical Hankel functions of the first kind are symmetrically 1 3 10.904 —i 119.900
distributed with respect to the imaginakyaxis, along a half- : : i :
eye-shaped curve in the lowkihalf-plane[44]. This means 1 n ~(n+1/2)w —i ~14(n+1/2)%72

that for odd! there is a zero oh(")(k) on the imaginaryk
axis, and (—1)/2 zeros in the fourth quadrant of thglane. _ _ 0
For everl there ard/2 zeros oh{® in the fourth quadrant of abel the pole belonging to sheet imaBg™ and the corre-

thek plane. By convention, in the following the stable points SPONding quantum staté, (). In the analysis of the Riemann

|
in the fourth quadrant will be ordered according to increasingSurfaceRé) the property1]

Rek. Fi(g.K)=FF (g —K*) (3.24

f th function will .
C. Analysis of the Riemann surfaceR) of the Jost functio be used

for 1=0-4 1. Case +0

According to Egs.(3.9 and (3.}@ there is a countable The Smatrix poles are solutionk=k(©)(g) of Eq. (3.4)
infinity of algebraic branch pointg , for a givenl because \hich can be written as
the spherical Bessel functioig. (k) have a countable in- .
finity of real simple zeros. These branch poigfg, have a ik=kq cotko, (3.29

finite number of imagek(g;,) in thek plane due to the fact whereky= (g+k?)¥2 Let us construct the Riemann surface
that h{?;(k) and h{?;(k) have a finite number of simple R( over theg plane, on which the functiok=k(®(g) is

complex zeros. The zerog.;s, (s=1.2,...) of the gjngle valued and analytic. Fbr=0 system(3.7) becomes
spherical Bessel functions are real, and the zeros

Yi-1¢ (s'=1,2,...)=%1) of the spherical Hankel function i+K .

of the first kind are complex, so that the algebraic branch hiY(k)= — —-€e*=0, (3.26
points for a giver can be grouped into sets characterized by
the same Ing. Consequently the cuts that allow a separation ]
of the Riemann sheets have been taken by joining the branch (ko) = sinko—ko coskg -0 (3.27)
points with the same I by rectilinear segments going to 1nro k2 ' '
Reg— «. Besides these cuts there is a cut along the positive

real g axis starting at the transcendental branch pgntd.  The branch points of the Riemann surf:RgQ) are given by
To summarize, there arel 21 cuts for oddl, 21—-1 cuts Eq.(3.9 for =0 wherey, ¢ andx s are the solutions of the
for evenl (1#0), and one cut on the positive regbxis for  Egs.(3.26) and(3.27), respectively.

|=0. All the algebraic branch points are of order 1, so thatat Let ky (s'=1) be the zero ofh{!(z) and ks (s
a given algebraic branch point only two sheets are joined=1,2, ...) be thezeros ofj,(z). With the valuesk;= —i
together. One determines the sheets that are joined at a givgn,en by Eq.(3.26 and k(;rs given by Eq.(3.27), the branch
algebraic branch poirgsi’S, by taking successive small cir- pointsg:S, are obtained from Eq3.9):

cuits|g— g, /|=p round the given branch poigf , . Let us ' PR

start withg=g; e =) andk;=k(g;) e 2/ . After a com- Us1=(koo)“—ki, s=12,.... (3.28

plete rotation ofg round the llaranch poing, ;, the pole It results that, in addition to the logarithmic branch pajnt
reaches another valike-k; < 3,,{" . After a second complete — ) there is a countable infinity of branch points on the real
rotation of g, the pole+reaches again its initial valle  axijs, given by Eq(3.28 and presented in Table I.

e3> It results thatg,, is a branch point where sheets  The Riemann surfacR{” will be constructed according
Eﬂ’ andEET']) are joined together. A more detailed discussionto the usual procedure: a cut is taken in thplane, joining
will be done for each value of the orbital momentuim the  all branch points by a simple line. The rest of the domain is
corresponding subsections. The order of the transcendentsimple conex. In the present case there is only one cut,
branch poing=0 is infinite, so that all the sheets are joined namely, the cut along the half-axi§,+ ). To each branch
atg=0. The numben from Eq.(3.17) will be used in order of the multivalued functiork(®)(g) a sheet of the Riemann
to label the Riemann sheels)) and theirk-plane images surfaceR(? is associated. We label the sheets and their
3/ Moreovern will be used as a new quantum number to k-plane images by the integer=0,+1,+2, ... which oc-
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curs in Eq.(3.17), that defines the pole fay—0. SetE of
boundary points has only one point, namedys0. For g
e 39 the corresponding pole is situated BA{”) . The bor-
der of each she@ﬁo) is obtained by varying along the two

edges of the cuf0,~) and on a circle of a large radius

joining them. The border of theplane sheet imagg /(% is
obtained by following the pole defined by E.25, wheng
describes the border af(.

The sheets ), 3, 30 and3{, as well as their
k-plane imageg (¥, 31, 379 and3 ;@ respectively,

are represented in Fig. 2. In order to describe these sheets E |
and theirk-plane images, a detailed construction of their bor-

ders will be given in the following.

We start the construction of each sheet border at the point

g=0. Forg—0, ge3{?, the pole on3(® is situated at
k~ —3(argg—i In|g|) [see Eq.3.17)]. PointA in Fig. 2b)
indicates the position of the pole fay=+ie, where e
>0 (e smal), i.e., for argg==/2. When the potential
strengthg increases along the upper edge of the[€) on
the sheets{?) (a more and more attractive potentjathis
pole moves upwards along the negative imaginiarsxis,
and passes through= —i at g=1, crossing the origin for

g=(m/2)?. For g>(m/2)? it becomes a bound state pole,

giving rise to the first bound stateground state For g
e, g=—ie, ie., for argg=3n/2, the pole is situated
in the point denoted b in Fig. 2(b). When Rey increases
so thatg moves on the she&") along the lower edge of the
cut[0,»), the pole approaches the straight linekRe— r;

then it moves upwards until it approaches the straight line  100¢
Imk=—1. When Rey increases further, the pole approaches i

the imaginaryk axis. The pole passes througl- —i atg
=21.191; then it becomes a virtual pole, moving towérd
=—jo asg— .

Similarly, for g—0, ge3{”, the pole ons;( is situ-
ated atk~7— 3(argg—i In|g|). PointsA and G in Fig. 2(d)
indicate the position of this pole fag=+ie andg=—ie,
respectively. When the potential strengthincreases on
sheet>{?) along the upper edge of the cifi,=) the pole
approaches the straight line Re 7; then it moves upwards
until it approaches the straight line ks —1. The pole then
moves toward the imaginakyaxis, passes throudh= —i at

PHYSICAL REVIEW /1 032716

I=0

~5Re k
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100

—100}
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—100}

(4, 5
o N

Re k

=100 0 100Re g

FIG. 2. Sheet&{? (n=0,1,2,3) of the Riemann surfad®)
and theirk-plane imagesE,’](o) for a central rectangular potential
with I =0. The borders of the sheets, made of the edges of the cut
[0,2) and a circle of a large radius, are shown(ay, (c), (e), and
(9). Thek-plane images of the Riemann sheet borders are shown in
(b), (d), (f), and (h), respectively. Different symbols are used in

g=21.191, and then becomes a virtual pole, moving towararder to indicate the two edges of the cut and the large radius circle

k= —iow asg—o. When the potential strengtlp increases
on shee® {?) along the lower edge of the c[®,~) the pole
starting from pointG in Fig. 2(d) moves upwards along the
negative imaginank axis, and passes throudgt= —i atg
=1, crossing the origin fog=(7/2)?. Forg>(m/2)? it be-
comes a bound state pole.

For g—0, ge =, the pole on3,® is situated atk
~27—L(argg—iIn|g)). For g—0, ge3{? the pole on
340 is situated atk~37—2(argg—iIn|g)). In Figs. 2f)

in the g plane. Thek-plane image of the corresponding sheet border
segment is marked by the same symbol. We deAotd, C, ...
thek-plane images of the points b, c, ... from theg plane. By
dashed, dotted, and dash-dotted lines a pure real barrier, a pure
absorptive potential, and a pure emissive potential, respectively, are
indicated.

39 respectively. When the potential strengtts increased
on 3 along the upper edge of the c[i®©), the pole

and Zh) point A denotes the position of the pole on the sheetstarting from point A on Eé(o) reachesk=—i for g

images3 5© and 4 for g taking the valueg=+ie on
sheets> ") and ={, respectively. Similarly, poinG de-
notes the position of the pole on sheet ima@e&éo) and
34 for g taking the valueg=—ie on sheetsS{ and

=60.679, and then becomes a virtual state pole. When the
potential strength is increased on the s%@i fromg=0 to
g—o0 along the lower edge of the cld, ), the pole starting
from point G on 2&‘0) reachesk= —i for g=21.191, then

032716-7



CORNELIA GRAMA, N. GRAMA, AND |. ZAMFIRESCU PHYSICAL REVIEW A61 032716

=0 complexg plane. In Ref[19] pole trajectories for a purely
absorptive imaginary well and for a complex absorptive well

3 3 with a given ratio between real and imaginary parts of the
2 — DWC 2 potential strength have been calculated. However, as the pole
1 \/ \Vi 1 equation has infinitely many roots for an arbitragy one

0 0

AN A - cannot specify which pole has been found by graphical meth-
_n 7 _ ods and iterative processes. On thplane it is possible to
-3 jut _ jump involuntarily from one pole to the other. Conversely,
the global method allows the identification of each pole. In
1 1 1 other words, if we have two points on a given sheet image
+ + + we can pass from one to another, being sure that we follow
911 9z 9z the same pole. Recently contradictory opinions have been
FIG. 3. The junctions of shee®© and 3@ (n,m=0%1, givgn relative to the effect of the _absorptive part .of the po-
+2,+3) for a central rectangular potential with-0 at the branch  t€ntial strength on the pole location. Does the virtual state
pointsg.;, (s=1,2,3). The labeh or mof each sheet is indicated POI® move clockwise into the third quadrant of thglane,
by the numbers given at the left and right ends of the picture. On@' counterclockwise into the fourth quadrant? This question

can see, for example, that fge=g;; sheets %) is joined to sheet Was differently answered in Ref27-29 and[25]. In fact it
30, is not possible to give a definite answer by using the pole

trajectory method. From Fig. 2 one can see that the answer
moves upwards along the imaginakyaxis and becomes a depends on the sheet image on which the pole is situated: on

LN =

bound state pole. Similarly, on sheet imagé® the pole sheet.image§1(’,(°), 2,—_((1))1 319, - the %?Ie moves into
starting from pointA reachesk= —i for g=119.900, while the third quadrant, while on sheet images™, =™, ...
the pole starting from poin® reachek=—i atg=60.679. it moves into the fourth quadrant when the absorption is

Wheng— on sheeggo) (s=1,2,3...), thepole goes Switched on. In connection with the analysis given in Ref.
to k— —i% on 3. if g follows the upper edge of the cut [25], we should also note that two poles are associated with
[02), and tOk—>Si00 if g follows the lower edge of the cut the same stat€9), for the same potential stren.gth. Thi_s is an

" When n sh © (s=122 . ) thepol erroneous result, because one should associate a single pole
[0) eng—x on sheel =; (s=1.2,3 ) thepole with each state. In our analysis the 2s state is associated with

goes tok—io on X" if g follows the upper edge of the cut the pole (0,1), situated on the sheet imédléo).

[0,2), and tok— —ioe if g follows the lower edge of the cut
[0). Fors=1,2,...,sheet images'(?) is symmetric to 2 Case E1
sheet image. /(% with respect to the imaginar axis. o _
The analysis of the sheets shows that at each branch point FOr =1 the pole equation3.4) can be written
g-, sheetS @ and3(?, s=1,2,..., argoined. In Fig. 3 K k—i  (KE—1)sinkq-+ ko cosk
the way the sheets are joined at the branch points is sche- 0 0~ "0 >7=R0
matically shown. We remark that she®f” (the ground- ki sinko—ko COSko
state shegthas no junction with any other sheet if the po-
tential is presentd#0). We remind the reader that gt
=0 all the sheets are joined together.
A comparison of the present results in the cbks® with

(3.29

The branch points of the Riemann surface are given by the
system of equation.9) and(3.10, wherex ., s andy|.; ¢
are the solutions of Eq$3.7) and (3.8) taken forl=1. As

. ) . hiY(z)=e'?/z has no zero, it results that the branch points
the results obtained in the previous analyses stresses the ads "etermined onlv b Eq3.9. ForI=1 the system of
vantage of the global method. Indeed, Nussenz\Vdig| equation(3.7) can bgw?itten " y

studied the case of a real potential. He showed that compleX
poles approach from opposite sides the imagirasaxis at ieik
k= —1i, where theS matrix has a double pole, obtained for a hiV(k)= —
potential streng'[rl‘rgzgsfl in our notation(see Fig. 1 of Ref. k
[18]). Forg>g;’l the double pole splits into a pair of poles .
which move in opposite directions along the imagin&ry . ~ 3cosky  (3—kp)sinky
axis. However, due to the fact that R¢L8] did not use a Jalko) == K2 + K3 =0.  (3.3)

. . . .. 0 0
global analysis, one cannot specify which of the initial poles
becomes a bound state pole (ktr0) and which one be- From these equations theplane images of the branch points
comes a virtual state pole (Iki<0). On the contrary, when k,, (s’'=1,2),
using the global method for pole analysis, once a Riemann
sheet is chosen there is one and only one pole on the corre- .
spondingk-plane image of the sheet, and this pole can be k1,2=§(i V3-3i), (3.32
followed when the potential strength changes. This can be
clearly seen from Fig. 2. The trajectories of tBamatrix =~ and the zeroskaS (s=1,2,3...) of thespherical Bessel
poles for a central complex rectangular potential well wergfunction j,(ky) are obtained. From Ed3.9) the following
calculated by Joffily[19] by choosing given paths in the branch points result:

=0, (3.30
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TABLE Il. The branch pointsgsts, in the casd =1. The zeros
of the spherical Bessel functiong(ky) are denoted byk&s.

ks (s'=1,2) stand for the zeros of the spherical Hankel function 3
of the first kindh$D(k). ) y \X/
s' s K K ol 1 1
. 0 >< /\ /\ 0
1 1 5.763 0.866 1.500 34.7172.598 T T T
1 2 9.909 0.866 1.500 84.219+2.598
1 3 12.322 0.866 1.500 153.355+2.598 + + +
: : : : . I 92,1 3,41
1 n ~(+1)w J312-3il2 ~(n+1)?m2—K?
2 1 5.763 -0.866-1.500  34.717-2.598 FIG. 4. The junctions of shee®{ and3{") (n,m=0,1,2,3)
2 2 9.909 —0.866-1.500 84.219-2.598 for a central rectangular potential with=1 at the branch points
2 3 12.322 —0.866—-1.500 153.355-2.598 ggl (s=1,2,3). The labeh or m of each sheet is indicated by the
: : : : : number given at the left and right ends of the picture.
2 n ~(n+1)m —\3/2-3il2  ~(n+1)*7*—k;

3™ are shown in Fig. &). If the potential strengtly on
3 (M is situated in the windows of the potential strength
0o1= (kg2 —K2=(kg)?+ =(1+i\3) (3833  Img>Img.,=3y3/2 or Img<Img.,=—3y3/2, the cor-
s,1 0s 1 0s 2 g Os1 g Os,2 )
responding pole belongs to the new class of poles, i.e., it
and remains in a bound region of tHeplane and does not be-
come a bound or virtual state pole when the depth of the
3 ) potential well increases indefinitely (Re-«). This is an
+ (TN L2 (1t V2 _ X i
95,2~ (Kog) "~ ko= (kog) "+ 2 (11 V3), (3.34 exotic resonant state pole. From Fig. 5 one can see that the
Riemann sheet imag& /") does not include the positive
Wh_ere s=1,2,.. - In Tal?le Il the Va'l-.IeS of these branch imaginaryk axis, or, in other words, the p0|e &*6(1) cannot
points and of theik-plane images are given. One can see thabecome a bound state pole. Moreover]lifi g|>|Im g;S,|

besides the logarithmic brancrj poipt0 there are two in- —3.3/2, the regions where the exotic poles are located
finite sets of branch .pomtgsys, ' _(S =1 and 2 ar:ds shrink to the stable point for a sufficiently deep potential
=12,3...).Each setis characterized by the samello . well, according to Eq(3.23. In other words the stable point
The Riemann surface will be constructed by taking twojs an attractor for the exotic resonant state pole, which is
cuts in theg plane, parallel to the real axis. Thefe CUts JoNjnsensitive to the behavior of the potential in the internal
all the complex branch points of the functié-k™(g). A region (well region. In Fig. 6 the trajectory of the pole on

cut along the positive rea axis will also be taken. The rest 26(1) is shown forg varying asg=\(10+1), where\ takes

of the domain is simple conex. Proceeding in the same man;
)

. : alues between 3.5 and 500. One can see the spiral
ner as in the case=0, slhgetg of the Riemann slurfalegl asymptotic trajectory of the exotic resonant state pole ap-
are constructed. She2t") is joined with sheet (" at the

ucte Ared. : o) proaching the stable poink{"=—i. If [Img|<|Img_ |
branch poingg; , zind sheek ;" is joined with sh_eeE__S at  _3/3; o3, then the corresponding pole &, be-
the branch poingg,, wheres=1,2,3 ... . Thesituation is

: C - longs to the old class of poles, i.e., the pole behaves in a
illustrated in Fig. 4, where the way the sheets are joined ong,mjjiar way when the potential strength increases. Indeed,

to another is shown for the branch poig;, with s=1, 2, \yhen Reg increases, the pole moves toward the imagirary

and 3. ) N N N ] axis and becomes a virtual state pole for a sufficiently deep
In Fig. 5 sheetsS (), 2{Y, and3{" and theirk-plane  potential well.

images are represented. One observes that a large part of sheets. (V) and itsk-plane image are represented in Figs.
sheetS{", namely, the region with Rg>Regy; and Img  5(d) and e), respectively. One can see that on sheet image
>Img,,, is mapped by the functiok=k("(g) onto a 3! there is only an old-class resonant state pole. The
bound region of thé-plane sheet imagEy™. This region, bound region of thé plane where the exotic resonant state
indicated by hatching in Fig.(b), lies on the branch point pole was located o () is empty on3 ;™. This means
imagek, = /3/2—3i/2 and on the stable point"’=—i, de-  that the pole trajectories an,(?), corresponding to any path

1 ]
fined as the solution of equatidi{’’(k)=0. Another large  of g on>{") that does not cross the cuts, avoid the region of
part of the sheetS{", namely, the region with Rg thek plane where the exotic resonant state pole was located
>Reg;, and Img<Imgg,, is mapped by the functiok  on sheet imag& ;").
=k@)(g) onto another bound region &fg(l) that lies on the On the next Riemann sheet imagﬁgl), (s=23,...)
branch point imagek,=—\3/2—3i/2 and on the same there are only old-class poles. The boundaries of these sheet
stable point. Details on the bound regions of the sheet imagienages can be constructed starting from the position of the
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FIG. 5. Sheet& () (n=0,1,2) of the Riemann surfad®{" and theirk-plane images:.,*) for a central rectangular potential with
=1. The borders of the sheets, made of the edges of thgleu}, the edges of the cuts that join the complex branch points, and a circle
of a large radius are shown {B), (d), and(g). Thek-plane images of the sheet borders are givefbin(e), and(h). Details of the Riemann
sheet image& ) (n=0,1,2) are shown irfc), (f), and (i). Different symbols are used in order to indicate the two edges of each cut and
the large radius circle in thg plane. Thek-plane image of the corresponding sheet border segment is marked by the same symbol. By
A, B, C, ..., wedenote thek-plane images of the points, b, c, ... from theg plane. The hatched regions of shélé)f) are mapped
by the functiork=k{)(g) onto the bound regions df(’,(l) indicated by the same hatching. In each of these bound regi@#ﬂfthe exotic
resonant state pole is situated. One can see that the region occupied by the exotic resonant stafq’ﬁ?)le empty on sheet imagési(l)
and3 ;@ i.e., the poles o} and= ;™ cannot be situated in this region.

pole forg=0. On all these sheet images the bound region opointk= —i and the branch point imade= \/3/2—3i/2, has
the k plane where the exotic resonant state pole was locateglot been found in the quoted paper, due to the nonglobal
on 34 is empty. treatment of the pole function. Similarly, in Rg®25] the
SheetsE(}g and ES) (s=1,2,...) aresymmetric with  effect of the absorptive part of the potential on the pole lo-
respect to the reaj axis. According to the propert§8.24 of = cation was analyzed by the pole trajectory method. The ex-
the Jost function, thé-plane imagess’()) and 3. (s otic pole was not found, because the path chosen for the
=1,2,...) aresymmetric with respect to the imaginaky potential strength did not enter the hatched region in Fig.
axis. 2(a). In Ref. [25] there are two poles associated with the
In Ref.[20] the pole distribution for a real square well and same state (d) for the same potential strength. This is an
I =1 has been studied. The exotic resonant state pole, i.e., thiegroneous result, because one should associate a single pole
pole that is located in the bound region between the stablwith each state. In our analysis the ktate is associated
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Im k
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FIG. 6. The trajectory of the exotic resonant state pole on shees
|mageEO(l) for g varying asg=\(10+i), where\ takes values in
the range 3.5-500. The numbers beside the spiral curve give the - 2

values.
with pole (1,0), situated on sheet imagg®.

3. Case 2
For =2 the pole equatio3.4) becomes

k3+ 3ik%?—6k—6i

_ (3k3— 6)sinky— (k3— 6kg)cosk,
ik?—3k—3i '

(k&—3)sinkgy+ 3kg cosky
(3.39

The branch points of the Riemann surface are given by the

system of equation@.9) and(3.10), wherex).; s andy, .«
are the solutions of the system of equati¢8s) and (3.8),
which in the casé=2 can be written as

(1) ieik ] 2,3
h§(k) = = 5[ 15— 15k —6K*+1k°] =0, (3.363

1
ja(ko) = PMS_ 6k2)sinkqy+ Ko(k3— 15)cosky]=0

0

(3.36b
and
h{P(k)= - —-e*=0, (3.369
sinky— kg cosk

jalko)=— k2° °=o, (3.360

PHYSICAL REVIEW /1 032716

TABLE Ill. The branch points in the cade=2. The zeros of the
spherical Bessel functior]'si(ko) and js(kp), respectively, are de-
noted byk, ¢ andkoS ks (s’'=1) stands for the zero of the spheri-
cal Hankel function of the first kind{")(k), andks (s'=2,3,4)
st(a)nd for the zeros of the spherical Hankel function of the first kind
h$)(k).

s’ S Kos ks Oes
1 1 4.493 —1.000 21.191
1 2 7.725 —1.000 60.680
1 3 10.904 —1.000 119.900
1 n ~(n+12)=w —1.000 ~(n+ 12272 —K?
s’ s Kos Kes 9.
2 1 6.988 —-2.322 54.224
2 2 10.417 —-2.322 113.909

3 13.698 —-2.322 193.028

n ~(n+3/2)mx —2.322 ~(N+32272— K3
3 1 6.988 —1.754-1.839  49.135-6.452
3 2 10.417  —1.754-1.839  108.8206-6.452
3 3 13.698  —1.754-1.839  187.9406-6.452
3 n ~(+32)wr —1.754-1.839 ~(n+3/2°7?—k3
4 1 6.988 1.754 1.839 49.135+ 6.452
4 2 10.417 1.754 1.839 108.820+ 6.451
4 3 13.698 1.754 1.839 187.940+ 6.451
4 n ~(n+3/2)7 17541839  ~(n+3/2%7*—k?3

the spherical Bessel functiong(ky) and j3(kg) and to
ke (s'=1,2,3,4) taking values from the finite set of zeros of
the spherical Hankel functions of the first kimd"(k) and
h§P(k). In Table Il the algebraic branch pointg, and
their images in th& plane are presented.

Two of the four infinite sets of branch points are real, and
the other two are characterized by gps, ==*6.452. By us-
ing the procedure descrlbed in the preamble of Sec. Il C the
Riemann surfaceRg was constructed. Le$=1,2,3,
SheetE(z) is joined to sheek () at the branch pomtgsl
and g52 Sheets @), , is joined to sheek ?) at the branch
point 953 Sheets ?) is joined to sheeE(si)1 at the branch
point g&4 The way the sheets are joined is shown schemati-
cally in Fig. 7. For simplicity, only the junctions of sheets
3 and3 (2 with n,m=0 are shown.

In Fig. 8 the Riemann shee®{”) and>{?, as well as
their k-plane images:}® and =,(?, are shown. One ob-
serves that a large part of shééf) namely, the region with

respectively. In other words theplane images of the branch Reg> RegS4 and Img>Im gs4, is mapped by the function
points are given by the zero df(l)(k) and the zeros of k=k(®)(g) onto a bound region of thk-plane sheet image
h{(k). Using Egs.(3.9) and (3.10, four sets of branch 3 ;) that lies on the branch point imagg=1.754—1.83D

points have been obtained, corresponding I«tg)s, (s
=1,273.

and on the stable point{?)= \/3/2— 3i/2 [the solution of the

..) taking values from the infinite set of zeros of equationh$"(k)=0]. Another large part
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=2 a potential strengtty with Img>Img_,=6.452 or Img

4 ~C 4 <0, is an exotic resonant state pole. It behaves in an unusual
g - - X T~ ; way: the pole does not become a bound or virtual state pole

1 36 3@ X as the potential strengthincreases, but remains in a bound

o X_ 0 region of thek plane. The border of the bound region of the
k plane, where the exotic resonant state pole is situated, lies

T_ T_ T_ T+ T+ T+ on a pair of points: a stable point and tkplane image of a
99 920 Tz Gis 24 Gss branch point. When the potential strength increases to infin-
95 9 9% | ity the exotic resonant state pole approaches the stable point
[see Eq(3.23)].
FIG. 7. The junctions of sheets(® and & (n,m Sheets ) and itsk-plane image are represented in Figs.

=0,1,2,3,4) for a central rectangular potential with2 at the  8(d) and §e), respectively. One can see that there is only an
branch pointg;, g2, 953, andgs, (s=1,2,3). Thelabehorm  old-class pole on this sheet image. The region ofkiptane
of each sheet_ is indicated by the numbers given at the left and righf;here the exotic resonant state pole was located 55) is
ends of the picture. empty onEé(z).

Sheet>(?) is symmetric to sheet {?) with respect to the
of the sheets{?), namely, the region with Rg>0 and realg axis and itsk-plane imageS () is, according to the
Img<0, is mapped by the functiok=k(?)(g) onto another Jost function property, symmetric with respect to the imagi-
bound region of thek plane that lies on the branch point naryk axis to image> | ®). Consequently she&{? and its
imagesk,;=—i and k,=—2.322 and on the same stable imageE(’)(z) are not shown in Fig. 8, although on sheet image
point «{?)= \/3/2— 3i/2. Details of Fig. 8) are given in Fig. 3/ there are two bound regions in the third quadrant of the
8(c), where the bound regions of the sheet imagé”) are  k plane where the exotic resonant state pole that corresponds
shown at an enlarged scale. The pole situated on sheet image a strongly emissive potential (Igi<—Im 9;4) or to an
21(2) that corresponds to a potential well of strengtiwith absorptive potential (Ig>0), is located. Generally, sheet
0<Im g<Im g.,=6.452 behaves in a familiar way when the %) with (n=0) is symmetric to she&?, with respect to
potential strength increases: it moves toward the imagikary the realg axis, and its image is symmetric with respect to the
axis and for a sufficiently deep well becomes a virtual poleimaginaryk axis to sheet imagé,’ff{ [see EQ.(3.29)]. In
The pole situated on sheet ima@é(z), that corresponds to Fig. 9 one can see the spiral asymptotic trajectory of the

4 1 Rek

100 0 100 Reg 0 5 10 Rek

FIG. 8. Sheet&?)(n=1,2) of the Riemann surfade{’’ and their image& () for a central rectangular potential witkr 2. The sheet
borders made of the edges of the pDipe), the edges of the cuts that join the complex branch points, and a circle of a large radius are shown
in (@) and(d). Thek-plane image.;® and3.,® are shown inb) and(e). Details of thesé-plane images are shown {n) and (f). The
hatched regions of sheEﬁlz) are mapped by the functide=k(®)(g) onto bound regions of sheet ima@é(z) that are indicated by the same
hatching. In each of these bound regionsiqu) the exotic resonant state pole is situated. One can see that the region lepltre
occupied by the exotic resonant state pole on sheet ilﬁqéfé is empty on sheet imagﬁé(z).
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TABLE IV. The branch points in the case=3. The zeros of the
spherical Bessel functior]s(ko) and j4(ko), respectively, are de-
noted byky andkgs. ke (s'=1,2) stand for the zeros of the
spherical Hankel function of the first klnd(l)(k) and kg (s’
=3,4,5,6) stand for the zeros of the spherical Hankel function of
the first kindh{V(k).

s S Kos ks Oesr
1 1 5.763 0.866 1.500 34.71#2.598
1 2 9.095 0.866 1.500 84.219+2.598
1 1 3 12.323 0.866 1.500 153.355+2.598
r 1 n ~n+)w J3/2—3i/2 ~(n+1)?72—K?
Y 1 Re k 2 1 5.763 —0.866-1.500 34.7172.598
2 2 9.095 —0.866-1.500 84.219-2.598
FIG. 9. The trajectories of the exotic resonant state pole on sheet 3 12.323 —0.866—-1.500 153.355-2.598
image3;® for g varying asg=\(8+i) and asg=\(8—i), re- : : : : :
spectively, with\ taking values up to 200. The numbers beside the, n  ~(n+1)m —J312-3i/2 ~(n+1)2 2—k§
spiral curves give tha values. We indicate the stable point 8y
and the images of the branch points by s’ s Kos Kes Ues
exotic pole on3:(® approaching the stable point{? g ; 181'178035 g'zg; g'ggg ij;gi'%z;
=0.866-1.5 for |g|— . ' ' ' ' '
3 3 15.040 0.86%2.896 233.82#5.023
4. Case 3 : ‘ : : :
o , 3 n ~(n+2)r  0.867-2.898 ~(n+2)272—K3
The pole equation in the case 3 is
4 1 8.183 —0.867—2.896 74.590-5.023
ik4— 6K3— 21ik2+ 45k + 45i 4 2 11.705  —0.867-2.896  144.641-5.023
- - 4 3 15.040 —0.867—-2.896 233.8275.023
k3+6ik?—15k— 15 : : : : :
4 n ~(+2)m —0.867-2.898 ~(n+2)°w?—k3
(kg—21k3+ 45)sinkqy+ (6k3— 45k,) cosky
= > - 3 . 5 1 8.183 2.6572.104 64.319+11.181
(6kg— 19)sinko — (ko= 15ko) cosko 5 2 11705 2.6572.104  134.368 11.181
3370 5 3 15040 2.6572.104  223.556-11.181
For =3, systemg3.7) and(3.8) become 5 N ~(n+2)m 2 657—2.104 (N4 22— K2
w —ie'*| 100 45 105 105 6 1 8.183  —2657-2.104  64.318-11.181
N (= e T [T 6 2 11705  -2657-2.104 134.369-11.181
(3.383 6 3 15:040 —2.657.— 2.104 223.556'— 11.181
1 ) 6 n ~(n+2)m -2.657-2104 ~(n+2)’7°—k3
ja(kg)=— E[(k0_45k0+ 105)sink,
0 respectively. In Table IV the values of the branch points and
+ko(10kZ— 105)cosk] of their images in thé plane are presented.
The Riemann surfade{® is constructed in the same man-
=0 (3.380  ner as in the previous cases. Iset1,2,3 . . . . Sheetx ) is
joined with sheez?, at g; ;. Sheet2(3g is joined with
and sheet>®), | at the branch pomg82 Sheet> ) is joined
. with sheet> ) at the branch pomtySS Sheet2(3) is joined
WO = |12 3l o (3389 With sheet2(3) at the branch poingg ,. Sheet2(3) is joined
2 k k k2| ' with sheetE( ), at g5 Sheets®) is joined with sheet
56 atg.. The way the sheets are joined is shown sche-
3 cosk 3—Kk2)sink matically in Fig. 10. _For simplicity, only the junctions of
jalko)=—— 0, Oi 9—0, (3389 sheetss® and3® with n,m=0 are shown.
ko Ko In Fig. 11 sheet® ¥, 33, and3{? and theirk-plane
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=3 a pair of points in thek plane: the image of a branch point
and a stable point. For example, the bound region which
occurs for strong absorption lies on tkglane image of the
branch poing ; and on the stable point{>)= —2.322. The
X o bound region which occurs for weak absorption lies on the
S S S S S SR image of the branch poirgs; and on the stable point®

Ov5 O s Ors Gi Gar Ors Ois 9o =1.754-1839, .

| | | On sheett}” there are also two regions that correspond
to strong absorption (Ig>Im 9;,5) and to emission (Ing
<0), that are mapped by the functidrrk®)(g) on some
bound regions on thk-plane sheet imag®;® . The bound
degion where the exotic resonant state pole is located for

FIG. 10. The junctions of the shee®(® and = (n,m
=0,1,2,3,4) for a central rectangular potential witk3 at the
branch pointys;, 952, Jes. Jes: Jss. aNddes (s=1,2,3). The
labeln or m of each sheet is indicated by the numbers given at th

left and right ends of the picture. strongly absorptive potential lies on tkeplane image of the
branch point gis and on the stable point x&3)

are four regions, indicated by hatching, corresponding tdions of thek plane, where the exotic resonant state pole was
strong absorption (Ig>Img.,), strong emission (Irg located on the sheet imagie{)“), is empty on sheet image
<Imgy,), weak absorption (&Img<Iimg;,) and weak ;. Riemann sheetimages® and3;® do not include
emission (Ing,,<Img<0), respectively, that are mapped the positive imaginark axis, i.e., the poles on these sheet
by the functionk=k®)(g) on some bound regions of the images cannot become bound state poles when the depth of
k-plane sheet imag&,®). As the cuts on sheet®) are the potential well is increased.

symmetric with respect to the reglaxis, the bound regions Oon3/®) (n=2) there are only old-class resonant state
on the correspondinds-plane image26(3) are symmetric poles. The bound regions where the exotic resonant state
with respect to the imaginark axis. Each of these bound poles were located o (® and 3;® are empty on the

regions where the exotic resonant state pole is located lies CBheetsE,;(?’) (n=2). Sheetsiff) and 2(,3,)1 are symmetric

=3
o o (0| & ' ' FIG. 11. Sheets 3 (n
£ e | o Let) | E (c) : ¢
= TN M L D, =0,1,2) of the Riemann surface
100 ﬁ i R and their images.,® for a
- central rectangular potential with
0 I=3. The borders of the sheets
made of the edges of the cut
-100 [0%), the edges of the cuts that
join the complex branch points,
and a circle of a large radius are
-1 0 1 Rek shown in (@), (d), and (g). The
o x correspondingk-plane images of
£ £ the sheet borders are shown(b),
100 (e), and (h). Details of sheet im-
-2 ages3 o, 31, and3,®) are
0 shown in (¢), (f), and (i). The
hatched regions of she&t®) are
-100 _3 mapped by the function k
=k®)(g) onto bound regions of
the sheet image (®, indicated
0 - ; 2 Rek by the same hatching. Similarly,
- o . the hatched regions of she®t®
€ £ 0 (0 are mapped by the functiotk
- - =k®)(g) onto bound regions of
100 —o J sheet image>;®, indicated by
elF the same hatching. Theplane re-
o gion occupied on sheet images
100 _3l ¢ i 3683 ands {®) by the exotic reso-
- nant state pole are empty on sheet
image3 ;).
0 1 Z Rek
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with respect to the rea axis, so that theik-plane images are symmetric with respect to the imagikaayis.

5. Case =4
The pole equation for=4 is
k®+10ik?—55k3— 195k2+ 420k + 420 (10kg— 1953+ 420)sinky— (k§— 55k3+ 420k,)cosky
ik4—10k3—45k2+10%+105  (10k3—105ky)cosko+ (Ki—45k2+105)sink,

(3.39

The branch points and thefeplane images are obtained by ~ On sheet image¥ | and>'®),, n=3, there are no
solving the system of equatiori3.7) and(3.8), according to  exotic poles. Indeed, when the depth of the potential well
the procedure described for the casesD, 1, 2, and 3. In  increases the pole becomes a bound or virtual state pole,
Table V the branch points and thek-plane images are depending on the edge of the cut along the real axis on which

given. o . the potential depth increases, as one can see from Fil). 13
Lets=1,23....Sheet>" is joined to sheet?, at

the branch poingg ;. Sheet> () is joined to sheek “), | at
the branch poings ,. Sheet.$" is joined to sheeE ), , and  D. Properties of Riemann sheet& " and of their images |’
sheets (" is joined to sheek ™), at the branch pointg in the k plane

¥ @ is iof (4)
andgs,. Sheet% " is joined to sheeEsa]) at the branch The global method used above leads to a unified approach

point g.5. Sheets y o joined to sheeE(4)S at the branch 4 poyng, virtual, and resonant states of a particle scattered
point giﬁ. Sheet, )_ls_pmed to sheeﬁ(‘,ﬁ2 at the branch by a central potentialgV(r), geC, followed by a
po!ntgij. Sheet2 ™, is joined to sheek™;_, at the branch  glindependent real barrier. {f takes values on a given Rie-
pointgg. In Fig. 12 the way the various sheets are joined ajnann sheek (), the corresponding pole belongs to the Rie-
the branch(p)omts |s(s)hown. For simplicity, only theJunct|onsr.n(,inn sheet imagg’(" . The quantum numbers of the cor-

4 4 ; n -
of Th?ft§l”3 aEdEtlg(Ll\;wth\a,)mB(:j;r((i)sho(\j/v?ﬁ ol responding bound, virtual, or resonant state &ye)( In this
_nrg. sheetx 4y and2g (gn eirk-plané way, with a given statel(n) we associate a Riemann sheet
Imﬁg?essaéitstgotvr\\lg.rgagea .;“gg ?r?gtztﬁe'k?r?aﬁgmr;naetgz Eﬂ). This association of a Riemann sheet to a state is an
W b XIS, IK"p imag interesting insight into the intrinsic nature of the quantum

are symmetric with respect the imagindeaxis, according .

to Eq.(3.24. One can see that there are four sheet image tate. This approach allows one to study not only each state

namely S/(@) ¥1(4) 574 2043 @) on which there are 1,n), but also to understand the transition from stdta) to

bound feg]én,s o? th& pllané wherezthé exotic resonant state 31t (,m) as a result of p_otenual strength variation. Indeed,
let us suppose that describes a closed contour which starts

poles are located. OE1(4) there are three such bound re- : 0 .
gions: the first one corresponds to a strong absorption, i.e., {5°M @ Point on sheek,” and encloses the branch point

Img>Img.s; the second one corresponds to weak absorpl©o'"Ng slh(?)et§§1') and_zﬁr? : Tf)ﬁ)n the pole passes from sheet
tion, i.e., 0<Img<Imgg,; and the third one corresponds to IMage>,"’ to sheet imag&. ;" , i.e., the system makes a
an emissive potential Ig<0. Each of these bound regions transition from statel(n) to state (,m), as a result of the
lies on one of thé-plane images of the branch points and onpotential strength variation. Here statésn) and (,m) can
one of the stable points<t¥=2.657-2.104 and «{*  be either bound or resonant states. _ _
=0.867—-2.895 which are zeros ohgl)(k) in the fourth _ The new quantum nu_mben is completely d|_fferent in
quadrant of thé plane. In Figs. 1®) and 13c) the position kind from|. Whlle _the qrbltal angular momentuhis related

in thek plane of the images of the branch poig(s, andg;5 to the rotational invariance, the quantum numbehas a

are denoted by and G, respectively. The positions of the tqpologica: mef;]r“”lg- It \ala; f?r a an? ti&nf thcl;ughtj thta;,
images of the branch pointy ; and g;4, i.e., k=-2.322 since a pote In the Jower hafi-plane wifl fead to a bound state

andk= —3.647 are indicated. if the potential well strengthy is sufficiently increased, it

1 (4) : could be labeled by the radial quantum number of the bound
. On 2.2 there are also two bom_md regions where the p0|estate. The labeling of resonant states by the radial quantum
is confined. One of these regions corresponds togIm

+ i number of the bound states is not legitimate for the following
>Imgg, (strong absorption and the other to Irg<<O

'9s : reasons(i) There are resonant state polegotic pole$ that
(emission. The bound regions of thke plane where the ex- 44 not become bound state poles as the depth of the potential
otic resonant state pole is confined on the sheet IMAG¥ el increases; these poles could not be labeled by a radial
cannot be reached by the pole on the sheet in¥4§® if the  quantum number of the bound statéis. The radial quantum
potential is absorptive. The bound region where the exotiGumber would change as the potential strength is varied,
resonant state pole for absorptive potential is situated lies owhile we need a label which is independent on the potential
the k-plane image of the branch poigf,, denoted byl in  strength. By introducing the new quantum number these
Figs. 13e) and 13f), and on the stable poin?  shortcomings are removed. In the following the conclusions
=2.657-2.104 that can be drawn from the construction and analysis of Rie-
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TABLE V. Branch points forl =4. The zeros of the spherical
Bessel function$3(k0) andjs(ko), respectively, are denoted ky g
and kOS s (8'=1,2,3) stand for the zeros of the spherical Han-
kel function of the first kinch 1)(k) andks (s'=4,5,6,7,8) stand
fo(r)the zeros of the spherical Hankel function of the first kind
h&)(k).

s’ S Kos K g;s,

1 1 6.988 1.7541.839 49.135+6.451

1 2 10.417 1.754 1.839 108.820+ 6.452
1 3 13.698 1.754 1.839 187.940+ 6.452
1 n ~(n+3/2)7 1.754-1.839 ~(n+3/2)2m2—K?
2 1 6.988 —1.754-1.839  49.135-6.452

2 2 10.417 —1.754-1.839  108.820-6.451
2 3 13.698 —1.754-1.839  187.940-6.451
2 n ~(n+3/2)m —1.754-1.839 ~(n+3/22m2—k3
3 1 6.988 -2.322 54.224

3 2 10.417 -2.322 113.909

3 3 13.698 -2.322 193.028

3 n ~(n+32)7 -2.322 ~(n+3/2)?m2— K3
s’ S kg,s Ke/ g:s,

4 1 9.356 —3.641 100.830

4 2 12.967 —3.641 181.430

4 3 16.355 —3.641 280.775

4 n ~(+52) —3.647 ~(n+5/22 72— K2
5 1 9.356 1.7433.352 95.730+11.683
5 2 12.967 1.7433.352 176.330+- 11.683
5 3 16.355 1.7433.352  275.675+11.683
5 n ~(N+52)r 1.743-3.352  ~(n+5/2P7?—k?
6 1 9.356 —1.743-3.352  95.730-11.683
6 2 12.967 —1.743-3.352  176.330-11.683
6 3 16.355 —1.743-3.352  275.675-11.683
6 n ~(N+52)r —1.743-3.352 ~(n+5/272—k>
7 1 9.356 3.57+2.325 80.183+16.603
72 12.967 3.5742.325  160.783+16.603
7 3 16.355 3.5742.325  260.128+16.603
7 n ~M+52)mr 3.571-2.325  ~(n+5/2°72—k3
8 1 9.356 —3.571-2.325  80.183-16.603
8 2 12.967 —3.571-2.325  160.783-16.603
8 3 16.355 —3.571-2.325  260.128-16.603
8 n ~(n+52)w —3571-2.325 ~(n+5/2)°7%—k3

PHYSICAL REVIEW A61 032716

S

Y N Y A O A N |
G323 933 9is 955 935 G G55 957 Fi1 G20 T

Jiadha 934

FIG. 12. The junctions of sheet€(® and 3 (n,m
=0,1,2,3,4,5) for a central rectangular potential with4 at the
branch pointsyg;, sz, 93+ Gsar Uss Jses Js7r @Ndggg, (S
=1,2,3). The labeh or m of each sheet is indicated by the numbers
given at the left and right ends of the picture.

mann sheet& () and their image& /" will be summarized.

1. Existence of the exotic resonant state poles

The new-class resonant state poles, also called exotic
resonant state poles, exists provided that the potential well is
followed by a barrier. In the absence of the barrier there is no
exotic resonant state pole, as for example in the case of the
central rectangular potential witk=0.

On sheet images/", where n=0,+#1,+2, ... +(I
—1)/2 for oddl and n=0,£1,+2,...,=(1—-2)/2]/2 for
evenl (1+#0), there are bound regions where the exotic reso-
nant state poles are located. The new-class poles do not be-
come bound or virtual state poles as the potential streggth
increases. The border of each bound region ofkh@ane
where the exotic resonant state poles are situated lies on a
pair of points: a stable point, and theplane image of a
branch point. When the strength of the potential increases to
infinity the exotic resonant state pole approaches the stable
point [see EQ.(3.23)]. For a givenl there are onlyl sheet
imagesE,’f') that contain exotic resonant state poles. On
these Riemann sheet image&"” (1+0) there are no bound
state poles. This is due to the fact that the exotic resonant
state pole does not become a bound state pole when the
depth of the potential well increases to infinity.

On each sheet imagg/ ), with n=0,+#1,+2, ... +(I
—1)/2 for odd| and n= O,t 1,+22,...,=(1-2)/2]/2 for
evenl (1#0), the pole can belong either to the new or old
class of resonant state poles. There is an infinity of sheet
images[|n|>(1—1)/2 for oddl andn>1/2, n<—(1—-2)/2
for evenl+#0] on which there are only old-class resonant
state poles.

2. Absorption windows for the exotic resonant state poles

The cuts that are boundaries of a given shegt deter-
mine some threshold values for the imaginary part of the
complex potentialy. As we have already shown, there are
(21+1) cuts for odd and (4 —1) cuts for everl #0, sym-
metrically distributed with respect to the reglaxis. This
means that there arethreshold values for the absorptive
potential (Img>0) whenl is odd, and — 1 threshold values
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o
£l
100} R,
S FIG. 13. Sheets3(*, (n
ot =1,2,3) of the Riemann surface
R{Y and their k-plane images
—100f 3™ for a central rectangular po-
tential with [=4. The borders of
‘ | . ‘ the sheets made of the edges of
-100 0 100 Re g the cut[0>), the edges of the
cuts that join the complex branch
o points, and a circle of a large ra-
£ dius are shown ira), (d), and(g).
100l The corresponding-plane images
of the sheet borders are shown in
ol (b), (e), and (f). Details of the
k-plane images are shown i),
—100} (f), and (i). The regions of the
Riemann sheets indicated by
hatching are mapped by the func-
=00 0 100 Re g 0 2 Re k tion k=k*)(g) onto bound re-
gions in the correspondingplane
o[F @ T - X | - sheet images, indicated by the
Er-s ' (9) ; £ D 0 same hatching. Each region occu-
; pied on sheet image¥;® and
100r -2t ] 3, by the exotic resonant state
olmb-—-__ J pole are empty on sheet image
ELF ACH
-100} -3t .
L |n L n 1
-100 0 100 Re g 0 2 Re k

for the absorptive potential V\I/hdniS even and #0. For a  of resonant state poles if Igi>t, _; (strong absorptionor to
given potential strengtly = 3’ the corresponding pol&  the old class of resonant state poles # Bng<t,_, (weak
=k((g) on sheet imagel;" belongs to the old or new apsorption. On each sheets!", with n=i/2=0 (i

class of resonant state poles. This depends on the sheetiop 4 | ] —2), there are exotic resonant state poles for
which the giveng belongs and on the value of lmmwith  \veak absorption (& Img<t;_,) or for strong absorption
respect to the thresholds on that sheet. (Img>t;). In the regiont;_;<Im g<t; there is an old-class

For the sake of simplicity, in the following we restrict our pole. On sheet image&’ M, with n>1/2, there are only
discussion to the absorptive thresholds. Taking into accour§|y_q|ass poles. "o ’

the Jost function property3.24), it is a simple matter to

extend the results to the emissive potential as well. images shows that the exotic resonant state p(states

For example, let be odd. We denote byt{<t;<---  qoccyr for a strong or weak absorption. While in the case of
<t)) the absorptive threshold$,&Imgg ,>0). As shown,  strong absorption the exotic resonant state poles occur for
Im gjs, is constant for a givels’ and arbitrarys. On sheet =1, in the case of weak absorption the exotic resonant state
image s/ with n=(I—1)/2 the pole belongs to the new poles occur only fol=3. This means that a higher real
class of resonant state poles if ¢ t, (strong absorption ~ barrier is necessary for the occurrence of an exotic resonant
and to the old class of resonant state poles<fimg<t, state pole for a weak absorption. For example,lfe2 the
(weak absorption On each sheet imagEr’,(') with n= (i exotic resonant state pole exists B@(Z) for strong absorp-
—1)/2=0, (i=1,3,5...,1—2) there are exotic resonant tion (Img>Im g§4). Forl=3 on 26(3) the exotic resonant
state poles for weak absorption<Om g<t; or for strong state pole occurs for strong absorption @mIm g; ) or for
absorption Ing>t; , ;. In the regiont;<Img<t;,, there are  weak absorption (&Img<Img_,). On 3:® the exotic
only old-class poles. On the sheet imagg!) with n>(I  resonant state pole occurs for strong absorption ¢{Im
—1)/2 there are only old-class poles fo0m g<<c. >Im 9;5).

There is a similar situation for evein(l #0). On sheet In Fig. 14 we represent bound regions of the fourth quad-
imageErQ(') , with n=1/2, the pole belongs to the new class rant of thek plane, where the exotic resonant state poles for

The analysis of the Riemann sheets and of tkegitane
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o I I ~ duy(ko,r)/dr

u

' U|(ko,r)

lm k

li=r=1, (3.41a

dw(k,r)/dr

W__

LI - W|(k,r) |r:R:la (34lb
and u;(kq,r) and w,(k,r) are the wave functions used in
definition (3.3) of the Wronskianw,(g,k). Taking into ac-
count that the implicit functiotk=k{)(g) is defined by Eq.
(3.40, we calculate the derivativedk?/d(—g)=2kdk

d(—9):
dik oM lag aL ' g
d(—=9) oM, /ok> aLVIKE—aL 1ok

(3.42

0 2 4 6

Re k The derivativesiL '/ 9k? and d£|/dg can be calculated by

applying the method given in Ref46]. This gives
FIG. 14. The bound regions in the fourth quadrant ofkipdane

where the exotic resonant state poles for absorptive potential well f s, d

are located fot=1-6. The regions of sheet imagg4"" on which dk? urar

the exotic resonant state pole occur are labeled, byandt; . By t; d(—g) =7 (3.43
the thresholds that define the absorption windows for the occur- f u|2dr+u,2(r =1)aL )" ok?

rence of the exotic resonant state poles are denoted. For a Igiven

the thresholds are ordered according to the increasing imaginaqf ) . )

part of the corresponding branch point. The boundary of each rel he denominator of E¢3.43) is the square norm introduced

gion is given by the pole trajectory correspondinggtgoing along By Schnol[47] for resonant states. This norm was first sug-

the cut with Img=Img__,=t;. The positions of the stable points gested by Zel'doviclj48] for | =0. According to Lang45],

are indicated. ' we takedk?/d(—g) as an estimate of the wave-function lo-
calization. For bound states the second term in the denomi-

. . , nator of Egq. (3.43 is negligible, so that we have
an absorptive potential well with=1-6 are located. The dK/ d(—g)~q1 (whig)h showsgtr?at the wave function is al-

labeln of the sheet image is indicated. The boundary of ead?nost completely localized inside the potential well. Based on

region is given by the pole trajectory correspondinggto the recurrence relation8.69 and(3.6b), the numerator and

going along the cut with Ig=Img; ,=t;. In other words,  genominator of Eq(3.43 can be calculated. This gives
t; denotes the threshold that defines the absorption window

of the potential strength for the occurrence of the exotic reso- dk® k2 h(k) K2
nant state pole. Herg can be either a strong absorption (= )=— o o) - —. (3.49
threshold or a week absorption threshold, according to the 9 9 hZ(khiy(k) 9

rules given above. The branch point image inki@ane is a

U] i ] ) -
transition point of the quantum system from the old-clasd-St Xn’ D€ a stable point, defined as a zerohpP'(k). Ac

resonant state to the new-class resonant éatatic resonant  c0rding to Eq.(3.23 the stable point acts as an attractor for
state. the exotic resonant state pole, i.e., we have <! for g

—o0, Consequently fog— o it results from Eq.(3.44) that
dk?/d(—g)—0 for the exotic resonant states. This means
E. Properties of the exotic resonant states that for a sufficiently deep potential well the exotic resonant
state pole is located in the neighborhood of the stable point
k=« and, consequently, the corresponding exotic resonant
The wave functions of the exotic resonant states correstate has a wave function almost completely confined to the
sponding to the exotic resonant state poles are mostly cofiegion outside the potential well. As a consequence, the ex-
fined to the region outside the potential well. In order togtic resonant state is insensitive to the behavior of the poten-
characterize the localization of the wave functions in the cas@a| in the region of the well, and is almost entirely deter-
of potential(3.1), the contraction factodk®/d(—g) defined  mined by the geometric shape of the potential barrier.
by Lane[45] will be used.
Equation(3.4) can be written in the form 2. Local degeneracy of the resonant levels corresponding
to poles situated at the stable points

1. Localization of the wave function of an exotic resonant state

M (g,k)=L}'-L}'=0, (3.40 The resonant levels for the potenti@l.1) exhibit a local
degeneracy with respect to the orbital angular momeritum
We demonstrate that a resonant levieh} with orbital an-
where the logarithmic derivative8|' and £|" are defined by gular momentum, defined by a pole situated at a stable
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point ), is degenerate with other resonant levels with or-(3.8)]. It results that the above-mentioned system exhibits a
bital angular momenta—1 andl + 1. The stable poink{’ is  local degeneracy with respect to the orbital angular momen-
defined as the solutiok= «{" of the equationw,(k,R)=0,  tum. More precisely, the resonant level with orbital angular
wherew, (k,r) =krh®(kr), andRis the radius of the central Mmomentumi defined by the pole at{" is partly degenerate
rectangular well. The distribution of the stable points inkhe in I with the resonant levels with—1 andl+1. Instead of
plane was discussed in Sec. Il B. We recall that in the fourttfhe usual (2+1) degeneracy due to the spherical symmetry
quadrant of thek plane, including the negative imaginary Of the potential, the system has a 8{2l) degeneracy.

axis, there ard=(I+1)/2 stable points for odd and i LPElt) us consider the set of the Riemann s(LIJ)rfa@es
=1/2 stable points for eveh ={Rg’} (1=0,1,2,...), the set ofsheetsB = {Enl Fd
Let g=gf), (p=1,2,...) be the set opotential well =0,1,2,...), and the set oBheet imageC={3;"} (I

strengths for which there is a resonant state of angular mo=0,1,2,...). According to the degeneracy demonstrated
mentuml corresponding to a polesituated at a stable point above, sheets ), 0~ "ands{* (1>1), belonging to

", i.e., for whichw;(x{"’ ,R)=0. The values of ) result ~ three distinct Riemann surfacdg’, Ry~ ", and R{""

from the condition of continuity of the wave function at the from the setA, are joined atg:gi('%, Their imagesE,;('),
potential well radius: /07D "ands ! (*1) are joined ak=«{". We remark that

) By — 0 py— these sheets, as well as their images, are distinct members of
Ui R)=wi (ki R)=0. (345 setsB and C, respectively. Taking this into account, two

We will show that forg= glal)J the Smatrix elementsS, ;, types of junctions are possible. The first one is the junction at

S, andS, ., have a pole at the same position in thplane, e bran%r; pointg =g, ., of the two sheets of th((al)Rlemann
namely, at the stable poitt=«{". In other words we will ~SurfaceRy". The second one is the junctiongx-g; , of the
show that there is a local degeneracy with respettofthe ~ Sheets belonging to three distinct Riemann surfaRgb,
resonant levels with orbital angular momeital, I, andl ~ R{ ™", andR{ "™, respectively.

+1, provided that the potential well strength has a value that Due to this exact partial degeneracy there are three adja-
belongs to the discrete Seffg (p=1,2,...). Letk be a  cent angular momenta that contribute to the resonant cross
pole of theS,-matrix element. This means thasatisfies Eq.  Section. This result could seem surprising, because usually a

(3.4), or equivalently, taking into account Eq3.40 and  resonance, i.e., a sharp change in the energy dependence of
(3.41), the cross section, occurs in a givewave partial cross sec-

tion. Indeed the resonant-type structure disappears if the de-
Lk,R)=LM"(kR). (3.46  tector is placed at an angle equal to a zero of the correspond-
ing Legendre polynomiaP,(#). The increase of the cross
By using the recurrence relatio3.6a and(3.6b), satisfied section due to nonresonant phenomena can be distinguished
by the solutions(ko.r) at the stable poink(", and taking  from resonant phenomena by the fact that the former tend to

into account Eq(3.45), it results that result from the cooperative contribution from many partial
waves[49]. In our case, due to the above-mentioned degen-
£V« R)=by, (3.47  eracy, three partial cross sectiohs1, |, and|+1 have
resonant structures at the same energy, corresponding to that
L (" Ry =Dy 4, (3.489  of the resonant state associated to the poles situated at the

stable pointxi('). This is a new type of the resonance in the
cross section which is associated with the contribution of the
three partial waves. In Ref50] it was shown that the local

whereb,=1/R. Similarly, for w,(k,r),

W) (. =
LiZa(k7,R)=by, (349 degeneracy remains valid for exotic resonant levels in the
case of a square well with a Coulomb barrier.
L (< R)==by 1. (3.50
From Egs.(3.47—(3.50, we have IV. CONCLUSIONS

LY (M Ry=£M(«" R), (3.51) An approach to bound and resonant states, based on a
global analysis o5-matrix poles in the case of the scattering

L (M R)=£M (<" |R). (352 by a central potentialgV(r), geC, followed by a

g-independent real barrier, is presented. The Riemann sur-

If k=;<i(') is a pole of theS-matrix element, for the strength ~ face Rg) over theg plane, on which the pole functiok

of the potential well taking a value in the seflg(p ~ =k{®(g) is single valued and analytic, is constructed. The
—1,2,...)defined by the equation(«" ,R)=0, then, ac- Riemann surfaceR’ is divided into sheet&{’, and the
cording to Egs.(3.46), (3.51), and (3.52, it results thatk imagesig(') of these sheets in tHeplane are constructed. If
=« is also a pole of th&matrix elementsS ,; andS,_; g takes values on a given Riemann sh&p, the pole

for the same value of the potential well strength. In fact k{’(g) belongs to the Riemann sheet imagg! in the k
=« is the stable point of the functidk=k(")(g), a double  plane. In this way the she&t’ of the Riemann surfacg{

pole of S, 41, and a double pole of_; [see Egs(3.7 and is associated with a given state with quantum numblerg) (
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From this we gain insight into the intrinsic nature of the borhood of some special points called “stable points” when
guantum states. The Riemann surface approach to bound atite strength of the potential well increases indefinitety (
resonant states, based on the global method fogaiatrix ~ — «{) for g—o). These exotic resonant state poles are in-
poles analysis, has several merits: sensitive to the behavior of the potential in the region of the
(1) Instead of analyzing an infinity of poles in tkeplane,  well, and are almost entirely determined by the geometric
the global method allows one to analyze the single pole oghape of the potential barrier;
each Riemann sheet imagé" in thek plane. Indeed, if the (b) The wave functions of the exotic resonant states are
potential strengtly takes a value on a given sh@ﬂ) , then localized in the region of the barrier, rather than in the region
the functionk=k{")(g) takes only one value on tHeplane of the well; the wave functions of the exotic resonant states
image /(" of the sheet; i.e., there is only a single pole onthat correspond to poles situated in the neighborhood of the
each sheet image. By analyzing each Riemann sheet imagéable points are almost completely confined to the region of

3/M no pole is lost. the barrier; _ _
(2) By the Riemann surface approach, to a given state (C) A resonantlevell;n) with orbital angular momentum
(1,n) of the quantum system one associates a shéétof | defined by a pole situated at the stable paifit is degen-

the Riemann surfac{. This approach allows one not only €rate with the resonant levels{1n) and ( +1n), wheren

to study each statd ), but also to understand the transition 'S thé new quantum number. Here each of $eatrix poles

from state (,n) to state (,m) as a result of the potential (!—~1n) and (+1n) is adouble pole. This degeneracy sup-
strength variation. Indeed, let us suppose talescribes a POrtS @ new type of resonance in the cross section, associated
closed contour which starts from a point on shEé"f and with a cooperative contribution from three adjacent partial

o [—1,1, andl+1.
encloses the branch point joining sheBf§ ands(). Then ~Wavesi—1.1, : _ ,
the pole passes from sheet imagd" to ﬁ]eet imggé,’n('), The global method is used in order to analyzeSathatrix

i.e., the system makes a transition from stdt@) to state poles for a central rgctangular potential with O, ,1’ 2 3
(I,m), as a result of potential strength variation. Here the2nd 4. The construction of the Riemann surffé is given
states [,n) and (,m) can be either bound or resonant statesn detail. IThek-pIane images of the sheets of the Riemann
As a result a unified treatment of bound and resonant states %JrfaceRé) are analyzed.
obtained. It is expected that exotic resonant state poles to be present
(3) For a given potential form factov(r) the well and for any other potential shape consisting of a well followed by
barrier with absorption or emission are treated simulta& barrier. For example, in Ref31] exotic resonant state
neously, which allows a smooth transition from one case tgoles were identified for a central rectangular or Woods-
the other. Indeed, ag covers all the complex plane, each Saxon well with Coulomb and centrifugal barrier. A good
Riemann sheeEEP for the potentialgV(r) contains a well candidate for the resonant states that correspond to such ex-
and a barrier with absorption or emission. dffollows a  otic poles are the quasimolecular states, evidenced in the
continuous path on a given she%ﬁ;'), then the correspond- study of nuclear heavy-ion reactions. These are resonant
ing pole follows a continuous path in tleplane sheet image states with very special propertigg): they are highly excited
30 resonant states in nuclei, having energy in the neighborhood
(4) A new quantum numbenr with topological meaning is  of the total(Coulomb plus centrifugalbarrier;(ii) they have
introduced in order to label a pole and the correspondingjood spins and parities7); (iii ) the widthsI" of these states
state (,n). Taking into account that on a Riemann sheetare typically of the order of a few hundred kel) there are
imageX (") there is only one pole, the numberthat labels  several quasimolecular states at each valfieand (v) the
the Riemann sheét() and the Riemann sheet imag¢) is  centroid of each group with the sard& forms a straight line
used as a new quantum number for this pole and for thén the planeE,,. vs J(J+1), appropriate to a rotational
corresponding statd ,(0). band. Feshbachi51] suggested that these quasimolecular
(5) The global method for al&:matrix poles analysis is states are fragments of a shape resonant gpatent quasi-
stable under the potential strength variation. Indeed, one cammolecular statewith spin and parityd™, having a width of
not create or destro$-matrix poles by varying the strength the order of a few MeV. The fact that quasimolecular states
of the potential in the analyticity domain of the pole function have been observed in a region of high level density suggests
k=k{"(g). The poles can be created or destroyed only at thenat they belong to a new class of states of the nuclear system
branch pointg=0. If g follows a path on a sheé;ﬂ), the  that fulfills extraordinary conditions to prevent them from
corresponding pole describes a trajectory remaining on shespreading out. In Ref31] we showed that the parent quasi-
image 3/, provided that the path does not encircle amolecular states are exotic resonant states corresponding to
branch point and does not cross a small region containing theae first stable poink!{" for a central rectangular or Woods-
pointg=0. Saxon well with a Coulomb and centrifugal barrier, that de-
(6) The global method allows the identification of a new scribes the scattering of two ions. The properties of the par-
class ofSmatrix poles(exotic pole$ for the central rectan- ent quasimolecular state$energies, widths, rotational
gular potential witH # 0. The exotic resonant state poles andcharacter, deviation from the linear dependence of the energy
states have the following main properties. on J(J+1), doorway character, and criteria for observabil-
(a) The exotic resonant state poles remain in the neighity] result natually from general properties of the exotic reso-
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nant states. For example, the stability of the quasimoleculanteraction of the two ions. Closed-form expressions for the
states against dissolution into the neighboring compounénergies and the widths of the parent quasimolecular states
nuclear states is due to the localization of the exotic resonantere given in Ref[31]. A good agreement of the experimen-
state wave functions. Indeed, a parent quasimolecular stat&gl and theoretical energies and widths was obtained without
being an exotic resonant state corresponding to a pole sitwsing any adjustable parameter.

ated in the neighborhood of the stable point, has a wave
function localized almost completely outside the potential
well. This leads to a small overlap with adjacent compound
nuclear states which are localized in a region having a radius One of the author$N.G.) is indebted to Professor C. J.
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